OSBORNE/McGraw Hill

A Guide to
ATARI 400/800
Personal Computers

Includes the New XL Series

By Lon P ENiifF& Steven Cook.

L A -

YOUR ATARI®
COMPUTER

A Guide to ATARI® 400/800™ Computers

By Lon Poole
with Martin McNiff
and Steven Cook

OSBORNE/McGraw-Hill
Berkeley, California

The following are trademarks of Atari, Inc. Your ATARI® Computer is not
sponsored or approved by or connected with Atari, Inc. All references to the
following trademarks (registered trademarks noted with ®) in the text of this book
are to the trademarks of Atari, Inc.

ATARI®A®

ATARI® 400™ Computer
ATARI® 410™ Program Recorder
ATARI® 800™ Computer
ATARI® 810™ Disk Drive
ATARI® 820™ 40-Column Printer
ATARI® 822™ Thermal Printer
ATARI® 825™ 80-Column Printer
ATARI® 830™ Acoustic Modem
ATARI® 850™ Interface Module
Star Raiders™

Music Composer™

Memory Module™

Published by Osborne/ McGraw-Hill
2600 Tenth Street

Berkeley, California 94710

U.S.A.

For information on translations and book distributors outside the U.S.A., please
write OSBORNE/McGraw-Hill at the above address.

YOUR ATARI® COMPUTER
A GUIDE TO ATARI® 400/800T™ COMPUTERS

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

67890 87654
ISBN 0-931988-65-9
Cover design by Jan Benes
Cover illustration by J. Benes and R. Cash
Text design by K.L.T. van Genderen

Photos by Harvey Schwartz unless otherwise credited

CONTENTS

O XN Nk W

==
= O

— =T OmMmON = >

Introduction v

Presenting the ATARI Home Computers 1
How to Operate the ATARI Computers 13
Programming in BASIC 41

Advanced BASIC Programming 103

The Program Recorder 183

ATARI Printers 199

The ATARI 810 Disk Drive 221
Introductory Graphics 271

Advanced Graphics 291

Sound 325

Compendium of BASIC Statements and Functions 337
Appendixes

Error Messages and Explanations 405
STATUS Statement Codes 412

Derived Trigonometric Functions 414
Codes, Characters, and Keystrokes 416
ATARI BASIC Keywords and Abbreviations 425
Memory Usage 426

Useful PEEK and POKE Locations 434
Conversion Tables 443

The ATARI XL Series 450

Bibliography 457

Index 459

iii

ACKNOWLEDGMENTS

This book would not exist without the assistance of the people at Atari, Inc. We
wish to especially thank J. Peter Nelson and Sandy Bertino, who graciously
arranged equipment loans for our first-hand forays into the dark, half-charted
regions of ATARI BASIC. We used the same equipment for the photographsin the
book. Thanks also to Go Sugiura of AMDEK Corporation for the use of one of
their color monitors. Yes, a color monitor does display a considerably sharper
image than a television set.

Cynthia Greever tested most of the programs listed in the book and researched
facts for the appendixes. Finally, we wish to thank John Crane and his colleagues at
John Crane Consulting. They reviewed the manuscript and made many excellent
suggestions for improvements. We, of course, bear the responsibility for any errors,
misconceptions, and misinterpretations that remain.

INTRODUCTION

This book is your guide to the ATARI home computers. It describes the ATARI 400
and ATARI 800 computers, including the 600X L and 800XL, as well as the common
external devices and accessories, including disk drive and printers. We assume you
have access to an ATARI home computer system that is completely hooked up
according to the instructions in the appropriate operator’s manual provided with
each system component. We do not explain how to install your system, but rather how
to use it once it is installed.

The book is divided into three parts. Each part focuses on one kind of ATARI
computer user. The first part addresses the person who plans to use commercially
prepared programs but has little or no desire to program the computer. The second
part teaches the programmer or prospective programmer how to use BASIC* on
the ATARI computer. The third part organizes information about the ATARI
computer in the style of a reference manual for the user who understands the
generalities but needs to look up the specifics. These three parts are not mutually
exclusive. Users of the first part may venture into the second part just to see what
BASIC programming is all about. Users of the second and third parts are likely to
find themselves referring to the first part from time to time.

* This book covers only standard ATARI BASIC, sometimes called Sheperdson BASIC. Another
version of BASIC, Microsoft BASIC, is available as an accessory from Atari, Inc. A third version,
called BASIC A+, is available from Optimized Systems Software, of Cupertino, California. Neither
Microsoft BASIC nor BASIC A+ is covered in this book.

vi A GUIDE TO ATARI 400/800 COMPUTERS

The first two chapters answer two questions: “What is an ATARI computer?”
and “How do you make it work?” You have probably noticed that an ATARI
computer system consists of several pieces of equipment all strung together with
wires and cables. The first chapter tells you what all the pieces are and what they do.
The second chapter tells you how to operate each component part. With this
knowledge you are ready to use any of the ready-to-run programs that are widely
available for word processing, financial analysis, bookkeeping, computer-aided
instruction, and entertainment.

Chapters 3 through 10 teach you how to write your own BASIC programs.
Chapter 3 starts things off with a tutorial approach to the fundamentals of standard
ATARI BASIC. Chapter 4 continues with coverage of advanced programming
topics and BASIC features.

Several advanced topics are important enough to warrant their own chapters.
Chapter 5 covers using the program recorder to record and read back data in
BASIC. Chapter 6 explains how to use the ATARI printers, with emphasis on the
ATARI 825 80-column printer. Chapter 7 explains how to use the disk drive to store
programs and data files. Chapters 8 and 9 tell you how to program graphics on the
display screen. These two chapters also explore ways to bypass BASIC to achieve
some special graphics effects. Chapter 10 sounds out the ATARI computer’s audio
abilities.

Chapter 11 begins the reference section of the book. Here you will find detailed
coverage of each statement and function available in standard ATARI BASIC,
including disk statements. The Appendixes conclude the reference section; they
contain helpful tables about error messages, computer language codes, and some
special ATARI information.

Appendix I describes the ATARI XL series of computers: the 600XL, 800XL, and
1200XL, the differences between the XL computers and previous versions as well as
special programming consideration.

1
PRESENTING THE
ATARI PERSONAL

COMPUTERS

A complete ATARI personal computer system includes several separate pieces of
equipment. Figure 1-1 shows a typical system, centered around an ATARI 800
computer. Your system may not look exactly like the one pictured. System compo-
nents come from a long list of optional equipment, but every system has three
components in common: the ATARI 400 or 800 computer itself, the built-in
keyboard, and a television. Let’s take a closer look at each of these and at some of
the more common pieces of optional equipment. This chapter will not describe how
to hook up any of these components to the ATARI computer. For complete
installation instructions, refer to the operator’s manual supplied with your ATARI
400/800 computer, or with the individual piece of equipment.

THE COMPUTER COMPONENTS

There are two models of the ATARI personal computer. The ATARI 400 (Figure
1-2) and ATARI 800 (Figure 1-3) computers are identical underneath the packag-
ing. There is no electronic difference between them. Their performance is identical,
and they obey the same instructions.

Anything you can do on the ATARI 400 computer, you can do on the ATARI
800 computer. The reverse is generally true, but not always. The ATARI 800
computer has some features that make it more versatile than the ATARI400 computer.
You can personally change the memory capacity of the ATARI 800 computer, but
the memory capacity of the ATARI 400 computer is relatively fixed at the time you
buy it. You have the choice of using a television monitor with the ATARI 800
computer for a sharper display, but the ATARI400 computer can only use a regular
television set. The keyboard on the ATARI 800 computer is larger and more like a

1

2 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 1-1. A typical ATARI personal computer system

FIGURE 1-2. The ATARI 400 personal computer

Chapter 1: PRESENTING THE ATARI PERSONAL COMPUTERS 3

"F g ; ;
k) 'w' is..-‘ }m *’r:u iﬂ }u. ',LZ ;.o..

LD »,F *a? ’HT "-h, I’K. l,t. gt
’Z'% ’ad 'cl *vg ’a.‘ ’N Hm l": «’3, ‘,

FIGURE 1-3. The ATARI 800 personal computer

typewriter keyboard, while the ATARI400 computer has a flat panel. You can plug
intwo accessory cartridges on the ATARI 800 computer, versus one onthe ATARI
400 computer.

The ATARI 400 computer does have a raison d’étre. It has a sealed keyboard
which protects the interior from dust, lint, and spilled liquids. It is more compact,
weighs less, and costs less than the ATARI 800 computer.

From this point on, we will refer to both models collectively as the ATARI
computer. Where photographs and illustrations show one model, you can assume
they apply to the other model as well. We will note anything to the contrary.

The Keyboard and Television

The keyboard and television screen make communications with the ATARI com-
puter possible. The keyboard transfers instructions from your fingertips into the
computer. To facilitate touch-typing, the keys are arranged in the same orderas ona
standard typewriter. But the ATARI 400 computer is not well suited to touch-
typing because of the compact size and different feel of its keyboard. Both key-
boards have some keys you won’t find on a typewriter. These special keys are
discussed in Chapter 2.

The display screen is usually an ordinary color television set. The ATARI 800
computer also accepts a color television monitor. A black-and-white television set
will also work, but colors will show up in shades of gray. The screen not only

4 A GUIDE TO ATARI 400/800 COMPUTERS

, (LRRR

RN RN LS R
(ARSHRRR AT VI
AARRARARN) AARAARARAR!

FIGURE 1-4. Typical television set hookup

displays everything you type so you can visually verify its accuracy, it also displays
the reactions of the computer to your instructions.

The standard display screen has several different modes of operation. One is for
monochromic text (for example, black-and-white or blue-and-white) only. Two
other modes produce text in as many as four different colors. There are also modes
designed especially for graphics. In the monochromic text mode, the standard
screen is divided into 24 lines of 40 characters each. The other modes subdivide the
screen differently. Graphics are discussed further in Chapters 8 and 9.

Most ATARI computer owners use a television set for their display screen either
because they have one or because it provides a good excuse to get one. The television
monitor produces a sharper picture than a television set in the computer environ-
ment, but you can’t use it to watch your favorite show.

The television set connects directly to the ATARI computer through a switch box
which attaches to the television antenna terminal (Figure 1-4). With the switch in
one position, the television functions as a television, but with the switch in the other
position, the television takes its orders from the ATARI computer.

A television monitor requires no switch box; it attaches directly to the five-pin
socket on the side of the ATARI 800 computer (Figure 1-5).

Inside the Console

The ATARI 400/800 computer console houses the part of the computer that
controls, with your guidance, the rest of the system. Lurking beneath the keyboard

Chapter 1: PRESENTING THE ATARI PERSONAL COMPUTERS 5

i

FIGURE 1-5. Typical television monitor hookup

FIGURE 1-6. Hatch for plug-in cartridges

are all the electronics that give the ATARI computer its personality. Fortunately,
you need never concern yourself with these undercover items.

The ATARI400 has a hatch on top which opens to accept a plug-in cartridge. The
ATARI 800 computer will accept two cartridges (Figure 1-6). In fact, the entire top
comes off the ATARI 800 computer, allowing access to the main memory banks
(Figure 1-7).

6 A GUIDE TO ATARI 400/800 COMPUTERS

Memory

Computer memory is typically measured in units called byres. Each byte of memory
can hold one character or a similar amount of data. Depending on the number of
chips, your ATARI computer has anywhere from 18,432 to 61,440 bytes of
memory. This is usually stated 18K to 60K, where K represents 1024 bytes. The
amount of memory available determines how much the computer can do, as you
will see later.

The ATARI computer actually has two kinds of memory. One is called ROM
(read-only memory). Its contents never change, even when you turn off the power.
ROM contains the programs that give the ATARI computer its unique identity and
enable it to understand and respond appropriately to the commands you type in at
the keyboard. The other kind of memory is called RA M (random-access memory,
also called read/ write memory). The contents of RAM can be changed. In fact, the
program in RAM determines what task the ATARI computer will currently per-
form. RAM works only as long as the power remains on. Assoon as you turn off the
ATARI computer, everything disappears from RAM.

On the ATARI 800 computer, RAM comes in separate 8K or 16K plug-in
modules (Figure 1-8). You plug in the RAM modules underneath the top cover
(Figure 1-7) in some combination to provide as much RAM as you need.

Changing the RAM capacity of an ATARI 400 computer is not a task for the
average user. Some ATARI computer dealers do have the facilities to do it.

7
=
-
=

\

R R TR TR YT T

%

FIGURE 1-7. ATARI 800 computer memory banks

Chapter 1: PRESENTING THE ATARI PERSONAL COMPUTERS 7

The 410 Program Recorder

Fortunately, you can use a cassette tape recorder to transfer programs to and from
RAM, thereby storing a whole library of programs on cassettes. The 410 Program
Recorder (Figure 1-9) is designed specifically to work with an ATARI computer. A
single 30-minute cassette can hold as many as 51,200 characters.

FIGURE 1-8. ATARI 800 computer plug-in RAM memory modules

PROGRAM RECORDER

g

FIGURE 1-9. ATARI 410 Program Recorder

8 A GUIDE TO ATARI 400/800 COMPUTERS

The 810 Disk Drive

A disk drive far surpasses the program recorder as a program storage device. It is
more reliable, stores more, and operates faster. The disk drive easily and quickly
stores data such as names and addresses for a mailing list, or correspondence for a
word processor. The 810 Disk Drive (Figure 1-10) stores as many as 92,160
characters on each removable diskette.

Programs

The programs you use with your system are as much a part of the system as any of
the physical devices. Several different classes of programs must coexist in order for
the ATARI computer to perform any specific chore. Programs that do things like
game playing, word processing, accounting, and financial analysis are called app/i-
cation programs. You often transfer them to RAM from a cassette or diskette.
When you want your ATARI computer to be a word processor, for instance, you
use the diskette with the word processing application program on it and transfer the
programinto RAM. Chapter 2 explains how to do this. Application programs also
come on ROM cartridges (Figure 1-11) that you plug in underneath the hatch of
either ATARI personal computer (Figure 1-6). If you want to play a game, you plug
in the appropriate cartridge.

More often than not, programmers write application programs in a programming
language that is easy for them to use but too advanced for the ATARI computer to

FIGURE 1-10. ATARI 810 Disk Drive

Chapter 1: PRESENTING THE ATARI PERSONAL COMPUTERS 9

oourm
N
LANGUAG EC

FIGURE 1-11. Some plug-in ROM cartridges

understand without some help. A special program called an interpreter does just
what its name implies. It translates the application program from the language in
which it is written to a language the computer can understand. The interpreter for
standard ATARI BASIC comes on a ROM cartridge which plugs in under the
hatch of either ATARI personal computer.

The interpreter in turn relies on another program to coordinate the system
components. This program, called the operating system program, performs funda-
mental system operations like transferring programs from cassette or disk to
memory, and echoing keystrokes on the display screen. The ATARI operating
system program always resides in ROM. On the ATARI 800 computer, the operat-
ing system is in a plug-in module under the top cover (Figure 1-7).

Game Controls

There are three kinds of game controls that attach to the front of the ATARI
computer (Figure 1-12). Joysticks, paddles, and keyboard controllers are com-
monly used with games, and are showing up increasingly often in other programs.
However, many applications do not require these game controls, so your system
may not have them.

Printers

Many applications, especially in business and finance, need a printer to produce
reports on paper. There are three ATARI printers. The 820 Printer and 822
Thermal Printer (Figure 1-13) connect directly to the ATARI communications line.
The 825 Wide-Carriage Printer connects to the ATARI computer through the 850
Interface Module (Figure 1-14). Printers other than ATARI printers can be

10 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 1-12. Game controls

FIGURE 1-13. ATARI 822 Thermal Printer SR il

Chapter 1: PRESENTING THE ATARI PERSONAL COMPUTERS 11

FIGURE 1-14. ATARI 825 Printer and ATARI 850 Interface Module

attached to the 850 Interface Module too. There are printers of every size, price, and
description. Some will print correspondence that looks just as good as anything a
typewriter can produce. Others will reproduce your graphics displays (in color, in
some cases). There are also printers that are a compromise between the two.

B I T N T ks I F il
ey, R LI | 1 P

. RPN SR S LS
s s L. pi=

T

2
HOW TO OPERATE
THE ATARI
COMPUTER

Any computer system can be a bit intimidating when you first sit down in front of it.
This chapter will make you more comfortable around the ATARI computer by
explaining how to use it. Before you read any further, make sure your system is set
up properly. The operator’s manuals that come with each piece of equipment have
complete instructions to help you with the installation procedure. If you need more
assistance to be sure you’ve done it right, check with someone else who uses an
ATARI computer like yours, or with your computer dealer.

INSTALLING ROM CARTRIDGES

The ROM cartridge installed in your ATARI computer can make quite a difference
in the way it behaves. The cartridge is under the hatch cover on top of the console
(Figure 2-1). The ATARI 400 computer has one cartridge socket. The ATARI 800
computer has two; almost all cartridges go in the left socket. If there is another
cartridge in the socket, grasp it firmly and pull it straight up and out. Hold the
cartridge you plan to use so the label is facing you. Plug it into the socket. Press
firmly on top of the cartridge to make sure it is all the way in. Close the hatch, and
you’re done.

If no cartridge is installed, the ATARI computer operates in memo pad mode.
The computerisn’t very useful in this mode; it merely displays whatever you type, as
if you were typing a memo.

This book assumes that the cartridge labeled “BASIC Computing Language” is
installed.

13

14 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 2-1. Installing a ROM cartridge in the ATARI 800 computer
(ATARI 400 computer similar)

TURNING ON THE POWER

Before you turn on any power switches, make sure all the system components are
connected together correctly. Figure 2-2 diagrams one way to connect the pieces of a
full-feature system.

You must turn on the pieces of your ATARI system in a certain order, as shown
below.

1. Turn on the television. Tune it and the ATARI computer to the same channel. Set the
antenna switch to “computer.”

2. If you plan to use diskettes during this session, turn on Disk Drive 1. Insert a diskette
which has the disk operating system on it. Close the drive door.

3. If you plan to use a component attached to one of the serial interface jacks of the 850
Interface Module, turn on the 850 Interface Module now. Otherwise, leave it off.

4. Turn on the ATARI 400/800 console.

5. Turnon the printer when you are ready to use it. The 825 Printer also requires that the
850 Interface Module be on.

If you don't follow this procedure, the ATARI computer may be unable to com-
municate properly with some of the system components. The steps outlined above
will now be described in detail.

Step 1: The Television

First, turn on the television set or television monitor, whichever your system uses
for a display screen. Let it warm up while you turn on the rest of the system. Turn

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 15

Fenor || TV set with
Q|| antenna switch
|5

ATARI 400 or 800
computer

810 Disk Drive 850 Interface
Module

e e 7‘/’/

B

410 Program 825 Printer
Recorder

FIGURE 2-2. Typical connections between ATARI system components

down the volume for now (some monitors have no volume control). The rest of this
section pertains only to the television set. If your system uses a television monitor,
go on to the next section.

Locate the slide switch hanging from the television antenna terminals and set it on
the “computer” or “game” setting (Figure 2-3). With the switch in this position, the
television set becomes the ATARI computer’s display screen. Tune the television set
to channel 2 or 3, whichever is weaker in your neighborhood. If you’re not sure
which channel to use, try channel 2. You can switch to channel 3 later if reception on
channel 2 is poor.

The ATARI computer must be set to broadcast on the same channel the televi-
sion is tuned to. There is a slide switch on the side of the keyboard console (Figure
2-4). Set it to match the television channel (2 or 3).

16 A GUIDE TO ATARI 400/800 COMPUTERS

SWITCH BOX
PART NO. CA010112

VYNNI LNV

WHO SZ

FIGURE 2-3. Setting the TV antenna slide switch

FIGURE 2-4. Selecting the ATARI computer’s TV output channel

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 17

Step 2: The Disk Drive

If your system has no disk drive, or if you won'’t be using the one it has, skip this
section. Otherwise, turn on the drive now. The drive will whirr and click for a few
seconds, and its front panel lamps will light. This is normal. After a few seconds, the
noises will stop and all lamps but the power indicator lamp will go off.

If you have more than one drive, you must turn on Drive 1 now; the other drives
are optional. To determine which is Drive 1, look through the access hole in the
back of each drive (Figure 2-5). You can see one or two switch levers. The position
of these levers determines the drive number. Drive 1 has both levers all the way over
to the left. You may only be able to see the black lever in front; it may be hiding the
white lever behind it.

Take one of the diskettes labeled “Disk File Manager Master Copy,” “Disk File
Manager II Master Copy,” or a duplicate copy of one of these diskettes. You can
also substitute any other diskette recommended by a reliable source for use at
power-on time. Carefully insert the diskette in Drive 1, label side up. Slide it all the
way in and gently close the drive door. For more information on diskette handling,
see the section later in this chapter on using the disk drive.

Step 3: The 850 Interface Module

Turn on the 850 Interface Module only if you plan to use a component attached to
one of its serial interface jacks (Figure 2-6). Otherwise, leave it switched off for now.

FIGURE 2-5. Determining the disk drive number

18 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 2-6. The 850 Interface Module serial interface jacks

Step 4: The ATARI 400/800 Console

For the fourth step, lift the hatch cover and make sure the proper ROM cartridge is
installed (Figure 2-1), then close the cover securely. Double-check that all system
components are correctly interconnected (Figure 2-2). Locate the power switch on
the side of the console, next to where the power cord plugs into the computer
(Figure 2-7). Turn the switch to “on”and turn up the television volume a bit. Things
start to happen. The power lamp on the keyboard comes on. The television displays
a blue field with a black border and starts to make clicking noises (if the volume is
turned up enough). If the disk drive is on, it starts to whirr. Soon the message
READY appears in white letters on the screen (Figure 2-8). The disk drive stops.

If the READY message does not appear after 30 seconds, something is wrong.
Turn everything off, recheck all connections, and try again. If you are using the disk
drive, be sure that you are using a proper diskette, that it is inserted label-side up,
and that the drive door is closed. Otherwise the drive simply whirrs and makes
rasping sounds. The message BOOT ERROR appears on the display screen.

If the ATARI computer still won’t start, turn the power off. Unplug the computer
and get help from someone with more experience (your dealer).

Step 5: The Printer

Once you have completed the steps described above, you can turn the printer on and
off whenever you like. It must be on to print, of course, but can remain off
otherwise. With the 825 Printer, the 850 Interface Module must also be on to print.

Turning Components On and Off

During a session with the computer, the ATARI 400/800 console must remain on.
You can turn many other components on and off as you need them, once the initial

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 19

FIGURE 2-7. The console power switch on the ATARI 800 computer
(ATARI 400 computer similar)

FIGURE 2-8. The display screen after a successful power-on sequence

20 A GUIDE TO ATARI 400/800 COMPUTERS

power-on sequence is complete. The television, disk drive, and printer can all be
turned off and on at will. However, the 850 Interface Module must remain on unless
the only thing connected to it is the 825 Printer. In that case, you can turn it off until
you need to print.

What You See on the Screen

The READY message on the television display screen means the ATARI computer
isnowready to accept your commands via the keyboard (Figure 2-8). Just below the
READY message you will see a white square. This white square is called the cursor.
It marks the location where the next character you type will appear on the screen.

THE KEYBOARD

The ATARI400 and 800 keyboards are shown in Figure 2-9. The two keyboards are
similar, but the ATARI 800 keyboard is larger than the sealed ATARI 400
keyboard.

The ATARI keyboard looks much like the keyboard of an ordinary typewriter,
but it has some extra keys you won’t find on most typewriters. Two are on the left
side, marked ESCand CTRL. Three others are on the right, marked BREAK, CAPS/LOWR,
and A . Several of the standard keys have extra words or symbols on them, and on
the far right is a column of four yellow special function keys.

R)
5 6 7

i""..{ Vst

MN(@ W B REATG Y, (U (T, JO] (P

s

FIGURE 2-9. The keyboards

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 21

Take a few minutes and experiment with the keyboard. Go ahead and type on it.
Nothing you type will do any harm to the computer that can’t be cured by turning
the power off and on again.

Automatic Repeat Feature

Hold one of the letter keys down, say the G key. A single G appears. After a few
seconds, G’s start streaming across the display. This automatic repeat feature of the
keyboard works with every key except SHIFT, BREAK, and the yellow special
function keys, including SYSTEM RESET.

Line Length

Display lines on the ATARI computer are 40 characters wide. Margins are set such
that 38 of the 40 positions are usable. The two leftmost columns are outside the
standard left margin.

The SysTeEM RESET Key

SYSTEM RESET is one of the yellow special function keys on the far right side of the
keyboard. When you press SYSTEM RESET, everything stops. No matter what the
computer is doing when SYSTEM RESET is pressed, control of the computer returns
to the keyboard.

Sometimes SYSTEM RESET causes a lot of problems, especially if a disk drive is
active when this key is pressed. Therefore, you must exercise extreme caution not to
press the SYSTEM RESET key accidentally.

The RETURN Key

As you type along, the characters you type show up on the display screen. In
addition, the ATARI computer saves everything you type in its memory but does
not try to interpret what you type until you press the RETURN key. The RETURN key
signals the computer that you have finished the line you have been typing. When
you press RETURN, the computer examines everything on the line that you just typed
in. If those characters are not legitimate, an error message appears.

The BrReak Key

BREAK interrupts whatever is going on and brings it to a halt. Press BREAK while
entering a command, for example, and the computer disregards everything you’ve
typed on the current display line.

When running a program, do not use the BREAK key unless specifically instructed
to do so. Some programs are careful to disable it, but others will stop if BREAK is
pressed. You can usually continue a program by typing the command CONT and
pressing the RETURN key, but the display screen will be ruined at the very least.

22 A GUIDE TO ATARI 400/800 COMPUTERS

The SHIFT Key

When you first turn on the ATARI computer, letters are always upper-case. It
doesn’t matter whether or not you use the SHIFT key. The SHIFT key does affect
some keys in this mode, though. You get one character by pressing a key with the
SHIFT key held down and another by pressing the same key without holding the
SHIFT key down. The character you get when using the SHIFT key is printed on the
top edge of the key. Table 2-1 lists some SHIFT key combinations; Appendix D
provides a complete list.

We use the notation SHIFT- to describe a compound keystroke involving the
SHIFT key. For example, SHIFT-3 (press the SHIFT and 3 keys simultaneously)
produces the # character.

The CTRL Key

CTRL is a contraction of the word “control.” The CTRL key is always used together
with another key in the same manner as the SHIFT key. You hold the CTRL key down
while you press and release another key. We designate the use of the CTRL key in
conjunction with another key by prefixing the name of the other key with CTRL-.
For example, CTRL-B means press the CTRL and B keys simultaneously.

The CTRL key, like the SHIFT key, allows some keys to have an additional
function. Some of the functions you get with CTRL key combinations are printed on
the top edge of the keys, in reverse notation. For example, CTRL-TAB clears a tab
stop. CTRL combined with any of the letter keys produces a graphics character.
Table 2-2 lists some of the CTRL combinations; Appendix D provides a complete
list.

The Caps/Lowr Key

When you first turn on the ATARI computer, all the letters you type are displayed
on the screen as capital letters, regardless of whether the SHIFT key was pressed
when you typed them. Press the CAPS/LOWR key to get upper- and lower-case
capability. Now you get lower-case letters without the SHIFT key, upper-case with it.
To get back to upper-case mode, press the SHIFT and CAPS/LOWR keys at the same

TABLE 2-1. Selected SHIFT Key Effects (Upper-case mode)

Keystroke Character or Action
SHIFT-TAB Set tab stop
SHIFT-< Clear display screen
SHIFT-> Insert blank line
SHIFT-BACK S Delete current line

SHIFT-CAPS/LOWR Switch keyboard to upper-case mode

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 23

TABLE 2-2. Selected CTRL Key Combinations

Keystroke Character or Action
CTRL-TAB Clear tab stop
CTRL-- Move cursor up one line
CTRL-= Move cursor down one line
CTRL- + Move cursor left one space
CTRL-* Move cursor right one space
CTRL-1 Freeze/restart screen display
CTRL-3 Usually results in an error
CTRL-< Clear display screen
CTRL-> Insert a space
CTRL-BACK S Delete next character
CTRL-CAPS/LOWR Switch keyboard to graphics mode

time. Press the CTRL and CAPS/LOWR keys simultaneously to switch the keyboard to
graphics character mode.

The A Key

The A key switches the keyboard back and forth between normal and inverse video
modes. Inverse video characters come out reversed, blue letters on a white
background.

The Arrow Keys

The four arrow keys are called up-arrow, down-arrow, left-arrow, and right-arrow.
They are all CTRL key combinations: CTRL-- (1), CTRL-=(}), CTRL-+ (+), and
CTRL- A (—).

You will find the arrow keys very useful because they allow you to correct any
typing mistakes you might make, enabling you to change information you have
already entered.

The — key works like the backspace key on a typewriter. Each time you press it,
the cursor backs up one space. Try it now. Type inany word (try PRINT). Press the
+— key several times and watch the cursor back up along the word you just typed in.
Notice that the characters you back over do not disappear from the display screen.
Try backing the cursor all the way to the left edge of the screen. When you get to the
edge and press the < key again, the cursor jumps to the right edge of the screen.

As you might suspect, the — key moves the cursor to the right along the display
line. It does not erase characters it passes over. When the cursor reaches the right
margin, it reappears at the left margin on the same line.

In a similar fashion, the t and | keys move the cursor up or down one line. With
the cursor at the top of the screen, thet key puts it at the bottom of the screen. With
the cursor at the bottom of the screen, the | key puts it at the top.

24 A GUIDE TO ATARI 400/800 COMPUTERS

The Back s Key

Each time you press the BACK S key, the character at the location of the cursor is
erased and the cursor backs up one space. Try backing all the way to the left edge of
the screen. The cursor bumps into the left margin; press BACK Sagain and the cursor
doesn’t move.

The CLEAR Key

Press CTRL- < or SHIFT- < and the display screen clears. The cursor moves to the
upper left-hand corner of the screen. This corner is called the home position.

The INSERT and DELETE Keys

Activating the INSERT or DELETE keys requires a combination keystroke using
either the CTRL key or the SHIFT key. CTRL- > inserts a blank space to the right of
the cursor. CTRL-BACK S deletes the character to the right of the cursor. In either
case, the cursor does 1ot move.

SHIFT- > inserts a blank line above the line the cursor is on; the entire display
from the cursor line down shifts down one line. SHIFT-BACK S deletes the whole line
the cursor is on; lines below that move up on the screen.

The TasB Key

When you press the TAB key alone, the cursor advances to the next tab stop.
Standard tab stops, present when you turn on the ATARI computer, are set eight
columns apart. Because the standard left margin is indented two columns from the
edge of the screen, the first tab stop is only six columns to the right of the left margin.
SHIFT-TABsets a new tab stop at the location of the cursor. CTRL-TAB clears the tab
stop at the location of the cursor.

The Esc Key

Escstands for “escape,” which is a term left over from the days when teletypes were
common computer terminals. Somehow the name has stuck. Unlike the SHIFT and
CTRLkeys, the ESCkey is never used by holding it down while pressing another key.
Escisalways pressed and released before the next key is pressed and released. This
two-key operation is called an escape sequence.

The ESC key lets you suspend the immediate effect of keystrokes like CLEAR
(SHIFT-<) in order to enter them as values. Escape sequences are mainly used in
programming; they are covered more fully in Chapter 4.

The Other Keys

The other keys onthe ATARI keyboard are no doubt familiar to you. There are the

letters of the alphabet, the digits O through 9, and a standard set of symbols.
Many typists do not distinguish between the number zero and the letter “O” or the

number one and the lower-case letter “l.” The ATARI computer can’t cope with this

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 25

ambiguity. You must be very careful to type a numeral when you mean a numeral.
To help you remember, the ATARI keyboard shows the zero with a slash throughiit,
and zeros are displayed on the screen with that slash.

USING THE 410 PROGRAM RECORDER

If your ATARI system includes a program recorder, you can load programs from
cassette tapes. There are many program tapes you can buy, and you can make your
own as well (we’ll tell you how in Chapter 3).

Handling Cassettes

Be careful with cassettes. They are easily damaged and not easily replaced. Avoid
touching the surface of the tape itself. No matter how clean your skin is, natural oils
will contaminate the tape. Make sure you put tapes back in their cases when they are
not being used. Never store them in hot areas, direct sunlight, or near magnetic
fields (like those found near electric motors).

Selecting Blank Cassettes

The 410 Program Recorder uses only audio cassettes — never digital cassettes. You
can’t go wrong with the best quality normal-bias tape. Good quality tapes will work
too, but avoid cheap bargain cassettes. They tend to jam up after a while, rendering
your valuable programs inaccessible.

Most programs take up very little tape. Therefore, short tapes tend to be just as
useful as long ones.

Labeling Cassettes

You should label every cassette with information about the programs it contains.
This prevents the headache of searching through cassette after cassette for the
program you need.

Write-Protecting Cassettes

Each cassette has two notches in the rear edge (Figure 2-10). When the notches are
uncovered, the 410 Program Recorder can sense the holes and will not record on the
cassette. New blank cassettes have tabs covering the holes so the tape can be
recorded on. You can protect important programs by knocking out the correct tab
and exposing the hole. Later, if you want to record over a protected tape, simply
cover the hole with tape.

Each cassette has two sides to it. One notch protects one side, while the other
notch protects the other side. To determine which notch is correct, hold the cassette
so that the exposed tape is toward you and the side you wish to protect is facing up.
Remove the tab on the left side to prevent recording over the side facing up.

26 A GUIDE TO ATARI 400/800 COMPUTERS

Write protect notches

/

[Rd] IH A

el

e [o= ° -,

FIGURE 2-10. Cassette write-protect notches

USING THE 810 DISK DRIVE

If you have one or more disk drives connected to your ATARI computer, you can
get programs on diskettes instead of cassettes.

What Kind of Diskettes to Buy

From time to time you may need extra blank diskettes. The ATARI810 Disk Drive
uses standard 5%-inch diskettes. It can use either soft-sectored or hard-sectored
diskettes, although soft-sectored are preferred. Any well-known brand of diskette
will work.

Handling Diskettes

You must be very careful when you handle a diskette. Diskettes are much more
delicate than cassette tapes. Never bend a diskette. Never touch the surface of the
diskette (the part inside the holes), and never force a diskette into the drive. Always
replace diskettes in their envelopes when you remove them from the drive, and
protect them from heat, direct sunlight, and magnetic fields (like those found near
electric motors). Be especially careful with the “Disk File Manager Master Copy” or
“Disk File Manager II Master Copy” that came with the disk drive.

Write-Protecting Diskettes

Most diskettes have a square notch cut out of the right side. The 810 Disk Drive will
write on a diskette only if it senses the presence of the notch. To prevent accidentally
writing on a diskette, cover its notch with an adhesive label or a piece of tape (Figure
2-11).

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 27

Protective jacket \

Hard/soft-sectored hole

Write protect notch i

[———

FIGURE 2-11. Write-protecting a diskette

Diskette Insertion

The proper way to insert a diskette into the disk drive is shown in Figure 2-12. Hold
the diskette between your thumb and forefinger. Open the door on the disk drive
and gently slide the diskette all the way into the drive. There should be almost no
resistance. If the diskette will not go in easily, remove it and try again. Make sure
you are holding the diskette as level as possible. Once the diskette is inside the drive,
gently close the drive door. The door should close very easily. If there is any
resistance, release the door and push the diskette completely into the drive, then try
again. If you force the door shut you will destroy the diskette. Sometimes it helps
center the diskette if you wait until after the disk starts spinning to close the door.

The Disk Operating System

Before you can use any disk drive, a special program called the disk operating
system must be in memory. The disk operating system, or DOS, is a special program
that controls all disk-related activities. The process of placing a copy of DOS in
memory is called booting. In computer jargon you can say “boot the disk” or “boot
the DOS,” or just “boot DOS.”

Turning off the ATARI 400/800 console erases DOS from memory. If you need
to use a disk drive the next time you turn on the system, you must reboot DOS. You
do not have to reboot DOS when you just turn a disk drive off or on.

Booting DOS

There is only one way to boot DOS. The procedure is as follows:

I. Turnon Drive 1. Todetermine which is Drive | on a multiple-drive system, look in the
access hole at the back of each drive. Find the drive with both the black and white
switches all the way to the left (Figure 2-5); that’s Drive 1.

28 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 2-12. Inserting a diskette into a disk drive

2. Place a diskette with a copy of the disk operating system on it into Drive 1. The
diskettes labeled “Disk File Manager Master Copy” and “Disk File Manager 11
Master Copy” have a copy of DOS on them.

3. Turnthe console power off and on. The disk drive whirrs as it transfers DOS from the
diskette to the computer’s memory. The READY message appears on the display
screen when the boot finishes.

You probably noticed that the standard power-on procedure described earlier in
this chapter includes these steps. Thus, if you follow that procedure, you will boot
DOS as a matter of course.

If any problem occurs during the boot, the message BOOT ERROR appears on
the display screen. The disk drive may also make disconcerting rasping sounds.
Boot errors occur when there is no diskette in the drive, the drive door is open, the
diskette is in upside down, there is no copy of DOS on the diskette, the diskette is
damaged or defective, or the disk drive malfunctions.

The DOS Menu

Part of the disk operating system is a set of utility programs. Many are strictly for
programmers, but almost every disk user has occasion to use one or two of them. To
use them, first boot DOS. With the same diskette still in the disk drive, type the
following command on the ATARI keyboard:

DOS

Press the RETURN key. The display screen changes to look like Figure 2-13. This is
called the DOS menu. Your menu may look a bit different.

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 29

FIGURE 2-13. Typical DOS menu

There are two different versions of the disk operating system, and each has a
slightly different menu. Unless you plan to program the ATARI computer, you
need to use only menuitems A, D, E, [, J, L,and O. Those seven are the same in both
versions. With one version of the disk operating system the menu appears imme-
diately. The other version has to access the disk drive first; it may take as long as 30
seconds for the DOS menu to appear.

WARNING: The DOS command may erase the program you were last using from the

ATARI computer’s memory. Do not use the DOS command unless you are willing to

restart the program you were last using.

The Diskette Directory

If you have successfully booted a diskette, you may be interested in knowing what
programs it contains. Use the DOS command, as described above, to get the DOS
menu. Select item A by typing the letter A (followed by pressing the RETURN key).
This message appears at the bottom of the display screen:

DIRECTORY--SEARCH SFEC, LIST FILE?

Press the RETURN key to list all the program names on the diskette in Drive 1. If the
directory flashes by too fast, try again. This time, press CTRL-1 whenever you want
to freeze the display. Press CTRL-1 again to restart the display.

Tolist the directory on your printer, select menu item A. Then type a comma, the
letter P, a colon, and press RETURN.

s P2

30 A GUIDE TO ATARI 400/800 COMPUTERS

If your system has more than one disk drive, you may want to list the directory of
a drive other than Drive 1. Once again, choose menu item A. To specify the drive
you want, type the drive number, then a colon.

D13

Then press RETURN.
There are other ways to respond to menu choice A that let you specify what kinds
of program names you want to see, and more. Chapter 7 has more information.

Preparing Blank Diskettes

From time to time you may need extra diskettes for the programs you run on your
ATARI computer. Before you can use a diskette for the first time, you must format
it. The formatting process gets a diskette ready for subsequent use. If the application
program you are using includes specific instructions for formatting diskettes, by all
means use them. In their absence, you can use the following general instructions for
preparing extra diskettes.

To format a diskette, start by getting the DOS menu on the screen. Place the
diskette you want to format in a disk drive. Select DOS menu item 1. The following
message appears at the bottom of the display screen:

WHICH DRIVE TO FORMAT?

Type the drive number: D1, D2, D3, etc., then press RETURN.

Next you are asked to verify the disk number by entering a Y. Any other entry
cancels the format operation. Enter Y and the format operation begins. It takes
about one minute. When the disk drive stops making noises, the format is complete.

Now prepare a label for the new diskette. Remove the diskette from the drive and
apply the label.

WARNING: The format operation erases anything that was on the diskette before-

hand. Do not format a diskette that has your only copy of a program on it!

Duplicating Diskettes

You will certainly want to make backup copies of your diskettes. DOS menu item
J does this, even if you have only one drive. Select item J and this message appears:
DUF DISK-SO0URCE,DEST DRIVES?

Before going any further, place a write-protect label over the notch on the original
diskette. This simple precaution may save you considerable grief if you make a
mistake in the rest of the procedure.

Type the drive number where you plan to put the original diskette (the source), a
comma, and the drive number where you plan to put the backup diskette (the
destination).

D1,D1
If you specify the same source and destination drives, this message may appear:

TYFE "Y' IF OK TO USE FROGRAM AREA?

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 31

WARNING: If you type a Y in response, the duplication operation may erase the
program you were last using from the computer’s memory. Do not answer Y here
unless you are willing to restart the program you were last using.

Type the letter Y and the duplication begins. Any other response to this question
terminates the duplication process.

Messages appear on the display screen, asking you to insert first one diskette,
then the other. If the source and destination drives are the same, the ATARI
computer may tell you to swap diskettes several times. You insert the source
diskette, the computer reads part of it into its memory, you insert the destination
diskette, the computer writes that piece out, and so on until the whole diskette is
duplicated. Each time you insert a diskette, you must press RETURN to signal that
drive door is closed and everything is ready.

You might accidentally reverse the source and destination diskettes. If you puta
write-protect label on the source, an error message will appear on the display screen.
You must start the duplication process over again. If you did not write-protect the
source, it may be ruined.

Under some conditions, you will not be able to boot DOS from a duplicate copy
of a diskette. To rectify this situation, first boot DOS from some other diskette. Get
the DOS menu on the screen, and select menu item H. This message appears:

DRIVE TO WRITE DOS FILES TO?

Place the diskette you cannot boot from in the disk drive. Type the number of that
drive (D1, D2, etc.) and press RETURN. A message like this appears:

TYFE "Y' TO WRITE DOS TO DRIVE 17

Type the letter Y, and a copy of the disk operating system is written on the diskette.

Duplicating a Program

DOS menu item O copies a program from one diskette to another. It works with one
or more drives. This message appears:

NAME OF FILE TO MOVE?
Type the name of the program you wish to duplicate:
EiLASTOFF
Press RETURN. Do not prefix the name with a drive number. This message appears:

TYFE "Y" IF OK TO USE PROGRAM ARE
CAUTIONS A "Y' INVLIDATE

A

WARNING: If you type a Y in response, the duplication operation may erase the
program you were last using from the computer’s memory. Do not answer Y here
unless you are willing to restart the program you were last using.

Messages appear on the display screen, asking you to insert first one diskette,
then the other. You may be prompted to swap diskettes several times. You insert the

32 A GUIDE TO ATARI 400/800 COMPUTERS

source diskette, the ATARI computer reads part of the program into its memory,
you insert the destination diskette, the computer writes that piece out, and so on
until the whole program is duplicated. If the program is not too long, it will take
only one pass to duplicate it. Each time you insert a diskette, you must press
RETURN to signal that the drive door is closed and everything is ready.

DOS menu item C will copy a program from one drive to another; it will also
make a second copy of a program on the same diskette. See Chapter 7 for more
information.

Deleting a Program
The time may come when you want to remove a program from a diskette. Choose
DOS menu item D. This message appears:
DELETE FILE SFEC
Type the drive number, a colon, and the program name, like this:
DZIHANGMAN

Press RETURN. You may omit the drive number and colon if Drive 1 is used.

Renaming a Program

A program can have any name you want to give it. There are, however, a few
restrictions. First, no two programs on the same diskette can have the same name.
Next, the name may be no more than eight characters long. The characters you can
use are the upper-case letters A through Z and the digits 0 through 9. The first
character must be an upper-case letter. You can add a period followed by as many as
three characters to the end of the name. This is called a file name extension. The
extension .SYS is reserved; read Chapter 7 if you need to use it.
To rename a file, select DOS menu item E. The following message appears:

RENAME ~ GIVE OLD NAME, NEW

Type the name the program has now, a comma, and the name you want the program
to have, like this:

GAMEL D BOMES

Press RETURN. Do not include the drive number, just the program name.

LOADING AND RUNNING A PROGRAM

There are many programs already written for the ATARI computer. Some come on
cassette, some on diskette, and some on either. Before you can use a program, you
must transfer it to the computer’s memory from cassette or diskette. This is called
loading. Once it is loaded, you can start the program running.

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 33

Loading a Program from Cassette

The ATARI computer has three commands for loading programs from the pro-
gram recorder. They are not interchangeable. The appropriate one to use is deter-
mined when the program is recorded. If you must, you can determine the right one
by trial and error. The commands are CLOAD, ENTER “C:”, and LOAD “C:”.

The steps for loading a program from cassette are as follows:

1. Position the tape to the start of the program. First, rewind the tape completely. Reset
the tape counter to zero. If the program you want is the first one on the cassette, go on
to the next step. If not, try to learn the tape counter reading where the program starts.
That way you can advance the tape with the program recorder’s FAST FORWARD lever.
Otherwise, you must load each program in turn until you reach the one you want.
Repeat the following steps for each extra program you must load.

2. Onthe ATARI keyboard type the CLOAD, ENTER “C:”, or LOAD “C:” command.
Use the one that’s right for your program. Press RETURN. The ATARI console beeps
once.

3. Depress the PLAY lever on the program recorder. The ATARI computer cannot tell
whether you do this. If you do not, it will try to load your program and fail.

4. Press the RETURN key on the keyboard. The tape starts moving. If the volume on the
television set is turned up, you will hear several seconds of silence followed by one or
more short bursts of sound from the television speaker. These sounds indicate that the
program is loading. The sound bursts cease when the loading finishes.

The program is now loaded. If you get any error messages during the loading
process, you’re probably using the wrong loading command. Try one of the others.
If none works, the cassette is blank, damaged, defective, or upside down.

Loading a Program from Diskette

Some programs are loaded and run automatically when you boot DOS. In that
case, all you have to do is use the correct program diskette during the power-on
procedure (page 14).

You must boot DOS before you can load most programs from diskette. Once
DOS is booted, you can load a program from a disk with one of two commands:
ENTER “program” or LOAD “program”. In use, you replace the term program
with the drive number, a colon, and the program name, as follows:

LOAD DL LEDGER Eas

You can leave off the drive number and colon if Drive 1 is used.

Starting a Program Running

When the program you want is loaded, type RUN and press RETURN to get it
started. The program takes over control of the computer, including the keyboard
and display screen. To regain control, you can press BREAK in many programs. If
this does not work, check the specific operating instructions for the program you are

34 A GUIDE TO ATARI 400/800 COMPUTERS

using. In a dire emergency, you can press the SYSTEM RESET key or turn the
computer’s power off and back on again, but in either case you will have to restart
the program.

There is a single command that both loads and runs a program from cassette. It is
RUN “C:”. You can use it in place of the LOAD “C:” command. It will not work
with programs that must be loaded with either the CLOAD or ENTER “C:”
commands.

A similar command both loads and runs a program from diskette. It is RUN
“program™. You can use it in place of the LOAD “program” command. It will not
work with programs that must be loaded with the ENTER “program” command.

SETTING TELEVISION COLOR

The ATARIcomputer features full color graphics. If any of the programs you plan
to use or write will use this feature, you should adjust the color settings on your
television set or TV monitor for the correct balance. The colors will be about right if
you leave them unchanged from your normal television viewing. If you wish, you
may adjust the contrast, brightness, color, and tint controls of your television until
you get an acceptable picture.

USING GAME CONTROLLERS

The game controllers plug into the front of the ATARI 400/800 console (Figure
2-14). Instructions for your program should tell you which socket to use. If not, try
each socket in turn, starting with socket number | on the left.

FIGURE 2-14. Game controller jacks

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 35

Knobs on the paddles rotate nearly full-circle. Some of the available rotation is
unused. Starting with the knob fully clockwise, only the first two-thirds or so of
rotation means anything. The last third produces no change.

The joysticks are fairly sturdy but can be damaged by overzealously leaning into
them over a period of time. They respond just as fast to gentle pressure as to hard
pressure. You will prolong their life appreciably by treating them with consideration.

USING THE 850 INTERFACE MODULE

If your system uses an 850 Interface Module, it also uses an 825 Printer or
something connected to one of the serial interface jacks. If you use the 850 Interface
Module just with the 825 Printer, you can turn it off when you are not printing. In
order to use equipment attached to a serial interface jack, the 850 Interface Module
must remain on all the time.

USING A PRINTER

Any of the printers need only be on when you actually print. Be careful, though. If
the printer is off at the wrong time, the program trying to use it may fail.

The 825 Printer has a switch labeled ONLINE/LOCAL. It must be in the “Online”
position to print. In the “Local” position you can use the REV/FWD switch to
manually move the paper up or down.

ADDING RAM TO THE ATARI 800 COMPUTER

Someday you may acquire a program that won’t run on your system because you
don’t have enough RAM. Youcanadd more RAM toan ATARI 800 computer, up
to a point. RAM comes in modules of different denominations. Atari has 8K and
16K modules; other sources have different sizes. As many as three modules plug in
under the top cover.

To remove the cover, first lift the hatch. Release the two latches (Figure 2-15),
then lift the whole cover up and forward (Figure 2-16).

To remove a RAM module, grasp it firmly at each end and pull straight up
(Figure 2-17). It may help to wiggle the module slightly as you pull.

To install a RAM module, place it in the empty socket nearest the front. Place
your thumbs on top of the module at each end. Press down with firm, even pressure.
You must fill the sockets from front to back. Do not leave empty sockets in the
middle or front positions. If you are using both 8K and 16K modules, put the 16K
modules in front.

To replace the cover, you must fit the two metal tabs at the back of the coverinto
the matching holes in the ATARI 800 chassis. Slide the cover back and down until it
is even with the ATARI 800 cabinet. Fasten the two latches (Figure 2-18) and close
the hatch.

36 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 2-16. Removing the ATARI 800 computer top cover

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 37

MY S st .

FIGURE 2-17. Removing a RAM memory module (ATARI 800 computer only)

BASIC
COMPUTING

FIGURE 2-18. Fastening the ATARI 800 computer top cover latches

38 A GUIDE TO ATARI 400/800 COMPUTERS

COPING WITH ERRORS

The ATARI computer is a marvelous piece of equipment, but it shares a problem
common to all computer systems. It lacks imagination. Every instruction you give it
must be exactly right or it will not work as you expected. The results of a mistake
can run the gamut from annoying to aggravating to devastating.

Error Messages

When you type something incorrectly and press RETURN, the ATARI computer
usually responds with a cryptic error message. Often the message gives you a clue as
to what you did wrong; sometimes, however, it does not. The general remedy is the
same in either case: retype the line. Often the message consists only of the word
ERROR and a number. You must look up the number to get an explanation of the
error. Appendix A contains a complete list of error numbers and explanations.

If the error message occurs while you are runninga program, consult the program
instructions.

Correcting Typing Mistakes

As you type commands on the ATARI keyboard you are bound to make mistakes.
Some of the keys we described earlier make it easy to correct errors you notice on a
line before you press RETURN to end the line. They are the BACK S, — (CTRL-+),
— (CTRL- %), TAB, BREAK, and CLEAR (SHIFT-<) keys and key sequences.
+ The BACK s key backspaces the cursor and erases characters it passes over. Characters
are replaced by blank spaces.

+ The — key moves the cursor one space to the left on the current display line with-
out erasing the character it passes over.

+ The— key moves the cursor one space to the right on the current display line with-
out erasing the character it passes over.

+ The TABkey moves the cursor right to the next tab stop, without erasing any characters
it passes over.

- The BREAK key cancels the line you are currently typing.

- The CLEAR key clears the display screen and leaves the cursor in the upper left corner.
Let’s see how you might use these editing features. Suppose you want to type the
following command,

LOAD "DLiMusTe"
but just before you press RETURN you notice you've made a mistake.

LOAS DL IMUSIC!

You have several choices. You can press BREAK to cancel the line and start all over
again. You can use the+ key or the BACK S key to back up and correct the mistake.
Try correcting this error with the — key. Press and hold the CTRLand + keys. The
cursor races back to the start of the line. Take your finger off the + key when the

Chapter 2: HOW TO OPERATE THE ATARI COMPUTER 39

cursor gets to the error. If you back up too far, use the — key to line up the cursor
over the offending S. Press the D key and presto! The line is correct. You can press
RETURN with the cursor where it is; there is no need to move the cursor to the end of
the line first.

Accidental BREAK

Sooner or later you will hit the BREAK key when you did not intend to. Some
programs are set up to ignore the BREAK key entirely. Those that are not should
have specific instructions about what to do if you accidentally press the BREAK key
while running that program. Be sure you know what to do before you start your
program. If you press BREAK while running a BASIC program you will be able to
restart the program from the beginning. This is small consolation during some
phases of accounting applications and the like, since running the program a second
time may not work.

When BREAK takes effect, the ATARI computer stops everything it was doing.
Control returns to the keyboard; you will see a message similar to the following:

STOFFED AT LINE 1009

What should you do? You can probably continue the program by typing the
CONT command. If that does not work, you are out of luck. You will have to restart
the program from the beginning. Before you blithely type RUN, make sure you
won’t ruin anything by running the programagain. Check the program instructions.
Ask someone else who also uses the program. Call your dealer if you have to. The
solution may be complicated. Get specific instructions for your program.

T T

L N T [St e
‘A ll:'rl djRg ' #'71: 'een k-t
(R TENTL - AN]SR L

B I T L R

F e Il L RCERLIT BT L B et
ISR =1 P Rl i ce a T ey
il TR Y 1 ek gl iuly -
(SR ITRN ETIN LT B PR PSR R

e q..nﬂ.upu.,:' _

gl = 1, LS "L

114 by | N . N

C O LI .:'l" TR, T, LA IO
T TR B T

B T L L
P il A e
el g e ML el e et 3
b SRR R A LAeR By -
bk -k v gy 2 =BT - -

li.*-‘. g =s LT e - -

=" e

=

arag ot

SEE = e .

3
PROGRAMMING
IN BASIC

BASIC is a computer programming language. It consists of a set of statements and
commands. Each statement or command tells the computer to do something
specific and fairly simple. You command the computer to perform a complex task
by giving it instructions in terms of several BASIC statements. A program is simply
a collection of statements. The process of selecting and arranging the statements is
what programming is all about.

This chapter teaches you how to write your own BASIC programs onthe ATARI
computer. We could have you first memorize all the facts about each BASIC
statement, one by one. But you would probably give up.

Individual statements don’t mean much; it’s the way you combine them. A study
of individual BASIC statements quickly degenerates into learning a bunch of
seemingly arbitrary rules. That tells you nothing about programming or good
programming practice.

The rigorous statement definitions appear in Chapter 11. This chapter presents
BASIC statements in a logical sequence. You see each new statement in a working
environment, not an academic one. Look up the complete details and subtleties of
individual statements in Chapter 11 when you need to, but do not try to learn
programming there.

STARTING UP BASIC

There are at least three different versions of BASIC available on the ATARI
computer. This book covers only the standard version shipped with the ATARI400
and ATARI 800 computers. It resides in the ROM cartridge labeled “BASIC

41

42 A GUIDE TO ATARI 400/800 COMPUTERS

Computing Language,” part number CXL4002. Other versions of BASIC will be
similar to standard ATARI BASIC but will differ in details.

Installing the BASIC ROM Cartridge

The ATARI computer is quite versatile. Besides knowing BASIC, it can play
games, compose music, tutor, and more. If you wish to program it in standard
ATARI BASIC, the “BASIC Computing Language” ROM cartridge must be
installed. You will find complete instructions for installing the cartridge in Chapter
2 (Figure 2-1).

Turning On the Power

Chapter 2 also tells you the proper order in which to turn on the various system
components. The ATARI computer is definitely particular about that. The console
may not be able to communicate properly with the external components if you turn
them on in the wrong sequence. BASIC is ready to go when you see the message
READY displayed on the TV screen.

LEAVING BASIC

To get the ATARI computer out of BASIC, just remove the BASIC ROM car-
tridge. During the process, the computer turns itself off. This erases any BASIC
program you might have been using.

Another way to leave BASIC is to type the command BYE and press RETURN.
The computer goes into memo pad mode. It isn’t very useful in this mode; it merely
displays whatever you type. Press the SYSTEM RESET key to get back into BASIC.

PRINTING CHARACTERS

When you first start BASIC, it is in immediate mode, also called direct or calculator
mode. In this mode, the computer responds immediately to any instruction you
issue it. Try typing in this example:

FRINT "LET SLEEFING DOGE 1LTE"
Don’t forget to press the RETURN key after the last quotation mark. The computer
immediately displays this:

LET SLEEFING DOGS LLIE
READY

#

The computer may instead display the message ERROR- followed by what you
typed in. This means it cannot understand your command. You probably mis-
spelled the word PRINT. If the computer displays the number 0 instead of any

message, it means you left out the first quotation mark. In either case, you can
simply type the instruction again, being more careful this time. Computers are

Chapter 3: PROGRAMMING IN BASIC 43

extremely particular about spelling and punctuation. Even the slightest error can
cause the computer to balk, or even worse, to do the wrong thing.

A command like the one above instructs the computer to print everything
between the quotation marks onto the display screen.

Thereis a limit to the length of the message you can put between quotation marks.
The longest message can be wider than the display screen. This means a command
can occupy more than one display line. Long commands automatically wrap
around to the next lower line on the display screen. Type this, and press RETURN:

FRINT "UNDER NORMAL CIRCUMSTANCES, THE
MAN WOULD EBE CONSIDERED CRaZY!

The computer responds with this:

ATARI BASIC allows 114 characters on a single command line. This is exactly
three display lines. As you approach the limit, the computer beeps. The limit
includes the PRINT command and punctuation. Anything you type past the limit is
ignored when you press the RETURN key to end the line.

PRINTING CALCULATIONS

Youcanusethe ATARI computer inimmediate mode as you would a calculator; it
responds directly with the answers to arithmetic calculations. Try the following
examples:

FRINT 4+é& Addition
10

& Subtraction

[+ f CE00-4uY

&

READY Multiplication
Division

REALDY Exponentiation

PRINT 342
8.99999988 Atari, Inc. is revising BASIC so that errors such as this will not occur

44 A GUIDE TO ATARI 400/800 COMPUTERS

READY Combination
FRINT 3%4%10-800
=680

READY

&

The correct answers are on the line immediately following each of the commands.
Notice that you do not use quotation marks in these examples. Enclose a calculation
in quotation marks and watch what happens.

Numeric values can have a total of nine significant digits. Values with more than
nine digits are truncated (chopped off) to nine or fewer nonzero digits. The limit
applies to the total number of digits before and after the decimal point. The
following examples illustrate how the truncation works:

LE. 3456784
L&, 8456789

READY
INT 12345467898
LE345678%0

READY
#

If you try some of your own arithmetic calculations in immediate mode, you will
notice that the result is sometimes displayed using scientific notation.

FRINT 123456785123

1« 283456 78PE+L]

READY
If you do not understand scientific notation, stick to simple calculations for now.
We will talk more about scientific notation and numeric values later in this chapter.

Abbreviated PRINT Statement

ATARI BASIC allows you to abbreviate the PRINT statement with a question
mark (?). Here are some examples you can try:

PUTIME MaRC &G ON"
TIME MARCHES ON

DY
~REXE

READY

s

Chapter 3: PROGRAMMING IN BASIC 45

ERROR MESSAGES

One message the ATARI computer will issue when it detects a situation it cannot
cope with was mentioned earlier in this chapter. It displays ERROR- followed by
the offending instruction. There is also a slightly different form of error message.
Whenthe ATARIcomputer thinks it knows what kind of error occurred, it displays
a diagnostic error number. Consider division by 0:

L0

ERROR~ 11

P
=

The official translation of error number 11 is “Floating point overflow/underflow
error.” In other words, dividing by 0 yields a value too large for the computer to
handle.

Getting an error number helps. You still have to look up the number in Appendix
A for an interpretation, but at least you have some clue as to what went wrong.
Unfortunately, the computer’s diagnostic abilities are limited. One error number
can apply to several different situations, so do not expect a definitive analysis of
yourerror. The ATARI computer uses fewer than 60 error numbers to diagnose the
myriad of possible errors and combinations of errors.

EXTRA SPACES

Are you struggling with the question of where to put spaces in a line and where not
to? ATARI BASIC is somewhat sensitive on the subject. Your best bet is to mimic
the style we use in our examples. ATARI BASIC requires blank spaces in some
places. Generally, you should put a blank space wherever it tends to make the line
more readable. Use only one space, though. Ina few instances, multiple blanks trip
up BASIC. There is one place where the use of blank spaces is entirely your choice:
inside PRINT statement quotation marks. If you come across a situation in which
you are not sure where to put spaces, go ahead and type the line. The worst that will
happen is that you will get an error message and will have to retype the line.

STATEMENTS, LINES, AND PROGRAMS

A program consists of one or more statements which provide the computer with an
exact and complete definition of the task it is to perform. If the task is short and
simple, the program can be short and simple as well. The immediate mode instruc-
tions we have experimented with so far are each small, simple programs. Each one
has just one statement — one instruction to the computer. These are trivial cases.
Most programs have 10, 100, 1000, or even more statements. Consider the following
statements:

A

T "COWS MO0

LA
COWS MO0

46 A GUIDE TO ATARI 400/800 COMPUTERS

HOOF - E- MU

READY
Each of these immediate mode programs prints a line of text on the display screen.
Each program has exactly one statement and exactly one line.

ATARI BASIC allows you to put more than one statement on a line. You
separate multiple statements on the same line with a colon. Compare the following
immediate mode program with the example above:

FRINT "COWS MOO" SFRINT "FOR FANCY ELUE

VEFRINT "HOOF BN

COWS MO0

FOR FANCY ELUE

HOOF ~E-NU

READY

#

This three-statement, one-line program prints the same three lines of text as the
previous three single-statement programs.

Program, Logical, and Physical Lines

There is no specific limit to the number of statements on one program line.
Remember that a line cannot be longer than 114 characters, though. If you are
typing a long line, the computer will beep when you type the 107th character. You
are approaching the limit. Anything you type past the limit is ignored; errors are
likely. So there is a limit to how much you can do with a one-line immediate mode
program.

The ATARIcomputer treats every program line as a single line, even if it occupies
more than one display line. A program line is one example of a /ogical line. The
shortest logical line has one character. Normally, the longest line has 114 characters
(Chapter 4 explains how to extend this to 120 characters). Thus, each logical line is
made up of one, two, or three physical lines. Pressing the RETURN key marks the end
of the logical line.

A One-Line Program

You can put quite a lot of program on one line in immediate mode. For example,
consider the following statements:

FOR T=1L TO Z223?"A"§ INEXT Ls?"FHEW!"

Chapter 3: PROGRAMMING IN BASIC 47

At this point, don’t worry what these new instructions do. Type in the line exactly
as shown, ending with a RETURN. If you type it in successfully, you will see the letter

A displayed across the next 19 lines of the display screen, followed by the message
PHEW! on the 20th line.

FOR T, ;
AR A A B

AT AT
Pl

STTSTETATETATETATS! &
A A B S A G S A

||{|{'\| STETETRTaTs

A

ATTATETATATS
it

ﬁf» ("II{‘\ll{'\lI}'}llﬁlI{'\I('\IFA'\QI{“IF"I(:IAI STETSTETaTaTETS lr\ll'\n’\l--lﬁl-h--lﬁu

FHEW !

FRE&DY

The program line is still conveniently displayed at the top of the screen. This is
because the program displays just enough characters to scroll the program line to
the top of the 38-column screen, but not off the screen.

When the one-line program described above is finished, the READY message
and cursor are displayed at the bottom of the screen.

PROGRAMMED MODE

The programming we have done so far is educational and somewhat interesting, but
there is only so much you can do in immediate mode. Another problem with
immediate mode programs is that you have to retype the program each time you
want to use it. There are some advanced editing techniques which will be discussed
shortly that will allow you to reuse the program as long as it still appears cn the
display screen, but this is still a limitation.

What you need is a way to enter several program lines and to hold off using those
lines. That way you can write programs to do tasks that are too complex for one-line
programs.

There is a way to get around the problems of immediate mode: you can write
programs in programmed mode, also called deferred or indirect mode. In pro-
grammed mode, the computer accepts and stores the program in its memory, but

48 A GUIDE TO ATARI 400/800 COMPUTERS

does not perform any of the operations specified by the program until you tell it to
do so. You can enter as many program lines as you wish. Then, when you enter the
appropriate command, the computer performs the operations specified by the
programmed mode program.

Program Execution

The computer executes, or runs, a program when it performs the operations that the
program specifies. In immediate mode each program line is executed as soon as you
press the RETURN key. In programmed mode you must issue the RUN command to
execute a program. Each time you do so, the program runs again.

Clearing Out Old Programs

Because the ATARI computer stores programmed mode programs in its memory,
you must specifically instruct it to erase an old program before you type in a new
program. Do this by typing the command NEW. If you forget to type NEW, your
new program will be mixed in with your old program.

Ending Programs Properly

The end of an immediate mode program is obvious. This is not the case with
programmed mode, as you will soon see. The END statement tells BASIC to stop
executing your program and return to immediate mode. Therefore, an END state-
ment should be the last statement your program executes. ATARI BASIC does not
require an END statement. It will end a program automatically when it runs out of
instructions. Nevertheless, careful programmers always end their programs with an
END statement.

Line Numbers

Line numbers make programmed mode possible. A line number is simply a one-,
two-, three-, four-, or five-digit number entered at the beginning of a program line.
The line number is the only difference between a programmed mode program line
and an immediate mode program line.

Try the following programmed mode program:

NEW

READY

10 FRINT YRUBEER BARY BUGEY EBUMFERS"
200 END

FRUN

RUBEER BAEY BUGEY BUMPERS

READY

Each line number must be unique. No two program lines can have the same number.
If you use the same line number more than once, the computer remembers only the

Chapter 3: PROGRAMMING IN BASIC 49

most recently entered program line with that line number. To see how this works,
type in the following program lines:

NEW

READY

10 FRINT "FIRST LINE 10"

10 FRINT "SECOND LINE 10"

20 END

RUN

SECOND LLINE 10

READY

Eo

Line numbers determine the sequence of program lines ina BASIC program. The
first line must have the smallest line number, while the last line must have the largest
line number. Even if you type in the lines out of order, the ATARI computer will
rearrange them in the proper sequence by line number. Consider the following
program, with line numbers out of order:

NEW

READY

30 FRINT “CuUT"
10 FRINT "FISH"
20 FPRINT "0OR"
40 FRINT “EALT!
G0 END

FRUN

FISH

OF

cuT

EATT

READY

#®

To prove that the ATARI computer does not forget programmed mode pro-
grams, clear the display screen with the CLEAR key (CTRL-<) and then rerun the
program.

LN
FI&SH
OR
cur
EATLT

READY

#

It is a simple matter to add program lines to a program that is currently in the
computer’s memory. You can add a line to the beginning, the end, or anywhere in
the middle of a program by typing the line with a line number that will position it

50 A GUIDE TO ATARI 400/800 COMPUTERS

where you want it. Suppose you want to add a line to the beginning of the last
example program. As long as you have not typed the command NEW, the program
will still be in the computer’s memory. Since the lowest line number currently in that
program is 10, any program line you type in now with a line number less than 10 will
be placed at the beginning of the program. Add the following line:

S FRINT "EITHER"

RUN

EXTHER

FISH

OR

curt

BEALT

READY

B

It’s a good thing the original program started with line 10 rather than line 0. It’s
always a good idea when assigning line numbers to start your program with a fairly
high line number and leave plenty of room between line numbers so you can add
program lines later.

Multiple-Statement Program Lines

You can put more than one statement on a single program line. The first statement
follows the line number. The second statement follows the first, with a colon
between the two statements. Keep in mind that a single program line cannot exceed
114 characters.

Listing Program Lines

You can see what program lines the computer has stored in its memory by typing the
command LIST. Try it right now. If you have not typed NEW or turned off the
machine since you tried the last example, you should see the following program
lines displayed on the screen:

LIST

§ OPRINT "EXTHER

10 FRINT "FLSH"

20 FRINT "OR"

30 FRINT "CUT"

40 FRINT "BEALT"

S0 END

READY

This is called a program listing. There are variations of the LIST command which
allow youtolist one line at a time or a group of lines. The latter option is especially
handy when you have a long program that will not fit on the display screen all at

Chapter 3: PROGRAMMING IN BASIC 51

once. With the last example program still in the computer’s memory, typing the
command LIST 10 causes program line 10 to appear on the display screen:
LIST 10

10 FRINT "FISH"

READY

®
To list several sequential program lines, you must specify both the starting and
ending line number, as in this example:

LIST 20,40

20 FRINT "OR"

30 FRINT "CUT"

40 FRINT "ERATT"

READY
In ATARI BASIC, you can list all program lines up to and including a specific
program line. You can also list all program lines from a specific program line up to
the end of the program. Here are examples of those two versions of the LIST
command:

LIST 0,10

5 FRINT "EITHER"
10 FRINT "FISH"

FE&DY
LISGT 30,32767

30 FRINT “CuT"
40 FRINT "EAXT"
S0 END

READY

Interrupting a Listing

You can halt a listing before it reaches the end by pressing the BREAK key. This is
especially useful for aborting the interminable listing of a long program.

You can temporarily freeze the listing of a program by typing CTRL-1. The listing
will resume when you type CTRL-1 again. CTRL-1allows you to review the listing of a
long program at your own pace.

LOADING AND SAVING PROGRAMS

The ATARI 410 Program Recorder enables you to save a programmed mode
program outside the main computer and later load that program back into memory.

52 A GUIDE TO ATARI 400/800 COMPUTERS

Suppose you have the following program in memory:

107 "FILLET OF FENNY SNAKE,"

2007 "IN THE CAULDRON BOTL AND BEAKE"
300" VEYE OF NEWT AND TOE OF FROG,"

40 F "WOOL OF BAT AND TONGUE OF DOG,"
G000 UADDERSS FORK AND BLIND-WORMZS &T
ING"

GO ULIZARD S LEG AND HOWLETS WING,"

70 0% "FOR A CHARM OF FOWZRFUL TROUELE,

ao v ULIKE & HELL-BROTH BOXL AND EUEEL

SO0 T "DOUELE, DOURLE, TOIL AND TROUELE
;II

100 P "FIRE BURN AND CAULDRON BUBELE "
110 END

To save this program, put a tape in the program recorder. Enter the following
command at the keyboard:

CEAVE

The computer beeps twice. Rewind the tape to the beginning, then simultaneously
press the RECORD and PLAY levers on the program recorder. Press any key on the
keyboard, except the BREAK key. The tape starts to move. If the volume on the
television set is turned up, you will hear 20 seconds of a continuous high-pitched
tone. This will be followed by one or more short bursts of sound from the television
speaker. The sound bursts cease when the recording finishes. The tape stops.

At this point type NEW to erase the program from the computer’s memory. Then
type LIST to verify that it is gone.

To load the program into the computer from the tape, enter the following
command at the keyboard:

CL.OAD

The computer beeps once. Rewind the tape to the beginning. Depress the PLAY lever
on the program recorder. Then press any key on the keyboard, except the BREAK
key. The tape starts moving. If the volume on the television set is turned up, you will
hear several seconds of silence followed by one or more short bursts of sound from
the television speaker. These sounds indicate the program is loading. The sound
bursts cease when the loading finishes. The tape stops. Use the LIST command to
verify that the program is in memory.

Chapter 5 explores other ways to save and load programs on cassette. Chapter 7
explains how to save programs on diskette, which is even more convenient than
cassette tape.

Chapter 3: PROGRAMMING IN BASIC 53

Saving Multiple Programs on One Tape

You may have noticed that it did not take very much tape to save the example
program. A longer program would require more tape, but there is usually enough
tape on one cassette to hold several BASIC programs. You can save programs
sequentially on the tape: the second follows the first, the third follows the second,
and so on.

Loading the second, third, and subsequent programs on a cassette is not as
straightforward as loading the first. After yourewind the tape to the beginning, you
must get past the first program in order to load the second, past the second to load
the third, and so on. You can do this by typing the CLOAD command repeatedly
until the program you want is in memory. This is a slow process, but it works.

You can speed things up considerably by using the program recorder’s tape
counter. Reset the tape counter to 0 when you rewind the tape to the beginning
before saving a program. After saving the first program, jot down the tape counter
reading. This is the starting tape counter reading for the second program. Save the
second program and note the tape counter reading at the end of it (for the start of the
third program).

To load the second program, rewind the tape to the beginning and reset the tape
counter to 0. Then use the FAST FORWARD lever on the program recorder to
position the tape counter to the reading for the start of the second program. You can
use the REWIND lever on the program recorder to back the tape up if you overshoot
with the FAST FORWARD lever. Now use the CLOAD command to get the second
program.

ADVANCED EDITING TECHNIQUES

Chapter 2 examined ways to correct typing mistakes before pressing the RETURN
key. Here is a quick summary of those simple editing techniques:

- The BACK S key backspaces the cursor and erases characters it passes over. Characters
are replaced by blank spaces.

+ The < key moves the cursor one space to the left on the current display line without
erasing the character it passes over.

- The — key moves the cursor one space to the right on the current display line without
erasing the character it passes over.

- The TABkey moves the cursor right to the next tab stop, without erasing any characters
it passes over.

- The BREAK key cancels the line you’re currently typing.

- The CLEAR key clears the display screen and leaves the cursor in the upper left corner.

These simple editing techniques are useful in both immediate mode and pro-
grammed mode. Let’s take a look at some other editing techniques. These new
methods are particularly useful when you want to make changes to programmed
mode lines.

54 A GUIDE TO ATARI 400/800 COMPUTERS

DELETING PROGRAM LINES

To delete an entire line, type its line number and then press the RETURN key. When
you list the program, you will see that the line and line number are no longer part of
the program. Here is an example:

NEW

READY

100 FRINT "VIRTUE
L1100 FRINT "IF T
120 PRINT “WHERE
S FIRE"

130 PRINT "LOOK BEFORE YOU LEAF"

140 FRINT "BEREVITY IS THE S0UL. OF WIT"

TE ITE OWN REWARD"
HOE FITS, WEAR LT
THERE S SMOKE, THERE”

150 END
110

130
LIST

100 FRINT "VIRTUE I8 ITS OWN REWARD"
120 FRINT "WHERE THERE’S SMOKE, THERE’
5 FIRE"

140 FRINT "BREVITY IS THE $0UL OF WIT"

180 END

READY

s
K

ADDING PROGRAM LINES

You can type in new program lines in any order, at any time, in immediate mode.
Their line numbers will determine their position in the program. The ATARI
computer will merge them automatically with any other program lines currently in
memory. Try adding line 110 back into the example above.

110 FRINT "IF THE SHOE FXTS, WE&aR T

LX&T

100 FPRINT "VIRTUE I8 TTH OWN RE

110 INT "IF THI TG, Wl -
120 T "W HSMOKE, TH :
& Fl

140 PRINT "BREVITY I8 THE S0OUL OF WIT"
150 END

READY
o

s

Chapter 3: PROGRAMMING IN BASIC 55

CHANGING PROGRAM LINES

The simplest way to change a program line is to retype it. This is unsatisfactory for
several reasons. Retyping is a time-consuming chore and the chances of typographi-
cal errors are high. Fortunately, there is a way to modify program lines you have
already entered into the computer’s memory. This is possible because anything
displayed on the screen is /ive. You can edit anything on the screen. By using the
CTRL key in conjunction with several other keys, you can move the cursor around on
the screen at will. This allows you to position the cursor at any point on any line that
is displayed on the screen. Then you can replace, insert, or delete characters as you
like.

Listing the Line to Edit

In order to edit anything, whether it is an immediate or programmed mode program
line, or the response to a question asked by the computer, it must be visible on the
display screen. In the case of an immediate mode line, if it’s not visible, you’re out of
luck. You’ll have to retype it. But you can redisplay programmed mode lines with
the LIST statement. Simply specify starting and ending line numbers for a screen-
sized section of the program. If you list too much, stop the listing with the BREAK
key while the line you want to change is still on the screen. It doesn’t matter how a
line gets on the screen; once it’s there, you can change it.

Moving the Cursor

There are seven keys that move the cursor. The BACK S, —, —, and TAB keys have
already been discussed. The space bar is another. It acts just like the — key, except it
replaces every character the cursor passes over with a blank space. Thet and | keys
were mentioned in Chapter 2. The t key moves the cursor up one display line at a
time. When the cursor reaches the top of the screen, the t key circles itaround to the
bottom line. Conversely, the | key moves the cursor down one display line at a time.
When the cursor reaches the bottom of the screen, the | key circles it around to the
top line.

Making Changes Permanent

You must press RETURN to effect the changes you make to a program line. The
changes do not remain in effect if you simply move the cursor to another program
line with the arrow keys. In that case the changes only affect the picture on the
display screen. The cursor can be anywhere on the program line when you press the
RETURN key. Even if the program line uses more than one display line, you can press
RETURN with the cursor anywhere on the line.

Canceling Changes

There are three ways to cancel changes you’ve made. These only cancel changes

56 A GUIDE TO ATARI 400/800 COMPUTERS

you’ve made since you last pressed RETURN. They are
- Press the BREAK key until the cursor is out of the program line

- Use the arrow keys to move the cursor out of the program line
- Press the CLEAR key (CTRL- <) to clear the screen display.

Replacing Characters

Replacing one character with another is simplicity itself. Merely position the cursor
on the character you wish to replace, and type the replacement right over it. For
example, with the cursor like this

100 7 "ESTIMATED TIME OF BERRIVAL"
you can type the characters DEPARTURE” and get this:
L00 2 “ESTIMATED TIME OF DEFARTURE'™ ¥

Press RETURN to effect the change.

Deleting Characters

There are three ways to delete characters one at a time. You can position the cursor
over the character you want to remove and press the DELETE key (CTRL-BACK S).
The entire program line shifts one space left to fill the void. The character disap-
pears. For example, with the cursor like this

10 FRINT "OUT, DAMNED SFOT! OUT, I Sk
AY !

press the DELETE key (CTRL-BACK S) twice and you will get the following:

L0 FRINT "OUT, DAMNED SFOT! OUT, T S@EY

The BACK S key and space bar also delete characters. They both replace the old
character with a blank space. BACK S moves the cursor left as it erases; the space bar
moves it right.

Inserting Characters

To insert characters, you must first insert blank spaces. Then you can type other
characters over the inserted spaces. Use the INSERT key (CTRL->>) to insert blank
spaces. Each space you insert moves the rest of the entire program line one space to
the right. If this pushes the last character of the program line past the end of the
display line, a new display line is appended to the program line. Consider this
situation:

C FOUNDE
FOUNDS"

frp
.

Chapter 3: PROGRAMMING IN BASIC 57

To add some text to the end of line 10, first press INSERT (CTRL->) 21 times:
10 FRINT "FRICE FER FOUND

20 FRINT "NUMEER OF FOUNDS"

30 FRINT "TOTAL FRICE"
Notice that a new display line opens up between program lines 10 and 20. Now type
in the new text:

10 FRINT "FRICE FER FOUND, WEST OF THE

ROCKIESE

20 INT "NUMEER OF FOUNDS"

30 FRINT "TOTAL PRICE"
Press RETURN to finalize the change.

Automatic Repeat

Hold almost any key down for a few seconds and it automatically repeats. Use this
feature to speed up your editing work.

REEXECUTING IN IMMEDIATE MODE

The fact that anything on the display screen is live allows you to reexecute any
immediate mode statements that are still visible on the display screen. You can
reexecute an immediate mode statement just as it is, or you can edit it first.

In either case, the first thing to do is position the cursor somewhere on the
immediate mode line. Use the arrow keys (CTRL--, CTRL-=, CTRL-+, and CTRL-%).
You can now make changes to the line using the techniques just described for
replacing, deleting, and inserting characters on a line. Then, with the cursor still on
the immediate mode line, press RETURN. The line executes.

To see how this works, look at the following immediate mode program which
calculates the cubic feet of storage space.in a 10 X 25 X 8 foot room:

FRINT "CU. FT. OF SFACE = "}10x25x8
CU+. FT. OF SFACE = 2000
READY

You can easily change this immediate mode program to calculate the storage
space in rooms of different sizes. To change the dimensions to 10 X 25 X 14, for
example, first position the cursor at the beginning of the immediate mode line (press
CTRL-- four times). Now press and hold the — key (CTRL-*). The cursor will
fast-forward along the immediate mode line. Release both keys in time to stop the
cursor when it gets to the digit 8. If you overshoot or undershoot by not releasing the
keys at the proper time, you can move the cursor back and forth one character at a
time with the — and — keys. For that matter, you could move the cursor from the
start of the line to the 8 by pressing the — key 34 times, instead of using the

58 A GUIDE TO ATARI 400/800 COMPUTERS

automatic repeat feature. Still another alternative is to press the TAB key four times
and the — key three times. Get the cursor there any way you like.

With the cursor positioned over the 8, type in the new room dimension of 14 and
press RETURN.

FRINT "CU. FT. OF SFACE = "j10x25x14
CUs FTe OF SPACE = 3500
READY

PROGRAMMING LANGUAGES

A programming language is the means of communication between you and the
computer. There are many different programming languages. Some, like BASIC,
are general purpose languages, while others are designed to make it easy to write
programs in specific areas such as business, science, graphics, text manipulation,
and so forth. Programming languages are as varied as spoken languages. In addi-
tion to BASIC, other common programming languages include FORTRAN,
Pascal, C, COBOL, APL, PL/M, PL-1, and FORTH.

ATARI computers can use several programming languages, BASIC and
FORTH among them. This book concentrates on describing how to program the
ATARI computers in BASIC.

No matter what the programming language, every program statement must be
written following a well-defined set of rules. These rules taken together are referred
to as syntax. Each programming language has its own syntax.

Programming languages, like spoken languages, have dialects. Dialects manifest
themselves as minor variations in syntax. The ATARI computer has several such
dialects of BASIC. Standard ATARI BASIC (shipped with the ATARI 400/800
computer) and Microsoft BASIC are available from Atari. BASIC A+ is available
from Optimized Systems Software. Very often, programs written in one dialect will
not work correctly when the ATARI computer is expecting instructions in another
dialect; this is especially true of Microsoft BASIC. Furthermore,a BASIC program
written for the ATARI computer may not run on another computer, even if the
other computer also claims to be programmable in BASIC. However, having
learned how to program your ATARI computer in any of its BASIC dialects, you
will have little trouble learning any other dialect of BASIC.

Some programming language syntax rules are obvious. The addition and sub-
traction examples at the beginning of this chapter use syntax that is familiar to
everyone. You do not have to be a programmer to understand them. But most
syntax rules seem completely arbitrary and meaningless until you have learned the
syntax. Youshould not try to seek a rationale for syntax rules; usually there is none.
For example, why use an asterisk (k) to represent multiplication? Normally, you
would use a cross (X) for multiplication. But the computer would have no way of
differentiating between the use of “X ™" to represent multiplication or to represent the

Chapter 3: PROGRAMMING IN BASIC 59

letter “X.” Therefore, nearly all computer languages have opted for * to represent
multiplication. Division is universally represented by the / sign. There is no special
reason for this selection; the division sign (=) is not present on computer keyboards,
so some other character had to be selected.

ELEMENTS OF BASIC

Most of the syntax rules for BASIC concern individual statements. BASIC state-
ment syntax deals separately with its three major elements: line numbers, data, and
instructions to the computer. We will describe each in turn. There are also a few
rules that pertain to the program as a whole, such as statement order. These rules
will be covered in appropriate places throughout the chapter.

LINE NUMBERS REVISITED

We have already talked about line numbers to some extent. After a brief review, we
will go into more detail. In programmed mode, every line of a BASIC program must
have a unique line number. Line numbers determine the sequence of instructions in
a program; the statement with the lowest line number is first and the statement with
the highest line number is last.

Standard ATARI BASIC allows one- to five-digit line numbers with integer
values between 0 and 32767.

Line Numbers as Addresses

In essence, line numbers are a way of addressing program lines. This is an important
concept, since every program will contain two types of statements:

- Statements that create or modify data, and
- Statements that control the order in which operations are performed.

Clearly, the things a program does must happen in a specific, reliable order. What
good would it do if the computer executed instructions at random? Normally,
program execution begins with the first statement in the program and continues
sequentially (Figure 3-1). Most programs, however, have some non-sequential
execution sequences. That is when line numbers become important. You can
instruct the computer not to execute the next line, but instead to go to a different
line number and continue execution there (Figure 3-2).

DATA

The main business of computer programs is to input, manipulate, and output data.
Therefore, the way a programming language handles data, whether it be numbers or
text, is very important. Will will now explore the types of data you may encounter in
an ATARI BASIC program.

60 A GUIDE TO ATARI 400/800 COMPUTERS

Start ———10
20>

Con
40>
<50>

etc.

FIGURE 3-1. Sequential program execution

Start —>10>
<2O
30

40> GOTO 70
50
60
70
oy

etc.

FIGURE 3-2. Non-sequential program execution

Strings
A string is any character or sequence of characters enclosed in quotation marks. We

have already used strings with the PRINT statement as messages to be displayed on
the screen. Here are some more examples of strings:

“IGNORANCE IS BLISS™
“ACCOUNT 4019-181-324-837"
“NICK CHARLES”

“SAM & ELLA CAFE”
“MARCH 18, 1956”

There is no specific limit to string length. In immediate mode, strings must fit on
one program line. In Chapter4 a way to combine strings in programmed mode will
be presented. In this mode the only length restriction is imposed by the amount
of memory available. A string with no characters in it is called the nul/l string or
empty string.

Chapter 3: PROGRAMMING IN BASIC 61

Most string characters are produced by typing at the keyboard. To get some
characters, you just press the right key. If you want a 3, press the 3 key. Other
characters may require the SHIFT, CTRL, CAPS/LOWR, or A keys, as described in
Chapter 2. Appendix D lists all the ATARI BASIC string characters and tells you
which key or combination of keys produces each one.

Non-Keyboard Characters

Press some keys, and characters appear on the display screen. Generally, the
characters you see are the characters the string gets. This is not the case with some
exotic characters, though. For example, the arrow keys (CTRL--, CTRL-=, CTRL-+
and CTRL-%) move the cursor around. These cursor movement “characters”are not
part of the string. Chapter 4 describes a way to make them a part of a string value.

Non-Character Keys

Some keys cannot produce string characters under any circumstances. For exam-
ple, RETURN always ends the line you’re typing. Other such keys are BREAK, SYSTEM
RESET, SHIFT, CTRL, and CAPS/LOWR.

Numbers

BASIC stores all numbers in the ATARI computer’s memory with a decimal point.
The decimal point is not fixed; there can be any number of digits on either side of it.
If the number has no fractional part, the decimal point is assumed after the last digit.
Numbers expressed in this way are called floating point numbers. The name refers
to the decimal point’s ability to float, accommodating fractions with different
numbers of digits.

You must express all numbers without commas. For example, you must use
32000, not 32,000.

Integers

Aninteger is a number that has no fractional portion or decimal point. The number
can be negative (-) or positive (+). An unsigned number is assumed to be positive.
ATARI BASIC treats integers the same as it treats any other floating point
numbers; there is no separate class of integers. The following numbers are integers:

0

I

44
32699
-15

Floating Point Numbers

A floating point number can be an integer, a number with a decimal fraction, or just
a decimal fraction. The number can be negative (-) or positive (+). If the number has
no sign it is assumed to be positive.

62 A GUIDE TO ATARI 400/800 COMPUTERS

Here are some examples of floating point numbers:

3
-15
65000
161
0
0.5
0.0165432
-0.0000009
1.6
24.0055
-64.2

Scientific Notation

Very large and very small floating point numbers are represented in ATARI BASIC
using scientific notation. Any number that has more than ten digits in front of the
decimal point will be expressed in scientific notation. Any fractional number closer
to 0 than 0.01 will be expressed in scientific notation.

A number in scientific notation has the following format:

+ numberE £ ee

where
£ s an optional plus sign or minus sign.
number is an integer, fraction, or combination. The number portion contains the

number’s significant digits; it is called the coefficient or mantissa. If no
decimal point appears, it is assumed to be to the right of the coefficient.

E isalways the letter E. It stands for exponent.
is an optional plus sign or minus sign.

ee isa one- or two-digit exponent. The exponent specifies the magnitude of the
number, that is, the number of places to the right (positive exponent) or to the
left (negative exponent) that the decimal point must be moved to give the true
decimal point location.

Here are some examples of scientific notation compared to the same value in
standard notation:

Standard Notation Scientific Notation
1000000000 1E+09

0.000000001 1E-09

200 2E+02

- 12345678900 -1.23456789E+10
-0.00000123456789 -1.23456789E-06

As you can see, scientific notation is a convenient way of expressing very large
and very small numbers.

Chapter 3: PROGRAMMING IN BASIC 63

Number Ranges

The smallest (most negative) floating point number is -9.99999999E+97. The largest
floating point number is 9.99999999E+97. When a fractional number gets closer to
zero than £9.99999999E-98 it will be converted to 0.

Roundoff

[t was mentioned earlier in this chapter that floating point numbers can have nine
significant digits, but no more. For a number greater than | or less than -1, this
means only the leftmost nine digits can be nonzero. The ATARI computer replaces
any digits in excess of 9 with zeros. Here are some examples (note that large
numbers print in scientific notation):

FRINT 1E3454678989

1.23456789E+10

READY
P 1 234567 B91234567 89
w1 2BAE6TBIESLT

READY
P-lG0000475,75
~15000047%5

READY
Pe0000000.7558
?0000000.7

READY
%

Fractional numbers between 1 and -1 are subject to the same limitation. In this
case, though, the nine significant digits start with the first nonzero digit to the right
of the decimal point. Here are some examples:

FRINT 1234567899

0.123456789

READY

P-4 LE234G67BR123456789

=0, 123456789

READY
?=123456789.123456789
~123456789

READY
?,0000000009200000007558
9.00000007E~10

READY
&

64 A GUIDE TO ATARI 400/800 COMPUTERS

VARIABLES

Our discussions of data thus far have only considered constant values. It is often
more convenient to refer to data items by name rather than value. Variables are used
for this purpose.

If you have studied elementary algebra, you will have no trouble understanding
the concept of variables and variable names. If you have never studied algebra, then
think of a variable name as a name which is assigned to a letter box (Figure 3-3).
Anything which is placed in the letter box becomes the value associated with the
letter box name, until something new is placed in the letter box. In computer jargon,
we say a value is stored in a variable.

A variable does not always have to refer to the same value. This is the real power
of variables — they can represent any legal value. You can change a variable’s value
during the course of a program. BASIC has a number of statements that do this;
they will be described later.

Variable Names

Variable names can have from as many characters as will fit on a program line. The
first character must be a capital letter. The rest of the characters in the variable name
can be any digit or capital letter. You must end string variable names with a dollar
sign, but not numeric variable names. Figure 3-4 illustrates these rules.

String Variables

Before you use a string variable, you must specify the maximum length it can have.
You do this with the DIM statement, which we will describe later. If you fail to do
so, an error occurs when the variable is referenced.

String variables can refer to strings of any length. The only limit is the amount of
memory available when the variable is used. Blank spaces in a string count toward
its total length. Blank spaces at the end of a string, called trailing blanks, count too.

Here are some string variable names, legal and illegal:

Legal Illegal
AS h)
CUSTNAMES$ 9%
PARTIS$ BRAND.NAMES$
RESPONSES$ a$
X8% Name$

Numeric Variables

Numeric variables can have integer values or floating point values. Numeric values
are restricted to the range -10°" to +10%". If you attempt to store a value that is too
large in magnitude in a numeric variable, an error occurs. When the value of a
floating point variable gets closer to 0 than -9.99999999 X 10 ATARI BASIC
converts it to 0.

Chapter 3: PROGRAMMING IN BASIC 65

ATARI MEMORY
MAX ANGIE FERN

o W vy
"MAUDE
LOU LG
g g
ZINA
902 /

FIGURE 3-3. Variables

DQE\...DD

t—Last character must be $ for string variables
Second, third, fourth, etc. characters (optional) can
be any letter or digit
First character must be a letter

FIGURE 3-4. Naming variables

Here are some numeric variable names in ATARI BASIC, both legal and illegal:

Legal Illegal
A APPLICANT'SAGE
CUSTZIPCODE 3X4Z
X0 STOTAL
PARTNO Score

Arrays

Arrays are really nothing more than a systematic way of naming a large number of
variables. They are used frequently in many types of computer programs. If youdo
not understand what arrays are, or how to use them, then read on. The information
that follows will be very important to your programming efforts.

Conceptually, arrays are very simple things. When you have two or more data
items, instead of giving each data item a separate variable name, you give the

66 A GUIDE TO ATARI 400/800 COMPUTERS

collection of data items a single variable name. The collection is called an array, its
name is an array name. Individual data items are often called array elements. The
elements in an array are numbered. You select an individual item using its position
number, which is referred to as its index.

Arrays instandard ATARI BASIC can represent only numeric values. Chapter 4
explains a way to simulate string arrays.

Arrays are a useful shorthand means of describing a large number of related
variables. Consider, for example, a table of 200 numbers. How would you like to
assign a unique variable name to each of the 200 numbers? It would be far simpler to
give the entire table one name, and identify individual numbers in the table by their
location within the table. That is precisely what an array does for you.

As an example of array usage, consider how you might keep track of individual
scores in a bowling tournament. There could be a separate variable name for each
bowler (Figure 3-5). This has one advantage: the variable names can be similar to
the bowlers’ names. But what happens at the next tournament, where the bowlers
have different names?

How about keeping the scores in an array (Figure 3-6)? Now your program
doesn’t care which variable name refers to which bowler. We can use BOWLER as
the array name. Each element is one bowler’s score. An index (enclosed in paren-
theses) follows the array name. Thus a specific data item (that is, one bowler’s score)
is identified by an array name and an index. For example, BOWLER(3) has the
score for bowler number three.

Although Figure 3-6 does not show it, every array has an element with an index
of 0. Therefore, there is a BOWLER(0) in addition to BOWLER(1) through
BOWLER(10).

Array Dimension(s)

You must specify the number of elements in an array before you use it. You do this
with a DIM statement, which will be described later.

ATARI BASIC arrays can have one or two indexes. One-dimension arrays have
one index; two-dimension arrays have two indexes. A one-dimension array is like a
table with just one row of numbers (Figure 3-6). The index identifies a number
within the single row. An array with two dimensions is like an ordinary table of
numbers with rows and columns: one index identifies the row, the other index
identifies the column.

Let’s extend the bowling tournament example to two dimensions. Suppose there
are five teams, each with ten bowlers. There are four options for keeping track of the
50 bowlers’ scores. First, each bowler could have his own variable. Second, the
entire tournament could have a a single 50-element array. Third, each team could
have a separate ten-element array. Fourth, the tournament could have one two-
dimension array (Figure 3-7). This last choice is the best. The first index of the
two-dimension array is the team number and the second index is the bowler number
on that team. So BOWLER(3,2) would be the score of bowler 2 on team 3.

Chapter 3: PROGRAMMING IN BASIC 67

FIGURE 3-5. Using separate variable names

" [o [w [« [= [v [w [o[w [o]

BOWLER(I) BOWLER(2) BOWLER(3) BOWLER(4) BOWLER(S) BOWLER(6) BOWLER(7) BOWILERI) BOWLER(9) BOWLER(10)

FIGURE 3-6. Using an array

[~ T o [o [o [= [=]

BOWLERM.0) BOWLER(T) BOWLER.2) BOWLER(.3) BOWLER4) BOWLER(S) BOWLER(.6) BOWIERAT) BOWLER(4S) BOWLER(4.9)

(=T = [« = [= [w]® [=] w []

BOWLER(3.0) BOWLER(3I) BOWLER(YY) BOWLER(A3) BOWLER(4) BOWLER(3S) BOWILER(6) BOWLERGT) BOWLER(3¥) BOWLER(3.9)

[~ === [= [=] =[] =] w]

BOWLER(2.0) BOWLER(2.1) BOWIER(22) BOWLER(23) BOWLER(24) BOWLER(.S) BOWLFR(2.6) BOWILERQ2.7) BOWILER(2S) BOWLER(29)

[+ [=T v« [~ o[=[] =[]

BOWLER(L.O) BOWLER(LI) BOWLER(I.2) BOWLER(I.3) BOWLER(I4) BOWIER(1.5) BOWLER(1.6) BOWLER(L7) BOWLER(LS) BOWLER(1.9)

" T o [o [= [= [o [o[w [w [o]

BOWLER(0.0) BOWLER(0.I) BOWLER0.2) BOWLTR(0.3) BOWLER(D4) BOWLER(D.S) BOWILER(0.6) BOWLER(D.7) BOWLERO.E) BOWILER(0.9)

—

FIGURE 3-7. Using a two-dimension array

EXPRESSIONS

How do you combine the values of variables and constants to get new values? You
use expressions. Remember how we calculated the values of simple arithmetic
problems in immediate mode? The following statement tells the ATARI computer
to add 4 and 6 and display the sum:

FRINT 4+a&

10

READY

68 A GUIDE TO ATARI 400/800 COMPUTERS

This statement is almost identical:

FRINT A+k
0

READY

B
It tells the computer to add the values of numeric variables A and B, and then
display the sum.

The plus sign specifies addition. Standard computer jargon refers to the plus sign
as an operator. Variables A and B are operands. The plus sign is an arithmetic
operator because it specifies addition, which is an arithmetic operation.

Arithmetic operators are easy enough to understand; everyone learns to add,
subtract, multiply, and divide in early childhood. But there are other types of
operators: relational operators and Boolean operators. These are also easy to
understand, but they take a little more explanation since they involve more abstract
notions.

Each category of operators defines a type of expression. There are numeric
expressions, relational expressions, and Boolean expressions.

Compound Expressions

The simplest expression consists of one or two operands and an operator. You can
combine simple expressions to form more complex ones. You can use one or two
simple expressions as the operands of a larger expression. It in turn can be an
operand in another expression, and so on. We will call these built-up expressions
compound expressions. Most expressions are compound expressions.

Precedence of Operators

Compound expressions call for more than one operation to occur. For example,
this statement calls for both addition and division in the same expression:

FRINT A+E/10

There is a standard scheme for determining in what order to evaluate an expres-
sion. These rules of precedence will be outlined for numeric, relational, Boolean,
and mixed-type expressions, in that order. First, let’s look at a way to override the
standard order of evaluation.

Overriding Standard Precedence

You can change the order in which the ATARI computer evaluates expressions by
using parentheses. Any operation within parentheses is performed first. When more
than one set of parentheses is present, the ATARI computer evaluates them from
left to right.

One set of parentheses can enclose another set. This is called nesting. The ATARI
computer evaluates the innermost set first, then the next innermost, and so forth.

Chapter 3: PROGRAMMING IN BASIC 69

Parentheses can be nested to any level. You may use them freely to clarify the order
of operations being performed in an expression.
Here are some immediate mode arithmetic calculations which use parentheses:

FRINT (2+10) %3
36

READY

FRINT ({((2+10)%x3)+31)x10
670

READY

FRINT —(2A¢3+(8/74)))
—31.99993444

READY

®

Numeric Expressions

Numeric expressions operate on numeric variables and constants. They use arith-
metic operators: addition (+), subtraction (-), multiplication (x), division (/), and
exponentiation (). They also use the unary minus (-) operator to indicate a
negative numeric value. Operations are performed in this order: unary minus first,
followed by exponentiation, then multiplication and division, and finally addition
and subtraction. Operations of equal precedence are performed in order from left to
right.
Here are some numeric expressions:

87.5 - 4.25 results in 79

1.57(3/2/2) results in 1.35540299

AL * (PL - 3.1 * CB) results in the value of AL times the
result of subtracting the prod-
uct of 3.1 times the value of
CB from the value of PL

7.5 % 2/5 results in 3

Relational Expressions

Relational operators allow you to compare two values to see what relationship one
bears to the other. You can compare whether the first is greater than, less than,
equal, not equal, greater than or equal, or less than or equal to the second value. The
values you compare can be constants, variables, or any kind of expressions. If the
value on one side of a relational operator is a string, the value on the other side must
also be a string. Other than that, you can compare one type of value to another using
relational operators.

70 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 3-1. Relational Operators

Operation Operator
Less than <
Greater than 5
Equal to =
Not equal to &2
Greater than or equal to >=
Less than or equal to <=

If the relationship is true, the relational expression has a numeric value of 1. If the

relationship is false, the relational expression has a numeric value of 0.

Table 3-1 lists relational operators. They all have the same precedence. When
more than one is present in a single expression, they are evaluated from left to right.

Here are some examples of relational expressions:

1=5-4 results in
14 > 66 results in
15 >=15 results in
“AA” > “AA” results in

“DUDE” < “DUKE” results in
(A = B) = (A$ > B9)

Relational expressions are easy enough to understand. One way they can be used
is a bit more difficult: relational expressions can be part of a numeric expression.
Relational expression values 0 (false) and 1 (true) are legitimate numeric values.
This can be confusing. For example, what meaning does the expression (9 = 9) * 4
have? None, outside of a BASIC program. But in BASIC, (9 = 9) is true. True
equates to 1. Therefore (9 = 9) * 4 isthe same as | * 4, which results in 4. Here are

some examples:

25 + (14 > 66) equals
A+ (1=B-4) equals

1 (true)

0 (false)

1 (true)

0 (false)

I (true)

depends on the values of the
variables. If the value of A is
equal to the value of B and
the value of A$ is greater
than the value of B$, then
this expression results in

[(true).

25+0

A+ 1if B=5,0r A + 0 otherwise.

Chapter 3: PROGRAMMING IN BASIC 71

String Comparisons

You may be wondering what rules the ATARI computer uses when it compares
strings. There are two considerations. First is string length. Strings of unequal
lengths are not equal. (Remember that blanks count toward string length.) If a
shorter string is identical to the first part of a longer string, the longer string is
greater than the shorter string.

The second consideration is whether the strings contain the same characters, in
the same order. Strings are compared one character at a time, starting with the
leftmost character — the first character of one string with the first character of the
other, the second character with the second character, and so on until one of the
strings is exhausted or a character mismatch occurs. For comparison purposes, the
letters of the alphabet have the order A < B, B< C, C < D, etc. Numbers that
appear in strings have conventional ordering, namely0 < 1,1 < 2,2 < 3, etc. Other
characters that appear in strings, like +, -, $,and so on, are arbitrarily ranked in the
order shown in Appendix D.

Boolean Expressions

Boolean operators give programs the ability to perform logic operations. Hence
they are often called /ogic operators. There are four standard Boolean operators:
AND, OR, Exclusive OR, and NOT. BASIC on the ATARI computer supports
three of these operators: AND, OR, and NOT.

If youdo not understand Boolean operators, then a simple supermarket shopping
analogy will serve to illustrate Boolean logic. Suppose you are shopping for break-
fast cereals with two children, Spike and Iola. The AND Boolean operator says you
will buy a cereal if both children select that cereal. The OR Boolean operator says
that you will buy a cereal if either child selects it. The NOT Boolean operator
generates an opposite. If Spike insists on disagreeing with lola, then Spike’s
decision is always the NOT of lola’s decision.

Computers do not work with analogies; they work with numbers. Therefore
Boolean logic reduces the values it operates on to 1 or 0 (true or false). Since
Boolean operators work on the values 0 and 1, they are most often used with
relational expressions. Remember that relational expressions also result in a value
of 0 or 1. Boolean operators can work on other types of operands, as we will see in
the next section.

Table 3-2 summarizes the way in which Boolean expressions are evaluated. This
table is called a truth table. Boolean operators have equal precedence. If several
Boolean operators are present in the same expression, they are evaluated from left
to right.

Here are some examples of Boolean expressions:

NOT (3 +4)>=6) results in 0 (false)
(“AA” = “AB”) OR ((8 *x2) = 4"2) results in 1 (true)
NOT (“APPLE” = “ORANGE”)

AND (AS = BY) results in 1 (true) if A$ and BS are equal;
0 (false) if not.

72 A GUIDE TO ATARI 400/800 COMPUTERS

TaBLE 3-2. Boolean Truth Table

The AND operation results in a | only if both values are 1.

1 AND 1=1 1 ANDO0=0
0AND =0 0ANDO=0

The OR operation results in a 1 if either value is 1.

1OR I =1 IORO0 =1
OOR 1=1 0ORO0=0

The NOT operation logically complements each value.

NOT 1=0
NOTO0=1

Mixed-Type Expressions

What if the operands of an expression don’t match the operator? That depends. You
can’t use string operands with numeric or Boolean operators, only with relational
operators. And you can compare one string only to another string. Other than that,
you can mix types freely. The result is a mixed-type expression.

The ATARI computer must resolve several questions when it evaluates a mixed-
type expression. Which operation does it perform first? How does it convert a value
from one type to another? Table 3-3 lists the operators of all types, from highest
precedence to lowest. This table shows that anything in parentheses is evaluated
first. If there is more than one level of parentheses present, the ATARI computer
evaluates the innermost set first, then the next innermost, and so on. (Recall that we
covered this concept of nesting earlier.) Next, numeric expressions are evaluated.
After that, relational expressions are evaluated. Finally, Boolean expressions are
evaluated.

ATARI BASIC converts relational and Boolean expressions to 0 if false, I if true.
Conversely, it converts a numeric 0 to false; any other numeric value is true. Strings
don’t convert. However, the result of a string comparison is a numeric value (0 or 1),
SO you can use it in a numeric expression.

Here are some examples of mixed-type expressions:

Legal Illegal
43 AND 137 1600 + “PENNSYLVANIA AVENUE”
(A% = B$) AND -6.25 ST§<=A
(K=M)=(Z$=Y9$) NOT (AS) = B$

Chapter 3: PROGRAMMING IN BASIC 73

TABLE 3-3. Operators

Precedence Operator Meaning
High Parentheses denote order of

9 () evaluation

8 A Exponentiation

7 = Unary Minus
Arithmetic 6 * Multiplication
Operators 6 | Division

5 + Addition

5 - Subtraction

4 = Equél

4 <> Not equal
Relational 4 < Less than
Operators 4 > Greater than

4 <= Less than or Equal

4 > = Greater than or Equal
Boolean 3 NOT Log?cal complement
Operators 2 AND Logfcal AND

1 OR Logical OR

Low
KEYWORDS

All of the words that define a BASIC statement’s operations are called keywords.
Appendix E lists all standard ATARI BASIC keywords. You will encounter many
of these keywords in this chapter; others are described elsewhere in this book.

When executing BASIC programs, the ATARI computer scans every BASIC
statement, seeking out keywords. It can generally tell a variable from a keyword,
but not always. Therefore, you should keep keywords out of your variable names.
At least avoid using keywords at the beginning of variable names.

Abbreviating Keywords

You learned early in this book that you can abbreviate the PRINT statement with a
question mark. Many other ATARI BASIC keywords can be abbreviated. Youcan
often abbreviate a keyword by typingits first letter. For example, the letter L means
LIST. How does the computer know your abbreviation is a keyword, and not a
variable name? Simple: you put a period at the end of it. L. is the full abbreviation
for LIST.

74 A GUIDE TO ATARI 400/800 COMPUTERS

In some cases one letter is ambiguous. The letter L could mean LIST or LOAD.
The single-letter abbreviation is arbitrarily assigned to one of the keywords, gener-
ally the one used most often. For other keywords that start with the same letter, you
have to use the first two, three, or even four letters of the keyword. LO. is the
abbreviation for LOAD. Appendix E lists the shortest abbreviations for each
keyword. You can always use more letters than the minimum, but you must use
enough letters to positively identify the keyword. Thus you can abbreviate PRINT
with PRIN., PRI, or just PR..

BASIC STATEMENTS

Now consider the third major element of BASIC syntax: statements. Each state-
ment instructs the ATARI computer to perform some kind of operation or take
some action. It is common practice to use the terms statement and command
interchangeably and somewhat ambiguously. Strictly speaking, a command is an
instruction issued in immediate mode. The same instruction in programmed mode
is a statement.

This chapter introduces you to programming concepts, stressing the way state-
ments are used. The details you need for the most common situations are discussed
in this chapter. You should also read the definitive statement descriptions in
Chapter 11. These descriptions tell you all the things a statement does for you (and
against you).

One last caveat before beginning. Although this chapter introduces you to
programming concepts, it cannot possibly cover programming in depth. If you need
more instruction in programming, consult one of the BASIC primers listed in
Appendix I.

Remarks

An appropriate way to begin the discussion of BASIC statements is with the one
BASIC statement the computer ignores: the remark statement. If the first three
characters of a BASIC statement are REM, then the computer ignores the state-
ment entirely. So why include such a statement? Because remarks make your
program easier to read.

If you write a short program with five or ten statements, you will probably have
little trouble remembering what the program does — unless you put it aside for six
months and then try to use it again. If you write a longer program with 100 or 200
statements, then you are quite likely to forget something very important about the
program the very next time you use it. After you have written dozens of programs,
you will stand no chance of remembering each program in detail. The solution to
this problem is to document your program by including remarks that describe what
is going on.

Good programmers use remarks in all of their programs. All of the program
examples in this chapter will include remarks, to try to get you into the habit of
doing the same thing yourself.

Chapter 3: PROGRAMMING IN BASIC 75

Remark statements have line numbers, like any other statement. A remark
statement’s line number can be used like any other statement’s line number.

Assignment Statements

Assignment statements let you assign values to variables. You will encounter
assignment statements frequently in every type of BASIC program. Here is an
example of an assignment statement:

0 REM Imitislize variable X

100 LET X=3
In statement 100, variable X is assigned the value 3. This same statement could be
rewritten like this:

100 X=3

The word LET is optional; it is usually omitted.
Here is a string variable assignment statement:

215 A$="ALS0O RAN"

The string variable A$ is assigned the characters ALSO RAN. Notice that the
characters are enclosed in quotation marks. The quotation marks do not become
part of the string value.

Here are three assignment statements that assign values to array variable
BOWLER(), which we encountered earlier when describing arrays:

200 REM BOWLERCO) has bowler’s scores

210 BOWLERCLY=1%50

220 BOWLERCZ2)=210

230 BOWLER(3) =268

Remember, more than one statement can be placed on a single line; therefore the
three BOWLER() assignments could be placed on a single line, as follows:

200 REM BOWLERC) has howler’s scores

210 BEOWLERCL)Y =180 ¢ BOWLERCZ) 1O EOWLER

(3)=268

Recall that a colon must separate adjacent statements appearing on the same line.
Assignment statements can include any of the arithmetic or logical operators
described earlier in this chapter. Here is an example of such an assignment
statement:
100 V=33+7/9
The statement above assigns the value 33.77777777 to numeric variable V; it is
equivalent to the following three statements:
and Y mneed
ly for later

90 REM X
separshes
LO0 X7
110 Y=
120 VU=33+X/Y

Lo bhe initialized

LES 6

76 A GUIDE TO ATARI 400/800 COMPUTERS

which could be written on one line like this:
LO0 X=7iY=9iV=334+X/Y

The following are assignment statements that perform the Boolean operations
given earlier in this chapter:

LB These vowere described e
&1 A b
10 NOT CC3+4)
L0 B Uda = aiEty QR COBxE)= 04880

0

DATA and READ Statements

When a number of variables need data assignmentsinan ATARI BASIC program,
you can use the DATA and READ statements rather than the type of assignment
statement described earlier. Consider the following example:

5 REM Initislize all variables

10 DATA 10, 20, -4, 300

20 READ A, E,C,D
The statement on line 10 specifies four numeric data values. These four values are
assigned to four numeric variables by the statement on line 20. After the statement
on line 20 is executed, A = 10, B= 20, C = -4, and D = 300.

Allthe DATA statements in your program construct a single list of values (Figure
3-8). For example, a DATA statement that specifies ten values would construct a
ten-entry list. Two DATA statements each specifying five of the ten data entries
would construct exactly the same list.

READ statements use a pointer to the list of DATA statement values. The
pointer starts at the beginning of the list. Each time a READ statement uses a value
from the list, it moves the pointer ahead to the next value (Figure 3-9). The first
READ statement executed in a program starts with the first value on the list and
takes values sequentially, assigning them to variables named in the READ state-
ment. The second READ statement executed starts with the next unassigned list
value. The third READ statement executed picks up where the second one left off,
and so forth.

The DATA list can contain both numeric and string values. The values must be
constants, not expressions. The ATARI computer will nor evaluate expressions.
You can use scientific notation to express numeric constants. Do nor enclose string
constants in quotation marks. The ATARI computer includes them as part of the
string value.

What you see is what you get. Look at these two statements:

L0 DATH 0, =081 25083

20 DATEH Ay TOTEL s NaME$
The statement on line 10 has three numeric values: 0,-0.8,and 1255.8 (note the use
of scientific notation). The statement on line 20 has three string values. The first
value is three characters long: A+ B. The second value is six characters long; the

Chapter 3: PROGRAMMING IN BASIC 77

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }

First list item —>‘ 10

10 DATA 10, 20, 30, 40, 50 }/’l y

60
(7
7 80

190 DATA 60, 70, 80, 90, 100 }—_
(90
100

<—— Last list item

FIGURE 3-8. Building a list of values with a DATA statement

220 READ A, B, C

F =80
G=90
——

490 READ A, E. F, G

500 READ B B =100

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Assigns DATA List
A=10 10
B =120 { 20

A C=30 30

{50
C=_4o/ 60

D =50 70

80

. i 90

340 READ C. D 100
. A= 60
E=70

40

FIGURE 3-9. READ statements access the list of DATA values sequentially

blank space ahead of the word TOTAL is part of the string value. The third string

value is the five characters NAMES.

When you assign values to variables using a READ statement, each variable
must be the same type (string or numeric) as the corresponding value it is assigned
from the DATA statement list. Any character can be assigned to a string variable, so
no possibility of a type mismatch error exists. An error will occur if there is an
attempt to assign a string value to a numeric variable.

78 A GUIDE TO ATARI 400/800 COMPUTERS

10 DATA 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Assigns DATA List
/_\A =10 10
. P B=20~—— 20
220 READ A, B, C C=130 30
: 40
50
c= 40 =
e Dusp
340 READ C, D 90
350 RESTORE 100/
A=10
E=20
F=30
G = 40
4 —
490 READ A, E, F, G
500 READ B B= 50

FIGURE 3-10. RESTORE statement starts over at the top of the list
of DATA statement values

RESTORE Statement

You can at any time send the pointer back to the beginning of the list of DATA
statement values by executinga RESTORE statement (Figure 3-10). A variation of
the RESTORE statement lets you put the pointer at the first data value on a specific
line number. Here is an example:

L0 DATH 1.2:,38,4,%

20 DAETE L0,20,30,40,%0

30 READ &

40 NT @

49 F Move DATA poirnter to Line 20

S50 F TORE 20
f]
[

40
70

The READ statement on line 30 assigns the first value on the list of DATA

statement values to variable A. The RESTORE statement on line 50 moves the

pointer to the start of line 20. The next READ statement (line 60) picks up the first
value there and assigns it to variable A.

Chapter 3: PROGRAMMING IN BASIC 79

DIM Statement

If you plan to use arrays or string variables in your program, you need to declare
their maximum sizes (or dimensions) in DIM statements. One DIM statement can
provide dimensions for any number of arrays and string variables, as long as the
statement fits on a standard program line. The computer must first encounter a
string variable or array ina DIM statement. Error 9 occurs if you try to use a string
variable or array without first dimensioning it.

Youdimensionanarray or string variable by stating its name and then specifying
its maximum size. Enclose the size in parentheses. Only one- or two-dimension
numeric arrays are allowed — no string arrays or numeric arrays with three or
more dimensions. The following example dimensions a five-character string, a
numeric array of 13 elements (0 through 12), and a second array of 20 elements:

L0 DIM SLe Sy NECLE), BOWLERCL,?)

The number following a string variable name in a DIM statement is the maxi-
mum length that string can be during the program. The number (or numbers)
following anarray name ina DIM statement is equal to the largest index value that
can occur in that particular index position. But remember that indexes begin at 0.
Therefore SCORE(10) dimensions array SCORE()to have 11 values, not 10, since
indexes 0, 1,2,3,4,5,6,7,8,9,and 10 will be allowed. BOWLER(8,10), likewise,
specifies a two-dimension variable with 99 elements, since the first dimension can
have values 0, 1, 2, 3, etc., while the second dimension can have values 0 through 10.

Youcannot use anarrayindex higher than the number of elements you declared;
each index must have a value between 0 and the number of elements dimensioned.
You can assign a string variable a value that’s too long. The ATARI computer
assigns the first part of the value to the variable. It disregards the extra characters at
the end of the value.

Redimensioning Arrays and Strings

Once you have dimensioned an array or string variable you cannot redimension it
unless you first clear it. ATARI BASIC lets you undimension every string variable
and array, all at once. The CLR command does this. It also sets every simple
numeric variable to 0 and resets the pointer to the list of DATA statement values,
like the RESTORE statement does. This is shown in the following example:

READY
10 DaTé 1,2,3,4,9
READ @y

80 A GUIDE TO ATARI 400/800 COMPUTERS

NT

RE

READ @&,
READY

FRINT @y

i e
READY

ey
@

BRANCH STATEMENTS

Statements within a BASIC program are normally executed in ascending order of
line numbers (Figure 3-1). Branch statements change this execution sequence.

GOTO Statement

GOTO is the simplest branch statement. It allows you to specify the statement
which will be executed next. Consider this program fragment:

20 A=4

a0 GOTO 100

40 E=0
0 C=6
100 FRINT @&
L1 FRINT ExC

The statement on line 20 is an assignment statement; it assigns a value to variable A.
The next statement is a GOTO; it specifies that program execution must branch to
line 100. Therefore, the instruction execution sequence surrounding this part of the
program will be line 20, then line 30, then line 100. Of course, some other statement
must branch back to line 40. Otherwise the statements on lines 40 and 50 will never
be executed.

You can branch to any line number, even if the line has nothing but a remark on
it. However, the computer ignores the remark, so the effect is the same as branching
to the next line. For example, consider the following branch:

20 A=4

30 GOTO 70

40 Ei=l

70 REM This

G0 FRINT &,8

Lirme is only &8 remarl

Chapter 3: PROGRAMMING IN BASIC 81

Program execution branches from line 30 to line 70. There is nothing but a
remark on line 70, so the computer moves on to line 80, executing the statement
there. Even though you can branch to a remark, you might as well branch to the
next line, like this:

200 A4

30 GOTO 80

40 =S

70 M This line is only & remark

0 FRINT @yl

The ATARI computer will calculate the line number to branch to. Instead of an
actual line number, use a numeric expression, like this:

40 GOTO 30x&+00

G0 FRINT "LINE S0
&0 GOTO 20

80 FRINT "LINE 80"
Y0 GOTO 20

110 NT O MLXNE Lot
RESTORE

GOTO 20

The computer has to evaluate the expression on line 40 before it knows where to
go. It branches to line 50 if variable Ais0,toline 80if Ais I, ortoline 110 if A is 2.

Attempting to branch to a nonexistent line number causes an error. This is true
whether the computer has to calculate the line number or not.

To test the calculated GOTO statement, type in the following program, then
execute it by typing RUN:

G REM Imitiaslize varisble B

Can you account for the sequence in which digits display (4,4, 5,5, 3)? Try rewriting
the program so it displays the repeating sequence 3, 4, 5, 3,4, 5, 3, 4, 5, etc.

82 A GUIDE TO ATARI 400/800 COMPUTERS

Computed GOTO Statement

There is another kind of GOTO statement that uses an expression and a list of line
numbers. The following program segment illustrates this type of statement:

10 DATA 0,1,2,3,4
20 READ A

30 FRINT &

40 ON A+l GOTO
G0 PRINT "LINE €
60 GOTO 20

80 FRINT "LINE 80"
90 GOTO 20

110 F NT "LINE 110v
120 | TORE

130 GOTO Z0

The statement on line 40 is a computed GOTO. If variable A is 0, the program
branches to line 50. If A is I, the program goes to line 80; if A is 2, execution
continues at line 110.

The ON-GOTO statement contains a numeric expression and a list of line
numbers. The ATARI computer evaluates the expression. If its value is 1, the
computer branches to the first line number on the list; if 2, to the second; if 3, to the
third; and so forth. If the value is 0, or greater than the number of line numbers in
the list, the program just executes the statement right after the ON-GOTO
statement.

The expression can’t have a negative value or a value greater than 255, oran error
results. The line numbers in the list can be numeric constants or expressions.

The following ATARI BASIC program demonstrates how the computed GOTO
statement works.

10

20

30

410

L ae

S
[l ")
Hi

]
&Y
7
8o
CAVINE
144
150
160
170
L7%
L&0
190 BE=d

200 GOTO 30

Chapter 3: PROGRAMMING IN BASIC 83

LOOPS

GOTO and ON-GOTO statements let you create any sequence of statement execu-
tion that your program logic may require. But suppose you want to reexecute an
instruction (or a group of instructions) many times. For example, suppose array
variable A() has 100 elements, and each element needs to be assigned a value
ranging from 0 to 99. Writing 100 assignment statements would be incredibly
tiresome. Even using DATA and READ statements would be tedious. It is far
simpler to reexecute one statement 100 times in a loop.

FOR and NEXT Statements

You can create a loop using the FOR and NEXT statements, like this:

L0 DIM Acws)

S0 OFOR N=0 T0 %% STERF L

30 ATy =L

A0 MEXT N

Statements between FOR and NEXT are executed repeatedly. In the above
example, a single assignment statement appears between FOR and NEXT; there-
fore this single statement is executed repeatedly. This kind of program structure is
called a FOR-NEXT loop.

So you can see the workings of FOR-NEXT loops, the following program dis-
plays the values it assigns to array A() within the loop:

10 DIM AlPY)

20 FOR N=0 TO 99 STEF I

B0 AN =N

3% FRINT AGND

40 NEXT N

S00END
When you run the program, it displays 100 numbers, starting at 0 and ending at 99.

Statements between FOR and NEXT are reexecuted the number of times speci-
fied by the index variable appearing directly after the keyword FOR; in the
illustration above this index variable is N. N is specified as going from 0 to 99 in
steps of 1. Variable N also appears in the assignment statement on line 30. There-
fore, the first time the assignment statement is executed, N will equal 0 and the
assignment statement will be executed as follows:

J0 A0 =0
The value of N starts at 0 and increases by the step value, which is specified on line 20
as 1. N therefore equals 1 the second time the assignment statement on line 30 is
executed. The assignment statement has effectively become this:

S0 AL Y=l

Index variable N continues to be incremented by the specified step value until the
maximum value, 99 in this case, is reached or exceeded.

84 A GUIDE TO ATARI 400/800 COMPUTERS

The step does not require a value of 1; it can have any numeric value. Change the
step to 5 on line 20 and reexecute the program. Now the assignment statement is
executed just 20 times. Incrementing the index variable 19 times by 5 will take it to
95. The 20th increment will take it to 100, which is more than the specified
maximum value of 99. Keeping the step at 5, you can cause the assignment
statement to be executed 100 times by increasing the maximum value of N to 500.
Try it. (Remember to change the DIM statement as well.)

The step size does not have to be positive. If the step size is negative, however, the
initial value of N must be larger than the final value of N. For example, if the step
sizeis -1 and we want to initialize 100 elements of A() with values ranging from 0 to
99, then the statement on line 20 would have to be rewritten as follows:

L0 DIM &(e9)

20 FOR N=%% T0 0 STEF -1

30 AN =N
3% FRINT &OND
40 NEXT N

G0 END

Execute this program to test the negative step.

If the step size is | (and this is frequently the case), you do not have to specify a
step size definition. Simply omit the keyword STEP and the step value. In the
absence of any definition, BASIC assumes a step size of I.

You may specify the initial and final index values and the step size using
expressions.

Nested Loops

The FOR-NEXT structure is referred to as a program loop since statement execu-
tion loops around from FOR to NEXT, then back to FOR. This loop structure is
very common. Almost every BASIC program you write will include one or more
such loops. Loops are so common that they are frequently nested one inside the
other like a set of mixing bowls. There can be any number of statements between
FOR and NEXT. Frequently there are tens, or even hundreds of statements. And
within these tens or hundreds of statements additional loops may occur. Figure 3-11
shows an example of a single level of nesting.

Complex loop structures appear frequently, even in relatively short programs.
Figure 3-12 shows an example with the FOR and NEXT statements but none of the
intermediate statements. In this example, the outermost loop uses index variable N.
It contains three nested loops that use indexes X, Y, and Z. The X loop contains two
additional loops that use indexes A and B. The Y loop contains one nested loop that
uses index P. The Z loop contains no nested loops.

Loop structures are very easy to visualize and use. There is only one error which
you must avoid: do not terminate an outer loop before you terminate an inner loop.
Figure 3-13 illustrates such an illegal loop structure.

The ATARI computer makes a note in its memory of the location of each FOR
statement it executes. That way it knows where to loop back to when it encounters a

Chapter 3: PROGRAMMING IN BASIC

85

10 DIM Aalys)

0 FOR N= TO %9 &
30 AN =N
40 REM P

50
60
70

80
0

mt o all values of &) so Tar
T N

FIGURE 3-11. Single-level FOR-NEXT nesting

G0 FOR N=L TO 10
—— &0 FOR X=23 TO 347 STEP &

TO 0 STERF -1

T0O 100

G000 FOR Y==1 TO 20 STERF 2

A00 FOR PF=10 TO &0

1090 NEXT Z

— 1Z00 NEXT N

FIGURE 3-12. Complex FOR-NEXT loop nesting
(Intermediate program lines omitted for clarity)

86 A GUIDE TO ATARI 400/800 COMPUTERS

10

347 STEF 3

Lon
200

FIGURE 3-13. Illegal FOR-NEXT loop nesting

NEXT statement. When the loop terminates, the computer erases the notation from
itsmemory. Therefore, ifa program habitually branches out of FOR-NEXT loops,
memory gradually fills up with unexpunged FOR statement location notations.
Eventually there will be no memory left, and the program will come to a halt.
Every NEXT statement must have a matching FOR statement. Anerror occurs if
the computer cannot pair up a NEXT statement with an earlier FOR statement.

SUBROUTINE STATEMENTS

Once you start writing programs that are more than a few statements long, you will
find short sections of program that are used repeatedly. Suppose you have an array
variable (A(), for example) that is reinitialized frequently at different points in
your program. Would you simply repeat the three instructions that constitute the
FOR-NEXT loop that was described earlier? Since there are just three instructions,
you may as well do so.

Suppose the loop has 10 or I | instructions that process array data in some fashion
before it initializes the array. If you had to use this loop many times within one
program, rewriting the same 10 to 15 statements each time you wished to use the
loop would take time, but more importantly it would waste a lot of computer
memory (Figure 3-14).

You could separate out the repeated statements and branch to them. The group of
statements is then referred to as a subroutine.

A problem arises, however. Branching from the main program to the subroutine
is simple enough. The subroutine has a specific starting line number, so you could
execute a GOTO statement whenever you wish to branch to a subroutine. But at the
end of the subroutine, to where do you return (Figure 3-15)? If two GOTO
statements branch to the subroutine, the subroutine may have to return to either
one. The solution is to use special subroutine statements. Instead of a GOTO, use a
GOSUB statement.

GOSUB and RETURN Statements

The GOSUB statement branches in the same way as a GOTO, but in addition it
remembers the location to which it should return (Figure 3-16). In computer jargon,
we say GOSUB calls a subroutine.

Chapter 3: PROGRAMMING IN BASIC

87

Start of program —— ——

R

[

—

I

i.

etc.

}
|
}_‘_/ Repeated routine
}
|

FIGURE 3-14. Duplicate routines use up memory

100
110
190
200
250
260

480
500

GoTO 200 ——' Butiroyei
2000 <+—— Start
GOTO 2000 7
GOTO 2000 P
GOTO 2000
Return
where?

FIGURE 3-15. Branching to a subroutine with GOTO

88 A GUIDE TO ATARI 400/800 COMPUTERS

Main Program Subroutine

2000 - Stait

100 GOSUB 2000
110

T 2150 RETURN =— End

remembered
line number

FIGURE 3-16. Branching to a subroutine with GOSUB

You end the subrovtine with a RETURN statement. It causes a branch back to
the statement that follows the GOSUB statement. If the GOSUB statement is the
last one on the line, the program returns to the first statement on the next line.

The three-statement loop which initializes array A(), if it were converted into a
subroutine, would look like lines 2000 through 2050 below:

L0 REM Main Frogram

20 REM It i B qood ddea

30 REM chime i 1

40 REM together at the start of
S0 REM the main proarvam
GOODIM AC9s)
70 2000
¢ Lay prool of veturm

URNED "

2000 REM Hubroutine starlts
2000 FOR N=0 TO 99

2020 AINY=N

030 FRINT &N

S040 SXT N

2050 RETURN

POP Statement

Under some circumstances you will not want a subroutine to return to the statement
following the GOSUB statement. You might be tempted to just use a GOTO
statement to return, but that can cause a problem because BASIC is still remember-
ing to where it should return. In cases like this, use the POP statement. Otherwise
you risk an error caused by the accumulation of unused return locations. All POP
does is make BASIC forget the most recent return location. You can then use a
GOTO statement to branch somewhere else in the program.

Bypass the RETURN statement sparingly. Using POP excessively to enable
GOTO branching out of subroutines leads to tangled, confusing programs.

Chapter 3: PROGRAMMING IN BASIC 89

Nested Subroutines

Subroutines can be nested. That is, a subroutine can itself call another subroutine,
whichin turn can call a third subroutine, and so on. You do not have to do anything
special in order to use nested subroutines. Simply branch to the subroutine using a
GOSUBstatement and end the subroutine witha RETURN statement. BASIC will
remember the correct line number for each nested return.
The following program illustrates nested subroutines:
10
20
30
40
50

MELI PrograK

60 MO
70 2000

80 REM Display proolf of return
GO FRINT "RETURNED"

LO0 END

2000 REM Subrvowtins starts
20100 FOR N=0 TO 99

=\

b s chioap lays value
3000

3000
010 FRINT ACND
020 RETURN

sutirontine start

This program moves the PRINT A(N) statement out of the subroutine at line 2000
and puts it into a nested subroutine at line 3000. Nothing else changes.

While it is perfectly acceptable and even desirable for one subroutine to call
another, a subroutine cannot call itself. Neither can a subroutine call another
subroutine which in turn calls the first subroutine. This is called recursion, and is
not allowed in BASIC on the ATARI computer.

You can specify the line number in a GOSUB statement with a numeric expres-
sion, as follows:

AXGD0+2000

The ATARI computer evaluates the expression on line 100, then branches to the
line number that results.

Calling a nonexistent subroutine causes an error. This is true whether or not the
computer has to calculate the line number.

Computed GOSUB Statement

GOTO and GOSUB statement logic is very similar. It should be no surprise that
thereisa computed GOSUB statement akin to the computed GOTO statement. The
ON-GOSUB statement contains an expression and a list of line numbers. The

90 A GUIDE TO ATARI 400/800 COMPUTERS

ATARI computer evaluates the expression. If its value is I, the computer calls the
first subroutine on the list; if 2, the second; and so forth. If the value is 0, or greater
than the number of line numbers on the list, the program just executes the statement
right after the ON-GOSUB statement. The expression can’t have a negative value or
a value greater than 255, or an error results.

The program remembers where the ON-GOSUB statement is. No matter which
subroutine gets called, the next RETURN statement branches back to the remem-
bered line number.

You can nest subroutines using ON-GOSUB statements, just as you can nest
subroutines using standard GOSUB statements.

Here is an example of an ON-GOSUB statement:

100 ON & GOSUE 1000,3500,5000,2300

110 REM
If A is 1, a subroutine beginning at line 1000 is called. If A is 2, a subroutine
beginningat line 500 is called. If Ais 3, a subroutine beginning at line 5000 is called.
If A is4, asubroutine beginningat line 2300 is called. If A has any value other than |
through 4, program execution falls through to line 110 (no subroutine is called).

CONDITIONAL EXECUTION

ON-GOTO and ON-GOSUB are conditional statements. That is, the exact flow of
program execution depends on the values of one or more variables which can
change as the program is running. The exact program flow depends on the condi-
tion of the variables.

IF-THEN Statement
The IF-THEN statement is another conditional statement. It has the general form
IF expression THEN statement

If the expression is true, then the statement is executed. Relational and Boolean
expressions are most common with IF-THEN statements, but numeric expressions
can be used as well. This statement gives a BASIC program real decision-making
capabilities. Here are three simple examples of IF-THEN statements:

THEN FRINT MSGH
UMY THEN Th
L4 AND MMl THEN GOTO &6

The statement on line 10 causes a PRINT statement to be executed if the value of
variable A is five more than the value of variable B. The PRINT statement will not
be executed otherwise. The statement on line 40 sets numeric variable IN to 0 if
string variable CCS$ is the letter M. The statement on line 50 causes program
execution to branch to line 66 if variable Q is less than 14, and variable M is less than
variable M 1. Both conditions must be true or program execution will continue with

Chapter 3: PROGRAMMING IN BASIC 91

the statement on the next line. If you do not understand the evaluation of expres-
sions following IF, then refer to the discussion of expressions given earlier in this
chapter.

An IF-THEN statement can be followed by other statements on the same
program line. ATARI BASIC executes statements that follow an IF-THEN state-
ment on the same line only if the expression in the IF-THEN statement is true. If the
expression is false, program execution drops down to the first statement on the next
program line. Consider the following program segment:

LOTF Val00 THEN FRINT "DEWEY WINS"IGO

SUE 2000

20 T=THUIFRINT T
The program will print the message DEWEY WINS and call the subroutine at line
2000 only if the value of variable V is greater than 100. If V is less than or equal to
100, the program will not print the message or call the subroutine, but will instead
proceed directly to the first statement on line 20.

A second form of the IF-THEN statement is available in ATARI BASIC.
Whenever the conditionally executed statement is a GOTO statement, you can omit
the word GOTO if you wish. The following two statements are equivalent:

L0 TF MM$=DDE THEN GOTO 100

L0 IF MM$=DDE THEN 100

INPUT AND OUTPUT STATEMENTS

There are a variety of BASIC statements that control the transfer of data to and
from the computer. Collectively these are referred to as input/output statements.
The simplest input/output statements control data input from the keyboard and
data output to the display screen. These simple input/output statements will be
discussed in the paragraphs that follow. But there are also more complex
input/output statements that control data transfer between the computer and
peripheral devices such as the program recorder, disk drives, and printers. These
more complex input/output statements are described in Chapters 4 through 7.
Chapters 8 and 9 cover output statements to the display screen for graphics.
Chapter 10 investigates outputting sound to the television.

We have already encountered the PRINT statement, which outputs data to the
display screen. We will discuss this statement first, before looking at input
statements.

PRINT Statement

Why use the word PRINT instead of DISPLAY or some abbreviation of the word
“display”? In the early 1960s, when the BASIC programming language was being
created, displays were very expensive and generally unavailable on medium- or

92 A GUIDE TO ATARI 400/800 COMPUTERS

low-cost computers. The standard computer terminal had a keyboard and a printer.
Information was printed where today it is displayed; hence the use of the word
PRINT to describe a statement which causes a display.

The PRINT statement will display text or numbers. For example, this statement
will display the single word TEXT:

10 PRINT "TEXT"

To display a number, you place the number, or a variable name, after PRINT,
like this:

41,0
20 FRINT 5,4

The statement above displays the numbers 5 and 10 on the same line.

You can display a mixture of text and numbers by listing the information to be
displayed after the word PRINT. Use commas to separate individual items. The
following PRINT statement displays the words ONE, TWO, THREE, FOUR, and
FIVE, interspersed with the numerals that correspond to each word:

L0 FRINT "ONE" L, "TWO" 2 "THREE" , 3, "FO

UR™ s 4, "FIVE" &

20 END

If you separate variables with commas, as we did above, then the ATARI
computer automatically allocates a fixed number of spaces for each item displayed.
Try executing the program above to prove this. If you want the display to remove
spaces, separate the variables and constants using semicolons, like this:

LU FRINT "OME" LU TWOY FEF U THREE §3§ "0
U™ g4 M FIVEN 3 S
20 END

Run this program to see how the semicolons work.

You will recall from Chapter 2 that the cursor is the white square that marks the
location where the next character you type will appear on the display screen. The
PRINT statement also uses it. The first item in a PRINT statement is displayed at
the location of the cursor.

A PRINT statement will automatically return the cursor to the left margin as its
last action. In computer jargon, this is called a carriage return. When the PRINT
statement performs the carriage return, it also drops the cursor down one line. This
is called a line feed. You can suppress the carriage return and line feed by putting a
comma or a semicolon after the last value in the PRINT list. A comma occurring
after the last value will move the cursor to where the next value would be displayed,
if there were one. The next PRINT statement starts there. To illustrate this, type in
the following three-statement program and run it:

1a 5 VTR o 2

3 "FOUR" o 4

Chapter 3: PROGRAMMING IN BASIC 93

Output occurs on two lines. Add a comma to the end of the statement on line 10 and
again execute the program. The two lines of display now occur on a singie line.

Now replace the comma at the end of line 10 with a semicolon and again run the
program. The display occurs on a single line, but the space between the numeral 2
and the word THREE has been removed. By changing other commas to
semicolons you can selectively remove additional spaces.

Numerals have been displayed thus far by inserting them directly into the PRINT
statement. You can, if you wish, display the values of variables instead. The
following program does the same thing as the first PRINT statement example, but
uses array A() to create digits. Enter and run this program.

5 DIM ACE)

L0 FOR N=L TO %

20 AINY=N
N
FEINT "ONE" ALY U TWOY § i
FECEY I UFOURT & A S UFIVE" §a)

G0 END

§UTHRE

You can put the displayed words into a string variable and move the PRINT
statement into a FOR-NEXT loop by changing the program as follows:

L0 DI N8

20 DATHE ONE; TWO , THREE , FOUR ; FIVE

30 FOR N=1 TO %

G0 READ N$

S0 FRINT WE3N3

HO0 MNEXT N

A% REM Retuwrn cursor to ledt maeain
70 NT

S0 END

Notice the simple PRINT statement on line 70. It performs a carriage return and
line feed, returning the cursor to the left margin.

INPUT Statement

When the computer executes an INPUT statement, it waits for input from the
keyboard. Until the computer gets the input it requires, nothing else will happen.

In its simplest form, an INPUT statement begins with the word INPUT and is
followed by a variable name. Data entered from the keyboard is assigned to the
named variable. The variable name type determines the type of data that must be
entered. A numeric variable name can be satisfied only by numeric input. To
demonstrate numeric input, key in the following short program and run it (try
entering some alphabetic data and see what happens):

10 INFUT A

0 FRINT &

2% REM End program iT 0 entered

30 TF é=0 THEN END

40 GOTO 10

94 A GUIDE TO ATARI 400/800 COMPUTERS

Upon executing an INPUT statement, the computer displays a question mark,
then waits for your entry. The program above displays each key as you press it. In
computer jargon, the display screen echoes the keyboard. Press the RETURN key to
end your entry for the INPUT statement. The PRINT statement on line 20 displays
the number you entered, so the number actually appears twice in this program. The
first display occurs when the INPUT statement on line 10 is executed and you make
anentry at the keyboard. The second display is in response to the PRINT statement
on line 20.

The INPUT statement can input more than one value at a time. To do this, list all
the variables for which you want to input values following the word INPUT.
Separate the variables with commas. When such an INPUT statement is executed,
you must respond with a separate value for each variable. Press the RETURN key
after each value. Be sure each value is the same type as the variable to which it will be
assigned.

When you respond to an INPUT statement, do not use commas as punctuationin
large numbers; enter 1000, not 1,000.

The following example inputs two numeric values then displays these inputs:

20 INFUT

30 FRIN

sk

Vy B2

ioproaram 4T 0 ds entered
e () THEN END

Run the program above and enter one number followed by a comma, then
another number, and then press RETURN. Now try something a bit different. Enter
one number and press RETURN. As you can see, the ATARI computer reminds you
to enter the next value. Enter another number and press RETURN. Thus, when an
INPUT statement calls for more than one numeric value, you have a choice of
entering all the values on one line, separated by commas, or entering them on
separate lines.

The INPUT statement works somewhat differently with string variables. Try this
example:

10 DIM Ak(9)
20 T 4

proaram 4T mall enbey
s T HEN END
3 NT
G0 GOTO 20
String variable A$ is only dimensioned for nine characters. Try entering more.
ATARI BASIC ignores the extra characters.

You have to enter each string value on a separate line. If an INPUT statement
specifies a list of variables and there are string variables in the list, the associated
string values must be entered on separate lines. This is because ATARI BASIC lets
you include commas as part of a string value. You can prove this for yourself by
running the example program above and entering the string value DOE, JOHN.

Chapter 3: PROGRAMMING IN BASIC 95

The following program illustrates what happens when a string variable is one of
several variablesinan INPUT statement list. Experiment with this program. Try to
enter all four values on the same line, separated by commas. What happens? Try
entering each value on a separate line. See what happens if you enter a numeric
value or a comma as part of a string value.

L0 DIM A% CL0) ,EBECLD)

20 TNFUT fb, by e, B

30 FRINT A%, fp e, E

3% REM End program i mnull entry

40 TF OTHEN END

G0 GOTO 20

Editing During INPUT

You can use all the regular editing keys when responding to an INPUT statement:
the arrow keys, the INSERT and DELETE keys, the TAB key, and the BACK S key. They
all work with responses to INPUT as they would when changing program lines.
Bear in mind that the line at which you press RETURN is the line that the INPUT
statement gets. Try using the editing keys with the last example program.

INPUT Statement Prompts

The INPUT statement is very fussy; its syntax is too demanding for any normal
human operator. Imagine some poor person who knows nothing about program-
ming. On encountering the kind of error message that can occur if one comma
happens to be out of place, he or she will give up in despair. You are therefore likely
to spend a lot of time writing “idiot-proof” data entry programs. These are pro-
grams which are designed to watch out for every type of mistake that a person can
make when entering data. An idiot-proof program will cope with errors in a way
that anyone can understand.

One simple trick is to display a short message that describes the expected input.
You do this with a PRINT statement just before the INPUT statement. The
displayed message is called a prompt message. It appears in the PRINT statement as
a string constant or variable. The message will be displayed on the same line as the
input request if you end the PRINT statement with a semicolon. Here is an example:

YOREM Test muoltiplicstion facts

L0 FOR ™ 9

S0 PRINT "HOW MUCH LS "iNg"x9vg
30 TNFUT MNE

39 REM Wirorneg answer, bry sgsin
40 IF A FNXEOTHEN GOTO 20

49 REM Else s problem

S0 FRINT "AES LY RLGHT '

40 NEXT N

70 END

This certainly beats trying to guess which INPUT statement you are supposed to
answer.

96 A GUIDE TO ATARI 400/800 COMPUTERS

HALTING AND RESUMING PROGRAM EXECUTION

Ifa program is running and you want to stop it, press BREAK. You will see a message
like this:

STOFFED AT LINE 1200

Instead of 1200, the ATARI computer displays the actual line number at which
program execution halted. The computer then returns to immediate mode. It
finishes only the statement it was executing; it will begin no new statement.

You can continue program execution by typing the command CONT. The
computer does not pick up exactly where it left off. Execution resumes at the start of
the next program line. For example, suppose you are running the Expense Analysis
program (Figure 3-17), and press BREAK while the computer is executing the
INPUT statement on line 50. When you type CONT, the program resumes at line
60. The computer does not complete line 50. This causes problems later in the
program. Try it yourself.

If you are already in immediate mode, BREAK merely cancels the line you were

typing.

9 REM Anaslyze monthly exdpenses

10 DIM EXFNS$C10),8FENT(4)

’ nse cateqory names

DATA RENT, FHONE , GAS,ELECTRIC, FOOD
REM Enter expenses

v N=0 TO 4

40 READ EXFNS®IFRINT EXFNSS$

S0 TINFUT XIGPENT(N) =X

40 NEXT N

49 REM Enter income

70 FRINT (FRINT "INCOME";

80 INFUT INCOME

89 REM Now compare inc. & exp.

20 FRINT (FRINT (FRINT "ANALYSIG———"
100 FRINT

110 RESTORE

120 FOR N=0 T0O 4

130 READ EXFNS$

1392 REM Calc. & print percentasqes
140 FRINT EXFNSE:" I8 "ISFENT(N)Y ZINCOM
Ex1003" % OF INCOME"

150 NEXT N

160 END

FIGURE 3-17. Expense Analysis program listing

Chapter 3: PROGRAMMING IN BASIC 97

The SysTEM RESET Key

You can of course interrupt your program at any time by pressing the SYSTEM
RESET key. This is, however, a drastic measure. The program stops dead in its
tracks. The display screen clears. The computer goes through an initialization
process and returns to immediate mode. You can try continuing the program with
the CONT command. As with the BREAK key, execution resumes with the program
line after the one where the reset occurred. The more complex the program, the
smaller your chances of continuing successfully after a reset.

The END Statement

The program will halt execution when it encounters an END statement, as de-
scribed earlier in this chapter. The READY message appears on the display screen.
The computer returns to immediate mode.

As with the BREAK key, you can continue program execution by typing the
command CONT. Execution resumes at the program line after the one containing
the END statement. Add the following line to the Expense Analysis program
(Figure 3-17):

LG EMDIY UWALRUSY

Run the program. When it stops, type CONT and press RETURN. Execution
continues at line 70; the PRINT statement at the end of line 65 is never executed.

The STOP Statement

ATARI BASIC has another statement which will halt program execution: the
STOP statement. The STOP statement displays a message like this:

STOFFED AT LINE 1200

Instead of 1200, the computer displays the actual line number of the STOP state-
ment, then returns to immediate mode.

You can continue program execution by typing the command CONT. Execution
resumes at the start of the program line after the STOP statement. To see how this
works, add the following line to the Expense Analysis program (Figure 3-17):

&G BTOR? "MOOSE"

Run the program. Use the CONT command to continue the program when it stops
at line 65. The second statement on line 65 is not executed. The computer resumes
execution at the beginning of line 70.

FUNCTIONS

Another element of BASIC is the function. In some ways functions look like
variables. In other ways they act more like BASIC statements. The discussion that
follows shows you how to use functions. Chapter 11 has a complete list of functions,
in alphabetical order.

98 A GUIDE TO ATARI 400/800 COMPUTERS

Consider the following assignment statement:
L0 A=8SQARED
The variable A is set equal to the square root of the variable B. The keyword SQR

specifies the square root function.
Here is a string function:

S0 L=LENCDS)

In this example the numeric variable L is set equal to the length of string variable
D§.

All functions except one have the same format (Figure 3-18). You specify a
function with a keyword (like SQR for square root). In this respect functions are
similar to statements. But functions are always followed by one argument. (The
exception is USR, which can have more than one argument.) The argument is
enclosed in parentheses.

The function performs standard calculations or other operations on the argu-
ment. It comes up with a value which can be used exactly like any variable or
constant. Some functions yield numeric values, while others yield strings. For
example, the SQR function always calculates the square root of its single numeric
argument. The LEN function always counts the number of active characters in its
single string argument.

Functions can be substituted for variables or constants anywhere in a BASIC
statement, except to the left of an equal sign. In other words, you can say that
A = SQR(B), but you cannot say that SQR(A) = B.

Every function in a BASIC statement is reduced to a single numeric or string
value before any other parts of the BASIC statement are evaluated. Function
arguments can be constants, variables, or expressions. Therefore, before the com-
puter can perform the function, it may have to evaluate the function argument. It
can then apply the function to the argument, yielding the final numeric or string
value. Not until all functions in a given expression are evaluated is the expression
itself evaluated. For example, consider the following statement:

10 E=24,7%(5QARCC)+5)-EINC0+2+D)

Junction (argument)
N N\

Constant, variable, or expression;
string or numeric
as function requires

Keyword that specifies
the function

FIGURE 3-18. Function format

Chapter 3: PROGRAMMING IN BASIC 99

The ATARI computer evaluates the SQR function as soon as it retrieves the value
of variable C. Then it evaluates the expression 0.2+ D and applies the SIN function
toit. Finally it uses the function results in evaluating the entire expression. Suppose
SQR(C) = 6.72 and SIN(0.2 + D) = 0.625. The expression is first reduced to
24.7 # (6.72 + 5) - 0.625. Then this simpler expression is evaluated. Variable B,
then, is 288.859.

Numeric Functions
Here is a list of the numeric functions that you can use in ATARI BASIC:
SGN Returns the sign of an argument: +1 for a positive argument, -1 for a negative

argument, 0 for a zero argument.

ABS Returns the absolute value of an argument. A positive argument does not
change; a negative argument is converted to its positive equivalent.

RND Generates a random number between 0 and 1.
INT Truncates the fractional part of the argument value.
SQR Computes the square root of the argument.
EXP Raises the constant e (2.71828179) to the power of the argument (e
LOG Returns the natural logarithm of the argument.
CLOG Returns the common logarithm of the argument.
SIN Returns the trigonometric sine of the argument.
COS Returns the trigonometric cosine of the argument.
ATN Returns the trigonometric arctangent of the argument.

arg)

Using Numeric Functions

Use functions freely wherever they make your programming job easier. You need
not bother with numeric functions you do not already understand, however. For
example, if you do not understand trigonometry, you are unlikely to use SIN, COS,
and ATN functions in your programs.

The following short program uses a numeric function:

10 FRINT "Enter a rnumber';

20 INFUT A

29 REM DRetermine siagn of entry

30 E=8GN(A)

40 FRINT A" is "}

950 IF E=1 THEN FRINT "positive.":GOTO
10

60 IF E=-1 THEN FRINT "neative."i1GOTO
10

&9 REM IF B ismn’t 1 or —1, must be 0

70 FRINT "meither positive nor negativ

e.ll

80 GOTO 10

This program figures out whether a number entered at the keyboard is positive,
negative, or neither.

100 A GUIDE TO ATARI 400/800 COMPUTERS

Degrees and Radians in Trigonometric Functions

The three trigonometric functions normally measure angles in radians. You can
change to degrees by executing the DEG statement before using the trigonometric
functions. Executing the RAD statement switches back to radians. Here are some
examples:

DEG

READY

7 SIN(?02
1

READY

N1V,

READY
TOHINCLLE71)
0.9999999833

READY

String Functions

String functions allow you to manipulate string data in a variety of ways. Here is a
list of the string functions that you can use in ATARI BASIC (see Chapter 4 for
more information).

ADR Determines where in memory a string is stored.
ASC Convertsastring character to its standard numeric code (ATASCII) equivalent.
LEN Counts the number of characters contained in a text string.
STRS Converts a numeric value to a string of digits.
VAL Converts a string of digits to its equivalent numeric value.
CHRS$ Converts a numeric (ATASCII) code to its equivalent text character.
String functions let you determine the length of a string and convert numeric
values, numeric (ASCII) codes, and string characters. Here are some examples:
STRS$(14) Converts 14 to “14”.
LEN(“*ABC”) Determines the length of the string, in this case, 3.
VAL(“14™) Converts “14” to 14.

System Functions

Some functions give you access to the ATARI computer on a more fundamental
level than does BASIC in general. Chapter 4 discusses how to use these functions.

PEEK Fetches the contents of a memory location.
FRE Returns available free space—the number of unused RAM memory bytes.

Chapter 3: PROGRAMMING IN BASIC 101

USR
PADDLE
PTRIG
STICK
STRIG

Transfers control of the ATARI computer to a machine language program.
Reports the position of the paddle controller knob.

Indicates whether the paddle controller button is being pushed.

Reports which way the joystick controller is leaning.

Indicates whether the joystick controller button is being pushed.

. i
L a1 LR IR e -
R TR ST T S I R BN Ll
S PR ' g - - R =. k-
Wy 0 gy ey gl el .
[Bl gmp e " -k .

i
i
i
) 1
i
|
. i
)
4
i
h
:
N
l

4
ADVANCED
BASIC
PROGRAMMING

This chapter carries on from Chapter 3 in describing how to program the ATARI
computer in BASIC. It covers many new BASIC statements and explores new
facets of some familiar ones. Chapter 3 taught you enough to let you make your
computer do some fancy tricks; this chapter shows you how to make it a useful tool.

USING STRINGS

The earliest computers were only able to use numbers. This made it difficult for the
average user to communicate with them. ATARI BASIC makes it easy to use
characters, not just numbers, in string values. To write a truly effective program,
you need to learn as many string handling techniques as you can.

How Strings are Stored

In order to make full use of strings, you must understand how characters are stored
in the ATARI computer’s memory. This concept is really very simple. Computer
memory can store numbers, but not characters. Characters are therefore converted
to numbers. The ATARI computer uses a special numeric code, a variation of the
standard code that most computers use. The standard code is called ASCII (Ameri-
can Standard Code for Information Interchange). The ATARI computer uses a
slightly different code, called ATASCII (ATARI ASCII). For example, the
ATASCII code for the letter A is 65, for Bitis 66, Cis 67, and so on. You will find a
complete table of ATASCII codes and characters in Appendix D.

103

104 A GUIDE TO ATARI 400/800 COMPUTERS

The ASC function converts the first character of a string to its ATASClII code. To
see how this works, try the following program:

10 DIM A$C(L)

20 FRINT "Enter one character'"}

30 INFUT A%

40 FRINT "The ATASCII code for "jA$:"
igt"

50 FRINT ASC(A$)

59 REM Use BREAK kewy to stop proaram
60 GOTO 20

RUN

Enter one character?A

The ATASCII code for A ist

65

Enter one character?8

The ATASCII code for 8 ist

96

Enter one character? #

Escape Sequences

Have you tried to assign any of the cursor movement characters, like «— (CTRL-+), to
a string variable? Or have you tried to put them in a PRINT statement string
constant? Unless you divined the way to do it from Appendix D, you probably met
with no success.

There is a way to get special characters into a string. First press the ESC key, then
type the keystroke that yields the special character. This process is called an escape
sequence. We designate an escape sequence by prefixing the name of the second
keystroke with ESC\. For example, ESC\CTRL-+ means press the ESC key, release it,
then press the CTRL and + keys simultaneously. The cursor doesn’t move left, as it
would had you not pressed the ESC key. Instead, the escape sequence generates a
single character. In this case, the character is ATASCII code 30. If you print that
character, then the cursor moves left. Table 4-1 lists all the escape sequences and the
characters they produce.

What you see when you type an escape sequence is not exactly what you get asa
string character. For example, type ESC\CTRL-+ and you will see the character .
Strictly speaking, this is not the character that goes in the string. You can see this for
yourself in immediate mode. Try the following example (where you see the —
character in the PRINT statement, type ESC\CTRL~+):

FRINT "ART=<N"
ANT

READY

3
&

Chapter 4: ADVANCED BASIC PROGRAMMING

105

TABLE 4-1. Escape Sequences

Kegstrols Echoed ATASCII String
Character Code Character

ESC\ESC & 27 Escape code

ESC\BACK S K}l 126 Cursor left, replace with blank space

ESC\TAB 3] 127 Cursor right to next tab stop

ESC\CTRL-- (] 28 Cursor up

ESC\CTRL-= @ 29 Cursor down

ESC\CTRL-+ 3 30 Cursor left

ESC\CTRL- % 3 31 Cursor right

ESC\CTRL-BACK S 4] 254 Delete character

ESC\CTRL-> o 255 Insert character

ESC\CTRL-< L3 125 Clear screen

ESC\CTRL-TAB 158 Clear tab stop

ESC\CTRL-2 K] 253 Sound built-in speaker

ESC\SHIFT-BACK S (4] 156 Delete line

ESC\SHIFT- > (4] 157 Insert line

ESC\SHIFT-< L3 125 Clear screen

ESC\SHIFT-TAB 159 Set tab stop

It is possible to display the exact characters you see when you type an escape
sequence. You simply precede each escape sequence character with the special
escape sequence ESC\ESC. Try the following example (where you see 4, type
ESC\CTRL- =; where you see &, type ESC\ESC):

FRINT "EdE4"

++

READY

£

The CHRS Function

In ATARI BASIC, you can produce a character directly from its ATASCII code
number. The CHRS function translates an ATASCII code number into its charac-
ter equivalent. For example, to create the symbol “$”, first find its ATASCII code in
Appendix D. Then use the code with CHRS, as follows:

FRINT CHR%(36)

4

READY

%

The CHRS function works equally well with any ATASCII code. Experiment in
immediate mode using numbers between 0 and 255.

106 A GUIDE TO ATARI 400/800 COMPUTERS

You can use the CHRS$ function in conjunction with regular strings ina PRINT
statement, as follows:

?CHRS(34) s "Queen of "JCHR$CLZ3) $CHR%C

34) s CHR$ (253) i

"Queern of &
READY

E

The CHRS function lets you include otherwise unavailable characters like quota-
tion marks as part of a string value.

Substrings

There is a way to extract only part of a string variable’s value. Pieces of string values
are called substrings. To designate a substring, first specify the string variable name.
Immediately following that, in parentheses, state the position of the first and last
characters to use. For example, suppose the present value of string variable A$ is the
six characters ABCDEF. A$(2,4) specifies the substring BCD, the second through
the fourth characters in the string. Substrings may look like array elements, but
remember that ATARI BASIC does not allow string arrays.

Specifying the position of the last character in a substring is optional. If the last
character is not specified, BASIC assumes you want the entire right-hand portion of
the string. For example, if A§ is ABCDEF as before, A$(2) specifies the substring
BCDEF. In this case, the end of the substring is the same as the end of the whole
string.

You can specify the first and last character positions with a numeric constant,
variable, or expression.

A substring can be on the left-hand side of an equal sign in an assignment
statement, as shown in the following example:

10 DIM @420

20 T NaME"

T sl EAG Y

40 7 A%

FUN

s

READY

#®

Error number 5 occurs if there is any problem with the substring specification.
The last substring character cannot come before the first. For example, with A$ still
ABCDEF, substrings A$(4,3) and A$(7,1) will cause error 5. Neither the first nor
the last character numbers can be 0.

String Concatenation

Youcanjoin strings together to form one longer string. This is called concatenation
(Figure 4-1). With concatenation, you can develop strings of any length. The only

Chapter 4: ADVANCED BASIC PROGRAMMING 107

STRINGI | + |STRING2| + | STRING3

Becomes

L

STRINGI | STRING2 | STRING3

FIGURE 4-1. String Concatenation

limit is the amount of RAM available. The LEN function allows you to concatenate
strings in ATARI BASIC. Here is an example:

10 DIM AECLO) ,EHCL0) ,CHCLD)
20 A%="WIND"

30 B$="FIFE"

40 CH="LINE"

G50 A$LENC(ASI L) =14
60 FRINT A%

70 BE$(LENCES)Y+1)=C%
80 FRINT E4$

90 END

RUN

WINDFLFE

FIPELINE

READY

®

If you wish to concatenate strings for output only, it is just as easy to use the
PRINT statement with semicolon separators between strings. The previous pro-
gram could be rewritten as follows:

10
20
30
40
50
40
70

FRUN

DIM A% 4),EBH5C4) ,CHC4)
= WIND Y

E;c ::n_ (gt

G

FRINT &%) Ed

FRINT E3CP

END

WINDFIFE
FIFELINE

READY

&

This version produces exactly the same output as the first version, but uses fewer
statements and shorter string variables to do it. This is definitely an improvement,

108 A GUIDE TO ATARI 400/800 COMPUTERS

unless of course you want to use the concatenated strings again in the same
program.

Graphics Characters

The ATARI computer has 29 special graphics characters you can generate from the
keyboard by using the CTRL key in conjunction with other keys. These are listed in
Appendix D. You can use these characters in string values just as you would use any
other character. By combining graphics characters in the right sequence, you can
draw pictures. For example, you can use them to draw a playing card. Use the / and
\ characters (CTRL-F and CTRL-G) for the corners. The = character (CTRL-M) will
draw the top of the card, the — character (CTRL-N) the bottom, | (CTRL-V)the left
edge, and the Icharacter (CTRL-B) the right edge. CTRL-; is the # character. The
following program will draw the ace of spades.

100 7 AT
110 % "L l
120 % " l
1E0 7 s
140 ? v v

{

x

150 7 "
140 % "
170 % # g
180 % "™ 1
150 % " o
200 7 i
210 7 »
220 7 "% I
230 % M a1
240 7 #

. =

Notice that many of the lines in this program print exactly the same string. It
would be much more efficient to establish a string variable with a value equal to the
string printed on line 120. Then instead of repeating the string constant, the
program could simply print the string variable.

Numeric Strings

A numeric string is a string whose contents can be evaluated as a number. Numeric
values can be converted to numeric strings using the STRS$ funcion. The general rule
is that a numeric value is converted to a string in the same format in which it would
appear in PRINT statement output. If the numeric value would display with a
minus sign, the first character of the string is a minus sign. If the numeric value is
very large or very small, it is expressed in scientific notation when it is either
displayed or converted to a numeric string. This is illustrated in the following
program:

10 DIM N$(20)
20 7 “Ente

30 INFUT

& rambenr')

Chapter 4: ADVANCED BASIC PROGRAMMING 109

A0 Nb=5TRS (N

S0 07 "Numeric "N

40 2 " Slhrimg "iNG

&9 REM Use BREAK lkewy Lo end
70 GOTO 20

RUN
Erter a
Numer Lo
String %

Erter & PLEBAESLTEBIY
Numeric LZ3454678%0

String 1E£345467890
Erter a8 number?

Run the program and enter some positive and negative numbers. Try a number with
more than ten digits, and a number with more than ten nonzero digits after the
decimal point.

It is possible to concatenate numeric strings using the LEN function. Try entering
a few numbers in the following program:

10 DIM N$(100)

20 ? "Enter 8 few digits"}
30 INFUT N

39 REM Append the latest input
40 NSCLEN(N$)Y+1)=6TR$(N)

50 7 "The new number isi"
40 7 N$

70 ?

79 REM Use BREAK key to end
80 GOTO 20

RUN

Enter 8 few digits?1234

The new number is?

1234

Ernter 8 few diQits?3678
The mew number ist
123454678

Enter 8 few diQits?9098
The mnew number ist
1234546789098

Enter a8 few digilts?#

Initializing String Variables

There is a trick you can employ to assign the same value to every character of a
string variable. This is illustrated in the following program:
10 DIM S4C100)

19 REM Assian character Lo propagate
20 S$="@"

110 A GUIDE TO ATARI 400/800 COMPUTERS

29 REM Estasblish end of propasaation

30 S$C100)=5%

39 REM Fropagation to end of string

40 S5$(2)=5%

50 FRINT &%

60 END

RUN
PRRRPPRRRERRRRRRERRRRRRRELLRRRARRRRERRE
PRERERRRRRPALZARRRRRRRRRRRRRRRLRARRRRRRERE
PRRRRERRRRRARRRERRRRRRRERE

READY

#

First, assign a value to the first character of a string (line 20). You can use any
value; use the CHRS function if you like. Next, you must establish the end of the
propagation (line 30). This can be anywhere up to the maximum dimensioned
length of the string. Then a single assignment statement propagates the first charac-
ter through the string, stopping at the point you just established (line 40).

The propagation trick on line 40 works as follows. The computer assigns the
value of the string on the right side of the equal sign to the string on the left side. It
does this one character at a time. The first character of the left-hand string is S$(2).
The first character of the right-hand string is S$(1). So S$(2) gets the value of S$(1).
Now the program moves on to the second character of each string: S$(3) on the left,
S$(2) on the right. The new value of S$(2) is assigned to S$(3). The assignment
continues character by character. The left-hand string starts out one step ahead of
the right, and stays that way. The assignment on line 40 ends when the last character
of the left-hand string receives a value from the right-hand string. This happens
when S$(100) receives the value of S$(99).

Simulating String Arrays

ATARI BASICdoes notallow string arrays. You can simulate a string array witha

string variable. We will call this arrangement a pseudo-array. What you do is divide

the string into substrings of equal lengths, and treat each substring as an element of

the pseudo-array (Figure 4-2). To compute the starting position of a pseudo-array

element, you need to know its element number and the length of each array element.
There are two limitations to string psuedo-arrays:

-+ All elements of the pseudo-array must have the same length. The length is fixed at its
maximum. If you want to assign a short string value to one element, you have to fill out
the unused part of the element with blanks. The LEN function will not work with
pseudo-array elements, since element length doesn’t vary.

- The process of calculating the starting location of a pseudo-array element is time-
consuming. You may notice delays in your program execution.

The following program uses a string pseudo-array:

10 DIM A$C100), TEMF$(10) ,EL$(10)
19 REM Ten string values

Chapter 4: ADVANCED BASIC PROGRAMMING 111

20 DATA Ricky,Lucy,Fred,Ethel,,1234567
8201, +++,A+E=1E100,%+*,abracadabra

29 REM Initialize EL% to blanks

30 BLE=" "IBL$(10)=BL$IELS(2)=EL%$

39 REM Assign pseudo-array values

40 FOR N=1 TO 10

49 REM lst, put value in temp. string
50 READ TEMF$

59 REM Get length of new value

60 TL=LENC(TEMF$)

69 REM Fad short values with blanks
70 IF TL<10 THEN TEMF$(TL+1)=EL%

79 REM Compute start of array element
80 START=(N-1)x10+1

89 REM Assian value to array element
20 AS(START)I=TEMF$

100 NEXT N

109 REM display assigned values

110 FOR N=1 T0O 10

119 REM Compute start of element

120 START=(N-1)X10+1

130 ? "Element "iN3" ist "JAS(START,ST

ART+9)

140 NEXT N

150 END

RUN

Element 1 ist! Ricky
Element 2 is! Lucy
Element 3 ist! Fred
Element 4 ist! Ethel
Element 5 ist

Element 6 ist 12345467890
Element 7 ist +++
Element 8 is! A+E=1E100
Element 9 isi e=2

Element 10 ist abracadabr
READY

B8

In this program, string array AS$ plays host to the pseudo-array. The pseudo-array
has ten elements of ten characters each, for a total of 100 characters (line 10). Each
element gets one of the string values from the DATA statement list (line 20).
Included among these is a null value and two values that are too long to fit in one
array element. The program assigns string variable BL$ a blank value (line 30). You
could eliminate variable BL$ by using blank string constants instead, but this way is
neater. The program assigns each string value from the DATA statement list to a
temporary string variable (line 50). This is necessary because ATARI BASIC
doesn’t allow subscripted variables in READ statements. The program concaten-
ates blanks onto a short value to remove the remains of the previous value (lines 60
and 70). Finally, the program computes the index of the pseudo-array element and

112 A GUIDE TO ATARI 400/800 COMPUTERS

String variable X$

Element Element Element Element Element
1 2 3 4 5

| =e=ss 10 ==== 20 ss== 30 s=ec 40 sses SO

NOTE: String variable X$ is divided into ten elements of equal lengths. Element 1 is
X$(1,10), element 2 is X$(11,20), element 3 is X$(21,30), element 4 is X$(31,40),
and element 5 is X$(41,50).

FIGURE 4-2. String pseudo-arrays

assigns it the value built up in the temporary variable (lines 80 and 90). When you
run the program, notice what happens to the null string value and the values that are
too long.

VARIABLE STORAGE

There is a limit to the number of variables you can have in one ATARI BASIC
program. The maximum is 128. Each numeric variable name, string variable name,
and array name you use counts toward the limit. An entire array only counts as one
name, no matter how many elements it contains.

ATARI BASIC maintains a list of variable names. This list is called the variable
name table (VNT). The variable name table has room for 128 variable names, hence
the 128-variable limit. Each time you use a new variable name in immediate mode, it
isadded to the variable name table. Variables in programmed mode are added to the
variable name table as they are encountered during program execution.

Variable names stay in the variable name table until a NEW command is
executed. Then the entire variable name table is cleared. Merely deleting all referen-
ces to a variable will not remove it from the variable name table.

When you record a program on cassette using the CSAVE statement, the variable
name table is saved along with the program lines. When you read the program back
in with the CLOAD statement, the recorded variable name table takes the place of
the variable name table currently in memory. Chapter 5 explains a way to record
programs on cassette without recording the variable name table. Chapter 7 dis-
cusses what happens to the variable name table when you save and load programs
from diskette.

DIRECT ACCESS AND CONTROL

A number of statements allow you direct access to the ATARI computer’s memory
and its communication channels to input and output devices. As BASIC programs

Chapter 4: ADVANCED BASIC PROGRAMMING 113

become more complex, they tend to need this direct access. Several of the programs
in this chapter require direct access. Later chapters rely even more heavily on direct
access and control statements. For example, you nced these statements in order to
exercise the ATARI computer’s full graphics capabilities.

Memory and Addressing

The ATARI computer can have as many as 65,536 individually addressable
memory locations. They are addressed by number, 0 through 65535. Each usable
memory location can hold one number ranging between 0 and 255. Everything in
memory must be converted to a number in this range. The ATARI computer uses
different coding schemes to convert programs and data to sequences of numbers
that are stored in this fashion. it has one scheme for BASIC keywords. and others
for general character data, numeric values, graphics displays, machine language
code—the list goes on. The computer knows by context how to decode memory
contents. When you see memory contents in their raw form, as numbers between 0
and 255, you will have to decide what they mean. Appendix D will help you decode
ATASCII codes to characters.

PEEK and POKE

The PEEK function lets you examine the value stored in any memory location.
Consider the following statement:

10 des=PEEK 2000
This statement assigns the contents of memory location 200 to variable A.

The POKE statement puts a value into a memory location. For example, the
following statement takes the value of variable A and stores it in memory location
8000:

20 FOKE 80000

You can specify the address for PEEK and POKE with a number, a variable, or
anexpression. Inany case, its value must be between 0 and 65535 or error number 3
occurs. Noerror results from using PEEK or POKE with a memory location that is
outside the available memory on your computer. For example,an ATARI compu-
ter with 16K of RAM has no memory at location 24000. In this case, a PEEK or
POKE to that location would be meaningless but would not cause an error.

You can use the PEEK function with RAM or ROM. You can use the POKE
statement with either kind of memory, but it will only affect RAM that actually
exists. By definition, ROM can only be read. It cannot be changed with the POKE
statement.

Appendix G lists useful memory locations to use PEEK and POKE with.

PROGRAM OUTPUT AND DATA ENTRY

The most inexperienced programmer quickly discovers that the input and output
sections of a program are its most difficult parts.

114 A GUIDE TO ATARI 400/800 COMPUTERS

Nearly every program uses data which must be entered at the keyboard. Will a
few INPUT statements suffice? In most cases the answer is “no.” What if the
operator accidentally presses the wrong key? Or worse, what if the operator discov-
ers that he or she input the wrong data—after entering two or three additional data
items? A usable program must assume that the operator is human, and is likely to
make any conceivable human error.

Results, likewise, cannot simply be displayed or printed haphazardly by a group
of unplanned PRINT statements. A human being will have to read this output.
Unless the output is carefully designed, it will be very difficult to read. As a
consequence, information could be misread, or entirely overlooked. This chapter
will explore some ways of arranging information on the display screen for best
readability. Chapter 6 addresses the same topic for the printer.

DISPLAY SCREEN OUTPUT

We use the word formatting to describe the process of arranging information on a
display screen so that the information is easier to understand or more pleasing to the
eye. The basic tool for displaying information is the PRINT statement. We've
already used it to print numeric and string data, one or more items per line.

The key to formatting output on the display screen is cursor control. PRINT
statement output starts wherever the cursor is located. Each character that displays
onthe screen affects the position of the cursor. After displaying most characters, the
cursor moves one column to the right. A few characters, notably escape sequences,
move the cursor in other directions. The PRINT statement may end with a carriage
return, moving the cursor to the beginning of the next display line. A new statement,
POSITION, can move the cursor to any spot on the display screen. Let’s see how we
can use these facts to control display screen output.

Carriage Return

Itis natural to associate a carriage return with the RETURN key. When you press the
RETURN key, the cursor advances to the beginning of the next display line. This
happens because the RETURN key generates an ATASCII end-of-line (EOL) charac-
ter, which causes a carriage return. A carriage return occurs whenever the display
screen receives an ATASCII EOL character. The PRINT statement can also
generate an EOL character.

Normally, a PRINT statement outputs an EOL character as its last action. That
explains why the cursor advances to the next display line at the end of a PRINT
statement. For example, this program displays a column of 20 Z’ in the first
position of each display line:

190 DIM CHCl)

200 Ch="zZM

210 FOR I=1 T0O 20
220 FRINT C%

230 NEXT I

Chapter 4: ADVANCED BASIC PROGRAMMING 115

240 FRINT "PHEW!Y
250 END

Of course, a semicolon or comma at the end of a PRINT statement suppresses the
carriage return; or does it? Try this variation on the last program:

190 DIM CHC1)

200 Cpm=rzh

210 FOR I=1 TO 760

220 FRINT C%3%

230 NEXT I

240 FRINT "PHEW!™

250 END
The screen fills with 20 lines of Z’s. The word “PHEW!”appears at the beginning of
the 21st line. Where did those 20 carriage returns come from? The semicolon at the
end of the PRINT statement on line 20 is supposed to suppress the EOL character.
It doesn’t seem to work at the end of a display line.

Whenever anything is displayed in the last column of any row, it triggers a
carriage return. This is a feature of the display screen. Rather than lose the
characters off the screen to the right, the display screen performs a carriage return
and continues the same output line on the next display line.

The computer is doing more than moving the cursor down to the next display
line. Itis actually tacking another whole display line onto the end of the logical line
started by the first display line. There is no way to stop this; commas and semicolons
won’t work in this instance. This doesn’t matter in most cases. Letters and digits
always appear as letters and digits. The cursor control characters, }, 1, —, and —
(ATASCII codes 28 through 31), always move the cursor the same way. But the
delete-line and insert-line characters (ATASCII codes 156 and 157) work on logical
lines, not just physical lines. The tab characters (ATASCII codes 127, 158, and 159),
which we will investigate soon, also work with logical lines. If you use any charac-
ters that work on logical lines, it is best to simply avoid displaying anything in the
last column. That way no logical line will be longer than one physical display line.

Suppose something is displayed in the last column of the last line on the screen. A
carriage return occurs, but there is no next line to advance to. The computer forces
the entire first logical line off the screen so the cursor will have a place to go. The
following program illustrates this:

300 FPRINT "first logical line, which i
s 50 long, it taskes two display lines"

3092 REM Skip down to bottom line

310 FOR N=1 TO 21

320 FPRINT

330 NEXT N

339 REM Space over to last charascter
340 FOR N=1 TO 37

350 FPRINT "'}

360 NEXT N

11e A GUIDE TO ATARI 400/800 COMPUTERS

awhid e

i Ly last col.s last Line

gy

b b BERE S ey Mt

This program first displays the “first line” message (line 300). Then it outputs 21
EOL characters, moving the “first line” message to the top of the screen, and leaving
the cursor at the beginning of the bottom line (lines 310 to 330). Next it outputs 37
hyphens, moving the cursor to the penultimate column of the last row (lines 340 to
360). After that, it sounds the console speaker for a few seconds (lines 370 to 390).
This gives you a chance to watch the top line carefully. Finally, the program displays
a2 characterin the last column of the bottom display line (line 400). A carriage return
occurs. The “first line” message is instantly pushed off the top of the screen so the
cursor can advance to the next display line. Notice that the whole logical line scrolls
off the top, not just the top display line. The program loops indefinitely to suppress
the READY message that would occur if it ended (line 410). Press the BREAK key to
end the program.

Were you surprised that sounding the speaker did not cause a carriage return?
Afterall, the PRINT statement on line 380 looks like it should display a character in
the last column of the bottom line. It doesn’t, because the bell character, ATASCII
code 253, is a nonprinting character. It has no effect on the cursor position.

Technically, the automatic carriage return signals the end of a physical line only,
not necessarily the end of a logical line. The logical line ends only when an EOL
character occurs. But a logical line can comprise at most three display lines.
Therefore, if three automatic carriage returns happen with no intervening EOL
character, an EOL character automatically occurs along with the third carriage
return.

Columnar Output

Itis usually much easier to scana list of items if they are organized in columns. This
is true of both numbers and characters. ATARI BASIC has two ways to produce
output in columnar form. One is to use commas between values in PRINT state-
ments. The other is to use the TAB kcy with escape sequences.

If the computer finds a comma after a PRINT statement value, it moves the
cursor to the right. It fills in blank spaces between the end of the value just displayed
and the next column stop. The first column stop is ten spaces from the left margin.
Additional column stops occur every ten spaces after that. The program in Figure
4-3 uses two of the three available column stops, as shown in the sample output in
Figure 4-4.

There is a catch to using commas. The two spaces just ahead of a column stop
must be blank. If these spaces are not blank, that stop is deactivated for the current

Chapter 4: ADVANCED BASIC PROGRAMMING

M Displsy qas cost Labhle
10 CINT "How much per gallon's
20 INFUT CPG
30 FRINT "fversge miles per gallon';
A0 INFUT MPG
G0 PRINT "MILES", "GALLONS", " C0sT"
c') 0 |ZZ' l.\ l N '|' 2L P " s B s oniarovaan
70 =100 TO 1700 100
79 Lo to neasvest 1L0Lh
20 K100
8y Compute cost to nesrest cent
@0 INTCCPGXREALXL00> /7100
T Gal., COST

100
110
120]
130 FRINT "MPG="iMFG,"$"3CFGEE" per s
L.

140 END

NOTE: Sample output shown in Figure 4-4.

FIGURE 4-3. Gas Cost program listing

Gl LONS COsT

100
200
300
400
G000
400
700
&B00
200
1000

48

o 39
3113
3904
K678
G4 b
HE A3
Z0.34
78,08
&é
3,74
L0l .48
LOs, 39
L1713

1&00
1L&00 I wnd
1700 72

M G=E2 Bl 7 per qal.

FIGURE 4-4. Sample output from Gas Cost program (Figure 4-3)

118 A GUIDE TO ATARI 400/800 COMPUTERS

display line. The next EOL character reactivates the stop. In the following program,
the second PRINT statement value is nine characters long. It encroaches on one of
the spaces ahead of a column stop, disabling the stop.

FRINT
NAME.

FHONE" , "FARTY"
HONE FARTY

READY

The Tab Feature

The tab feature on the ATARI computer is much like the tab feature on a type-
writer. It allows you to move the cursor rapidly from left to right to the next
established tab stop. A number of tab stops are preset when you turn onthe ATARI
computer. They occur across the entire length of a logical line. On the standard
38-column screen, there are tab stops at the left margin (column 2) and at columns 7,
15, 23, and every eight columns after that (Figure 4-5). The tab feature is similar in
function to commas in PRINT statements. The two are completeley independent,
however. The locations of column stops have no bearing on the locations of tab
stops, and vice versa.

The TAB key advances the cursor to the next tab stop on the screen. To tab the
cursor in immediate mode, simply press the TAB key. The cursor moves past
anything already displayed, without erasing it. If you press the TAB key with the
cursor at or beyond the last tab stop, the cursor advances to the beginning of the
next logical line.

Totab the cursorin programmed mode, display ATASCII code 127. Youcando
this with the CHRS function or by using ESC\TAB in a string value. We can rewrite
the program in Figure 4-3 to display columnar output using the tab feature instead
of commas. Change the program as shown below; where you see the character »
type ESC\TAB.

50 FRINT "»MILESPGALLONG»COST"

o] I l\\ll "y B T TR ST "
i UM IMI Y e I EAL e ECOST
FRINT "eeMFG="MEG 'S $" JCFGE" per
Gal e

140 END

The modified program displays the same table as the original (Figure 4-4), but the
spacing is a bit different.

You can set additional tab stops in any column. To set a tab stop in immediate
mode, move the cursor to the desired column, then press SHIFT-TAB.

You can set tab stops using a PRINT statement. The PRINT statement has to
display a string which moves the cursor to the desired column, then displays the
tab-set character. You can place the tab-set character in a string with the escape
sequence ESC\SHIFT-TAB or with CHRS$(159). The following program sets a tab

Chapter 4: ADVANCED BASIC PROGRAMMING 119

2 7 15 23 3i 39
42 47 55 63 71 79
82 87 95 103 111 119

NOTE: The first two columns are not visible on some television screens, hence are outside
the standard left margin.

FIGURE 4-5. Standard display screen tab stops

stop in the fifth space to the right of the left margin, then displays a message starting
there:

110 PRINT " "ICHR$(159)

120 FRINT CHR$%(127)3"THIS MESSAGE IS8 I
NDENTED FIVE SFACES FROM THE LEFT MARG
INII

RUN

THIS MESSAGE IS INDENTED FIVE SFA
CES FROM THE LEFT MARGIN

READY
To clear a tab stop in immediate mode, move the cursor to the desired column and
press CTRL-TAB. To clear a tab stop in programmed mode, move the cursor to the

desired column and display ATASCII code 158. You candisplay this code with the
CHRS$ function or with the escape sequence ESC\CTRL-TAB. The following program

120 A GUIDE TO ATARI 400/800 COMPUTERS

clears all the preset tab stops. Where you see t+, type ESC\CTRL--. For P} type
ESC\TAB, and for ¢ type ESC\CTRL-TAB.

498 REM xXxXClear preset tab stopsXxx
499 REM lat, create a long line
500 FOR N=1 TO 114

310 FRINT "“H"}

520 NEXT N

529 REM Move cursor back up

530 PRINT "++4'"3

539 REM Clear all stops

540 FOR N=1 TO 16

550 FRINT "€}

560 NEXT N

570 END

There is one thing to watch out for when you use the tab feature. If you print
anything in the space just before a tab stop, you temporarily inactivate that stop.

The next EOL character reactivates the stop. Here is an example of this aspect of
tabbing (type ESC\TAB where you see F):

50 FRINT "MILESKGALLONSFCOST"
G0 PRINT s omsmd s s s Prusssws o)
70 PRINT 1003"»"34.53"0" 37,74
80 END

Both lines 50 and 60 display something in the space just ahead of the first tab stop,
inactivating it. Line 70 does not. As a result, the columns do not line up as intended.
Press the SYSTEM RESET key before you run this program to clear any nonstandard
tab stops you may have set.

Right-Justified Output

Both of ATARI BASIC’s methods for aligning output in columns line values up on

the left edge of the column. This is called left-justified output, and is fine for words

and other alphabetic values. Numbers, on the other hand, are easier to read if they

line up on the right. We can add a subroutine to the Gas Cost program (Figure 4-3)

to right-justify its three columns. Figure 4-6 shows the new version of the program.
The main program uses the following new variables:

+ N, the numeric value that will be right-justified

- NS, the number of spaces available in the column

+ BLS$, a string full of blanks

- TS, a string variable used temporarily

- N§, the output string.

The main program has changed in order to add the subroutine. It now dimensions
BLS$, TS, and N§ to have at least as many characters as the widest column (line 5). It
fills BL$ with blanks (line 7). The single PRINT statement now uses three lines (lines
100, 102, and 104). Notice that the PRINT statements on lines 100 and 102 end with

Chapter 4: ADVANCED BASIC PROGRAMMING 121

4 REM String needed for subroubine
S ODIM NGCLO) ,THCL0) BLBC40)

G REM Fill BLECOY with blanks
7OBELSCLY=" MRS (400 b
9 REM Display qas |
L0 FRINT "How much per
20 INFUT CFG

30 FRINT "Aversge miles per qallon'i
A0 INFUT MPG

S50 FRINT "MIL
G0 PRINT Mo s
70 FOR MIL=100 7O L1700 &
79 REM Compute gsl. to nesrest 10th
INTIML/MPGX1L0) /10

89 REM Compute cost Lo nesrest cent

2)=El%

ale
agallorn';

"o

LONG, " QOsT"

G I INT CCPGXRXGALXL00) 7100
100 NS=HIiN=MLIGOSUE LL000FRINT N&(L,N
6,
102 NS=7 iIN=GALIGOSUE L1000 FRINT N&{L,
[NESHIN

104 NE=6IN=COSTIGOSURE L1L0003FRINT N$C(L
NG)

110 NEXT MI

120 I
130
Lot

L0 ENE

yUMEGE IMEG, "6 JOFGE" per ga

33K KA 3K KK K 3K KK K K 8 K K K 3K K K KK KK
X Sutirowtine alians X
¥riumeric values on o right X
KK K KK K K K K KK KK K 3K 3K 3K KK X K
sonvert to left-just string
$OND

rase stale value of N$

LU59é
L0997
L0998
La79y
11000
L1009
L1010 :
L1019 REM Right-gustify
LL0Z0 NbONE-LENCTEY +1L, NG =TH
11030 RETURN

NOTE: Shading shows lines changed from Figure 4-3. Sample output shown in Figure 4-8.

FIGURE 4-6. Right-justified Gas Cost program listing

a comma. This advances the cursor to the left edge of the next column.

The subroutine needs individual access to each digit of the number to be justified.
BASIC allows such access only in string variables, so the subroutine converts the
number to a numeric string (line 11000). Next, it fills the output string with blanks
(line 11010). That guarantees a reliable, benign value in parts of the string that don’t
end with a digit. Finally, it right-justifies the number (line 11020). It figures out how

122 A GUIDE TO ATARI 400/800 COMPUTERS

long the number is and how close to the right edge of the column that number has to
start in order to fit (Figure 4-7).

As an exercise, try changing the program to use the tab feature instead of
commas.

The right-justified output (Figure 4-8) is a definite improvement over the original
output (Figure 4-4). This is especially true in the left-hand column, where none of
the numbers have decimal points.

Decimal-Aligned Output

It would be easier to read columns of numbers with decimal points if the numbers
lined up on the decimal point. To do this, we have to decide where to fix the decimal
pointineach column. Then we have to figure out where the decimal point is in each
number. This is not a trivial task, because BASIC uses floating point numbers. The
decimal point could be anywhere. Once we find it, we have to shift it right or left so it
lines up properly. This may mean truncating extra digits from the right or filling in
extra blanks on the right. To do all these things, we have to change the main
program and the subroutine, as Figure 4-9 shows.

The new subroutine has all the requirements of the old one, plus a few new ones.
Variable DD must specify the number of decimal digits. The subroutine also uses
variables DP, NL, and J. The main program must assume that the subroutine will
change their values before it returns.

The subroutine must discover the position of the decimal point in the number. It
begins by assuming there is no decimal point (line 11030), then uses a FOR-NEXT
loop to search through the numeric string until it finds one (lines 11040 to 11060). If
no decimal point turns up, the subroutine sticks with its initial assumption: the
decimal point follows the last digit. At this point (line 11070), variable DP has the
number of digits up to and including the decimal point. The number is going to take

NS

—

Blanks Value (T$)
NS - LEN(T$) —+f<+—— LEN(T$) —

LThe value of T§ starts
here, at NS - LEN(T$) + 1

NOTE: Variable T$ has the value to be justified. The program in Figure 4-6
uses this technique.

FIGURE 4-7. Right-justifying a string value

Chapter 4: ADVANCED BASIC PROGRAMMING

123

MILES
100
200
300
400
G300
600
700
800
P00

1000
1100
1200
1300
1400
1500
1600
1700

READY
]

GALLONS COsT
4.5 7?4
9 15,48
1346 23.39
1841 31.13
2267 39.04
2742 46.78
3108 SJ‘QQ()(?
36.3 62 .43
40.9 70.34
434 78,08
G0 86

G94.5 V374

a9 101.48
6346 109,39
6841 117413
7247 128,04
77 +2 132.78

MFG=22 $L.72 per qal.

FIGURE 4-8. Sample output from Right-justified Gas Cost program (Figure 4-6)

that many characters, plus the number of post-decimal digits specified by variable

DD.

Compare the output from this version (Figure 4-10) with the output from the last
version (Figure 4-8). Now all columns are easy to scan.
Notice that BASIC does not print a decimal point with whole numbers. Neither
does it print trailing zeros, that is, zeros at the end of a number which don’t change
the value. A decimal point and trailing zeros can be added to numbers that need
them. Add these lines to the end of the program in Figure 4-9:

11089
11090
11099

11100
11109
Zeros
11110
11120
11130
11140

REM Decimal
DD=0

THEN F
REM Ernsure decimal point’s there

cits requested?
TURN

NG (NG-DD NS~DD =" "
REM Replace trailing blanks with

FOR J=NS-DD+L TO NS

IF N$CJydd=" " THEN N&(J,J)="0"
NEXT J

RETURN

124

A GUIDE TO ATARI 400/800 COMPUTERS

4 REM Strinmg needed for subroutine

S ODIM NSCL0), THC10),BL$(40)

6 REM Fill BL$O) with blanks

7 BLECL)=" “IBLS(40)=BLSIBLS(2)=ELY$

9 REM Display gas cost table

10 FPRINT "How much per gallon'j}

20 INFUT CFG

30 FRINT "Aversaee miles per gallon'}
40 INFUT MFG

50 PRINT "MILES","GALLONG"," cosT"
()() F'RINT “.................‘”’“......‘...._.‘....-...._ll’ll..m...,‘....,.‘....‘_.ll
70 FOR MI=100 TO 1700 STEF 100

79 REM Compute gal. to nesrest 10th

80 GAL=INT(MI/MFGX10)/10

89 REM Compute cost to nearest cent

@O0 COST=INT(CFGXGALX100)/100

100 NS=46IDD=0IN=MIIGOSUE L10003FRINT N
BCL,NS),

102 NE=Z71DD=LiN=GALIGOBUE 11000 FRINT
NBCL,NS) ,

104 NS=7iDD=2IN=COSTIGOSUE 11000 FRINT
N$ (1, NG)

110 NEXT MI

120 FRINT

130 FRINT ,"MFG="iMFG,"$"CFG:" per aa
L.

140 END
LODDE FEM 3K KM KK KK K K K K K K K XK K 3K K K K K K K K XK
10996 REM X Subroutine aliagns X

10997 REM Xrumeric values on decimal X
10998 REM K¥OK KK KKK K K K K K XK K K K K K K K K XK K KKK
10999 REM Convert to left-just string
L1000 Té=5TRH(N)

11009 REM Erasse stale value of N%
11010 N$=ELS

11029 REM Assume dec. point at end
11030 DF=LENC(T$)+1

11039 REM Look for real decs point
11040 FOR J=1 TO LENC(T4$)

11050 IF ThCdpdd="" THEN DF=J3J=NS
11060 NEXT J

11069 REM Compute number lenqgth

11070 NL=DF+DD

11079 REM Right—justify

11080 NEINS~NL+L,N8)=T4

11090 RETURN

NOTE: Shading shows lines changed from Figure 4-6. Sample output
shown in Figure 4-10.

FIGURE 4-9. Decimal-aligned Gas Cost program listing

Chapter 4: ADVANCED BASIC PROGRAMMING 125

GALLONS cosT
445 7e7R
200 L4 1548
300 1346 AL IR 1)
400 1841 31.13
00 2247 39.04
400 L wid 46,78
700 3.8 4469
800 3643 bHE A3
Q00 40.9 70434
L1000 45, 4 78,08

L1100 50 86
1200 T P3.74
1300 59 101,48
1400 6346 L0939
LS00 48,1 117413
14600 TET L2504
1700 7742 132.78

MFGe=22 Ble72 per aal.
READY
B8

FIGURE 4-10. Sample output from Decimal-aligned Gas Cost program (Figure 4-9)

What happens if you enter unrealistic values for gas price and mileage? Try
entering $14.98 per gallon, and 2 miles per gallon. Error 5 occurs on line 11080
because the cost figure is too large for the last column. There are three ways to guard
against this error: the subroutine can check, the calling program can check, or the
calling program can carefully set the column width to make the error unlikely. At
this point, we are using the latter alternative. We designed the columns to handle the
largest probable values.

The most foolproof way to forestall an error like this is to have the subroutine
check. Then no matter what the program user enters or how the program calls the
subroutine, the error is blocked. Add this to the subroutine in Figure 4-9:

11019 REM Checl for too-large rumbers
L1020 IF ABRSINI ==1L0AINS-DD-2) THEN N$=
T NEINGY="x"T RETURN

Line 11020 makes sure the number will fit in the column. It assumes a sign
character will occupy one space (a minus sign for negative numbers, a blank space
for positive ones). If the number is too large, the subroutine generates as many digits

126 A GUIDE TO ATARI 400/800 COMPUTERS

as will fit. The last character becomes an asterisk to announce the overflow
condition.

Try running the program with line 11020 added. The modified program displays
much more slowly, which is quite a price to pay to avoid an error that careful output
design will all but eliminate. Error checking has its place, but clearly not here.

CURSOR CONTROL

Semicolons, commas, and tab characters are fine for controlling the cursor in
simple tables like those shown so far. More complicated displays demand more
cursor control. ATARI BASIC offers two ways of directly controlling the cursor.
One is to program the cursor movement characters, using the CHRS function or
escape sequences. The other way is to use the POSITION statement.

Clearing the Display Screen

Sometimes a program needs to erase everything on the display screen. Displaying
ATASCII code 125 clears the screen and puts the cursor in the upper left-hand
corner, its home position. You can use either CHRS$(125), ESC\CTRL-<, or
ESC\SHIFT-<to generate the necessary character.

Cursor Movement

It is possible to move the cursor to any space on the screen by programming the t, !,
+—,and — characters. These cursor movement characters do not erase any characters
they pass over. They behave exactly the same in programmed mode as they do in
immediate mode.

The Future Value program (Figure 4-11) figures out what an investment you
make today will be worth some years from now. After computing a future value, the
program moves the cursor on top of your last inputs, one at a time. That lets you
enter a new number or just press RETURN to leave the last entry unchanged.

The POSITION Statement

The POSITION statement places the cursor at any location on the screen. You just
specify the column number and row number where you want the cursor positioned.
The next PRINT statement starts at that screen location. Try this:

9 REM Clear screen

10 ? CHR$(1LZS)}

20 FOR J=1 TO 23

30 FOSITION J,J

40 '? II)KII;

50 FOSITION 24-Jd,J

{)0 ’? lell;

70 NEXT J

79 REM Loop until BREAK pressed
80 GOTO 80

Chapter 4: ADVANCED BASIC PROGRAMMING 127

10 DIM R$CL)Y,CUBCZ4) , CRECA0)

192 REM Fill strings w/ cursor movement
characters

20 CUS=CHR$(Z28) 1CUS(24)=CUStCUS (2 =CU%

30 CRE=CHR$(31) ICR&(40)=CR$ICRS (2)=CR%

40 FRINT CHR$CL2%9) $"FUTURE VALUE OF AN
INVESTMENT"

50 FRINT

60 FRINT "Amount invested"

70 FRINT "Nominal interest rate"

80 FRINT "Compounded how many times ea
och year"

20 FRINT "How many years";CU$CL,4)

100 FRINT CR$CL,15) 3 $INFUT AMT

110 PRINT CR$(1,21) 3t INFUT IR

120 FRINT CR$%C(1,35) 3 i INFUT CMF

130 FRINT CR$C1,14) P INFUT YR

139 REM Calce. intr. rate per period
140 IF=XIR/CMF/100

149 REM Calculste future value

150 FVU=AMTXC(1L+IF)AC(CMFXYR)

159 REM Round to nesrest cent, print
1460 FRINT "Future valuel! $"JINT(FVUX100

+0,5)/100

170 FRINT

180 FRINT "Change investment'$

190 INFUT R$

200 IF R$="Y" THEN FRINT CU$C1,7)3;:GOT

0 100

210 END

RUN

FUTURE VALUE OF AN INVESTMENT

Amount invested?4800

Nominal interest rate??.9

Compounded how many times each year?4
How many years?l10

Future value! $17388.64

Change investment?Y

FIGURE 4-11. Future Value program listing and sample output

128 A GUIDE TO ATARI 400/800 COMPUTERS

When you run this program, the screen clears and a cross appears.

X X

Notice how the leftmost parts of the cross are one space to the left of the normal
left margin. Also, the top line of the screen is blank. How can this be? The first time
the POSITION statement on line 30 is executed, it should put the cursor at column 1
onrow 1. Thisis actually the case. There are usually only 38 usable columns on each
line. But remember, the screen actually has 40 columns; the first two are normally
unused because they are outside the standard left margin.

The POSITION statement ignores margins and treats the screen as a 40X 24 grid.
It numbers columns from 0 at the left edge to 39 at the right, and it numbers rows
from 0 at the top of the screen to 23 at the bottom (Figure 4-12).

As a further example, try changing the Future Value program (Figure 4-11) so it
uses the POSITION statement instead of cursor movement characters. You can
eliminate the cursor movement string variables, CU$ and CR$. That makes lines 20
and 30 unnecessary. Lines 100, 110, 120, 130, and 200 all change to use the
POSITION statement instead of the PRINT statement.

Determining Cursor Position

The POSITION statement does not move the cursor. It updates certain locations in
the computer’s memory with the new cursor position. The next time something is
displayed on the display screen, it appears at the position dictated by those memory
locations. The new row number is in location 84. The new column is in location 85.
Youcan use the PEEK functionatany time to find out where the cursor will be next:
PEEK(84) for the row number, PEEK(85) for the column number. In some screen
graphics modes, which we will cover in Chapters 8 and 9, the ATARI computer uses

Chapter 4: ADVANCED BASIC PROGRAMMING 129

0123456789012345678901234567890123456789

0 N A WL N — D

N-]

o

()

w

S

w

=N

-

oc

=)

(S}
s

S

N
[N

[
w

NOTE: The first two columns are not visible on some television screens, hence are outside
the standard left margin.

FIGURE 4-12. POSITION statement column and row numbering

two locations for the column number. In this case, PEEK(86) * 256 + PEEK(85)
gives the column number.

Each time the PRINT statement displays something, it updates two other
memory locations with the last cursor position. Location 90 has the row number; 91
has the column number. PEEK(91) gives the last cursor column. PEEK(90) gives
the last cursor row. Rows are numbered from 0 to 23, columns from 0 to 39, as with
the POSITION statement (Figure 4-12).

Resetting Margins
You can change the display screen margins with the POKE statement. The ATARI
computer uses memory location 82 to keep track of the left margin, and location 83
for the right margin. The standard left marginis at column 2. To change it to column
0, use this statement:

FOKE 82, 0

The standard right margin is at column 39, the far right edge of the screen. The
following statement changes it to column 38:

FOKE 83, 38

130 A GUIDE TO ATARI 400/800 COMPUTERS

When you reset margins, remember that the PRINT statement observes the
margins. There is no character you can display with a PRINT statement that will
move the cursor outside the margins. When output reaches the right margin, a
carriage return occurs. To prove this for yourself, try the following program:

10 FOKE 83, L0IREM Riaht Marain

20 FOR J=1 TO 10

B0 FRINT CHR$(31) 3 tREM Cursor right

40 NEXT J

S50 PRINT "FUCE"™

60 FOKE 83, 39iREM Right Maraqin

KUN

FUCE

READY

;&

The cursor starts off at the left margin, in column 2. The PRINT statement inside
the FOR-NEXT loop (lines 20 through 40) advances it nine spaces to the right
margin, column 10. There it circles back to the left margin. The loop advances the
cursor another two spaces, where a word is printed (line 50).

The POSITION statement can put the cursor outside the established margins. If
the cursor is to the right of the right margin, only the first character of the next
PRINT statement appears there. The computer displays the first character, then
does an immediate carriage return. The following program illustrates this.

10 FOKE 83, L0IREM Right marain

20 PRINT CHR$C(LZ5) IREM olr. scoreen

30 FOSITION 20,8

40 FRINT "SAFFRON"

90 FOKE 83, 39IREM Right marqin
The letter “S”appears at column 20, row 8. The rest of the PRINT statement output
appears on row 9, starting at the left margin.

Widening the margins reduces the length not only of the physical display line, but
of the logical line as well. A logical line never contains more than three physical
lines, no matter what their lengths.

PROGRAMMING INPUT

Nearly every program requires some kind of input from the person using it. The goal
of any program should be to minimize input errors and make it easy for someone
using the program to spot and correct errors that do occur. There are ways to
organize input which tend to minimize input errors. This section discusses the
following methods:

- Display helpful messages
- Expect natural, intuitive responses
+ Check inputs for reasonableness and range

+ Use an error-handling subroutine

Chapter 4: ADVANCED BASIC PROGRAMMING 131

+ Group inputs logically
+ Allow review and change of grouped inputs
+ Restrict responses: use game controllers

+ Restrict choices: use menus.

Prompt Messages

Prompt messages were introduced in Chapter 3. Many of the example programs in
this chapter have used them. As the examples have illustrated, prompt messages
should be succinct. Space on the display screen is usually at a premium, so verbosity
is a luxury. Keep the prompt brief. Try to leave enough room on the same line for
the entire input response. When this is impossible, put the prompt message on one
line and input the response on the next. Since the INPUT statement always displays
a question mark, it’s best to phrase prompt messages as questions.

Amplifying Input Instructions

Sometimes it is impossible to phrase a prompt message satisfactorily. Either it is too
cryptic or it takes up too much room. In a case like this, you can display an amplified
prompt message elsewhere on the screen. Here’s how it works. The program
displays a short prompt message next to the input. The program lets the user enter
“H”if he needs help. If he does, the program displays amplified instructions. It puts
the instructions in some standard location on the screen, say the bottom four lines.
All it takes is a few PRINT statements to display the instructions. After displaying
the instructions, the program must return to the input where the call for help
originated. Figure 4-13 provides an example.

The program in Figure 4-13 inputs a single-letter command on the second line of
the screen. It expands the command letter to a command word and displays the
word on the right side of the top line. A complete program would do more than print
the command, of course.

Figure 4-13 has a strange subroutine at line 32767. The subroutine does abso-
lutely nothing but return. This technique is often useful with the ON-GOSUB
statement. In this program, for example, there is no command “B.” If the user enters
a B, the program branches to the “do nothing” subroutine, then returns to get
another command. The same thing happens tocommands F and G. When the com-
mand is anything past H, the expression in the ON-GOSUB statement is larger than
the number of lines on its list. Therefore, program execution falls through to the
next program line, 390. Line 390 checks for the one remaining valid command, P.

The subroutine at line 1400 ends with POP and GOTO statements. If this were a
RETURN statement, the program would branch back through line 380 to line 310.
There the screen would be cleared, erasing the amplified instructions before anyone
could read them.

132 A GUIDE TO ATARI 400/800 COMPUTERS

rstr e Lime moe.

LHh$(I/U)¢hIM clesr
TON 41
NCOMMAND CAGDER, M Tor thelp)

ST

340

59
3()[] 3 0

370 F NT "Commarnd 6Ls ;

380 ON h)[(lWD$)w&4 GOBUE
01000, 1200,38767 ¢

390

400

4600

800

LUUU

archiry here

3 G00,3E767,80
L7467, 13008GOTO 310

i. IZ:'

G Tﬂl)‘b

*IUHI]IUJ Sy L0 SEND

“2GUTU 320

FRI M 346 396 KK K396 K K IR I 3K K 3K K K K
REM % Subeoutine @xplain X
¥ oprompt me 2 %
3K SHC R R SK S KUK R DK S S DK S DK DKM M DK KK K
ares, tLhen

“&P
| (f{)('
2000 3
L2009 hlﬂ %ow diasplay dinstroctic
2000 FRINT " o Command Summary.

Py g il C=oharnge [}

‘040 FRINT " @it Frasp it (RES
felp's

’UJU RESTURN

s KN KK KKK K KK 16 K K8 KK K K 9K K K K

*» o Subrouwtine Lo clear X

¥ dnstrouctions ares H
memmxwmmwmmm«m*mmxmmwwmmv
TION 2,19

lu 23

COELECL 388

CTURNSREM Do-mothing subr .

FIGURE 4-13. Command Input program listing

Chapter 4: ADVANCED BASIC PROGRAMMING 133

Any character or word could trigger the instructions; our choice, H, is arbitrary.
You can put the instructions anywhere on the screen, but it is preferable to display
every set of instructions in the same area.

Infact, you candisplay instructions of almost any length and complexity in just a
few lines, if you do it one piece at a time. Of course the program must wait for the
user to finish reading each piece of the instructions before it goes on to the next
piece. A single INPUT statement takes care of that. At the same time, the program
can allow the user to interrupt the instructions and return to the regular input
sequence. Replace the subroutine at line 2000 in Figure 4-13 with the one in Figure
4-14.

Another common place to put instructions is at the beginning of a program. The
displayed instructions will not replace well-written printed instructions, but they are
often a sufficient reminder for someone who is a bit rusty. You may recognize
Figure 4-15 as the instructions for the Future Value program (Figure 4-11).

Input Masks

Some limit always exists on the length of a response. The program can display a
string of characters which demarcate the response length. Such a string is called an
input mask.

Any character will do for the input mask. Underline characters, asterisks, and
number signs are common choices. The program can use one kind of character for
string input masks and a different kind of character for numeric input masks. That
gives the user even more information about the expected response. The following
program uses underline characters for string input and number signs for numeric

input:

L0 DIM NMBKE A0, EMBKECA40) , RS 40, CL%C
40)

input Mmask strirnags

cursor movement string
(30 SCLBCA0Y=CLb L) ICLECZ)=

CL$Cl

Q0 FRINT CHR$ CLES) JUENTERING BILLS REC
ELVED"

100 FRINT "EXPFENSE ACCOUNT CODE I8 "is

MEKB (1,6 3G
110 INFUT R4

120 PRINT "AMOUNT OF EILL TS "INMEK$ (1
P8 FOLBCL, 9D 3

130 INFUT R

140 END

(1470 %

Each PRINT statement that prints an input mask also prints a string of characters

134 A GUIDE TO ATARI 400/800 COMPUTERS

1994
1995
1996
1997
1998

|

I

[X prompl mes

|

[
1999 RE

o

[

5

osd i on cursor
2300

2000

one) "

help'"s

2049 REM More detail?
2050 FOSITION 31,21
2060 INFUT R$

0,2210
2090 IF R

categories"

2140
2149
2150 GOSUE 2300fREM Clesr

URN

Ty, o'

umber, s
2190 T,

e, Delete
2210 GOSUE Z23003REM Clear
2220 PRINT Y ... Commands

ol@tew”_“m”m"

2230 FRINT " To change or
“pense cat-"

NOTE: Shading shows changes from Figure 4-13.

2070 IF Ré="N" THEN RETURN
2080 ON ASCIRE)-64 GOTO 2150,32767,221

2130 FRINT "and their numbers.

REM Display instructions

Lo ¥ charascter

NN K K KA K KA A KK IR KKK KKK

X HBubrowtine Lo explain X

X

mmwmxxmmmxxxxmxxmxmwmmmmwm
é dedicated area, Lhen

2009 M Nuw display instructions
2010 RINT " i Command Summanry

2020 FRINT "More detail (ACDF, N for n
QUWU lhINI Y A= acied C=ochange [)s

2040 IhJNI o [o=ered Freapydmt ==

FUETCOTHEN GOTO 2050

2099 REM Display instr. for Frint

2100 GOSUE 23001REM Clear instr. areas
2110 FPRINT " Commards Frimt,. .

2120 FRINT " Frints 8 list of expense

for Add

instr. area
2160 FRINT U Command: Add_

2170 FRINT " To add an expense calteqo

2180 FRINT "must sssian it a8 O digit n

rame, sr

2209 REM Display instructions for Chan

instr. area
Change or D

delete an @

(continued)

FIGURE 4-14. Extended Amplified Instructions subroutine listing

Chapter 4: ADVANCED BASIC PROGRAMMING 135

22490 FRINT "eqory, you must krnow its n
umber . Use"
2250 FRINT "commasnd P Lo list names an
o rumbers"
2260 RETURN

NOTE: Shading shows changes from Figure 4-13.

FIGURE 4-14. Extended Amplified Instructions subroutine listing (continued)

which back the cursor up to the beginning of the input mask (lines 100 and 120).
They actually back up one space behind the first mask character; that is where the
INPUT statement will display a question mark (lines 110 and 130).

Choosing Input Responses

You can decrease the chance of error just by choosing input responses carefully.
Your program should allow and expect its user to respond in a natural, intuitive
way. [tis convenient when you write a program to insist that the user code all input,
but this forces the user to perform a mechanical task every time he or she wants to
use the program. Since the computer excels at mechanical tasks, why not let it do the
coding? If the natural response is a word or letter which the program will eventually
need converted to a number, let the program make the conversion.

This is exactly what we did on lines 310 through 390 of Figure 4-13. The user
enters a mnemonic command code: A, C, D, E, P, or H (line 340). The program
figures out which subroutine to call (line 380) in order to carry out the command.
Imagine how much easier it would be to write a program that required the user to
input a numeric command, but how much harder it would be to use that program.

Checking Input Responses

It doesn’t matter how carefully you design your input requests; you can’t be sure
how people will respond. If a bad input could cause a problem, the program should
check forit. Are string entries too long? Are numeric entries within range? Does the
entry make sense in context? Will it cause an error later in the program?

If you want to write a thorough program, you will make every effort to anticipate
errors that someone using your program might make. Your program will catch
entry errors and force the user to reenter values that would cause the program to
halt abnormally.

It is true that BASIC will catch some kinds of data entry errors for you. It will not
accept alphabetic entry when inputting a numeric value with a statement like
INPUT A. If you try to enter letters in response to such a statement, the computer
issues an error message and stops the program.

Built-in error checking capabilities are limited, though. It is possible to enter a

136

A GUIDE TO ATARI 400/800 COMPUTERS

10
40 GOSUE
290 END

300 FRINT

310 FRINT
320 FRINT
uture'
330 FRINT
irnte
340 FRINT
de the'
350 FRINT
tmant,
360 FRINT
rimber
370 FRINT
™y
380
rlt'"
390 FRINT
400 FRINT
ional"

FRINT

e Tuture"
420 FRINT
ulad"”

430 FRINT
440 FRINT

490 FRINT

500 FRINT
510 FRINT
in'}

aal !

of™

410 FPRINT

520 INFUT
9530 FRINT
N INVESTMENT"
540 RETURN

DIM R$CL)
FO00SREM Display

instructions

CHRECL2E) 3"FUTURE VALUE OF A

N INVESTMENT"

"This program caleuwlstes a

"value of an dinvestmenlt when

tLhe"

"ia s factor. You must provi
"amount of the initial inves
"mominal interest rate, the

"compournding periods per Yyeas

and the'

"mumtier of yeasrs of dinvestme

"Assuming there are no addit

"deposits or withidrawals, th
"value is based omn this form

p "FU=AMTX CL+TIR/ZCMF) A CCMPXYR)

450 FRINT "where! FVU = total value aft
er YR years'
460 FRINT " AMT= initisl investm
ernt"
470 FRINT " IR = mominal interes
t rate"
480 FRINT " CHMF= compounrnding fre
quency"

i YR = mumber of years

"Fress the RETURN key Lo bheg
Rk
CHR$ (L25) $ "FUTURE VALUE OF A

FIGURE 4-15. Future Value Instructions program listing

Chapter 4: ADVANCED BASIC PROGRAMMING 137

value of the correct type that has an unacceptable value. That is, the value may cause
a program error further down the line. Here is a short program that illustrates this
problem:

100 INFUT X
200 PRINT 100/X
300 END

If youenter 0 in response to the INPUT statement (line 100), the program will fail
when it tries to divide by 0 in the PRINT statement (line 200). It is easy enough to
avoid this. Add the following lines to the program above to check the input to make
sure it is not 0, and request reentry if it is.

110 IF X<=0 THEN 200

120 FRINT “NOT ALLOWED...RE-ENTER"

130 GOTO 100

By extending the principle illustrated in this example, you can see how easy it is to
check an entry for problem values. Depending on the circumstances, it may make
sense to check input with the ON-GOTO or ON-GOSUB statements, rather than a
series of IF-THEN statements.

Sometimes checking for errors is expensive. It can take a lot of programming
time, program space, and program execution time. Consider a typical yes-or-no
question, for example. The program should allow any of the correct “natural”
responses. They are: yes, no, Yes, No, YES,NO, y,n, Y, or N. There are ten answers
in all; that’s quite a few for a program to have to check. You can easily reduce the
number of input tests: simply check the first character input. If the response is not
allowed, the program repeats the input request. Try this program:

10 DIM R$<C40)

200 FRINT

210 PRINT "ENTER ANOTHER BEILLM:

220 INFUT R$IRE=R$(1,1)

230 IF R$="Y" OR R$="yg" THEN 90

24940 IF Re="N" OR R$="n'"" THEN END

250 GOTO 210

The TRAP Statement

ATARI BASIC has a special statement that allows you to trap errors that it catches
before it displays an error message and halts program execution. Here is an
example:

100 TRAF 20000

Once such a statement has been executed, ATARI BASIC will branch to the
specified line number if it detects an error. It will also place a numeric code
describing the error in memory location 195, which you may inspect with the PEEK

function. Appendix A explains what each error code number means. ATARI
BASIC also saves the line number where the error occurred. The expression

138 A GUIDE TO ATARI 400/800 COMPUTERS

PEEK(187) * 256 + PEEK(186) reveals the line number.

The TRAP statement is deactivated each time an error occurs. The program must
execute another TRAP statement to reactivate it. To negate an active TRAP
statement and restore the ATARI computer to its normal automatic error handling
state, use the statement TRAP 40000.

An Error-Handling Routine

The usual procedure for handling errors with the TRAP statement is to write an
error-handling routine. ATARI BASIC branches to the routine when an error
occurs. At the end of the routine, the program can branch back to the beginning of
the line where the error occurred, or to any other program line. The error-handling
routine can take different actions depending on the nature of the error and the
current state of the program, which can usually be determined by inspecting the
values of key variables.

The following program demonstrates the TRAP statement. This program treats
errors that are unrelated to keyboard entries as fatal errors. It reports the error
number and error-causing line, and halts the program. Entry errors are not fatal.
The program announces them and requests reentry.

10 DIM X$¢10)
30 TRAF 8000
200 FRINT "ENTER A STRING VALUE"S

210 INFUT X%

220 TF X$="E" THEN S00IREM End proar?
230 FPRINT "ENTER A NUMERIC VALUE":

240 INFUT X

249 REM Errvor occurs if entry = 0

250 X=X/X

499 REM End Froaram

S00 FRINT "LAST ENTRIES WERESD "3X$3" A
ND "iX

H5L0 TRAF 400003REM Turn off TRAF

S20 0 END

7998 REM +++++ Evror handler +++4+
7999 REM Get error number

8000 E CEKCLE)

8009 REM Get lirme rno. wh

2TE @rTOor Was

8010 E K187)25 &+F K184
g020 X O E=8 THEN 8100
8029 REM Norm-input error occurred

G030 FRINT "ARRGH! ERROR NO. "“3E3" FOU
NDII

8040 FPRINT "ON LINE NO. "3EL

B0S0 FPRINT "WRITE THIS INFO. DOWN, ALOD
NG WITH"

8060 FRINT "WHAT YOU WERE DOING."

G070 FPRINT "CONSULT THE USER’S MANUAL
FOR HELF"

8080 END

G100 REM Xrnput error occurred

Chapter 4: ADVANCED BASIC PROGRAMMING 139

B8L1L0 FRINT CHRGC(2E53) 3 IREM Ring hell
8120 FRINT "El-'\'F\'OI\...Th‘r' AGAIN"

8130 TRAF 8000IREM Reset TRAF

8140 GOTO ElL

Input Utility Subroutines

At this point we can develop a general input subroutine. It will use all the input
techniques we have discussed so far: prompt messages, amplified instructions, input
masks, response checking, and an error-handling routine.

The input subroutine will use several other subroutines. One of them clears lines
on the display screen (Figure 4-16). It uses variable BLS$ to clear all but the last
column of each line. Clearing the last column would force a carriage return. If that
happens on the last line, the screen scrolls up one line. Extra programming could
overcome this, at the expense of memory and execution speed. In most cases, this
simpler solution is adequate. The main program must dimension and fill BL$ with
blanks.

Another auxiliary subroutine flashes an error message in the top right corner of
the display screen (Figure 4-17). The message to display must be in variable ERM$,

7 FREM 30 M K KKK NG KOS K KRCK R XK K X

8 REM x Clesr Displsy Lines X
Qo R 3K 3K TKORCSKC XK 3K SN K SK XK K K N K W OK K X

Ll TO L2
TON 0O,
INT BELBCL,39)8

XT J
| 40 RETURN

FIGURE 4-16. Clear Display Lines subroutine listing

D|<>|x 4 l (EwIE Mm.\.s«am(H
T30 0K I RGNS TR N KK S OK 9K MK MR KX N DK RO

ERROR § CHRE 25
TOOLO0ENEXT JLSRE
2050

ELECL, LY IREM Evase mMmesc.

T
RETURN

FIGURE 4-17. Display Error Message subroutine listing

140 A GUIDE TO ATARI 400/800 COMPUTERS

which the main program must dimension. The subroutine always appends the word
“ERROR” to the message. It also beeps the console speaker each time the message
flashes. It usesan empty FOR-NEXT delay loop, so the message stays on the screen
for a few seconds.

We also need a subroutine to clear the area at the bottom of the screen where the
amplified instructions go (Figure 4-18). All this subroutine does is call the subrou-
tine that clears display lines (Figure 4-17) and position the cursor to the start of the
instruction area.

Figure 4-19 shows the input subroutine itself. First the subroutine makes sure the
error handler is active (line 600). Then it displays the input mask at the specified
column and row (lines 630 and 640). Input is always into a string variable RS (line
660). Thisallows the user to enter a question mark to cue amplified instructions (line
670), even during numeric entry. It also allows the user to just press the RETURN key
during a numeric entry; the subroutine treats it as a 0 (line 700). The input
subroutine checks for numeric range (line 720) or string length (line 750). It does not
enforce any length restrictions on numeric entries, nor does it truncate or round
numeric responses to some number of decimal places. These latter two functions
usually vary from one input to the next, so they are better done outside the input
subroutine.

The input subroutine uses two variable line numbers, ERRHDL (line 600) and
AMPSUB (line 670). This allows the calling program to provide its own routines
and thereby vary the way it treats error-handling and amplified instructions.
AMPSUB must be a real line number. The line can consist of only a RETURN
statement, but it must exist. ERRHDL, on the other hand, can have anillegally high
line number like 40000. If it does, ATARI BASIC handles errors itself.

We also need a subroutine that inputs with a prompt message (Figure 4-20). It
displays a prompt message on the second line of the screen and calls the input
subroutine (Figure 4-19) to input a value on the line after that.

The last utility routine is the error handler (Figure 4-21). If an input error occurs,
it uses the Display Error Message subroutine (Figure 4-17) to flash a message. Then
it returns to the beginning of the line where the error occurred. If a non-input error
occurs, the error handler displays an advisory message and ends the program.

247
248
2499
250
260

70

S I K SHE XK KK KA KSR SR 3K N OK KK
i ®Clesr Instvs Ares of SoreenX
3K K K SHESHE S DK KK DK SHCOK A 40K K K DK 3K KKK K 3K K 3K
d0LE 3EGOSUE 100

TION 2,20

NOTE: Requires the Clear Display Lines subroutine (Figure 4-16).

FIGURE 4-18. Clear Instruction Area subroutine listing

Chapter 4: ADVANCED BASIC PROGRAMMING 141

b ouwtine X
<M KK K K K HOK K

bl o
GO0
GO
&L
GE0
&40
]
&Y REM Lrput anc check response
&6 i
HEE

Hé64

ampl e amstr e lines
W]
ON TC+1 IR

6
ol Mask Chars.

UL s L MO C

2

@ap Li ey dnstructLons’s

670 TF Rapsttpt "f'l--ltZN GOBUE AMPEUERSGOTO &

FEOIREM string
ridme o U
" U il

FUAME T LC TEeSROrEe

I THEN RETURN
@O

NOTE: These subroutines must be present: Clear Display Lines (Figure 4-16),
Display Error Message (Figure 4-17), and Error Handler (Figure 4-21).

FIGURE 4-19. General Input subroutine listing

Table 4-2 lists all the utility subroutines by line number. It shows which subrou-
tines use which variables, and which subroutines require other subroutines to be
present. A program that uses any of these subroutines has to do a number of things.
It must dimension string variables which the selected subroutines use, as described
in Table 4-3. It must assign values to the variables these subroutines use, as
described in Table 4-4.

Have you noticed how the subroutines assume that the main program dimen-
sions variables such as PRMT$ and MSKS$ correctly? They could check that

142 A GUIDE TO ATARI 400/800 COMPUTERS

794
797
798
799

FRBE I 3K S KNI KK IR K S N XK K K K OK NOK
K Lrput with Frompt X
NG TN 3K KN D K N KOK K ¥
prompt & dnpult Lines

800 Loa
G0y omMmpl Messsge

G810
{

LS00
CTURN

40

NOTE: Requires the following subroutines: Clear Display Lines (Figure 4-16)
and General Input (Figure 4-19).

FIGURE 4-20. Input with Prompt subroutine listing

79986 REM 44ttdb bbbt bbb bbbt
7997 REM + Error handler +

7998 0 S 0 U S U U T S S U A A 20 U S A Y O N S

7999 sel, error number

g000 :

8009

8010 L E

8020 =3 0R E=8 THEN 8100

8029 Nom—-input error’ occuryred

G030 FRINT "ARRGH! ERROR NO. "3E$" FOU
ND"

G040 FF "ON LLINE NO. "3EL

gouso F "WRITE THIS INFO. DOWN, ALO
NG WITH"

G060 FRINT "WHAT YOU WERE DOING."

8070 YCONSULT THE USER’S MANUAL

FOR HE

08B0 EN

8100 REM Inpult ervor ocourred

8110 ERME="TNFUT"

8120 GOSUE 1L70IREM Flash Messaqe
8130 TRAF ERRHDL IREM Reset TRAF
8140 GOTO El

NOTE: Requires the Display Error Message subroutine (Figure 4-17).

FIGURE 4-21. Error Handler program listing

Chapter 4: ADVANCED BASIC PROGRAMMING 143

TABLE 4-2. Utility Subroutine Requirements

Line Figure and Title Variables Subroutines
100 4-16. Clear Display Lines BLS, J. L1, L2 None
170 4-17. Display Error Message BL$, ERMS, J, JI None
250 4-18. Clear Instruction Area L1, L2 100
600 4-19. General Input AMPSUB, ERMS$, ERRHDL, ERRHDL,
HI, IC, IL, IR, JI1, LO, MSKS, AMPSUB,
R, R§ 170, 250
640 4-37. String Input IC, IL, IR, J, R, R$, X None
800 4-20. Input with Prompt IC, IR, L1, L2, PRMTS$ 100, 600
850 4-38. Disable BREAK Key J None
6000 4-33. Move Cursor with Stick BR, DLYI, J, LC, RC, SC, None
SR, TR
6500 4-31. Numeric Input with BLS, HI, IC, IL, INC, IR, None
Joystick J, LO, R, SD
8000 4-21. Error Handler E, EL, ERM$, ERRHDL 170
8200 4-36. Enter Valid Date D, DATS, IC, IR, M, MSK$, 8400
RS, Y
8400 4-36. Input Two Digits JI, R, R() None

TABLE 4-3. Utility Subroutine String Variable Dimensions*

Variable Minimum Maximum
BLS$ 39 None
DATS 8 8
ERMS$ 13 13
MSKS$ Ok 39

RS]%* 39
PRMTS 0 39

* Used in Figures 4-16 through 4-21, 4-31, 4-33, and 4-36 through 4-38.
** Must accommodate the largest input.

IL<= LEN(PRMTS$) and that IL<<= LEN(MSK$). But these are programming
errors, not user errors. Once discovered and corrected, a programming error will
almost never reappear. It would be a waste of computer memory and execution
speed for the program to check for such errors.

Let’s use the utility subroutines (Figures 4-16 through 4-21) in a program. Type
them all in together, then use the CSAVE statement to record them on a cassette.
That way you can use the CLOAD statement to get them back in memory when
future example programs need them, rather than retyping them each time.

Once you have all the subroutines in memory, type in the listing shown in Figure
4-22. The resulting program first dimensions and initializes the variables that the

144 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 4-4. Input Utility Subroutine Variable Usage

" Value
Variable Change?* Use
AMPSUB No Line number of the subroutine
that amplifies the prompt message
BL$ No Blank characters for erasing the screen
BR No Bottom row cursor limit
D Yes Day entered
DAT$ Yes Date entered, with punctuation
DLY1 No Cursor speed
E Yes BASIC error number
EL Yes Line number where error occurred
ERRHDL No Line number of the error handler; if none,
let ERRHDL = 40000
HI** No The largest number that can be entered
IC No The input column number, 0 to 38. Avoid column 39,
since it forces a carriage return
1L No The input length
INC No Increment
IR No The input row number, 0 to 23
J Yes Temporary
J1 Yes Temporary
LI Yes First display line to clear, 0 to 23
L2 Yes Last display line to clear, L1 to 23
L@ No Left-hand column cursor limit
LO** No The smallest number that can be entered
M Yes Month entered
MSK$ No Input mask characters
PRMT$ No The prompt message; it can be null
R Yes Returns the numeric value input, if any
R() Yes Temporary
RS Yes Returns the string value input, or string equivalent
of numeric input
RC No Right-hand column cursor limit
sC Yes Stick-directed cursor column
SD No Delay between incrementing
SR Yes Stick-directed cursor row
TR No Top row cursor limit
Y Yes Year entered
* The subroutines change the values of only the indicated variables.
** If LO >HI, the subroutine inputs a string value. If not, it inputs a numeric value.

subroutines use (lines 10 to 40). Then it branches around the subroutines to start the
main execution sequence (line 90). It sets up a 20-character string input (lines 1010
to 1040) and a numeric input (lines 1050 to 1110). The prompt message for the
numeric input includes the response to the string input (lines 1050 to 1070). Notice
that the string input has no amplified instructions—AMPSUB is 32767, the “do-
nothing” subroutine. There are amplified instructions for numeric entry, however

(lines 7000 to 7040).

Chapter 4: ADVANCED BASIC PROGRAMMING 145

10 DIM FRMTSCH0) s MEKECA0) ,BLBC40) yERMS
(13, REC200

19 REM Fill BL$% with blanls
20 Bl "l g
29 R oLl MSKE with drmpat v i
wt IMEHB A0) =MEKE IMEKB (2) =MEK$

30

(12

39 REM Evror-hasndler starting line
40 HIDL 000

89 REM bramnch Lo start of proaram

Q0 GOTO Loo00

999 REM ~—— Main Program -

L0000 FRINT CHR$CLZES) IREM clr. screen
1009 REM Irnput string value

LUL0 FREMTH="What is the bhowler’‘s last
rame?"

1020 TL=2038L0=13HI=0

1030 AMPSUE=32767

1040 GOSU
1049 REM Enter numeric value

1050 FPRMTE$="What did "

L0060 FRMTS CLENCFRMTS) + 1) =R%

1070 PRMTS (LEN(FRMT$)+1) =" score?"
1080 IL=71L0=0iHI=300

1090 AMPSUE=7000

1100 GOSUE 800

1110 GOTO 1010

L9997 REM e Numeric Input Instr, =
6998 REM Clear dedicated area, then
46599 REM position cursor

7000 GOBUE 230

7010 FRINT "Enter a8 positive mnumeric v
aglue,"

7020 FRINT "less than 300."

7030 RETURN

32767 RETURN IREM do-nothing subr.

NOTE: Shows the input utility subroutines (Figures 4-16 through 4-21) in action.

FIGURE 4-22. Enter Bowling Scores program listing

Group Inputs

Very often a program needs several pieces of information, not just one or two. It can
input the data items in a number of different ways. One way is to input each item in
turn at the same place on the screen, using a different prompt for each item to guide
the operator. This is the approach the last example program (Figure 4-22) used to
enter names and scores. That program reminded you whose score to enter by

146 A GUIDE TO ATARI 400/800 COMPUTERS

incorporating the name into the prompt message for the score. Imagine the confu-
sion that would occur without this aid. You would always have to remember the last
name you entered.

That program could display the most recent entries on the unused part of the
screen. Try changing it so it displays the most recent name and score onlines S and 6
of the screen (Figure 4-23).

The best way of handling multiple-item data entry is to display a form on the
screen, and fill in the form as data is entered. Related data items stay on the screen
until all items are entered. To do this, the program first displays the form. This
consists of a label for each item and enough space next to the label for the entry
(Figure 4-24). The labeled items are called fields. Each field has a number. You
enter data sequentially, starting with the first field and ending with the last.

Only minimal programming effort is required to accomplish this. Suppose you
want to input a name and address. There are five items to enter: name, street, city,
state, and ZIP code. The input utility subroutines we just developed will do most of
the work (see Tables 4-2, 4-3, and 4-4 and Figures 4-16 through 4-21). If you
recorded them on cassette as we suggested, load them into memory now. Otherwise
you will have to retype them. Be sure none of the program lines from the last

is cbhe bowler s last name?

Name
Goore

FIGURE 4-23. Displaying the most recently entered data for reference

Chapter 4: ADVANCED BASIC PROGRAMMING 147

ENTER NAME &MD

12 Nape !
2Y¥ By 4
33 Cidby
4y Btatel Sy L3

FIGURE 4-24. Displaying a form for data entry

example program (Figure 4-22) remain. Add the following program lines to clear
the screen and display the initial form:

o

Y OREM Imitislize variables

Ll MEKS wilh apat sk char
MO b= M SMEKE CA0) =MBIHE MBS (2) =MEK$
39 REM Evror-handler starbing Lirme

40 ERRHDL=8000

89 REM neh o stert of program

G0 GOTO LooO

99y REM Clesr screen & displasy form
LO00 FRINT CHR$EC 50 3 UENTER NAME AND A
AL W

NTSFRINT

(N 1 Namea "

1030 NT "2) Streeti"

LU40 FPRINT "3) Cityge®

148 A GUIDE TO ATARI 400/800 COMPUTERS

1050 FRINT
1040
1070 FRI
1900 END

N Statet"
N 20,6
TS Y 2T

Next, the program has to input the name, street, city, state,and ZIP code. Add a
separate subroutine to input each field:

;U DIM NA$(’U), STTH(20) ,CLEC20),8T$
L‘B(‘)) Fe o)

.LU‘/‘)

1100

L1l L;[lE;LJI::: g

L1220 NEXT F

1130 3LJ|U 1100

S ofielos

1996 Attt Gubrouting 200044ttt
1997 Hiranct o entry routine

1998 for field

1999 Lrput string w/ no amplif.
2000 L IHT=0 S AMPSUR=327 67

2000 ON F GOTO 2100,%
]

2097 REM

2098 REM Enter Z0-char name
2099 I\LM

2100 TC=131TR=3:LL=203COSUE 400
ZL10 NA$=R$ TRETURN

2197 REM

2198 F\EM Erter 20-char streaet
2199
2200 I L3 TR=43TL=20 8 GOSUE 400
2210 STT¢= I\flz.l.L.TLJI\N

2297 REM

”"‘?8 REM Ernter Z0-char oity
2299 h[M

2300 ;
2310 Clgs
2397 REM

2398 REM Ernter Z-char state
2399 REM

00,/300,4:‘{'00} J(]

205GOSUE 400

2400 JETR=6ITL=2 L GOSUE 600
F400 RS RETURN

2457

2498 Erter 9-char ZIF

") 4 (}) (? Wl g

2900 LC=28 1 TR=&6LL=2160SUE 400
2510 [el 3 IRETURN

32767 RETURN (REM do-nothing subre,

Run the program. If it does not run correctly, check your listing carefully. In
particular, look for missing subroutines and for semicolon errors in PRINT
statements.

When you run the Name-and-Address program; it displays an entry mask for

Chapter 4: ADVANCED BASIC PROGRAMMING 149

each of the five fields in turn. This tells you which field to enter. Note how easy it is
to see what you are entering.

Reviewing and Changing Input

When you finish entering everything on a form, the program can easily allow
changes to any individual field. All it needs to know is the number of the field to
change.

You can add the ability to make changes to the Name-and-Address program.
When initial form entry is complete, the program will need to ask whether you want
to make changes. If so, it must input the field number you want to change and use an
ON-GOSUB statement to call the appropriate input subroutine. Figure 4-25 shows
the complete program with statements added to allow changes (lines 1130 through
1230), and all subroutines.

Study the Name-and-Address program carefully. Be sure you understand the
data entry aids which it uses. These aids are listed below.

- By labeling each field and juxtaposing an entry mask at the appropriate time, the
program clearly indicates what data is expected, and how many entry spaces are
available.

- If you exceed the allowed entry length, the program reports an error.

- When you enter the number of a field to change, the entry mask again quickly tells you
whether you specified the correct field number.

* When the program asks questions, it only recognizes meaningful responses: Y or N for
yes or no, or a number between | and 5 to select a field.

The following are data entry features which have not been included but could be
added:

- The program could check the ZIP code forany nondigit entry. (Note that similar codes
in some countries do allow both letters and numbers, however.)

- Many cautious programs ask the question “Are you sure?” when you answer no in
response to the question “Do you want to make any changes?”. This gives the program
user a second chance to make changes in the event that he or she accidentally pressed the
wrong key.

+ The program could recognize a special character which, when input, retains the prior
value. For example, if the you choose the wrong field to change, the example program
now forces you to reenter the field. The program could easily recognize a character
which retains the previous field value.

Try modifying the Name-and-Address program yourself to include the additional
safety features described above.

Using Game Controllers to Restrict Responses

One problem with all forms of input is the multitude of choices the user has. Every
extraneous choice is a potential error. The program must check for inappropriate
responses. If it neglects to check, some user will make the mistake that crashes the

150 A GUIDE TO ATARI 400/800 COMPUTERS

® REM Initislize variasbles

L0 DIM FRMT$CA40) ,MEKS (402 ,EBL$(40) ,ERMS
13)

19 REM Fill BEL$ with blanks

20 BL$=" "IELSCA0)=BLSIELS (2)=EL$

29 REM Fill MSK$ with input mask char
30 MSKb="_"IMOK$ (A40)=MEKS IMOKS (2) =MEK$

392 REM Ervor-handler starting line

40 ERRHDL=8000

S50 DIM NAGCZ0) ,8TTH(20) ,CIH(20),8T$(2)
2y ZLB (D), RECZ0)

89 REM Eranch to start of program

90 GOTO 1000

Q@7 FREM KKK K K K K K K XK K K K 3K K 3K K K XK K K K K K X K KK K
28 REM x Clear Display Lines X
QO FLEM KK KK K K K K K K 3K K 3K K 3K K 3 K K KK K K K K XK K XK XK
100 FOR J=1.1 TO L2

110 FOSITION 0,4

120 PRINT EL$C(1,39);

130 NEXT J

140 RETURN

LAE FEM KKK 3K KK K K K K K K K K 4 3K K K K K K K K XK K XK XK
166 REM X Display Error Messasge X
1AD FEEM KKK KKK K K K K K K K K K K MK XK K XK 3K K KK KKK XK
170 FOR J=1 TO 3

180 FOSITION 20,0

1920 FRINT ERM$3" ERROR"FCHR$(253) 3}
200 FOR J1=1 TO LO0INEXT JLIREM Delay
210 FOSITION 20,0

220 FRINT BL$C1L,19)IREM Erase mesq.
230 NEXT J

240 RETURN

ZA7 TREM KKK K K NOK KK K ¥ KK K K K K K K K 3K K K K K XK
248 REM XClear Instr. Area of Screenx
DA TEEM KKK K KK K K 3K K K K KK KK K 3K K K K 3K K 3K K K K K
250 L1=20:L.2=231C08UE 100

260 FOSITION 2,20

270 RETURN

S04 REM 3K KK KK KK K K K K K K XK 5K 5 K 3K K K XK K XK K K K K
597 REM x Gerneral Input Subroutine X
SO0 FCEM KK KK KK K K K K K K 5 K 3K K 3K MK K K K K K K KK KK
599 REM Ensble error-handler

400 TRAF ERRHDL

619 REM Clear smpl. instr. lines

420 GOSUE 250

430 FOSITION IC+1,IR

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16
through 4-21). Can be modified to create a mailing list data file on cassette

(see Figure 5-2). (continued)

FIGURE 4-25. Name-and-Address program listing

Chapter 4: ADVANCED BASIC PROGRAMMING

440
650
659
4660
663
664
665
1,1
bbb
669
4670
30
4680
690
700
709
710
720
729
730
740
749
750
769
760
770
796
797
798
799
800
809
810
820
829
830
840
P99
1000

1010
1020
1030
1040
1050
1060

FRINT MSK$(1,IL)

FOSITION IC,IR

REM Irmput and check response

INFUT R$

FOR Ji1l=1 T0Q IL

REM Strip out extra mask chars,
FOR J1l=1 TO ILIIF R&(J1, J1)MEK$(
THEN NEXT J1

R$=R$(1L,J1-1)

REM Amplify instructions?

IF R$="7?" THEN GOSUE AMFSUEIGOTO 6

IF LOXHI THEN GOTO 7503(REM string
REM Null entry = numberic 0

IF R$="" THEN R$="0"

REM Frocess numeric response
R=VAL (K%)

IF Ra==1.0 AND R<=HI THEN RETURN
REM Numeric Range error
ERM$="NUMERIC RANGE"

GOSUE 170:GOTO 620

REM String Input

IF LENC(R$)==IL THEN RETURN

REM Strimng length erronr
ERM$="STRING LENGTH"

GOSUE 170:GOTO &20

FUEM KK 3K 3K 3K K K K K 3K K 3K K 3K K 3K K K K XK 3K K K K K XK XK XK K
REM X Input with Frompt X
FEEM KK KKK 3K K 3K KK K 3K K K 3K K K K K 3K XK 3K K 3K X 3K 3K X K
REM Clear prompt & input lines
L1=13L2=2:G08UE 100

REM Frimt prompt messaqe

FOSTITION 2,1

FRINT FRMT$

REM Input value

IC=2 i IR=2{GOSUE 400

RETURN

REM Clear screen R display form
FRINT CHR$C12%5) j"ENTER NAME AND A

DDRESS EBEELOW"

FRINT $FRINT

FRINT "1) Name "
FRINT "2) Streeti"
FRINT "3) Citygs"
FRINT "4) Statel"
FOSITION 20,6

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16
through 4-21). Can be modified to create a mailing list data file on cassette
(see Figure 5-2).

(continued)

FIGURE 4-25. Name-and-Address program listing (continued)

152 A GUIDE TO ATARI 400/800 COMPUTERS

1070 FRINT "“%) ZIFi"

1099 REM Enter all 9 fields

1100 FOR F=1 TO 9

1110 GOSUE 2000

1120 NEXT F

1129 REM Allow changes

1130 PRMT$="Do you want Lo make any ch
anges"

1140 LO=1iHX=0AMFSUE=32767

1150 TL=1:GOSUE 800

1159 REM Analyze response

1160 IF R$="N" OR R$="n" THEN 1100
1170 IF R$="Y" OR R$="4" THEN 1200
1180 ERM$="Y or N please" iGOSUE 170
1190 GOTO 1130

1199 REM Gel field number

1200 FPRMT$="Which field"

1210 LO=1tHI=5AMFSUE=3276467

1220 YXL=13:GOSUE 800

1230 F=R:GOSUE 2000:G0T0O 1130

19200 END

1996 REM ++++++Gubrountine 2000+++++++
1997 REM BEranch to entry routine
1998 REM for field F

19992 REM Irnput string w/ no amplif.
2000 LO=L1iHI=03:AMFSUE=32767

2010 ON F GOTO 2100,2200,2300,2400,250
0

2097 REM

2098 REM Enter 2Z0-char name

2099 REM

2100 IC=131TR=3IL=20:GOSUE &00
2110 NA$=R$ IRETURN

2197 REM

2198 REM Enter 20~-char street

2199 REM

2200 IC=131IR=4{1L=20:GOSUE 400
2210 STT$=R$IRETURN

2297 REM

2298 REM Enter 20~char city

2299 REM

2300 IC=131IR=5:TIL=20¢GOSUE &00
2310 CI$=R$IRETURN

2397 REM

2398 REM Enter Z-char state

2399 REM

(see Figure 5-2).

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16
through 4-21). Can be modified to create a mailing list data file on cassette

(continued)

FIGURE 4-25. Name-and-Address program listing (continued)

Chapter 4: ADVANCED BASIC PROGRAMMING 153

2400 IC=131TR=61TL=2{GOSUE 400

2410 STH=R$IRETURN

2497 REM

2498 REM Enter 9-char ZIF

2499 REM

2500 IC=281IR=611L=9:{GOSUE 400

2510 ZI$=R$IRETURN

79946 REM +++++++++t+tttttttttd bbbttt
7997 REM + Error handler +
7998 REM ++++++4+tttttdtdtdttt bt bttt
7999 REM Get error number

8000 E=FEEK(19%)

8009 REM Get line no. where error was
8010 EL=FEEK(187)X256+FEEK(186)

8020 IF E=3 OR E=8 THEN 8100

8029 REM Nonm—input error occurred
8030 FRINT "ARRGH! ERROR NO. "jE:" FOU
NDII

8040 FRINT "ON LINE NO. "jEL

8050 FRINT "WRITE THIS INFO. DOWN, ALO
NG WITH"

8060 FRINT "WHAT YOU WERE DOING."
8070 FRINT "CONSULT THE USER’S MANUAL
FOR HELF"

8080 END

8100 REM Imput error occurred

8110 ERM$="INFUT"

8120 GOSUE 170IREM Flash Message

8130 TRAF ERRHDLIREM Reset TRAF

8140 GOTO EL

32767 RETURN (REM do-nothing subr.,

NOTE: Demonstrates forms data entry. Uses all input utility subroutines (Figures 4-16
through 4-21). Can be modified to create a mailing list data file on cassette
(see Figure 5-2).

FIGURE 4-25. Name-and-Address program listing (continued)

program. The solution to this problem is to eliminate the keyboard as the input
device and use the game controllers instead. The joystick is the easiest to adapt. It is
not always possible to use a game controller instead of the keyboard, but the
number of ways in which game controllers can be used is surprising.

The STICK function reads the joystick in ATARI BASIC. It returns a value
between 5 and 15, depending on the direction the stick is pointed (Figure 4-26). The
STRIG function reads the joystick trigger button. It returns a 0 value only if the
trigger is being pressed. You can hook up as many as four joysticks to an ATARI
computer at once. Therefore you must state which stick you want the STICK or
STRIG function to read. Sticks are numbered 0 through 3 for these functions. Stick

154 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 4-26. STICK function values

0 plugs into socket 1 (the leftmost socket) on the front of the ATARI computer,
stick | plugs into socket 2, and so on. The following program shows how these two
functions work:

10 FRINT CHR$CL25)

20 FOSTTION 2,9

29 ¢ EREAK ey Lo stop program

30 FRINT "STICK 0 VaALUE?: "ISTICKCO) §
" " ;

40 FRINT "STICK 0 TRIGGER
50 TF STRIGCOY =0 THEN FRINT "0ON "i1GOTO
20

H0 FRINT "OFF"IGOTO 20

ATARI BASIC reads the paddle with the PADDLE function. It returns a value
between | and 228, depending on the amount of rotation (Figure 4-27). The PTRIG
function reads the paddle trigger button. It returns a 0 value only if the trigger is
being pressed. Paddles come in pairs. You can hook up as many as four pairs to an
ATARI computer at once. Therefore you must state which of the eight paddles you
want either of these functions to read. Paddles are numbered 0 through 7 for these
functions. Paddles 0 and I pluginto socket 1 on the front of the ATARI computer,
paddles 2 and 3 plug into socket 2, and so on. The following program shows how

Chapter 4: ADVANCED BASIC PROGRAMMING 155

228

228 1

Full counterclockwise Full clockwise
rotation rotation

FIGURE 4-27. PADDLE function values

these two functions work:

L0 PRINT CHR$(1E2S

20 FOSITION 2,9

29 KREM Use BREAK key to stop proaram

30 FRINT "FADDLE 0 VUALUES UIFADDLECD
);ll II;

40 FRINT "PADDLE 0 TRIGGER: '3

S0 OLF PTRIGCO)=0 THEN FRINT "ON "3iGOTO
20

GO0 FRINT "OFF"G0TO 20

Joystick Control of the Display

When dealing with large quantities of data, the display screen can only show a small
amount of the data at one time. One way to do this is to use the display screen as a
window on the data. At any time it shows only part of the data available. Viewing
data in this way is easy if the data is in the form of numeric array variables or even
string pseudo-arrays (described earlier in this chapter). Imagine that the array data
is written on a large chalkboard and you are looking at the chalkboard through the
viewfinder of a camera. The chalkboard is large enough that you cannot get it all in
the viewfinder at one time, but you can view any part of the chalkboard by moving
the viewfinder up, down, right, or left. The display screen can imitate the viewfinder,
and the joystick can control its movement over the field of data.

We will now show how to implement this technique with a two-dimension
numeric array. As the value of each array element, we will assign a four-digit
number which identifies the array indexes, like this:

X(i,j) = 0i0j

156 A GUIDE TO ATARI 400/800 COMPUTERS

For example:

X(3,2) = 0302
X(19,8) = 1908
X(11,12) = 1112

This numeric array can be initialized very simply with some nested FOR-NEXT
loops, as follows:

10 DIM X{S50,14)

49 REM Initislize array

50 FPRINT CHR$CLZ2E9) §"PLEASE WALT-~INITI
ALTZATION IN PROCESS"™S

40 FOR K=0 TO 14

70 FOR J=0 TO S0

B0 XCJy) =(J+1IXL00+K+ 1

0 NEXT J

100 NEXT K

The computer takes about ten seconds to execute these lines. This is a long time to
leave the program user in suspense, so the program displays an advisory message
about the initialization. Without such a message, the program user may well assume
that the computer is not working. It is a good idea to display a prominent message
whenever such periods of apparent inactivity occur.

The fourth and fifth rows of the display will show column headings. The first ten
spaces of each line will show row headings (Figure 4-28). We deliberately created a
window that is smaller than the entire screen in order to better illustrate the concept
of a window on data. There is nothing to prevent you from creating a window that
occupies your entire screen, but there will be occasions when you want a small
window so that other data can appear on the screen concurrently.

As the part of the array that is visible changes, the program will have to change
the row and column numbers in the headings. The following subroutine accom-
plishes that:

P8 REM +++++ Gubroutine L0004+4+++
299 RE Display headings

LO00 FOR J=1 TO 3

L0L0 FOSTITION 3+Jx10,3

L0020 FPRINT "COLUMN"

1030 NEXT J

L1040 FOR J=0 TO 2

LOS0 FOSITION Lé+dx1i,4

L0%S9 REM vight-justify one-digit no
1060 IF Ced+L10 THEN FRINT '™ i
LO70 FRINT C+d+13

L0080 NEXT J

10920 FOR J=0 T 9

1100 POSITION 3,J+5

1110 VINT "ROW "¢

LLLY REM right-—justify one-digit no.
L1120 IF Red+110 THEN FRINT M g
1130 PRINT Red+13

Chapter 4: ADVANCED BASIC PROGRAMMING 157

D|D|DV|DV|(DV|DVW|V|WVW|DV| D
Oo|o|o|o|ojOo|o|o|o|o
HEBEHBEEEEE
<|<[<|<]<|<][<]<]<][<
<[<]<[<[<]<]<][<]<][<

FIGURE 4-28. Screen format for data window program

L1140 NEXT
1150 RETURN

Note that lines 1070 and 1130 add 1 to the row and column numbers as they are
displayed. ATARI BASIC arrays have elements with 0 indexes, but most people
start counting with 1, not 0. Therefore, the program makes this minor translation to
make it easier to use.

The following lines display array values starting with X(25,7) in the upper left
corner of the window:

20 DIM X$CLU Y BLBCH02

28 REM Fill BL$ with blanks
30 s ¢ LB (2

£00 sl e
210 | y T=3:3
a1y Ll odn velues
el TO 10
(R W

240
280
Z260
270

: XL 0L K
Fed OXCRAR -1 CHd-10 2
B CL, LO~LENIXS)) § X463

158 A GUIDE TO ATARI 400/800 COMPUTERS

280 NEXT K

290 FOSITION Z,1

350 END
Variable R determines the topmost column in the window. Variable C determines
the leftmost column. Each array value is converted into a numeric string on line 250
before being printed. This conversion simplifies display formatting. It makes it easy
to right-justify the array values in the columns, as shown by the PRINT statement
on line 260.

Our program takes great care to terminate the display on the 39th column of the
display, rather than the 40th and last column. If you run displays out to the 40th
column, you will run afoul of the wrap-around logic, whereby lines that are more
than 40 characters long automatically continue on the next line. You should do your
best to avoid the display formatting nightmare that can result from the interaction
between carriage returns generated by printing in column 40 and your own format-
ting carriage returns.

These lines monitor joystick 0:

299 REM Move window right

300 IF STICKC0)=7 AND C<12 THEN C=C+13%

GOTO 210

309 REM Move window left

310 IF STICKCO)=11l AND Cik0 THEN C=C-1%

GOTO 210

319 REM Move window down

320 IF STICKC0)=13 AND R=41 THEN R=R-1

tGOTO 210

329 REM Move window wup

330 IF STICKC0)Y=14 AND R0 THEN R=R-~13

GOTO 210

339 REM Use BREAK key to stop proaram

340 GOTO 290

If the stick is moved right, left, down, or up, and the window is not already as far
as it can go in that direction, the program adjusts variables R and C. Then it
redisplays the window, starting with these new array indexes.

The complete program, illustrated in Figure 4-29, is a relatively primitive pro-
gram. It has only one speed: slow. It takes about two seconds to redisplay the
window each time the row or column number changes; that’s 20 seconds to move the
window ten rows. You could fine tune the program and possibly cut this time in half,
but ten seconds is still a long time. Instead of redisplaying the window as often as
possible while the stick is held in one direction, the program could redisplay only
when the stick is centered. That way the window redisplays just one time for each
nonstop move. We have reduced the time it takes to move the window to two
seconds, plus the length of time the stick is off-center. Of course, the program has to
update the column numbers as it moves the window horizontally, and the row
numbers as it moves vertically, so the user knows where the window is. That small
overhead will take very little time. Try making these changes to Figure 4-29
yourself.

Chapter 4: ADVANCED BASIC PROGRAMMING 159
10 DIM X(50,14)
20 DIM BLECA0) , X6(4)
29 REM Fill EL$ with blanks
30 EL$=" "IBELG A0) =L L ELEC2)=ELS
49 REM Initialize array
50 FRINT CHR$(125) $"FLEASE WALT--INITI
ALIZATION IN FROCESS"™S
40 FOR K=0 TO 14
70 FOR J=0 TO %0
80 XC(JyK)=(J+1I)XL00+K+1
90 NEXT J
100 NEXT K
199 REM Main proaram
200 PRINT CHR$(L2%) ;"Use stick Lo move
window'"
205 R=2H10C=7 IREM array center
210 GOSUE L000:REM Headinas
219 REM Fill im values
220 FOR K=1 TO 10
230 FOR J=1 TO 3
240 FOSITION Jx10-1,K+4
250 X$=8TRE(X(R+K~1,C+Jd~1))
260 FRINT BL$CL, L0-LENC(X$)) 3 X% 3
270 NEXT J
280 NEXT K
290 FOSITION 2,1
299 REM Check Joysticlk
300 IF STICKC0)=7 AND Col2 THEN C=C+13
GOTO ZL0
310 IF STICKCO)=11 AND Cx0 THEN C=C-13%
GOTO 210
320 IF STICKC(0)=13 AND R<41 THEN R=R+1
1GOTO 210
330 IF STICKC(0)=14 AND R>0 THEN R=R-1%
GOTO 210
340 GOTO 290
998 REM +++++ Subroutine 1000 +++++
999 REM Display headinas
1000 FOR J=1 TO 3
1010 FOSITION 3+Jx10,3
1020 FRINT "COLUMN"}
1030 NEXT J
1040 FOR J=0 TO 2
1050 FOSITION 1é6+J%10,4
1059 REM right-justify one-digit rno.
1060 IF C+J+l<10 THEN FRINT ' '3
1070 FRINT C+Jd+13
1080 NEXT J
1090 FOR J=0 TO 9
1100 FOSITION 3,J+5)
(continued)

FIGURE 4-29. Screen Data Window program listing

160 A GUIDE TO ATARI 400/800 COMPUTERS

LLL0 PRINT "ROW "3

1119 REM right-justify one-diqit rno.
1120 IF R+J+1<10 THEN FRINT " '}
1130 PRINT R+J+1;

1140 NEXT J

1150 RETURN

FIGURE 4-29. Screen Data Window program listing (continued)

You can also move the window diagonally. The STICK function can detect
diagonal stick positions (Figure 4-26). Try expanding the program between lines
300 and 330 to enable diagonal window movement. If the program detects a
diagonal joystick position, it must change both row and column, variables R and C.
Furthermore, when the window moves diagonally, it might run into both the top (or
bottom) and side of the array at the same time. Be sure to check for this condition.
Figure 4-30 summarizes the effects of the various joystick positions on the row and
column variables.

Numeric Input with the Joystick

We can write a program that uses the joystick to input a numeric value. The
program starts by displaying a number on the screen. Then it monitors the joystick.
Move the stick to the left and the program decreases the number. Move the stick to
the right and the number increases. Center the stick and the number stops changing.
When the number you want to input is on the screen, press the trigger button. Here
is a simple program to input a number between 1 and 10:

Lo00
HH09 rase old value, pos. Curs,
4510 HR$ 125

HH1Y
HE530 F I3
4539 REM Quit whern trigger pressed
HG5HB0 TF STRIGCOI=0 THEN END

G979 REM Move asheadd?
4580 IF STICKCD)Y=11 AND R<HLO THEN RsR
=L3GEOTO 6510

4589 REM Move bhacl?
4590 IF STICK0)Y=7 AND R
LIGOTO 6510

599 REM No change

46600 GOTOD 6550

play current value

HI THEN Re=R+

The program works, but itis hard to stop at a particular number. The program is
too sensitive to joystick movement. It is checking the stick position too often. Delay

Chapter 4: ADVANCED BASIC PROGRAMMING 161

k==d
R=R+1
c=C

NOTE: R is the row index, C the column index.

FIGURE 4-30. Joystick position affects data window indexes

it with a FOR-NEXT loop, like this:

L5559 REM Delay hefore checking sticlk
GG FOR Jd=1 TO 30 NEXT J

The number of loop iterations determines the delay time. A long delay makes it
easier to step from one value to the next, but it takes longer to get from a low value
to a high one. A short delay has the opposite effect.

This program is even more useful as a subroutine (Figure 4-31). It uses the same
variables as the General Input subroutine (Figure 4-19) to specify input range (LO
and HI), cursor position (IR and IC), and field size (IL). It also returns the input
value in variable R. Variable INC is the amount to increment or decrement the value
each time it changes (lines 6580 and 6590). The subroutine employs a two-speed
delay loop to control the speed with which the number changes (line 6560). It starts
out with a small delay (line 6570) for maximum speed and minimum control. As
soon as the stick centers, the subroutine shifts to low speed (line 6600). So if you
move the stick either right or left and hold it there, the number changes at high
speed. Quickly tap the stick right or left and the change occurs slowly.

162 A GUIDE TO ATARI 400/800 COMPUTERS

10 DIM ELEC40)

19 REM Fill BEL$ with blanks

20 BL$ VIBLG (40) =RLEGIERLECZ)=ELSE
1000 LINT CHR$CL28)

1199 REM Set range, start val, incrmt

1200 2200 R=1008INC=,5
1209 Set cursor pos., & field size
1210 LOSTR=1L 3 TL=3

L220 GOSUE 6500
1230 FRINT

L1240 FRINT "Number selectedt "R
1900 END

N

HADG FREDM 3K KKK K XK K 3K K K K K K K K XK K K XK 3K K XK K K K
4497 REM X Numeric Input w/ JoystickXx
HA9E LM KKK K KK K K K K K K K K 3K K K 3K X K K XK K K K XK
46499 REM Erase input field

4500 FOSTITION XC, IR

HG10 FPRINT BLSCL, XL

4519 REM Display current value

4520 FOSITION XC, IR

46530 FRINT Ry

4539 REM Quit when triger pressed
6550 TF STRIGCD) =0 THEN RETURN

4559 REM Delay hefore checking stick

4560 FOR J=1 TO SDINEXT J
G569 REM Assume min. delay

HH70 & 1

G779 REM Move ahead?

K580 TF STICKD)Y=11 AND R<xL.0 THEN R=R
~INGCIGOTO 6510

4G89 REM Move back?

4GP0 IF STICKC0)Y=7 AND R<=HI THEN R=R+
INCIGOTO 6510

4599 REM No changeimax, delay factor
4600 SD=30:GOTO 4550

NOTE: Sample main program (lines 10 through 1900) demonstrates the
use of this subroutine.

FIGURE 4-31. Numeric Input with Joystick subroutine listing

Using Menus to Restrict Choices

The easiest way to eliminate user errors is to carefully design your program so the
user has as few options as possible. The very nature of the questions the program
asks can make the user’s job easy or difficult. So far, the example programs have
asked the user to fill in the blank. Sometimes fill-in questions are the only choice. At
other times a multiple-choice question will do. Instead of “What do you want to
do?”. the program asks “Which option do you choose?”. That is what a menu does.

Chapter 4: ADVANCED BASIC PROGRAMMING 163

You may recall the program in Figure 4-13; it inputs a command. The choices
were A, C, D, E, P, or H. You can fashion a menu to do the same input (Figure
4-32). Using the input utility subroutines (Figures 4-16 through 4-21), you could
easily write a program to display the menu and input the command.

The menu approach is better for both the user and the programmer. The user
doesn’t have to remember or look up the allowable options. The programmer
doesn’t have to write complicated program lines which display amplified instruc-
tions. There is no guarantee the user will only enter a displayed option, though, so
the program must still check for the proper input.

Almost all input can be broken down into a series of multiple-choice questions.
Each multiple-choice question can be presented as a menu. The user works his way
through the menus to arrive at an answer to the final question.

Using a Joystick for Menu Selection

The computer can be programmed to move the cursor around on the screen under
the control of a joystick. If there is a menu displayed on the screen, the user moves
the cursor until it rests on one of the menu selections. He or she then presses the

Select command with sticlk and Lricger

FIGURE 4-32. Designing a menu to input commands

164 A GUIDE TO ATARI 400/800 COMPUTERS

trigger button on the joystick to make the selection. The BASIC program senses
this, figures out where the cursor is, and determines which menu selection that
location corresponds to.

The subroutine in Figure 4-33 harnesses the joystick to the cursor. First it checks
the joystick trigger (line 6000). If it is being pressed, the subroutine ends, leaving the
cursor at its last position. The subroutine uses a delay loop to control its sensitivity
to the joystick (line 6010). Variable DLY I determines the number of iterations. The
number of iterations affects the cursor speed. More iterations slow the cursor down;
less speed it up. The balance of the subroutine senses the stick position, displays
appropriate cursor movement characters, and adjusts the cursor position variables
so they always match the actual cursor position (lines 6020 through 6060). Variables
SC and SR keep track of the cursor column and row position. The cursor can only
move inside a box defined by four variables:

+ LC, the left column limit

+ RC, the right column limit
+ TR, the top row limit

+ BR, the bottom row limit.

To see how the subroutine works, type it in along with the following program:

999 REM Clear screen & display arid
1000 FRINT CHR$(12%5)

1010 FOSITION 0,11

1020 PRINT "0123454678901234546789012345
478901234546789"

1030 FOR J=0 TO 23

1040 FPOSITION 21,11

1050 FRINT J-=INTCJZ1L0)%x107%

1060 NEXT J

1069 REM Start cursor at grid int.
1070 FOSITION 21,11

1080 FRINT CHR$(2%53)%

1089 REM Variasbles match curs. pos.
1090 SC=2118R=11

1092 REM Establish cursor range
1100 LCOC=2IRC=39ITR=03ER=23

1109 REM Set stick speed

1110 DLYL1=20

1119 REM Have stick move cursor

1120 GOSUE 6000

1900 END

This program begins by displaying cross hairs to help you gauge cursor movement
(lines 1000 through 1060). Then it moves the cursor to the center of the cross hairs
(line 1070). There it “displays” the nonprinting character which sounds the console
speaker (line 1080). Finally, it assigns the necessary variables and calls the Move
Cursor with Stick subroutine (lines 1090 through 1120).

Chapter 4: ADVANCED BASIC PROGRAMMING 165

GG T KK NI AN ORI K K N K K K K XK K
H997 REM x Move cursor with stick ®
ELOGED PRI oK K K K K K 3K K K 3K 3K 3K 3K KK KK K K K 3K K 3K K 9K K
H999 REM Fush trigaeer to stop cursor
HO00 TF STRIGCOI=0 THEN RETURN
H009 REM Slow cursor down

HO0L0 FOR J=1 TO DLYLINEXT J
4019 REM Checl sticlk position
HUZ0 TF STICKCO)Y=7 AND SC-I=R
SCHLIFRINT CHR$C31) 3

4030 LI TICKCD =11 AND SC=LC THEN &C
=GO~ FFRINT CHR$(30) 3

G040 TF STICKO0)=13 AND SR<HER THEN SR
=HR+ALIFRINT CHR$(29) ¢

HO0E0 TF STICK0)Y=14 AND SR<>TR THEN SR
=8HR-LIFRINT CHR$ (Z28) §

4060 GOTO &000

THEN &C=

FIGURE 4-33. Move Cursor with Stick subroutine listing

The program below uses the Move Cursor with Stick subroutine (Figure 4-33) to
input a menu choice. If the last example is still in the computer’s memory, you can
avoid retyping the subroutine. Delete lines 1000 through 1900 and add the following

lines:

299 REM Clear screen & display menu
1000 FRINT CHR$(1235)

1010 FRINT "Select command with stichk
and triger"

1020 FRINT

1030 FRINT " Addg"

1040 FRINT ' Change"

L0%0 PRINT " Delete"

1060 FRINT " PFrint"

1070 FRINT " Help"

1080 FRINT ' Erdd"

1089 REM Start cursor at 4,3
1090 FOSITION 4,2

1100 FRINT CHR$(29) 3}

1110 SC=416R=3

1119 REM Establish cursor range
1120 LC=4i1RC=41TR=3{BR=8

1129 REM Cursor speed

1130 DLY1=30

1140 GOSUE 4000

1900 END

This program displays a menu of commands (lines 1000 through 1080). Then it
places the cursor over the first letter of the first command (lines 1090 and 1100). The
stick can move the cursor up and down over the first letters of the commands, but it

166 A GUIDE TO ATARI 400/800 COMPUTERS

cannot move the cursor from side to side (line 1120). As before, pressing the trigger
button stops the cursor; variables SC and SR then have the cursor coordinates.
The only thing left to do is to translate the cursor position into the chosen
command and act on that command. The lines below show how the translation
takes place. All they do is display the name of the selected command. An actual
program would do more, of course. Add these lines to the last example program:

L1149 REM Cursor row tells command
LLE0 POSITION 2,0
L1460 ON SR-Z GOSUE Z2000,2500,3000,3500
,A40003G0OTO 1900
L1770 FOSTITION 2,10
L2000 END
2000 PRINT "écd "IRETURN
2500 FRINT "Change" tRETURN
[
l
|

3000 FPRINT "Delete" IRETURN
3500 PRINT "Frdint " IRETURN
4000 FRINT "Help "IRETURN

ADVANCED INPUT AND OUTPUT

A program can go just so long before it must either input or output information.
Until now we have used statements that automatically choose the output device.
The CLOAD and CSAVE statements always use the program recorder. In our
examples so far, the INPUT statement has always used the keyboard, and the
PRINT statement has always used the display screen. ATARI BASIC supports
input and output beyond simple INPUT and PRINT statements. There are addition-
al variations on PRINT and INPUT, and there are new input and output state-
ments. This chapter will describe these new features as they pertain to the keyboard
and display screen. Later chapters will describe how these new features make input
and output possible with the program recorder, printer, and disk drive.

Device Names

Every input and output device has a name. The simplest names consist of one capital
letter followed by a colon. For example, the display screen is device S:, and the
keyboard is device K:.

Inimmediate mode, the ATARI computer consolidates the screen and keyboard
and calls the result the editor, device E:. The INPUT statement also uses the editor.
When you press a key, the corresponding character appears on the screen automati-
cally. Your program does not have to echo each character back to the screen.

The other devices also have names. These will be discussed later.

Input/Output Channels

The ATARI computer communicates with all input and output devices indirectly,
by means of input/output channels. There are eight channels in all, numbered 0

Chapter 4: ADVANCED BASIC PROGRAMMING 167

through 7. In order to communicate with a specific input or output device,a BASIC
program first links the device to one of the channels. If the program requests input
from that channel, it comes from the desired device. Similarly, the program directs
output to a channel, which pipes it to the previously selected output device. A
program uses input/ output channels the same way you use the channel selector ona
television set. You set the channel selector to link the television to a specific station.
The television then displays the show sent by the station you selected.

We use the term channel in this book, but elsewhere you may see channels called
input/output control blocks, IOCBs, file numbers, or logical unit numbers.

BASIC reserves channels 0, 6, and 7 for specific activities. Channel 0 is perma-
nently reserved for the editor (device E:). Command input from the keyboard in
immediate mode uses channel 0. All simple INPUT and PRINT statements use
channel 0. Channel 7 is used for some printer operations and for program loading
and saving. The special ATARI BASIC screen graphics statements use channel 6;
Chapters 8 and 9 describe those statements.

Channels 1 through 5 are completely available to a BASIC program. Channels 6
and 7 are available on a limited basis. If the program uses none of the special screen
graphics statements, it can use channel 6. If it does not load or save programs nor
use the LPRINT statement (see Chapter 6), it can use channel 7.

Opening a Channel

The OPEN statement links a channel to a device. Subsequent input or output
statements can then access that device by means of the channel number.

The OPEN statement consists of the keyword OPEN followed by four parame-
ters. It looks like this:

OFEN L, L&, 0, "ES"

The first number after the keyword OPEN is the channel number. The last
parameter is the device name. In the example above, channel 1 is opened to the
editor (device E:).

The second number in the OPEN statement specifies the kind of action that will
be allowed on the channel. The action can be input, output, or both. The action
must make sense. For example, a program cannot open the keyboard for output,
because it cannot output to a keyboard. Generally speaking, action 4 is input, action
8 is output, and action 12 is input and output. Some devices support other actions,
which will be described when those devices are discussed.

There is one more parameter, the one just ahead of the device name. It is used in
different ways, depending on the device. When the device is the keyboard (K:) or
editor (E:), it is ignored. With the display screen (S:), it selects the screen mode,
which can be text or graphics. In this chapter we will discuss only text mode.

Opening a channel to the editor (device E:) or the text mode screen (device S:,
third parameter 0), always clears the display screen. The following program illus-
trates this.

168 A GUIDE TO ATARI 400/800 COMPUTERS

10 DIM R&CL)

20 PRINT "FRESS RETURN TO EXECUTE OFEN
STATEMENT"

25 INFUT R$

30 OFEN $#1,4,0,"88"

40 FRINT "OFEN CLEARED SCREEN"

Closing a Channel

Once open, a channel stays open until the end of the program or until explicitly
closed. When a program ends by executing an END statement, all channels are
closed. The same thing happens if the program ends by running out of statements.
But if the program halts as a result of a STOP statement, the BREAK key, oranerror,
all open channels remain open.

The CLOSE statement explicitly closes one channel. Here is an example:

CLOSE 4L

The PRINT # Statement

A new form of the PRINT statement lets you direct its output to any open channel.
Itisidentical to the regular PRINT statement in every way, except the first item on
its list is the channel number. Consider these two statements:

10 FRINT #1jR$5R

20 FRINT R$3R
Both of these produce the same output. The second (line 20) goes to the display
screen, while the first (line 10) is directed to the device linked to channel 1. Device
and channel must be linked by a previously executed OPEN statement.

Notice that we used a semicolon after the channel number in the PRINT #
statement (line 10). A comma will work, but it causes the output of enough blank
characters to move the cursor to the start of the next column stop. A PRINT #
statement with only a channel number outputs only an EOL character.

It so happens that any channel open to the display screen is always open for
output, no matter what the action parameteris. Therefore action 4, normally input
only, is the same as action 8, output only. This program illustrates:

10 OFEN #1,4,0,"6G8"

20 PRINT #1, "EVEN THOUGH THE &CTION O/

LLE FOR INFUT ONLY, THE CHANNEL I& &STI

LL OFEN FOR QUTFUT"

The OPEN statement (line 10) clears the screen and opens channel 1, nominally for
input only. But a PRINT # statement to channel | produces output on the display
screen anyway.

The INPUT # Statement

The INPUT # statement is not limited to the keyboard. It can receive input from any

Chapter 4: ADVANCED BASIC PROGRAMMING 169

channel that is open for input. The new format looks like this:
INFUT Ly R

You can use either a comma or a semicolon after the channel number; the result is
the same.

The INPUT # statement works almost the same with or without a channel
number present. It continues to input characters until you press RETURN, generat-
ingan EOL character. Then it attempts to assign the entry to the next variable on its
list. An error occurs if it finds anything wrong. Try this program:

10 OFEN #1,12,0,"ES"

200 INFUT L, &

Notice anything different? This form of the INPUT statement does not display a
question mark on the screen. That is the only difference.

The General Input subroutine was developed earlier in this chapter (Figure 4-19).
It uses a standard INPUT statement to receive keyboard entry. That means it
always displays a question mark just ahead of the input mask. Sometimes that is not
appropriate. Try changing the subroutine to use the INPUT # statement instead.
The main program will have to open an input channel for the subroutine, of course.
If you use a variable to specify the channel number in the INPUT # statement, the
main program can use any channel.

The PUT Statement

The PUT statement outputs a single numeric value to an open output channel.
When the channel is open to the text display screen, the numeric value is interpreted
as an ATASCII code (see Appendix D). The corresponding character appears on
the screen. The following example illustrates this:

"THAT CHARACTER IHi "3

Like the PRINT statement, PUT determines where to display by looking at
memory locations 84 (row) and 85 (column). Unlike the PRINT statement, the PUT
statement does not output an EOL character when it finishes. Therefore, the
program has to do it explicitly (line 60). The PUT statement requires a comma after
the channel number. A semicolon will cause an error.

The GET Statement

The GET statement inputs a single character from an open channel. It does not
display the character on the screen. You do not press RETURN after typing the

170 A GUIDE TO ATARI 400/800 COMPUTERS

character. The entry always results in a numeric value, the ATASCII code of the
input character. Type in the following program and run it:

10 OFEN L, 4,0," K"
20 FRINT "HIT ANY KEY '}
30 GET kL, R
40 FRINT "YOU HIT "3CHRER) §",ATASCTT
CODE "§R
49 REM Use BEREAK key to stop program
50 GOTO 2
A program can be made to wait for a specific character, like this:
10 OFEN #1,4,0,"K"
20 GET #1, R
30 TF REEASCOTX"M) THEN GOTO 20
40 EEND
The program inputs one character (line 20) and tests to see if it is the specific
character it wants (line 30). The user must enter the letter X. Nothing else will do.
Programs frequently use the GET statement with the keyboard or editor when
generating dialogue with the user. For example, the program may wait for the user
toindicate he or she is there by pressing a specific key. The following program waits
for the user to press the RETURN key:
10 OFEN #1,4,0,"K"
Z0 FRINT "Are gou thera?"
30 FRINT "Fress RETURN @ so."
40 GE 1R
50 ELES THEN GOTO 40
H0 FRINT "OK, let’s et on with it.

Notice that this sequence never displays the character entered at the keyboard.

Entering a Valid Date

In this section we will develop a program that inputs a valid date using the GET
statement. You must take more care with such simple data entry than might at first
appear necessary. In all probability the date will be just one item in a data entry
sequence. If you carefully design data entry for each small item, the user won’t have
to restart or back up in a long data entry sequence whenever he or she makes a
mistake in a single entry.

The user will have to enter the month, day of the month, and year as two-digit
numbers (Figure 4-34). The program supplies the dashes that separate the entries.
Depending on your personal preferences, you may substitute slashes or any other
character for the dashes.

The user should be able to see immediately where to enter the next data.
Therefore, the program will use an entry mask (Figure 4-35). The following pro-
gram lines create such a mask:

L0 DM MOEKGCZ) g RBCE) s DATECBY ,RCLD

Z0 MSK$="__"

Chapter 4: ADVANCED BASIC PROGRAMMING

171

MM-DD-YY

S~ | e~
T——Year
Separator

Day of the month

Separator
Month
FIGURE 4-34. Format for date entry
Cursor displays at entry
% character position

——

-
T

Data must be entered into
these character positions

FIGURE 4-35. Entry mask for date entry

1000
.he "

1010
1020
1050
8200
8210

FRINT CHR$CLZES) §"Enter & valid ds

IC=153TR=4
GOBUE 8Z003IREM Input dste
END

FOSTTION XC, TRIFRINT CHR$C2ZEG3) 5
FRINT M8K$(Ll,2)3"-"iMEKB(L,2) 3" "

JMEBKE (L, 208

8E20
8470

FOSITION IC,TRIFRINT CHR$C253) ;
RETURN

The program clears the screen so that residual garbage on the screen does not
surround the request for a date (line 1000). It starts date entry at column 15 and row
4 (lines 1010 and 8200). After displaying the date entry mask, the cursor moves back
to the first character of the mask, although this is not apparent because of the END
statement (line 1050).

Try using an INPUT statement on line 8400 to input the month. Add the
following statement and run the program:

3400 INPUT R$
The INPUT statement will not do. A question mark displaces the first input mask
character. An INPUT # statement would remedy that, but the user could still enter

too many characters and ruin the display.
This is an occasion to use the GET statement. Add the following program lines:

59 REM Open lkegtosead dnput ohanmel

G0 OFEN 4L, 0, "HK"

172 A GUIDE TO ATARI 400/800 COMPUTERS

G400 FOR Ji=0 TO 1

B4L0 GET 1R

440 PRINT CHRE$ RDY §IREM Echo dnput
8450 MEXT Jl

These statements accept a two-digit input. The input appears in the first part of
the entry mask. The program automatically terminates the data entry after two
characters have been entered. The user does not have to press RETURN.

Three two-digit entries are needed: month, day, and year. Rather than repeating
statements on lines 8400 through 8460, we will put these statements into a subrou-
tine and go to it three times, as follows:

5230
BE70

JECEA00 SREM Mornth
CCHRE(31) 3

& Lrput, Two ofaait
EITIO G FUETIE oA M 0 20K XK K G DN K 0 NG A0 M OO HOK
400 FOR Jl=0 T0O 1
G410 G fl s RERCALD
G440 FRINT CHRS$ R §IREM Eoho dnpat
SA4G0 NEXT JlL

8460 R R CRCD DY SRy = CHRE CROL Y

G470 RETURN

wr

There are three ways to help the user avoid errors while entering a date:

+ Accept only numeric characters (digits)
- Test for valid month, day, and year entries
- Provide a means of restarting the date entry.

Figure 4-36 shows the complete Enter Valid Date subroutine, including im-
provements. Only numeric entries are allowed (line 8430). The month must be
between | and 12 (line 8250). The program does not take leap years into account,
but otherwise it checks for the maximum number of days in the specified month
(lines 8290 through 8320). Any year from 00 through 99 is allowed (line 8360).
Entering an invalid date restarts the entire date entry sequence. If the user presses
the BACK S key, the entire date entry sequence restarts (line 8420).

Notice that the date is built up in the eight-character string DAT$ as month, day,
and year are entered (lines 8260, 8330, and 8370).

It takes extra time to write a good data entry program that displays information
in a pleasing manner and checks for valid data input, allowing the user to restart at
any time. It is certainly worthwhile to spend the extra time at this stage. You will
write a program once. A user may have to run the program hundreds or thousands
of times. Therefore, you spend extra programming time once in order to save users
hundreds or thousands of delays.

Chapter 4: ADVANCED BASIC PROGRAMMING 173

L0 DIM MOERGC2) s RECZ) ,DATHECB)Y yRAL)

20 MOH$="_ "

99 REM Open keyboard input channel
OFEN #L,4,0,"K3"

FRINT CHR$CLZE) 3" "Enter a valid da

1010 TC=1%3TR=4

1020 GOSUE QZ00IREM Input date

1030 FOSITION 13,6

1040 FRINT DATH4

1050 END

BL1P7 REM KKK KM KK KK K K K K MK K K K K K XK XK XK XK KK XK
8198 REM x Ernter Valid Date X
19 REM A KK K X K K K K XK K K K K XK K XK K XK KK K XK K
8200 FOSITION XC,IRSFRINT CHR$ (2933
8210 FRINT MOKSCL,2) 3" =" iMOKG (L, 2) 3" -"
sMOKE (L, 2) 3

8220 FOSITION IC,IRIFRINT CHR$(253);
8230 GOSUE 8400 +iREM Month

8240 M=VAL(R$)

82590 IF M+l OR M-12Z THEN 8200

8260 DATH(1,2)=R$IDATH(3,3)="-"

8270 FRINT CHR$(31);

8280 GOSUE 8400:iREM Day

8290 D=VAL(R$)

8300 IF D=1 THEN 8200

8310 IF M=2 AND Dx29%9 THEN 8200

8320 IF (M=4 OR M=6 0OR M=9 0OR M=11) AN
D D=30 THEN 8200

8325 IF D»31 THEN 8200

8330 DAT$(4,5)=REIDATH (S, ="

8340 FRINT CHR$(31)3}

8350 GOSUE B400:REM Yesr

8360 IF Y=0 OR Yx99 THEN 8200

8370 DAT$C(7,8)=RK%

8380 RETURN

B397 REM KAOK XK K KK K K X K K K XK K K K X K N K K K K XK K
8398 REM % Irput Two digits X
BIP9 FEM 3K K K K M K K K K K K K XK K K K 3K K K K K K KK K
8400 FOR Ji=0 TO 1

8410 GET L, RIRCILI=R

84192 REM BACK & Key means restarl
8420 IF R=126 THEN FOF $GOTO 8200
8429 REM Ignore nondigit entries

8430 XF R<48 OR R=E7 THEN 8410

8440 FRINT CHR$C(R) 3 IREM Echo input
8450 NEXT Jl

8460 RE=CHRS (R0 IPIRECZ)=CHR$ (K1)
8470 RETURN

FIGURE 4-36. Enter Valid Date subroutine listing

174 A GUIDE TO ATARI 400/800 COMPUTERS

A String Input Subroutine

The General Input subroutine (Figure 4-19) developed earlier in this chapter has a
serious shortcoming. You may have noticed that it lets the user type in entries that
are longer than the input mask. Worse yet, the user can move the cursor all over the
display screen with the arrow keys. All this adds up to a high probability that sooner
or later the user will ruin the display. If you use the GET statement instead of the
INPUT statement, you can control the input much more closely. You also rid the
program of the irksome question mark that the INPUT statement displays.

Figure 4-37 shows a bare-bones subroutine that inputs a string value. It begins by
setting the input value to null, just in case an obsolete value was there (line 600). To
keep the display neat, it turns the cursor off (line 610). It then displays the input
mask (lines 630 and 640). Note that the calling program must dimension and assign
the mask variable, MSKS$, must assign the screen location to variables IC (column)
and IR (row), and must assign the input length to variable IL. The subroutine inputs
one character with the GET statement (line 660). Here it assumes the main program
has opened channel 1 for input from the keyboard. It then computes the current
input length (line 670). After that, it analyzes the character just input. The RETURN
key generates an EOL character, which terminates entry (line 680). Digits, capital
letters, and punctuation marks are added to the input string, if space permits (line
690). The BACK S key causes the subroutine to back up one character. It redisplays
the input mask (lines 710 and 720) and removes the last character from the input
string (lines 740 and 750).

There are a number of ways in which the String Input subroutine (Figure 4-37)
could be improved. Here are some ideas:

+ Use a variable to specify the input channel.

« Allow upper- and lower-case letters (ATASCII codes 97 through 122).

+ Add a TRAP statement at the beginning to enable an error handler at line ERRHDL.

+ Call a subroutine at line number AMPSUB to display amplified instructions if a
particular character is entered. This is a bit trickier than in the General Input subroutine
(Figure 4-19) if the subroutine checks for the special character as each character is input.

+ Allow numeric input with range checking (LO < = R <= HI). As a last step before
returning from the subroutine, check whether the input is to be numeric. If so, convert
the string value to a numeric value and check the numeric value for range. Rely on the
TRAP statement and your error handler to take care of non-numeric entry errors. Do
not try to check the string before converting it.

The program below shows the String Input subroutine (Figure 4-37) in use. If you
want to run the program, be sure you type the subroutine in along with these
program lines.

9 REM Initiaslize variasbles

10 DIM MEKE(40)

29 REM Fill MOBK$ with input mask char
30 MEKPB="_"IMOEKS (40) =MEKE I MEKS (2) =MEK%

Chapter 4: ADVANCED BASIC PROGRAMMING

175

BT FUEM HOK KK KK K K K K K K K 3K K 3K K K 3K K 3K XK K XK 3K XK K XK
598 REM x String Input Subroutine X
EO0 FEM KKK K K K K K KK K K K K K 3K K K K K 3K XK K XK K XK K XK
600 Rt

410 FOKE 735, 03REM Cursor off

429 REM Display input mashk

630 FOSITION IC,IR

640 FRINT MSK$(1,IL)

649 REM Fosition to start of field
4650 FOSITION IC,IR

659 REM Input next character

660 GET #1,R

670 J=LENCRS)

679 REM Cursor on & quit if RETURN
4680 IF R=133 THEN FOKE 75%,2IRETURN
4689 REM If character 0K, add to input

4660

4699 REM Chechk for valid backspasce

700 IF Rx126 OR J=0 THEN GOTO 460
709 REM Rernew mask & erase last char.
710 FOSITION IC+J-1,IR

720 FRINT MSK$(Ll,1)}

730 FOSITION IC+J-1,IR

740 IF Jx1 THEN R$=R$(1l,J-1)

750 IF J=1 THEN R$=""

760 GOTO 660

690 IF Re=32 AND Ra=95 AND J<XL THEN R
$CJ+1, JHL)=CHRS (R SFRINT CHR$(R) 3 3GOTO

FIGURE 4-37. String Input subroutine listing

49 REM Open kegboard input channel
50 OFEN #1,4,0,"Kt"
89 REM Eranch to start of main program

20 GOTO 1000

1000 FRINT CHR$(125)IREM Clr screen
1010 FOSITION 2,4

1020 FRINT "NAME"

1030 IC=73TR=41TL=20G08UE 4600

1040 FOSITION 2,8

1050 FRINT "ENTERED: "jR$

1060 CLOSE #1

1070 END

Disabling the BReAk Key

The most carefully designed program is still vulnerable. The BREAK key can stop the
program. A message automatically appears on the screen, ruining the display. It will
probably be impossible to continue the program right where the break occurred,

176 A GUIDE TO ATARI 400/800 COMPUTERS

because the CONT statement resumes at the szart of the program line where the halt
occurred when the BREAK key was pressed. If that happens to be a multiple-
statement program line, some statements at the beginning of the line will be
reexecuted.

There is a way to disable the BREAK key (Figure 4-38). Unfortunately, it is not
foolproof. Several things reenable the BREAK key, including the SYSTEM RESET key,
the first PRINT statement that displays on the screen, any OPEN statement with
the display screen (device E: or S:), the first PRINT statement after such an OPEN
statement, and the GRAPHICS statement (see Chapter 8). The easiest way around
these limitations is to frequently execute the Disable BREAK Key subroutine (Figure
4-38). A good place to do thatis in the input subroutine. You can do this in either the
General Input subroutine (Figure 4-19) or the String Input subroutine (Figure 4-37)
on line 620 with a GOSUB 850 statement.

The LOCATE Statement

ATARI BASIC includes a statement which figures out the ATASCII code number
of a character at any particular screen location. It is the LOCATE statement. This
statement has the following format:

LOCATE 3,4,A0
The numeric variable name (AC in the example) is assigned the ATASCII code of
the character at the column and row specified by the first two numbers. In order to
use LOCATE, channel 6 must be open for input from the display screen.

The LOCATE statement not only interrogates the screen, it moves the cursor one
position to the right. If this happens at the end of a row, the cursor moves to the first
column of the next row down. The cursor doesn’t actually move until the next
PRINT or PUT statement outputs something to the screen. The LOCATE state-
ment moves the cursor in the same manner as the POSITION statement, by
updating memory locations 84 (row) and 85 (column). You can defeat the cursor
advance feature of the LOCATE statement by saving the contents of memory
locations 84 and 85 before the LOCATE statement and restoring them after it, like
this:

1000 OFEN #6,12,0,"853"

1400 F84=FEEK(84) iF35=FEEK(85)

1410 LLOCATE C,R, CODE

1420 FOKE 84,F841FOKE 895, 8%

The LOCATE statement is used in a somewhat different way with a graphics
display.

Joystick Character Entry

Earlier in this chapter we looked at a way to input numeric values with the joystick,
completely independent of the keyboard. By using the LOCATE statement in
conjunction with the joystick, a program can input any character directly from the
screen. The program first displays the characters to choose from. The user moves

Chapter 4: ADVANCED BASIC PROGRAMMING 177

BA47 FEM KKK KKK K K KK K K K K K K K K K XK K K K XK K XK KK
848 REM x Disstble BREAK Kewy X
B9 FUEM 30K KKK K K K K K K K K K K K K K K K 3K K 3K XK K X K X
8E50 J EKCLZ8) 128

860 IF J=0 THEN RETURN

870 FOKE 16é6,d

880 FOKE S3774,J

890 RETURN

FIGURE 4-38. Disable BREAK Key subroutine listing

the cursor from one character to the next with the joystick. When the cursor rests on
the desired character, the user presses the trigger button. The program reads the
value from the screen witha LOCATE statement. The next program illustrates this
technique. It requires the Move Cursor with Stick subroutine (Figure 4-33).
odes of aasme Lolkens

0596123

rput/output chan
i}

SREM Clvs sorean
token choloes
@ wour token'

1019
1020
1030
1040
1050
1060
1070
1080
108%
1070
1100
1110 ¢
1119

1120
1129
1130
1140
1149
1150
1159 RE

ibart ocursor at 4,3

; out of tolken
ZOXKSENCTOKEN-127)

L1140 :]

1170 FOSLTION Z,12

1180 i "You chose M3CHRE CTORKEN)
1700

The program begins by displaying a choice of six game tokens (line 20 and lines 1000
through 1070). Then it positions the cursor over the first token (lines 1090 and
1100), establishes the portion of the screen in which the cursor can roam (line 1120),
and the speed at which the stick will move the cursor (line 1130). It lets the user move

178 A GUIDE TO ATARI 400/800 COMPUTERS

the cursor with the joystick until it covers the token he wants (line 1140). It uses a
LOCATE statement to determine the ATASCII code of the token that the cursor
covers (line 1150). Because the cursor is covering the token, the ATASCII code is
the inverse of the token’s actual code, so the program has to reverse the cursor out of
the code (line 1160).

DEBUGGING PROGRAMS

A new program never seems to work quite the way you expect it to. Even if there are
no errors in the BASIC syntax, there may be errors in the program logic. Either kind
of error is a bug. The process of finding and eliminating program errors is called
debugging. There are several approaches you can take to debugging a program.

Thisis anappropriate place for the usual warning: take your time, plan it out, get
itright the first time. Don’t sit down at the keyboard with a half-baked notion about
what you want your program to do and start typing away. If you are new to
programming, supplement this book with one of the BASIC primers listed in
Appendix I to get some pointers on good programming practices.

Surprisingly, the PRINT statement is a very useful debugging tool. You can
temporarily put extra PRINT statements in your program at strategic points to
display messages which tell you that the program has reached a certain point
without failing. This helps you trace the flow of program execution. The extra
PRINT statements can display intermediate values of variables as well. This gives
you more information about program progress. It also helps you figure out which
part of a multiple-part calculation is faulty.

PROGRAM OPTIMIZATION

Traditionally, the optimal program is the one that runs the fastest and uses the least
memory. A better measure of a program’s merit is its usefulness. Itis all too easy to
get caught up in the quest for quintessential program efficiency and forget why you
wrote the program in the first place: to get a job done. Of course, useful programs
can be efficient, and vice versa. A fast program is less tiring and requires less
patience to use than a slow one. Avoiding memory waste leaves room for more
program features which make the program easier to use. In this spirit, we will
describe a few ways to write programs that are faster and use less memory.

Some of the techniques for making a program run faster will make it take more
space, while some ways of decreasing space requirements will increase program
execution time. When a conflict arises, you will have to decide which is more
important in your particular program.

Faster Programs

Spend time carefully designing your program before you write a single program
statement. Keep these tips in mind:

+ Identify the time-consuming parts of the program: array and string initialization,

Chapter 4: ADVANCED BASIC PROGRAMMING 179

lengthy calculations, screen displays, and so on. Use the fastest methods you know of to
accomplish these tasks.

+ Place the most frequently used subroutines on the lowest line numbers. Do the same
with popular FOR-NEXT loops. Whenever BASIC looks for a line number, it starts at
the beginning of the program. It will find the lowest line numbers faster than the highest
ones.

* When you use nested FOR-NEXT loops, try to put the loops with the most iterations
furthest inside the loop. This minimizes the bouncing back and forth between loops.

- Instead of repeating a calculation, do it once, assign the value to a variable, and use the
variable.

- Simplify calculations. Addition and subtraction take less time than multiplication and
division. Exponentiation takes the longest. Functions, especially nested functions, are
slow. You may avoid needless calculations inside a FOR-NEXT loop by clever use of
the index variable or step value.

- Put FOR-NEXT loops on the same program line.

Once you get your program working, go back and rewrite it. BASIC does not lend
itself to efficient programming. During debugging you probably added pieces of
code and used some new variables. Consolidate those fragments and reuse existing
variables. Cleaning up the program also makes it easier to change in the future.

More Compact Programs

The time to start saving space is during the design phase of your program. Use the
methods listed below, but use them with caution. Many of them lead to programs
that are hard to decipher. Figuring out how to make the program work the first time
is hard enough. It’s even worse to have rediscover how the program works every
time you look at it.

+ Avoid using constants (e.g., 0, 100, “Y,” “ENTER"). Instead, assign the value of the
constant to a variable early in your program. Then use the variable where you would
have used the constant. As a side benefit, it will be easier to change the one assignment
statement than to hunt down and change every occurrence of the constant.

- Use subroutines to avoid duplicating program lines. This will also improve the readabil-
ity, reliability, and changeability of your program.

+ Use the zero elements of arrays (for example, X(0), B(0)).

+ Use READ and DATA statements rather than simple assignment (LET) statements to
initialize variables. Better yet, use INPUT and GET statements and data files (see
Chapters 5 and 7).

- Branch using variables instead of constants for line numbers.

- Be thrifty with the use of variables. Reuse standard variables for FOR-NEXT loop
indexes, intermediate calculations, and the like. Don’t overdo it, though. Some unique
variables enhance program readability (for example, R$ is always user response).

+ Put more than one statement on a program line. Note, however, that compound
program lines are hard to edit and harder still to read and understand.

- Use REM statements judiciously; abbreviate comments. But be careful; the fewer

180 A GUIDE TO ATARI 400/800 COMPUTERS

remarks your program has, the harder it will be to understand when you come back to it
later on.

Rewrite the program once it is working. This will not only speed it up, but will
save space as well.

MACHINE LANGUAGE PROGRAMMING

In a manner of speaking, the ATARI computer does not understand BASIC
statements. It has to translate BASIC into a more primitive language, called
machine language. Machine language instructions are not words, like PRINT or
OPEN, but numbers. It takes many machine language instructions to equal one
BASIC statement. Each machine language instruction has a name, but the compu-
ter uses the number, not the name. What’s more, machine language doesn’t use
variables, only constants.

Programming in machine language is much more complicated than program-
mingin BASIC, so why bother? Machine language gives you more control over the
computer’s actions. It is similar to the control you get with the PEEK function and
the POKE statement, but is more flexible and powerful.

There is another kind of computer language closely related to machine language.
It is called assembly language. Instead of numeric instructions, assembly language
uses mnemonic abbreviations of the machine language instruction names. Each
assembly language instruction corresponds to one machine language instruction. In
most cases, people write assembly language programs and let the computer assem-
ble them into machine language equivalents. It is also possible to write programs
directly in machine language.

There are many machine languages. The ATARI computer understands one of
them, 6502 machine language.

This book will not attempt to teach you assembly language or machine language
programming. If you need to learn or brush up on assembly language or machine
language programming, consult one of the books in Appendix I before reading the
rest of this chapter.

The USR Function

ATARI BASIC allows you to transfer to a machine language program and return
back to the BASIC program. The USR function does this. Here is an example:

LS00 A=USROLSEA4)

USR isa function, not a statement. This means you have to use it like a variable or
an expression. This also means it returns a numeric value.

There must always be at least one parameter inside the parentheses of a USR
function; there can be many. The first parameter is the memory location where the
machine language program starts. Other parameters are separated by commas.
They must have values between 0 and 65535. BASIC passes the parameter values to
the machine language subroutine via the 6502 hardware stack. The following

Chapter 4: ADVANCED BASIC PROGRAMMING 181

example shows four USR parameters in use, including the machine language
program address:

1850 FRINT USROMLA,Z, RND (0 %255, 100)

The Hardware Stack

When ATARI BASIC encounters a USR function, it pushes its current location
within the BASIC program onto the hardware stack. Then, starting with the last
parameter on the list, BASIC converts each parameter to a hexadecimal integer
between 0 and 65535, and pushes the two-byte value onto the hardware stack. In
each case, the low byte precedes the high byte. The first parameter, which is the
starting address of the machine language program, is not placed on the hardware
stack. After pushing the last value on the stack, BASIC pushes a one-byte count of
the number of two-byte parameters, not including the address parameter. Figure
11-4 illustrates how the USR function uses the hardware stack.

The USR function always affects the 6502 hardware stack, even if only the
address parameter is present. In that case, it pushes only the one-byte count of
parameters, which is 0, onto the stack.

The machine language program must always remove these entries from the
hardware stack, or the computer will not be able to return to the BASIC program. A
single assembly language instruction like PLA removes one byte from the hardware
stack. The PLA instruction is equivalent to machine language instruction 68
hexadecimal, or 104 decimal.

The machine language program can transfer an integer value between 0 and
65535 back to the BASIC program. It must place the low byte of the value in
memory location 212 and the high byte in location 213. BASIC converts the
hexadecimal integer stored there into a numeric value, the value of the USR
function.

To return to the BASIC program, the machine language program must execute
an assembly language RTS instruction. That is machine language instruction 60
hexadecimal, or 96 decimal.

I-H-I‘H ﬂ-.u o Tl e B AT - - =nas

bl; lj.l LERFE
[

i S S
el TT, 2 g . - 3 :
L EpAL Inl iy o = T
T4FL Wasl R d .- _ .

il Al 1 P el i o . -
=l RN s st ae o
HIEA R o g Cafus lpalp] o .0 R

h*u M pr I |“i';ﬂd.|r. .= S o [
1 II'-H'!'HH N n= . .
T - : A
? 'H'ﬂllllhllillllll = Gl -
Wﬂ |l|ll||JF'|"- . . 1. «prdE

oy =y = fee - =plodib,
B R, il sl aanu-m-- D am i
- TR = B = _mp-tmr
Fup i e S - - = anl=-
- el o e o == a. .1

i - gl =g T - - I T FR N

|.|.|.'|,“_1.||.1.- st RN Bl BT ET . S = = o -

o Nl D ATl BT o = e

QR) 'l!lllll- b ed Bl an e S n = Bnperpe
- B _‘-

raninues s - G Emeetaiec-o 3 "l et —w- =

C et UL o ="l Ae"asmam | § pragrs _E -

5
THE
PROGRAM
RECORDER

The ATARI410 Program Recorder can store BASIC programs or data outside the
computer’s memory, on cassettes. Later, it can read the programs or data back into
memory.

PROGRAM STORAGE

There are three ATARI BASIC statements — CSAVE, LIST, and SAVE — that
save programs on cassette. Each of these statements has a counterpart — CLOAD,
ENTER, and LOAD — that loads a program back into memory.

Saving a Program

CSAVE is a special statement for saving programs on cassette only. LIST and
SAVE are general statements that output a program to any device, the program
recorder being just one. Any of the following statements will record a program on
the program recorder:

CSAVE
LIST "Cs»
SAVE "Civ

Notice that you must specify the program recorder (device C:) for the LIST and
SAVE statements.

Both the CSAVE and SAVE “C:” statements always save the entire program
from memory. The LIST “C:”statement can save all or part of the program. As with
other forms of the LIST statement, you can specify the first and last lines to be
listed. For example, the following statement records only program lines with line
numbers between 100 and 1000.

183

184 A GUIDE TO ATARI 400/800 COMPUTERS

LIST "C8",100,1000

The CSAVE, LIST “C:”,and SAVE “C:” statements all cause the same sequence
of events. First, the computer beeps its built-in speaker twice. This is your signal to
put a cassette into the program recorder. With the REWIND and FAST FORWARD
levers, cue the tape to the spot where you want the recording to start, generally the
beginning of the tape. Then depress the RECORD and PLAY levers. The ATARI
computer cannot tell when you finish setting up the tape in the program recorder.
You must signal it when the cassette is ready by pressing the RETURN key on the
keyboard. The tape starts moving. If you turn up the volume on the television, you
will hear the recording taking place. First there is a steady, high-pitched tone. This is
followed by one or more bursts of sound. Each sound burst means the program
recorder is saving another block of the program on the cassette. The longer the
program, the more blocks it takes, and the more sound bursts you will hear. The
sound bursts stop when the recording is complete. The tape stops as well. You can
now press the STOP lever.

Loading a Program

The CLOAD statement loads programs saved on cassette by the CSAVE statement.
ENTER and LOAD are general statements that input a program from any device.
ENTER “C:” can only load programs saved by the LIST “C:” statement. LOAD
“C:” can only load programs saved by the SAVE “C:” statement.

Both the CLOAD and the LOAD statements erase the program currently in
memory before loading a new one. The ENTER statement, on the other hand,
merges the program it loads with the program in memory. If there are incoming
lines with the same line numbers as existing lines, the incoming lines replace the
existing ones. To circumvent the merging, type NEW before using the ENTER
statement.

The CLOAD, ENTER “C:”, and LOAD “C:” statements all cause the same
sequence of events. First, the computer beeps its built-in speaker once. This is your
signal to put the cassette containing the program you want to load into the program
recorder. Use the REWIND and FAST FORWARD levers to cue the tape to the spot
where the program starts, generally the beginning of the tape. Depress the PLAY
lever. The ATARI computer cannot tell when you finish setting up the tape in the
program recorder. You must signal it when the cassette is ready by pressing the
RETURN key on the keyboard.

The tape starts moving. If you turn up the volume on the television, you will hear
the program load taking place. First there is a period of silence, typically lasting 20
seconds. This is followed by one or more bursts of sound. Each sound burst means
the program recorder is loading another block of the program from the cassette.
The longer the program, the more blocks there are, and the more sound bursts you
will hear. The sound bursts stop when the whole program is in memory. The tape
stops as well. You can now press the STOP lever.

Chapter 5: THE PROGRAM RECORDER 185

The Tape Counter

A program is usually recorded starting at the beginning of the tape. That way it is
always easy to find: just rewind the tape completely. A program can start anywhere
on the tape, as long as you can find it again. If you can’t find it, you can’t load it.

Youcan use the tape counter to mark the start of a program. You must remember
to always reset the tape counter whenever you rewind the tape. It must always start
at 0 when the tape is fully rewound. Never reset the counter at any other time. If you
put a new tape in the program recorder, don’t assume it is rewound. Depress the
REWIND lever just to be sure, then reset the counter. If you observe these pre-
cautions, a recording that started at a certain tape counter reading will always start
at that reading.

Tape counter speed varies from one recorder to the next. Thus, tape counter
readings noted on one recorder may not match those on another.

One-Step Program Load and Run

A new form of the RUN statement lets you load and run a program from cassette in
one step. It looks like this:

RUN "C3"

This is essentially a combination of the LOAD “C:” and RUN statements. There-
fore it works only with programs recorded on cassette by the SAVE “C:” statement.

Chaining Programs

The RUN statement works just as well in programmed mode as it does in immediate
mode. A program that contains a RUN “C:” statement will run and load another
program when that statement is executed. This process of one program loading
another is called chaining.

To see how this works, put a cassette in the program recorder, rewind it all the
way, and type in the following statements:

NEW

READY

10 FRINT "FROGRAM ONE"

20 PRINT "FRESS RETURN WHEN THE TAFE I
S READY"

30 RUN "G

SAVE "C:i"

READY
That puts the first program on tape. Notice that the program includes instructions
to the user (line 20) so he will know what to do when the RUN “C:” statement (line
30) beeps the built-in speaker.

186 A GUIDE TO ATARI 400/800 COMPUTERS

The program is still in memory. Change it to become the second program, and
save the result on tape.

10 FRINT "FROGRAM TWO"
SAVE "C:"

READY
&
Now there are two programs on the tape. Make a few changes to the second
program, which is still in memory, to create the third and final program, and save it
on tape.

10 FRINT “"FROGRAM THREE"

20 END

30

SAVE "C"

READY

8

The cassette now has three programs on it, one right after another. The first will
load and run the second, and the second will load and run the third. Rewind the tape
and try it:

RUN "C3"

FROGRAM ONE

FRESS RETURN WHEN THE TAFE IS READY

FROGRAM TWQO

FRESS RETURN WHEN THE TAFE IS READY

FROGRAM THREE

READY

#®

Chained programs look to the user much like one long program. When programs
are chained, the user must press RETURN to continue with the next program module.
This interrupts program continuity somewhat, but not as much as having to type
RUN “C:” between every module.

The main drawback to chaining programs with the RUN statement is that it
clearsall variables before it loads the next program. Therefore, one program cannot
use values that were input or calculated by an earlier program in the chain.

Subroutine Libraries

Review the utility subroutines developed in Chapter 4 (Figures 4-16 through 4-21,
4-31,4-33,and 4-36 through 4-38). They are useful subroutines in many programs,
but it is certainly inconvenient having to retype them every time you want to use
them. One way to get around this is with the CSAVE and CLOAD statements. Type
in all the subroutines together and record them with the CSAVE statement. Then
when you start to write a new program, the first thing you do is load the whole
subroutine package with the CLOAD statement. Delete the lines you won’t need,
and you are left with the subroutines you want. This method works well unless you

Chapter 5: THE PROGRAM RECORDER 187

have two subroutines that use the same line numbers, or more subroutines than will
fit in memory at once.

The LIST“C:”and ENTER “C:”statements make it easy to incorporate subrou-
tines into programs. All you do is record each subroutine as a separate program
with the LIST “C:” statement. It usually works best if you put only one or two
subroutines on each side of a tape. Then when you write a new program, you can
merge subroutines at any time by using ENTER “C:” statements.

Program Recording Formats

Recording a program is outwardly the same no matter which statement you use,
CSAVE, LIST“C:”,or SAVE “C:”. But the three statements each record programs
in a different format.

The LIST statement outputs programs in the same format regardless of the
device. It sends out the ATASCII code of every character in the program listing.

Boththe CSAVE and SAVE statements abbreviate keywords with one-character
tokens. Thus, instead of storing five ATASCII characters for the keyword PRINT,
the tokenized format stores just one character, the token for PRINT. The CLOAD
and LOAD statements load tokenized programs. It doesn’t matter what the codes
for the tokens are, since the computer encodes and decodes them for you.

The ATARI computer records programs in blocks. The difference between the
CSAVE and SAVE “C:” statements is the space between those blocks on the tape.
The CSAVE statement records programs more densely than the SAVE “C:” state-
ment. Thus loading and saving proceed a bit faster with CSAVE and CLOAD than
with SAVE “C:” and LOAD “C:”.

Variable Name Table

ATARI BASIC keeps a table of all the variable and array names you have used in
programmed or immediate mode. The CSAVE and SAVE statements record this
variable name table along with the program lines. The CLOAD and LOAD
statements load the variable name table back into memory, replacing the current
variable name table.

The LIST statement does not record the variable name table, nor does the
ENTER statement load a variable name table. The existing variable name table
remains. When you run the program, variables and arrays it uses are added to the
variable name table.

Overa period of time, the variable name table can become cluttered with obsolete
variable names. It is easy to clear out the deadwood. First, record the program with
the LIST statement. Then clear the variable name table completely with the NEW
statement. Of course, this erases the program as well. Load the program back into
memory with the ENTER statement.

STORING DATA

Many computer applications involve large amounts of data, more than the compu-
ter can possibly store in its memory at once. ATARI BASIC lets you store data on

188 A GUIDE TO ATARI 400/800 COMPUTERS

cassette withthe PRINT#and PUT statements. The INPUT # and GET statements
read the data back in.

Data Files, Records, and Fields

The computer stores data on a cassette in files, much as you might store informa-
tion in a filing cabinet. Each cassette is the equivalent of a filing cabinet; each
cassette file is the equivalent of a file drawer. A cassette can have one file or many
files, just as a filing cabinet can have one drawer or many. A cassette file, like a filing
cabinet drawer, can be full or empty.

Data files are divided into records and fields. These can be compared to the file
folders and their contents in a file drawer. There can be any number of records in a
data file, as long as the tape is long enough to hold them all. A record can have any
number of fields, though all records in the same file generally have the same number
of fields. If a field is unused, its value is zero or blank. The computer writes a special
record, called the end-of-file (EOF) record, to mark the end of the file.

Cassette data files do have one limitation: data in them can only be accessed
sequentially. You must always start at the beginning of the file and read through to
the end. You cannot add or delete records.

The Cassette Buffer

Rather than transfer data to and from the program recorder character by character,
the ATARI computer does it in [28-character blocks. It sets aside part of its
memory to hold one block of cassette data. This area is called the cassette buffer.

Cassette File Format

Every cassette data file has three components: the leader, data blocks, and an
end-of-file record (Figure 5-1). The 20-second leader gives the program recorder
and the computer a chance to synchronize and prepare for data transfer. All data
blocks except the last one contain 128 characters (bytes) of data. The last data biock
contains the last few characters in the file, usually less than 128. The very last block
on the file is the special end-of-file block.

A record may take more than one block, exactly one block, or less than one block,
depending on its length. Generally speaking, the program does not have to worry
about how the data records are blocked. The computer takes care of that automati-
cally. The only exception will be discussed in the next section.

Opening a Data File

When you open a file, the information in it becomes accessible. The information
remains accessible until you close the file. Use the OPEN statement to open a
cassette data file, like this:

OFEN #1,8,0,"C3"

This statement opens channel | for output to the program recorder.

Chapter 5: THE PROGRAM RECORDER 189

§ ‘ 20-second leader Data block‘E\\

-~

N \—‘ﬁa block EOF g

FIGURE 5-1. Cassette data file format

As with other devices, the second parameter of the OPEN statement determines
whether the specified channel is open for input or output. A value of 4 means input,
8 means output. A cassette file cannot be open for input and output simultaneously.
The third OPEN statement parameter is 0 for normal data files.

When you open a cassette data file, the computer goes through its tape-cueing
process. It beeps the speaker once for input, twice for output. Then it waits while the
user positions the tape to the proper starting point with the REWIND and FAST
FORWARD levers. When the user presses a key on the keyboard, the program
recorder starts the tape moving.

It is a good idea to display some instructions for the user just before opening a
cassette data file. That way the speaker beeping won'’t take the user by surprise. Here
is an example:

10 FRINT "Cue taped press RETURN when

ready'}

20 OFEN #2,4,0,"C3"

As soon as the tape starts moving, the computer starts to read or write the
20-second file leader. If the channel is open for output, it writes the leader. If the
channel is open for input, it reads the leader. During this time, the computer will
execute no other statements.

When the program recorder finishes reading or writing the leader, the program
must immediately read or write the first data. If the file is open for output, the
program must write 128 characters out to the program recorder. If it fails to do so,
an error may result when the file is subsequently read. If there is no real data ready
to go, the program can write a dummy block of zeros or blanks. If the file is open for
input, the program must read the first data value from the file. If it does not, an error
may occur when it tries to read data later in the program. Examples will be provided
later in this chapter.

Closing a Data File

Closing an inactive data file is important because it frees a channel for other use.

190 A GUIDE TO ATARI 400/800 COMPUTERS

The CLOSE statement closes a data file. Here is an example:
CLOSE #1

It is especially important to close a file that has been open for output. Failure to
do so may result in loss of data. The cassette buffer may be partially full of data.
Closing the file outputs the partially full buffer to the last data block on the cassette
file. If the file is not closed, the partially full cassette buffer is never output.

Both the END and RUN statements automatically close all open channels. The
computer also closes all open channels when it runs out of programmed mode
statements to execute.

Writing to Data Files

Either a PRINT # or a PUT statement can output data to a cassette file. Both
statements direct output to an open channel. It makes no difference to which device
the the output channel is linked. If an OPEN statement has linked the output
channel to the program recorder (device C:), that is where the data ends up. The
following program demonstrates this:

10 FRINT "Cue taped press RETURN when
ready"

20 OFEN #3,8,0,"C"

30 FRINT #33"This messaqe is writterm t
o the proaram recorder."

40 CLOSE 43

The PRINT # statement outputs numeric and string values in ATASCII code.
Always use semicolons, rather than commas, to separate items in a PRINT #
statement to the program recorder. Commas are perfectly legal, but only result in
extra spaces being recorded.

Each separate data value sent to the program recorder must end with an EOL
character. When the value is read back, the EOL character determines where it ends.
One way to guarantee that the EOL character occurs is to output each value with a
separate PRINT # statement. Never end such PRINT # statements with a semicolon
orcomma. Another way to output the EOL character is with the CHRS$ function, as
follows:

10 FRINT "Cue tapef press RETURN when
ready"

20 OFEN #3,8,0,"Cs"

30 FRINT #3;ACHR$(1SS)EICHRS(15%) sC
40 CLOSE #3

Each PUT statement outputs a single numeric value between 0 and 255. Each
value takes the same space as one ATASCII character. The following program
outputs a dummy record right after it opens an output channel to the cassette.

Chapter 5: THE PROGRAM RECORDER 191

10 FRINT "Cue tape; press RETURN when
ready"

20 OFEN #3,8,0,"Ct"

29 REM Dummy cassette record

30 FOR J=1 T0O 128

40 FUT #3,0

950 NEXT J

460 FRINT #3,"First actual data"

70 CLOSE #3

Reading Data Files

The INPUT # statement reads values stored by the PRINT # statement. The channel
number it specifies must be open for input from the program recorder. To see how it
works, first use the following program to create a data file:

10 DIM A$(120)
20 FRINT "What message do gou want rec

orded?"

30 INFUT A%

40 FRINT

50 FRINT "Cue tape; press RETURN when
ready"

60 OFEN #3,8,0,"C:"
70 FRINT #3:A%
80 CLOSE #3

The next program uses the INPUT # statement to read back the message recorded
by the previous program. Don’t forget to rewind the tape.

10 DIM A$(120)

20 FRINT "Cuwe tape; press RETURN when
ready"

30 OFEN #3,4,0,"Ct"

40 INFUT #33A%

50 FRINT A%

60 CLOSE #3

The INPUT # statement interprets data from a cassette file as ATASCII codes.
Every time it encounters an EOL character (ATASCII code number 155), it assigns
the characters it has read since the last EOL character to the next variable on its list.
If the variable is numeric, the INPUT # statement converts the characters it has read
into a numeric value. If the value is not numeric, error 8 occurs.

Each GET statement reads one numeric value. Your program must decide how to
interpret that value. For example, it can interpret the value as an ATASCII code
with the help of the CHRS function. The next program uses the GET statement to
read the same file as the last program.

192 A GUIDE TO ATARI 400/800 COMPUTERS

10 FRINT "Cue tapes press RETURN when
ready"}

20 OFEN #3,4,0,"C¢"

30 GET #3,4

39 REM Frint chars., until EOL

40 IF A«»19% THEN ? CHR$(A)3:GOTO 30
50 ? tREM Force carriaqge return

460 CLOSE #3 ’

Notice that this program has to watch for the EOL character itself (line 40).

A Practical Example

Consider a practical use of cassette files: a mailing list. Two programs will be
needed. One will input names and addresses from the keyboard and save them on
cassette. The other will read the names and addresses from the tape and display
them on the screen. In Chapter 6 we will develop a program to print mailing labels
from the cassette file.

Records on the mailing list file will each have five fields: name, street, city, state,
and ZIP code. Our programs will always use the same string variables to reference
each field: NAS, STTS, CIS$, ST$, and ZIPS$.

The program that creates the mailing list file must first dimension the record
variables and open an output channel to the program recorder. The program should
output a dummy record after it opens the output channel. The first real data will not
be ready until the user enters it, and there is no telling how long that will be. The
following program lines do all that:

50 DIM NA%CZ20),5TT$(20),CI$(20),5T$(2)
2y ZIB () yREC20) ,EOLEC(L)

460 EQOL$=CHR$(155) {REM EOL character
69 REM Open file, write dummy record
70 GOSUE 3000

1900 END

2999 REM Open for cassette output
3000 FRINT CHR%(125)}"Cue tape, press
RETURN, and stand by."

3010 OFEN #1,8,0,"C:"

3019 REM Output 8 dummy record

3020 FOR Ji=1 TO 1283FUT #1,0:NEXT Jl
3030 RETURN

Next, the program must enter the data for one record, as follows:

1000 FRINT CHR$(12%5);"ENTER NAMES AND
ADDRESSES"

1010 FRINTIFRINT

1020 FRINT " Name '}

1030 INFUT NA%

1040 FRINT " Streeti"}

1050 INFUT 8TT$

1060 FRINT " Cityt"s

1070 INFUT CI$

Chapter 5: THE PROGRAM RECORDER 193

1080 FRINT " Statel'}
1090 INFUT ST%

1100 FOSITION 20,6

1110 FRINT "ZIF$"3

1120 INFUT ZI$

If the user makes a mistake, the program should at least allow him to start over
again. The following lines do that:

1130 FOSITION 2,1

1140 FRINT "Reenter this?"

1150 INFUT R$:R$=R$(1,1)

1160 IF R$="N" OR R$="n" THEN 1300
1170 IF R$="Y" OR R$="4" THEN 1000
1180 GOTO 1130

When the user indicates that the data is correct, the program can output it to the
program recorder. The output goes to the program recorder via the cassette buffer.
If there is room in the cassette buffer for all of it, the output occurs very quickly. But
the cassette buffer may become full and have to be recorded on the cassette. That
will take a few seconds. Just to be safe, the program should advise the user to stand
by while the output occurs. Add the following program lines:

1300 FOSITION 8,21

1310 FRINT "x X %X FLEASE STAND EY X X
xll:

1319 REM Output cassette record

1320 FRINT #13NASSEOL$;STTSIEOLSCI$E
OL$3STSIEOLS;ZTS

With the output completed, the program can now erase the advisory message and
check with the user to see if there is more data. Add the following lines:

1329 REM Erase advisory messaqe

1330 FRINT CHR$(156) tREM Delete line
1340 FOSITION 2,1

1350 FRINT "Add another name and addre
SS”

13460 INFUT RIR=R$(1,1)

1370 IF R$="Y" OR R$="y" THEN 1000
1380 IF R$=="N" AND R$<H"r'" THEN 1340

When the user finishes entering names and addresses, the program outputs one
more record, then closes the file. The extra record is called a trailer record. It marks
the end of the file. It has special values in all five fields — values the user is unlikely
toenter. A program which reads the file can watch for these special field values and
stop reading when they appear. These lines finish the program:

1389 REM Output trailer record
1390 FOR J=1 TO SIREM § fields
1400 FRINT #13CHR$(253)EOL%}
1410 NEXT J

1420 CLOSE #1

1900 END

194

A GUIDE TO ATARI 400/800 COMPUTERS

50 DIM NAGCZ0) ,8TT$(20),CIHC20),8TH(2)
s ZLB (DY RBCZ0) ,EOLSECL)

60 EOL$=CHR$ (155) tREM EOL character

469 REM Open file, write dummy record
70 GOSUE 3000

1000 FPRINT CHR$(1ZE) $VENTER NAMES AND
ADDRESSES"

1010 PRINT $FRINT

1020 FRINT " Namet'}
1030 INFUT Na$
1040 FRINT " Streeti"}
L0S0 INFUT STT$
1060 FRINT " Cityi"}
1070 INFUT CI4
1080 FRINT " Statel"}

1090 INFUT ST4%

1100 FOSITION 20,6

1110 PRINT “ZIFi'";

1120 INFUT ZI%

1130 FOSITION 2,1

1140 FRINT “"Reenter thig?"

1150 INFUT R$IRS=R$(1,1)

1160 IF R$="N" OR R$="n'" THEN 1300
1170 IF R$="Y" OR R$="y" THEN 1000
1180 GOTO 1130

1300 FOSITION 8,21

1310 PRINT "x X %X PLEASE STAND BY X X
xll;

1319 REM Output cassette record

1320 FRINT #LINASIEOLSISTT$IEOLS;CI$E
OL%3STHIEOLS I ZT$

1329 REM Erasse advisory messaqe

1330 PRINT CHR$(156)tREM Delete line
1340 FOSITION 2,1

1350 FRINT "Add another name and addre
SS“

1360 INFUT RIR=R$(1,1)

1370 IF R&="Y" OR R$="4" THEN 1000
1380 IF R$=UN" AND R$<="n'" THEN 1340
1389 REM Output trailer record

1320 FOR J=1 TO SIREM 9 fields

1400 FPRINT #13CHR®(253)E0LS}

1410 NEXT J

1420 CLOSE 41

19200 END

2999 REM Open for cassette output
3000 PRINT CHR$(125);"Cue tape, press

NOTE: Demonstrates cassette data file output. Shaded lines can be added to Figure 4-25

to add output capability to it.

(continued)

FIGURE 5-2. Mailing List Entry program listing

Chapter 5: THE PROGRAM RECORDER 195

RETURN, and starnd by."

3010 OFEN #1,8,0,"C:"

30192 REM Output a dummy record

3020 FOR Ji=1 TO 128iFUT #1,0iNEXT Ji
3030 RETURN

NOTE: Demonstrates cassette data file output. Shaded lines can be added to Figure 4-25
to add output capability to it.

FIGURE 5-2. Mailing List Entry program listing (continued)

The complete program appears in Figure 5-2. You probably noticed that the data
entry section is fairly crude. One of the programs in Chapter 4 inputs the same data,
name and address, but uses many more data entry aids (Figure 4-25). Compare lines
1000 through 1180 in Figure 5-2 with lines 1000 through 1230 in Figure 4-25. You
may wish to combine the cassette output portions of Figure 5-2 (lines 50, 60, 70,
1300 through 1420, and 3000 through 3030) with Figure 4-25 (all lines except 50) for
the best program.

A program to read the cassette file starts out by dimensioning the variables used
to read a data record. Then it opens an input channel to the program recorder, and
reads past the dummy record at the beginning of the file. Use the following lines:

50 DIM NASCZ20),8TT$(20),CI$(20),8T$(2)
2y ZI6C(P) ,RECZ0)

69 REM Opern file, read dummy record
70 GOSUE 3100

1900 END

3099 REM Open for cassette input

3100 FRINT CHR$(12%9):"Cue tape, press
RETURN, and stand by."

3110 OFEN #1,4,0,"C"

3119 REM Input a dummy record

3120 FOR Ji=1 TO 128:GET #1l,RINEXT Ji
3130 RETURN

Next, the program displays some instructions for the user. The display can be
stopped by pressing CTRL-1, a standard ATARI computer feature. Pressing CTRL-I
again restarts the display. The following lines display the instructions:

1000 FRINT CHR$(125){REM Clr screen
1010 FPRINT "DISFLAY MAILING LIST"

1020 FOSITION 2,21

1030 FRINT "Fress CTRL-1 to stop displ

a‘j’ll

1040 FRINT "Fress CTRL-1 again to resu

me."

1050 FOSITION 2,2

1060 FRINT "Fress RETURN when ready to
beqin"

1070 INFUT R$

196 A GUIDE TO ATARI 400/800 COMPUTERS

S50 DIM NABC20),8TTH(20),CI$(20),8T$(2)

2 ZIB (P, REC20)

469 REM Open file, read dummy record

70 GOSUE 3100

1000 PRINT CHR$(12%5)IREM Clr screen

1010 FRINT "DISFLAY MATILING LIST"

1020 FOSITION 2,21

1030 FRINT "Fress CTRL-1 to stop displ

a8y,

1040 FRINT "Fress CTRL-1 sgain to resu

Me s "

1050 FOSITION 2,2

1060 FRINT "Fress RETURN when ready to
hegin"

1070 INFUT R#%

1079 REM Display mailing list

1080 OFEN #4,8,0,"8%"

1089 REM Resd next record

1090 INFUT #1,NA%,S8TT$,CL$,5T%,Z1$
1099 REM Watch for trailer record
1100 IF NA$=CHR$(253) THEN 1200

1110 FRINT #43NA%

1120 FRINT #438TT4

1130 FRINT #4;CI4

1140 FRINT #4;8T$;" "3ZI1¢%

L1150 FRINT $FRINT

11460 GOTO 1090

1199 REM Trailer record fournd) aquit
1200 CLOSE 1

1210 CLOSE #4

1900 END

3099 REM Open for cassette input

3100 PRINT CHR$(129)3"Cue tape, press
RETURN, and stand by,

3110 OFEN #1,4,0,"Ct"

3119 REM Input a8 dummy record

3120 FOR Jl=1 TO 128:1GET #1,RINEXT J1
3130 RETURN

NOTE: Demonstrates cassette data file input. Can be modified to print a mailing list on
a printer (see Figure 6-4).

FIGURE 5-3. Mailing List Display program listing

The program will display the mailing list on the screen, so it opens an output
channel to the screen. Then, one by one, it reads records from the cassette and
displays them on the screen. Each time it reads a record, it checks to see if it is the
trailer record. Without this check, the program would eventually read the end-of-
file record, which would cause error 136. The following lines finish the program.

Chapter 5: THE PROGRAM RECORDER 197

1079 REM Display mailing list

1080 OFEN #4,8,0,"5%"

1089 REM Read next record

1090 INFUT #1,NA%,5TT$,CI%,5T$,Z1%
1099 REM Watch for trailer record
1100 IF NA$=CHR$(2E3) THEN 1200
1110 FRINT #4;NA%

1120 PRINT #4;S8TT%

1130 FRINT #43;CI%

1140 FRINT #43;8T$;" "3ZI%$

1150 FRINTIFRINT

11460 GOTO 1090

1199 REM Trailer record found; quit
1200 CLLOSE #1

1210 CLOSE #4

The complete program listing appears in Figure 5-3. Chapter 6 has a modified
version of this program that prints the mailing list instead of displaying it (Figure
6-4).

6
ATARI PRINTERS

When you turn on an ATARI computer, output automatically goes to the display
screen. It is easy to divert the output to a printer instead.

This chapter will concentrate on programming output on the three ATARI
printers: the ATARI 820 Printer, the ATARI 822 Printer, and the ATARI 825
Printer. When it comes to printing ordinary text and numbers, there is very little
difference between the three ATARI printers. The main difference is in the width of
the print line. The ATARI 820 and 822 Printers both have 40-column lines, just
like the display screen. The ATARI 825 Printer has a nominal 80-column line; it can
print as many as 132 characters per line. It also has a number of programmable
features which will be covered at the end of this chapter. Until then, everything
applies equally to all three printers unless stated otherwise.

Before going any further, make sure your printer is properly connected and
turned on. The ATARI 825 Printer must be hooked up through the ATARI 850
Interface Module, and both components must be turned on. Refer to the operator’s
manual for detailed installation instructions.

PRINTING PROGRAM LISTINGS
If you type the LIST command at the keyboard, the BASIC program inthe ATARI
computer’s memory will be listed on the display screen. A variation of the LIST
command lets you divert the listing to a printer. It looks like this:

LIST "F$Y

P:isthe printer’s device name. By explicitly stating the device name with the LIST
command, you tell the computer where output goes. You can also specify starting

199

200 A GUIDE TO ATARI 400/800 COMPUTERS

and ending line numbers to be listed. The following command lists all program lines
between lines 10 and 100 on the printer:

LIST “F¢",10,100

No matter which device it goes to, the listing looks much the same. One exception
is line length. The output device, not the LIST statement, determines the maximum
line width. The display screen, the ATARI 820 Printer, and the ATARI 822 Printer
all have a 40-column limit. Program lines longer than 40 characters will wrap
around to the next display or printer line. Normally, the ATARI 825 Printer hasan
80-column limit. On this printer, a program line will not wrap around unless it is
more than 80 characters long.

None of the printers can print graphics characters, such as [#] and [#]. On the
ATARI 820 and 822 Printers, graphics characters appear as blank spaces in a
printed listing. On the ATARI 825 Printer, some graphics characters do not print at
all, while others cause strange special effects. These will be described at the end of
this chapter.

PROGRAMMING PRINTER OUTPUT

Programming output on the printer is almost the same as programming output on
the display screen. It is certainly no harder, although some differences do exist. For
example, the printer has no cursor. The POSITION statement will move the cursor
around on the screen display, but it will not move a print head around on a piece of
paper. The printer prints an entire line at a time. Lines print sequentially, one line
after another. On the screen, you can display the headings on a form (see Figure
4-24), then go back and fill in values for each heading. You cannot do this on the
printer. Instead, you must print all the headings and values for one line before you
go on to the next.

The LPRINT Statement

ATARI BASIC has a special statement for sending output to the printer. This
statement, LPRINT, is designed to work with the 40-column printers in exactly the
same way a PRINT statement works with the display screen. LPRINT, however,
prints on the printer, rather than displaying on the screen. Here are some examples:

L0 LFRINT "LEFRINT STATEMENT DEMONSTRATION"

20 LFRINT

30 LFRINT "NO« ONE","NO+ TRO","NO, THREE"

40 LFRINT 2.2E+44,-100.76,

G0 LFRINT 1234567890

The LPRINT statement does not work quite right under all circumstances on the
ATARI 825 Printer. If an LPRINT statement generates 40 characters or fewer and
ends with a semicolon or comma, the output of the next LPRINT statement begins
in column 41 of the same print line. Run the above program, and you will see that
lines 40 and 50 demonstrate this phenomenon. If an LPRINT statement generates

Chapter 6: ATARI PRINTERS 201

between 41 and 80 characters and ends with a semicolon or comma, the output of
the next LPRINT statement starts at the beginning of the next print line.

The LPRINT statement automatically uses channel 7 for output. No OPEN
statement is necessary. If the channel is already open to some other device, an error
occurs, closing channel 7 in the process. Subsequent LPRINT statements will work
fine.

PRINT # and PUT with a Printer

Eithera PRINT # or PUT statement can send output to the printer. Both of these
statements direct output to an open output channel. They do not care which device
the output channel is linked to. In order for the output to go to the printer, you need
only link the output channel to the printer (device P:). The followingis an OPEN
statement which does that:

L0 QFEN #2,8,0,"F3"

After executing this statement, any PRINT # or PUT statement to channel 2 will
send output to the printer.
The following program prints two lines of text on a printer:

10 REM QUTFUT 2 LINES TO A FRINTER

20 REM Openrn & printer ouwtput channel

30 OFEN #3,8,0,"F"

40 FRINT #3:"Nice qguys Finish last"

G0 FRINT #33"Chesters never prosper"

40 CLOSE &3

Output is much slower on the printer, but is otherwise identical to screen output.
No matter what the output device is, PRINT # statements (lines 40 and 50 in the
example) always format output the same way. In fact, the PRINT # statement itself
knows only which channel to put the output on. It has no idea to which device the
outputis going. Try changing the OPEN statement so that it opens channel 3 to the
display screen (device S:). Rerun the program, and the same two lines of text appear

on the screen instead of on the printer.

Mixing Screen and Printer Output

A program can alternate its output between the printer and the display screen. Plain
PRINT statements, without channel numbers, always go to the screen. The
LPRINT statement always goes to the printer. You can mix these statements freely
inany program. Use PRINT for output that will always go to the display screen. Use
LPRINT for output that will always go to the printer.

What about output that may go to either the printer or the screen? By using the
PRINT # statement, you can let the program user decide where program output will
appear. Of course, the program must display its output in a manner that will work
oneither the screen or the printer. It must start at the top of the page and print each
line completely before it moves on to the next. It must print lines no more than 38
characters long. It can printat most 24 lines at a time, or some lines will scroll off the

202 A GUIDE TO ATARI 400/800 COMPUTERS

top of the screen and be lost. Here is an example:

10 DIM N$¢12)

20 FRINT "OUTFUT ON SCREEN OR FRINTER
(S OR F)"}

30 INFUT N%

40 IF N$(1,1)="§" THEN N$="§i"160TO 70

G0 TF N$CL,10="F" THEN N$="FI1"i160T0 70

40 GOTO Z0IREM Didn’t respond $ or F
49 REM Opern oubtpul chan. per request
70 OFEN #4,8,0,N%

79 REM Imput datas

80 FRINT "ENTER A NAME";

20 INFUT N%

99 REM Output to chosen device

100 FRINT #43N$3" backwards is "%
110 FOR J=LEN(N$) TO 1 STEF ~1

120 FRINT #4INECd,d) s

130 NEXT J

140 FRINT #43REM EOL

LS00 TF N$=="END" THEN 80

160 CLOSE 4 :END

The program asks the user where program output should appear (lines 20 through
60). It assigns the appropriate device name, S: or P:, to a string variable (line 40 or
50). The OPEN statement that opens channel 4 uses the string variable to specify the
device name (line 70). Program output goes out over channel 4 to its final destina-
tion (lines 100, 120, and 140).

Line Length

Remember that if you display anything in the last column of the display screen
(column 39), a carriage return occurs automatically. The same thing happens if you
printinthe last column of a printer line. Print a 40-character line on the ATARI 820
or 822 Printer, or an 80-character line on the ATARI 825 Printer, and an automatic
carriage return occurs on the printer. Screen margins, however, reduce screen width
to 38 columns. Therefore, a full line on the display screen is normally shorter thana
full line on a printer. A 38-character line will cause a carriage return on the screen
but not on a printer. The following program demonstrates this feature:

10 REM Open owtput channels

20 OFEN #2,8,0,"53%"

30 OFPEN #3,8,0,"F"

39 REM Frimt on displsay and printer

40 FOR J=2 TO 3

49 REM Frint a 39-character line

S50 FPRINT #J3"THIS LINE EXCEEDS DISFLAY
WIDTH EY ONE!'"

60 NEXT J

70 END

Chapter 6: ATARI PRINTERS 203

The program displays the same message on the screen and the printer. Itistoo long
for one screen line, but fits on one printer line. If the message were one character
longer, it would also produce an automatic carriage return on a 40-column printer.
On the ATARI 825 Printer, the output line must be 80 characters long before the
automatic carriage return occurs.

Line length considerations are the same with the LPRINT statement as with the
PRINT # statement.

The Printer Line Buffer

The printer has enough memory of its own to hold one line of print. This printer
memory is called a printer line buffer. As PRINT #, LPRINT, and PUT statements
send characters to the printer, those characters go into the printer line buffer. The
printer does not display them immediately upon receipt. It waits until it gets an EOL
(end-of-line) character. Then it prints the entire line and advances to the next line. If
the line buffer fills up before an EOL character arrives, the printer prints the line,
clears the buffer, and advances to the next line on its own. This happens when you
print 40 characters or more (80 characters or more on the ATARI 825 Printer). The
following program demonstrates this.

9 REM Qpearn printer oubpult channel

10 OFEN #3,8,0,"Ft"

20 FOR J=0 TO 99

29 REM Frint digits 0 thrua 9

30 PRINT $#3§J-INTCJI/L0)%x10}

39 REM Display nos of esch digit

40 FRINT J

S50 NEXT J

59 REM Force ouwtpul of last line

40 FRINT #3

70 CLOSE #3

The program prints the digit pattern 0123456789 ten times (lines 20, 30, and 50). It
displays the number of the digit as it outputs each one to the printer (line 40). Notice
that the digits do not print each time a number displays on the screen, which is when
they are output. Nothing prints until the line buffer is full. The program prints 100
digits; the last few do not exactly fill a line. Therefore, the program must print an
EOL character to force the printer to empty its buffer (line 60).

The printer line buffer does not care where the characters it gets come from. They
may come from LPRINT, PRINT #, or PUT statements, on any output channel.
The printer line buffer simply takes each character, puts it in the line buffer, and
waits patiently for an EOL character or a full buffer.

Formatted Printer Output

Formatting output for the printer is similar to formatting output for the display
screen. You can use commas in PRINT # or LPRINT statements to align columns.
Review the Gas Cost program (Figure 4-3) for the display screen method. By

204 A GUIDE TO ATARI 400/800 COMPUTERS

A REM Stedinags needed FTor sobroutine
SODIM NSHCLO) s THCL0) ELECH0)
G OREM FiLL BL$OY with blanlks

7 $C1) "EELBCA0):
F REM Display qas
L0 PRINT "How much per i

200 INFUT CG

A0 FPRINT "Aversge miles per qallon's
A0 INFUT M
A2 FRINT "Outpuot on Scoveern or Frinter

CH o B

A4 TNFUT T

46 IF Th(l,1r="F" THEN OFEN #%5,8,0,"F¢
"IGOTO H0

48 OFEN #5,8,0,"68"

G0 FRINT 453 "MILES" ; "GALLONS" , " CosT

600 FRINT 4550w p M 1 W

70 FOR MI=100 TO 1700 STEF 100

79 REM Compute gal. Lo neasrest 10th

80 GAL=INTI{ML/MFGX10)/10

89 REM Compute cost Lo nearest cent

Q0 COST=INTICFGXGALLXL100)/100

100 NS=&IDD=0IN=MLIGCOSUE L110003FRINT 4
GINECL,NGY,

L02Z NS=731DD=1IN=GALIGOSUE 11000 FRINT
FEINECL L NED

104 NS=7iDD=2IN=CO8TIGOSUE 11000 FRINT
FEHINBECL,NS)

110 NEXT MI

120 FRINT 4%

130 FPRINT #%5, "MPG="IMFG,"$";CFG:" per

aale"

140 END

LODOE FEM 3O KK K K K KK K K K K 3K K K K K 3K KK K KK

L0996 X X Subroutine sligns X

10997 Mrogmerio values on decimal X

LOPDE FEEM K KKK M K KK K K K K K K 3K 3K K XK 3K K K XK K KK

1099% REM Convert Lo left-just string

L1000 ThH=6TREND

L1o0® Ll output str with blanks

L1010

LL0ge

L1030

L1003y

pmE dec. point st end
LENCTS Y+ 1
L.aook Tor veasl dec. point

NOTE: Shading shows lines changed from Figure 4-9. Output similar to Figure 4-10.

(continued)

FIGURE 6-1. Decimal-aligned Printer Output program listing

Chapter 6: ATARI PRINTERS 205

11040 FOR J=1 TO LENCT$)
LLOS0 XF THCd,Jd=""" THEN DF=JJ=NG
L10&0 NEXT

1106% REM Compute mumber length
L1170 N MRS WY,
L1079 REM FRight-justify

L1080 NG CNS-NL+1L , NEY=T4
L1090 RETURN

FIGURE 6-1. Decimal-aligned Printer Output program listing (continued)

changing the PRINT statements on lines 50, 60, 100, 110, 120, and 130 to LPRINT
statements, you can generate the same output on the printer. None of the printers
supports the programmed tab feature, so you cannot use it to align columnar
output.

The methods presented in Chapter 4 for right justification and decimal alignment
also work with printer output. Figure 6-1 shows a new version of the Decimal-
aligned Gas Cost program (compare this figure with Figure 4-9). This new version
gives the user a choice between screen and printer output. If the user enters “P.”
output goes to the printer (lines 42 through 46). Any other entry sends output to the
screen (line 48). The program uses PRINT # statements instead of the original
PRINT statements (lines 50, 60, 100, 102, 104, 120 and 130). There are no other
changes.

Paging
ATARI printers pay no attention to page length. They assume they are printing on
an endless roll of paper, with no page boundaries.

There is a way to print program listings page by page. Use a separate LIST
statement to list one page-sized chunk at a time. Explicitly specify a starting and
ending line number for each chunk, so that the program lines within that chunk will
fit on one page.

Paging program output is much less tedious. The program must count output
lines. It must regularly check the line count against a maximum number of lines per
page. If the count equals or exceeds the maximum, the program prints blank lines to
advance the paper to the top of the next page. There it can print a title and column
headings, if desired. The following program uses a special subroutine (Figure 6-2) to
do the testing and handle the top-of-page ritual. Type in both the subroutine and
these program lines:

0 GOTO 1000

993 REM ~-- Start of Masin Frogram --—-

P99 REM Open printer output channel

1000 OFEN #4,8,0,"F"

206 A GUIDE TO ATARI 400/800 COMPUTERS
1020 PRINT CHR$ (L29) (REM Clr. screen
L1020 PRINT "Align printer at top of pa
qe "
1030 PRINT "How manyg lines"
1040 INFUT L
1049 REM Force new page
1050 PL=6131GOSUE 900
1060 FRINT
L0770 FRINT "Printing, please stend by
(3 + ¢ " ;
1080 FOR J=1 TO L
L0920 FOR K=1 TO 4
L1100 FRINT #45INTRNDCOYX799) 42003~}

INTCRNDCO)IYX999)+1000,

1110
1119
1120
i
1130
1140
1150

This program prints four columns of seven-digit numbers. It assumes that before
starting the program, the user sets the printer so it is ready to print on the first line at
the top of a page. By setting PL to 61 (line 1050), the Top of Page subroutine (line
900) will leave five blank lines at the top of the first page before it prints the title. The
program then outputs one column at a time (lines 1090 through 1110). Then it

NEXT K

REM OQutput EOL

FRINT
REM F
Pl
NEXT
END

to print 1
44
aae Tull yel?
+1LIGAOSUE 200
l.J

ine

BO7 FCEIM 3K K I K K KK K K K KK S K K 3K 3K 3K K K KK 3K 3K K K
898 REM x Top of Fage Subrouwbine X
GGG FCETM 30K MK K K K KK KK K 3K K 3K 3K 3K 3K 3K 3K K 3K 3K K 3 X K K
QOO0 LF FLESS THEN RETURN

Q09 REM ddvance Lo next pasqe

P10 FOR Jl=1 TO &é&-FL

Q20 LFRINT INEXT Jl

§29 REM FPrint title

P30 LPRINT 5, "TITLE"Y

P40 LFRINT

249 KREM Frint column headings

950 LERINT “COL 1Y ;"C0L. 2", C0L 3" «“C0
(I

PHY REM Reselt line count

P60 FL=33RETURN

NOTE: Title (line 930) and column headings (line 950) are only samples.

FIGURE 6-2. Top of Page subroutine listing

Chapter 6: ATARI PRINTERS 207

outputs an EOL character to force the printer to print its line buffer (line 1120).
Each time a line is printed, the program increments the line counter and uses the
subroutine to see how full the page is (line 1130). The subroutine will skip to the top
of the next page if the program has printed 56 lines on the current page.

A Practical Example

In Chapter 5 we introduced a program to enter names and addresses for a mailing
list and to build a mailing list file on cassette (Figure 5-2). Another program read the
file and displayed the names and addresses on the display screen (Figure 5-3). It
would be more useful to print the addresses on labels. Pressure-sensitive labels on
continuous fan-fold carrier paper (Figure 6-3) are widely available.

The changes required to make the program in Figure 5-3 print labels are quite
simple. First, line 1080 must open an output channel to the printer instead of to the
display screen. Second, the output format must fit the labels.

The label forms (Figure 6-3) are one label wide, 12 labels per 12-inch page. The
first line of the second label is one inch below the first line of the first label. There are

w 4

([
7

\—
")
M"—’—\—/\/\.

NOTE: Not shown actual size.

}ooooooo
{ooooooo

FIGURE 6-3. Typical mailing list labels

208 A GUIDE TO ATARI 400/800 COMPUTERS

five lines of name and address data to print. The printer prints six lines to an inch.
That leaves one blank line between labels. Therefore, line 1150 must print one blank
line between addresses. Printer output cannot be stopped by pressing CTRL-1, so the
instructions on lines 1030 and 1040 need revision. Figure 6-4 shows the final
program.

G0 DIM NASC2Z0),8TTHCZ0) ,CLBC20) ,8THC2)
yZLB (DY, RECZ0)

469 REM Opern file, read dummy record

70 GOSUE 3100

1000 FPRINT CHR$CLZE) (REM Clr screen

1010 PRINT "FRINT MALLING LABELS"

1020 FPOSITION 2,21

1030 FRINT "Flace continuouws labels in

printer."

1040 FRINT "Aliarn at top of first labhel."
1050 FOSITION 2,2

10860 FRINT "Fress RETURN when ready Lo
heqin"

1070 INFUT R$

1079 REM Display mailing list

1080 OFEN #4,8,0,"F"

1089 REM Read next record

L0920 INFUT L, NAS,STTS,CLe,8T$,Z1$
1099 REM Wateh for trailer record

L1000 XF NA$=CHR$(2H53) THEN 1200

LLLO FRINT #43NAS

L1120 FRINT #438TT4

L1130 FRINT #43;CI4

L1400 FRINT #4;8T4s" "3ZI4%

L1650 FRINT 44

L1160 GOTO 1090

1199 REM Trailer record found) quit
1200 CLOSE 41

1210 CLOSE #4

1900 END

3099 REM Opern for cassette dinput

3100 FPRINT CHR$CLZ2E) §"Cue tape, press

RETURN, ard stand g,

3100 OFEN #1.4,0,"Cs"

3119 REM Lnput a dummy record

3120 FOR Jl==1 TO LZ28I1GET #1,RINEXT J1

3130 RETURN

NOTE: Shading shows lines changed from Figure 5-3. Prints labels from cassette data file
prepared using the program in Figure 5-2.

FIGURE 6-4. Mailing List Labels program listing

Chapter 6: ATARI PRINTERS 209

PRINTER CHARACTER SETS

All ATARI printers can print numbers, punctuation, upper-case letters, and lower-
case letters. None of them can print graphics characters like [=].[e . or[=], nor can
they print inverse characters.

The printers have a slightly different character set than does the display screen
because they use a slightly different character code. The printers use the ASCII code
to define their character sets, while the display screen uses the ATASCII code. The
two codes are very similar for code numbers between 32 and 127. Appendix D lists
both codes side by side. Table 6-1 summarizes the standard character set for the
ATARI 820 and 822 Printers. Table 6-2 summarizes the ATARI 825 Printer
character set. The ATARI 825 Printer interprets many of the codes lower than 32 as
special control characters. These are discussed in more detail at the end of this
chapter.

TABLE 6-1. ATARI 820 and 822 Printers Standard
Character Set Summary

Decimal Code Character

0-31 Space

3295 Same as display screen*
96 !

97-122 Same as display screen*
123 {
124 i
125 }
126 &~
127 Space

*Display screen characters are listed in Appendix D.

TABLE 6-2. ATARI 825 Printer Character Set Summary

Decimal Code Character
0-31 Control characters (see Table 6-4)
3295 Same as display screen*

96 \

97-122 Same as display screen*

123 {

124 |

125 }

126 i

127 Non-printing

*Display screen characters are listed in Appendix D.

210 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 6-3. Sideways Character Set (ATARI 820 Printer)

— o - o] = 3 - 2 - 3
R R - o Rt o R e

E L3 E .E () E E L) E E L) E E @ E
83 =2 | 8® 2| 8% & | g% &2 | 23 2
a0 Q Ao @) Qo Q Ao O Qo Q
48 S} 64 ® 80 =9 96 ® 112 o
49 — 65 < 81 o 97 < 113 o
50 ~ 66 M 82 [98 m 114 [+4
51 el 67 O 83 2 99 Q 115 %]
52 < 68 A 84 = 100] 116 B
53 n 69 &3] 85 =) 101 m 117 =]
54 o 70 . 86 > 102 o 118 >
55 Lons 1 &} 87 =z 103 O 119 =z
56 o0 72 us 88 > 104 oo 120 b
57 =) 73 — 89 > 105 — 121 >
58 ¥ 74 - 90 N 106 el 122 N
59 v 8 75 ¥ 91 — 107 N 123 —
60 \Y 76 ~ 92 # 108 - 124 -~
61 " 77 = 93 — 109 = 125 —
62 A 78 Z 94 - 110 Z 126 -
63 ot 79 o 95 | 111 o 127 |

Printing Sideways Characters (ATARI 820 Printer)

In addition to normal characters, the ATARI 820 Printer can also print most of its
character set sideways. This is accomplished by opening a printer output channel
with a third parameter of 83, like this:

OFEN #4,8,83,"F&"

Subsequent PRINT # and PUT statement output to channel 3 will appear sideways
on the ATARI 820 Printer.

The sideways character set is somewhat different from the normal set. It has no
lower-case characters. Table 6-3 lists the sideways character set.

There are 29 characters per line in sideways mode.

PRINTER CONTROL CHARACTERS (ATARI 825 Printer)

The ATARI 825 Printer has a number of special features. The rest of this chapter
will describe them; you need not read on unless you have an ATARI 825 Printer.
The features include the following:

- Advance paper one line

+ Advance paper one-half line
+ Back paper up one line

+ Back paper up one-half line
+ Backspace

Chapter 6: ATARI PRINTERS

211

+ Microspace forward and backward
- Underline

- Print subscripts and superscripts
- Print elongated characters
- Print condensed characters

- Print proportionally sized characters

- Print boldface characters
+ Justify the right margin.

All these features are activated by control characters. Table 6-4 lists control
characters for the ATARI 825 Printer. You send the ATARI 825 Printer a con-
trol character the same way you send it any regular character: with an LPRINT,
PRINT#, or PUT statement. Of course, you have to generate the control character
somehow, and there are no keys with the control functions printed on them. The
simplest way to generate control characters is with the CHRS function. For exam-

TABLE 6-4. Printer Control Characters (ATARI 825 Printer)

Decimal Graphics ATARI 825
Code(s) Character(s) Keystroke(s) Printer function
10 A CTRL-J Line feed
27& 10 & | ESC\ESC & CTRL-J Reverse line feed
27 & 28 @ [_TJ ESC\ESC & ESC\CTRL - - Half-line feed
27 & 30 & (€] ESC\ESC & ESC\CTRL -+ Reverse half-line feed
13 = CTRL-M Carriage return with
automatic line feed
15] CTRL-O Start underlining
14 =] CTRL-N Stop underlining
27 & 14 =] ESC\ESC & CTRL-N Start double-wide printing
27 & 15 &] ESC\ESC & CTRL-O Stop double-wide printing
27 & 19 &) ESC\ESC & CTRL-S Select standard (10 cpi)
characters
27 & 20 €] [® | ESC\ESC & CTRL-T Select condensed (16.7)
characters
27 & 17 [r] ESC\ESC & CTRL-Q Select proportionally sized
characters
27& 1 & [H| Esc\Esc & CTRL-A One dot blank space
27& 2 & [Esc\EsC & CTRL-B Two dot blank spaces
27& 3 €] []| ESC\ESC & CTRL-C Three dot blank spaces
27& 4 [§] [H]| ESC\ESC & CTRL-D Four dot blank spaces
27& 5 & [1]| ESC\ESC & CTRL-E Five dot blank spaces
27& 6 (& ESC\ESC & CTRL-F Six dot blank spaces
8 & nn* (4] CTRL-H & keystroke* Backspace nn* dots

* The character that follows the backspace control character (ASCII code 8) is interpreted as the
number of dots to backspace. Use Appendix D to select the keystroke which produces the
ATASCII character whose code number equals nn, the number of dots to backspace.

212 A GUIDE TO ATARI 400/800 COMPUTERS

ple, the control character that advances the paper one full line, the line feed
character, is ASCII code 10. The following program advances the paper ten lines.

9 REM Advance paper 10 lines

10 FOR J=1 TO 10

20 LFRINT CHR$C10)

30 NEXT J

You canalso generate control characters directly with certain keystrokes, just like
you do for cursor control and graphics characters on the display screen. Table 6-4
lists the keystrokes that generate each control character. When you type these
keystrokes, certain graphics characters echo on the screen. This is because the
screen interprets the keystroke as an ATASCII character (see Appendix D), and
displays it accordingly. When the character is sent to the ATARI 825 Printer, it will
interpret the same code as a control character and will respond accordingly. For
example, look at the keystroke CTRL-J. It generates the] graphics character onthe
display screen, but it advances the paper one full line on the ATARI 825 Printer.
Try this new version on the last example (where you see N , type CTRL-J):

? REM Advance paper 10 lines

10 FOR J=1 TO 10

20 LFRINT "m"

30 NEXT J

Many of the ATARI 825 Printer features require a pair of control characters in
tandem. In all but one case, the first character is ASCII code 27, the ASCII escape
character. You can generate the ASCll escape character with CHR$(27) or with the
ESC\ESC keystroke. (Recall from Chapter 4 that the notation ESC\ESC means press
the ESC key, release it, then press it again.) As an example of a pair of control
characters, consider ASCII codes 27 and 10. Together they make the ATARI 825
Printer back up the paper one full line, that is, perform one reverse line feed. The
following program backs up the paper five lines. It uses the CHRS$ function to create
each reverse line feed.

9 REM Eaclk paper up 9 lines

10 FOR J=1 TO &

20 LFRINT CHR$(27) jCHR$CL0)

30 NEXT J

Most of the special features on the ATARI 825 Printer are produced by control
character pairs like this. Two features, right margin justification and boldface
characters, require more BASIC programming than just printing a control charac-
ter or two. These will be discussed in more detail later in this chapter.

Listings Containing Control Characters

Don’t be surprised if strange things happen when you list a program in which you
typed control characters directly inside quotation marks. The display screen trans-
lates them into harmless graphics characters. The ATARI 825 Printer, though,
cannot tell it is just printing a program listing. It obeys the control characters and
ruins the listing in the process. Suppose, for example, you have a program that

Chapter 6: ATARI PRINTERS 213

contains the statement PRINT #2; ¢ [El]’. When this statement is executed, the
ATARI 825 Printer performs a line feed. The character also causes a line feed when
you list it.

If you use the CHRS function to generate control characters, your program will
list with no surprises. The control characters are created only when the CHRS
function is executed. That happens only when the program is run. At program
listing time, the CHRS function is just a benign series of normal, everyday charac-
ters: C, H, R, and so on.

Vertical Paper Movement

Four control characters control vertical paper movement. They move the paper
forward and backward one full line or one-half line at a time. The paper moves up
and down, but the print head does not move at all. It takes one control character to
move the paper, and another to move the paper back. Try the following program:

10 LFRINT "How dry. I"3CHR$(27)}CHR$ (10
3" hic "SCHR$CL0) 3 am,"

The program prints this:

hie

How dry I BM,

Notice that the ATARI 825 Printer prints the line in three parts. After each part it
returns the print head to the left margin.

Aside from novelties like this, the principal use of the line feed character (ASCII
code 10) is rapid paper advance. True, a plain LPRINT or PRINT # statement (one
with no items to print and no terminating semicolon) will advance the paper one
line. But plain LPRINT and PRINT # statements move the print head, while line
feed characters do not. Therefore, a succession of line feed characters will advance
the paper faster than a series of plain LPRINT or PRINT # statements.

Subscripts and Superscripts

Printing subscripts and superscripts is easy. Here’s how to print a subscript:

1. Roll the paper forward one-half line with one pair of control characters: ASCII codes
27 and 28. This puts the print head one-half line below the main text line.

2. Print the subscript text.

3. Rollthe paper back one-half line with another pair of control characters: ASCII codes
27 and 30. This puts the print head back over the main text line.

To print a superscript, just reverse the first and last steps:

1. Roll the paper back one-half line with one pair of control characters: ASCII codes 27
and 30. This puts the print head one-half line above the main text line.

2. Print the superscript text.

3. Roll the paper forward one-half line with another pair of control characters: ASCII
codes 27 and 28. This puts the print head back over the main text line.

214 A GUIDE TO ATARI 400/800 COMPUTERS

The following program demonstrates superscripts:

10 FRINT "Compute 1.9 Lo what power';
20 INFUT R -

30 LFRINT "(1L+8S)"3CHR$ (27) 3CHR$ (30D F RS
CHR$(27) CHR$ (28) § V=" 515 MR

If you enter 5 in response to the INPUT statement (line 20), the program prints this:
(1.5)7=7,59374994

Underlining

One control character (ASCII code 15) starts character underlining. The ATARI
825 Printer continues to underline characters until instructed to stop by another
control character (ASCII code 14). Turning off the printer also cancels underlining
mode. Here is an underlining example:

LFRINT CHR$ C15) 3 "War and Feace';CHR$ (L
43", by Leo Tolstoy"
Printed output of this immediate mode program looks like this:

War and Feace, by Leo Tolstoy

Character Size and Line Length

Standard character size on the ATARI 825 Printer is ten characters per inch.
Condensed characters are also available; they print 16.7 characters per inch. In
either case, character width is uniform. The ATARI 825 Printer can also print
proportionally sized characters. In this mode, an “I” or an “I” is narrower than an
“M”ora“W.”Onthe average, proportionally sized characters print 14 to the inch.
However, all proportionally sized digits are the same size; numbers will print 12.5
characters per inch.

Different pairs of control characters switch from one character size to another.
When one of these pairs occurs, character size changes with the next non-control
character. However, if the characters in the print line are standard sized, character
size will not change to condensed or proportional until the start of the next print
line. Similarly, if the characters in the print line are condensed or proportionally
sized, character size will not change to standard until the start of the next print line.
Thus, you can mix proportional and condensed characters on the same print line,
but you cannot mix either of those sizes with standard characters.

Once a character size is in effect, it stays in effect until another control character
occurs to change it. Character size reverts to standard when you turn the printer off
and back on again.

Inaddition to all this, the ATARI 825 Printer can take any character and print it
twice its normal width, or double-width. Y ou activate double-wide character mode
with one pair of control characters (ASCII codes 27 and 14). Characters continue to

Chapter 6: ATARI PRINTERS 215

print in double-wide mode until you deactivate it with another pair of control
characters (ASCII codes 27 and 15), or until a carriage return occurs.

The following program demonstrates the different character sizes. (Table 6-4 tells
you which keystrokes produce the graphics characters you see below.)

10 D
19 R
2086
30 C
40 F
29 R
100

110

120

130

140

150

ters
140

200

P99

1000
1010
1020
1029
1030
1039
1040
1050
1040
1069
1070
1080
1089
1090
1099
1100
1110
1120

IM STDH (2, CD86C2) ,FRFG(Z) ,CHS(2)
EM Assiagn printer control chars.
TRE="EFH"IREM 10 cpi characters
DEE="[E O] " tREM 16,7 cpi characters
Fepegp= &) [l v 8 REEM Froportional char.
EM Qpen printer output channel
OFEN #3,8,0,"F¢"

FRINT #33;8TD$:"Standasrd Charascters

GOSUE 1000
FRINT #33C0DS%:"Condensed Character

GOSUE L1000
FRINT #33FRF$:"Froportional Charac
GOSUE 1000
EEND
REM Frinmt entire character set
CHE=""I1REM Start w/l-wide char.
FOR L=1 TO 2

FOR K=32 T0O 96 STEF 32

REM Select char. widlth

FRINT #33CW$;

REM Frint mext 32 characters
FOR J=1 TO 31

FRINT #33CHRS (J+K) 3

NEXT J

REM Force printer buffer output
FRINT #3

NEXT K

REM Select Z2-wide charascters
CWb="g "

REM And repeat character set
NEXT L

FRINT #3IREM Elank line
RETURN

Character width on the ATARI 825 Printer is measured in terms of dots. It varies
from six dots for the narrowest proportionally sized character to 36 dots for the
widest double-wide, proportionally sized character. Standard and condensed char-
acters are between these extremes, at a nominal ten and nine dots each, respectively.
Table 6-5 summarizes character widths. Table 6-6 lists specific widths for all

proport
Maxi
Remem

ionally sized characters.
mum line length on the ATARI 825 Printer is always eight inches.
ber that when a line is full, an automatic carriage return occurs. A full line of

standard characters contains 80 characters. A full line of condensed characters

contain

s 132 characters. Since proportionally sized character widths differ, you

216 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 6-5. Summary of Character Widths (ATARI 825 Printer) *

Character Dots per
Size Character
Standard 10
Condensed 9
Proportional 6to 18
*Double-wide characters are twice the width shown.

TABLE 6-6. Widths of Proportionally Sized Characters (ATARI 825 Printer) *

- 3 =] -]
[- « ° [} °
£ E g 934 &z s § g
) S
88 & & [&8 & & |48 & &
32 Space 7 64 @ 14 96 N 7
33 ! 65 A 16 97 a 12
34 s 10 66 B 15 98 b 12
35 # 15 67 C 14 99 c 10
36 $ 12 68 D 16 100 d 12
37 % 16 69 E 14 101 e 12
38 & 14 70 F 14 102 f 10
39 ’ 7 71 G 16 103 g 12
40 (7 72 H 16 104 h 12
41) 7 73 I 10 105 i 8
42 * 12 74 J 14 106 j 6
43 + 12 75 K 16 107 k 12
44 s 7 76 L 14 108 1 8
45 - 12 17 M 18 109 m 16
46 : 7 78 N 16 110 n 12
47 i 12 79 (0] 16 111 0 12
48 0 12 80 P 14 112 p 12
49 1 12 81 Q 14 113 q 12
50 2 12 82 R 15 114 T 10
51 3 12 83 S 12 115 s 12
52 4 12 84 T 14 116 t 10
53 5 12 85 U 16 117 u 12
54 6 12 86 \% 16 118 v 12
55 7] 12 87 w 18 119 w 16
56 8 12 88 X 16 120 X 12
57 9 12 89 Y 16 121 y 12
58 ; 7 90 z 10 122 z 10
59 g 7 91 [12 123 { 10
60 < 12 92 % 12 124 | 7
61 = 12 93] 12 125 } 10
62 > 12 94 A 12 126 ~ 12
63 ? 12 95 — 12 127 None 0
* Double-wide characters are twice the width shown.

Chapter 6: ATARI PRINTERS 217

cannot simply count characters to see when the line is full. You have to count dots.
There are 1200 dots per line, but the printer considers the line full when it contains
1185 dots. At that point, it will accept one more character, of any width, as the last
character on that line. It then performs a carriage return. To avoid the automatic
carriage return, do not print more than 1185 dots per line.

Half as many double-wide characters of any kind fit on one line. Therefore, 40
double-wide standard characters, 66 double-wide condensed characters, or 600
double-wide dots fill one line and cause an automatic carriage return.

Microspacing Forward and Backward

You can space forward on the print line in fixed amounts with the space character
(ASCII code 32). A standard space character is ten dots wide, a condensed space
character is nine dots wide, and a proportional space character is seven dots wide.
There are also six pairs of control characters which add blank space to the print line
in amounts of one to six dots. ASCII code 27 is always the first of the control
character pair for this operation. The ASCII code of the second control character
specifies the number of blank dots to add (one to six). The most straightforward
way to specify this is with the CHRS function. The number inside the parentheses is
the number of dots to space forward. The following programs show how this works:

? REM Open printer oubput chamnel

10 OFEN #5,8,0,"F"

19 REM 1 to é& dots beltween words

20 FOR J=1 TQ &

30 FPRINT #53YHO" FCHRS (27) CHRS (J) ¢

40 NEXT J

S0 FRINT #3535 "HUM"
The program prints this:

HOHOHO HO HO HO HUM

Forward microspacing is primarily useful in printing boldface characters and in
justifying the right margin, two topics we will address shortly.

The ATARI 825 Printer can also backspace on the print line. It backspaces only
in dot increments. Backspacing over a standard or condensed character is possible;
just specify the appropriate number of dots (see Table 6-5 for dot equivalents).

The backspace control character is ASCII code 8. The printer interprets the
character after the ASCII backspace code as the number of dots to backspace. The
number of dots equals the ASCII code of the character. It can be any number
between 0 and 127. Consider this program:

9 REM Open printer outpult channel

10 OFEN #5,8,0,"F"

20 FRINT #5:"Frint strikeouts"}

29 Overprint the last 10 chars.

30 SINT #53 CHR$(8) CHR$C100) 3

40 FRINT #53"-—mmmemee—— with the backs

pace character"

218 A GUIDE TO ATARI 400/800 COMPUTERS

The program outputs a backspace character, then immediately outputs the number
of dots to backspace (line 20). It backspaces 100 dots, the equivalent of ten standard
characters. Right after that, it prints ten hyphens. Because of the back-
spacing, they end up printing over the last ten characters printed, like this:

Frint esrikeosts with the backspace character

The ATARI 825 Printer does not backspace by literally moving the print head
backward along the print line. Instead, it returns the print head to the left margin,
then moves it right back to the spot where it was, less the number of backspace dots.
The net effect is to backspace the print head.

Instead of using the CHRS function to specify the number of dots, you can use the
equivalent ASCII character. In the last example, you could replace CHR$(100)
with its ASCII equivalent, the letter “d.” Line 30 would then look like this:

30 PRINT #5;CHRS(8) 3" d" 3

You cannot backspace over the last character of a full print line. By the time the
backspace control character gets to the printer, the full line will have printed.

Boldface Characters

itis possible to darken printed characters for additional emphasis. The simplest way
to do this is to overprint them two or more times. Here is an example:

9 REM Open pripter output channel

10 OFEN #%5,8,0,"F"

20 FRINT #53"This lime printed once,"
30 FOR J=1 TO 2

40 FRINT #%53"This line printed twice f
or added emphasis."

49 REM Eack wp one line

S0 FRINT #53CHRS$(27) jCHR$(10) 3

40 NEXT J

69 REM Casncel last reverse line feed
70 FRINT 45

80 END

The program usesa FOR-NEXT loop to print a message twice (lines 40 through 60).
Each time the printer finishes the message, it advances the paper to the next line (line
40). The program backs the paper up one line (line 50). That way the next printing
will overprint the first printing. When the loop ends, the program has just backed
the paper up one line. Therefore it must advance the paper one line to cancel that
extra reverse line feed (line 70). Here is the result:

This lime printed once.
This line printed twice for added emphasis,

The boldface effect can be enhanced by staggering the second printing one dot.
Add these lines to the last example:

Chapter 6: ATARI PRINTERS 219

a0 FOR J=1 TOQ 2

Q0 FRINT #53"This line prinmted bholdfac
e for madimum emphasis."

Q9 REM BEasck wp orne line

100 FRINT #S3CHREC2Z7) §CHR$CLO0)

109 REM Microspace one dot

110 FRINT: #5;CHR$(27) CHR (1) 3

120 NEXT J

129 REM Cancel last reverse line feed
130 FRINT #9

140 END

This is what you get:

This Line printed once.
This line printed twice for added emphasis.
This line printed boldface for maximum emphasis,

Right Margin Justification

Dot spacing makes right margin justification possible. You must determine the
number of dots between the last character on the line and the right margin. Then
you must find new places somewhere else on the line for every one of those dots.
This means sneaking in one or two blank dots between each character. You have to
doitevenly across the line, or the line will look unbalanced. You may be able to put
a few more dots between words than between letters. A good program recognizes
where it can best add extra space, and where it will look ugly.

Writing even a simple justification program is not a trivial task. It can be done in
BASIC, but it will be very slow. You may wish to experiment with it as an exercise.
Right margin justification is best programmed in assembly language.

i N
_--"-'I'll. = 122k 1.
df1t 2
ﬂ - -
N i 1<
2 |l - [
1 L
il
== ph1¥y e a0 . 2. .
=y JEPSASS BELL P 0t R . rlics 1= a0
= gl 1. " .=t .|"||I'I
L TR T LI P R TR .I.I{-h_-.: pynt | - . s ==l
-#-'1_ bt H oo S ey L= s taha S
e L e S TR T PRSI
Ero-whtF venliel ol on 2da M R T R

I~ Seduste - g ql-rlgl-.'lll.' R .
T=k "3 5.50" .00 L N esl -- . S B
- o Y E Na b ey S
e e L LI PRnAMmIgEsare: - - = "aal . .
= tfganr pul biF CMmE TS Y A . e, AL .
Pl | S maSla BEO DLRS L & s el e el

ETE RS
="' R

-
=
l

B T T T T T, T e i Syt

7
THE ATARI
810 DISK DRIVE

The disk drive is one of the most important components of a computer system. Disk
drives allow almost instantaneous access to a large block of information. The
ATARI 810 Disk Drive can store about 90,000 characters on a single diskette. That
is nearly twice as much information as can be held in the computer in 48K of RAM.
When you turn off the computer, all of the information in RAM disappears, but
information stored on a diskette remains intact.

DISKS

Disks store information magnetically, the same way a tape recorder does. The
biggest difference between a disk and tape is that a disk is round, like a record. A
disk spins in the disk drive, much like a record spins on a turntable. Inside the disk
drive there is a magnetic head that can read and write information on the disk. The
head operates on the disk drive like a needle does on a record player. You can put
the needle anywhere you want on a record.It is just as easy to place it in the middle or
at the end of the record as it is to place it at the beginning. The computer, likewise,
candirect the read/ write head to any location on the surface of the disk. This ability
is called random access. Thus, the disk is a random access storage device.

There are three kinds of disks: hard disks, Winchester disks, and diskettes.
Currently, diskettes are the most common type of disk used with microcomputers
like the ATARI 400/800 computers. We will describe all three types of disks.

221

222 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 7-1. Typical hard disk drive and removable disk cartridge

Hard Disks

Hard disks are made of a rigid material, such as aluminum, that has been coated
with a magnetic substance. Hard disks typically store 5 to 10 million characters.
Usually the hard disk comes in a cartridge which is inserted in the drive (Figure 7-1).
The disk and disk drive are separate so that you can change disks. Hard disks cost
about $150 each; hard disk drives cost $3000 to $10,000.

Winchester Disks

Winchester disk drives (Figure 7-2) use a special technology that allows six to ten
times more data to be stored on a disk than on conventional hard disks. Winchester
disks are extremely susceptible to dust and dirt—even cigarette smoke. Because
they must be kept very clean, the disk surfaces are sealed inside the drive and cannot
be changed easily. Winchester disk drives cost from $2500 to $8000.

Diskettes

A diskette consists of a vinyl disk enclosed in a stiff plastic envelope. The flexible
vinyl disk is very fragile. The stiff envelope protects the diskette from damage
during normal handling and use. Never remove the diskette from its protective
envelope. Figure 7-3 shows what a 5 Y4-inch diskette looks like inside its envelope.

The diskette spins freely inside the envelope. Openings in the envelope allow the

Photo courtesy of Cameo Electronics

Chapter 7: THE ATARI 810 DISK DRIVE

223

FIGURE 7-2. Winchester disk drive (Shown with cover removed)

FIGURE 7-3. Inside the protective diskette envelope

Photo courtesy of Corvus Systems, Inc.

224 A GUIDE TO ATARI 400/800 COMPUTERS

FIGURE 7-4. Write-protecting a 5V-inch diskette

center of the diskette where the drive can grip and spin the diskette.

Diskettes are also known as floppy disks or flexible disks. They come in two sizes:
8-inch diameter and 5 V4-inch diameter. The smaller ones are also called mini-disks
or mini-diskettes. The ATARI 810 Disk Drive uses 5 Y4-inch diskettes; it can store
92,160 characters on a single diskette.

Write-Protecting Diskettes

There is a notch on the side of the diskette that is used to allow or prevent
information from being written on a diskette. This notch is called a write enable
notch, because the disk drive will not write on a diskette unless the notch is present.

Some diskettes have no notch. They are permanently protected against accidental
writing. You can protect a notched diskette by covering the notch with a write-
protect label or a piece of opaque tape (Figure 7-4).

DISK FILES

The disk drive stores information in files, much as you might store informationina
filing cabinet. Each diskette is the equivalent of a file drawer; each file is the
equivalent of a file folder. A diskette can contain many files, or it can contain no
files. The maximum number of files per diskette is 64; however, if some of the files
are long, the diskette may become full with fewer than 64 files. A single file can have
any length that can be physically accommodated by the diskette.

Chapter 7: THE ATARI 810 DISK DRIVE 225

A disk file can containa BASIC program, a machine language program, or data.
The techniques for reading and writing each kind of file are different, as you will
discover later in this chapter.

File Names

Every file has a name, which is used to distinguish it from other files on the diskette.
File names can contain up to eight characters. The characters can be any combina-
tion of capital letters and numbers, but the first character must be a capital letter.
No blank spaces, special characters (such as $, @, or #), or punctuation marks of
any kind are allowed in file names.

File Name Extensions

A file name can have a suffix of one, two, or three characters. The suffix is called a
file name extension. File name extensions can contain any combination of letters
and numbers. The first character can be a number; it is not restricted to letters, as is
the file name itself. You specify a file name extension by adding a period to the end
of the file name, then the extension. For example, FILENAME with the extension
TXT would be written as FILENAME.TXT.

The extension is sometimes called the file type, because of the common practice of
using it to indicate the type of file. Table 7-1 lists some common conventions for file
name extensions and the types of files they imply. Avoid the extension .SYS, since it
is reserved for system files.

TABLE 7-1. Common File Name Extensions

Extension Implied File Type

SYS System files. Files which contain system programs like the disk
operating system, or language interpreters like Microsoft BASIC.

BAS Files which contain BASIC programs in tokenized (SAVE state-
ment) format,

LST BASIC programs stored as ATASCII characters (LIST statement
format).

ASM Assembly language programs in source (text) form.

DAT Data files. DTA is also used.

TXT Text files.

OBJ Object files. Assembly language programs assembled into machine
language.

BAK Backup files. Copies of a file made in case the original version is

accidentally destroyed.

T™MP Temporary files which contain information that will be needed for
only a short time.

226 A GUIDE TO ATARI 400/800 COMPUTERS

The Disk Directory

Part of every diskette is set aside for a directory. The directory contains the name,
location, and size of every file on the diskette. When you specify a file name, the
computer looks up the file name in the directory. That is how it determines whether
the file already exists and, if so, where it is on the disk.

THE DISK OPERATING SYSTEM

The disk operating system (DOS) is a computer program that controls the opera-
tions of the disk drive. When a BASIC program needs to use the disk for any reason,
the disk operating system performs the actual disk operation and returns the results
to the BASIC program. The disk operating system program is written in machine
language, not in BASIC.

Versions of the Disk Operating System

There are currently two versions of the disk operating system. DOS 1.0 was the first
version released by Atari, Inc. It was shipped with all ATARI 810 Disk Drives
through the end of 1981. It has now been replaced by DOS 2.0S. The version you are
using should be marked on the diskette label. Later in this chapter we will describe
characteristics of the two versions that will enable you to tell them apart without
looking at the label.

This chapter will describe both DOS 1.0 and DOS 2.0S. The descriptions of DOS
2.0S are accurate as of December 1981.

The two versions of the disk operating system are very similar, but not identical.
DOS 2.0S can read a diskette prepared by DOS 1.0, but DOS 1.0 will have mixed
success reading diskettes prepared by DOS 2.0S; errors may occur at random. In
any event, do not write information on a diskette with a discrepant version of the
disk operating system. Doing so can destroy data on the diskette. To be safe, place a
write-protect label on any diskette before you use it with a discrepant version of the
disk operating system.

The Two Parts of the Disk Operating System

There are two parts to the disk operating system program. One part records and
loads BASIC programs and reads and writes data files. The other part is a package
of utilities that assist in disk maintenance activities. These utilities also allow you to
read and write machine language program and data files.

In DOS 1.0, the two parts of the disk operating system are treated as one
program. They are stored on disk in one file, named DOS.SYS. In DOS 2.0S, the
two parts of the disk operating system are treated as two programs. They are stored
ondisk in two files. The two parts are divided in DOS 2.0S to make better use of the
computer’s memory. The first part (file name DOS.SYS) is needed whenever you
use the disk drive, but the second part (file name DUP.SYS) is not required unless

Chapter 7: THE ATARI 810 DISK DRIVE 227

you are using the disk utility package. Separating these functions means that your
program can use the memory that would otherwise be occupied by the disk utility
package.

Program and Data Transfer

The disk operating system controls the flow of all information between the disk
drive and the computer. It does this in 128-character blocks. It sets aside part of the
computer’s memory to hold one block of disk data. This is called the disk buffer.
There are actually four disk buffers, one for each of the four disk drives that can be
attached simultaneously to the ATARI computer.

When the disk operating system receives a request for more program lines or
data, it tries to fill the request from the disk buffer. If the buffer runs out, the disk
operating system replenishes it by reading another block from the disk.

Recording a program or writing to a data file also proceeds one block at a time.
As the disk operating system receives program lines or data to go to the disk, it puts
them in the disk buffer. When the buffer becomes full, the disk operating system
writes it out to the disk.

STARTING UP WITH A DISK DRIVE

Before the ATARI computer can execute any disk command, the disk operating
system program must be in memory. If you had a lot of time, you could type it into
memory using the keyboard. But there is an easier way: it is called booting the disk.
Booting the disk, or booting DOS, reads a copy of the disk operating system
program from a diskette and places it in the computer’s memory.

How to Boot DOS

Chapter 2 has complete instructions for booting DOS. If you follow the standard
power-on procedure (page 14), you will boot DOS as a matter of course. To
recapitulate, these are the three key steps required to boot DOS:

+ Turn on Drive 1. To determine which is Drive | on a multiple-drive system, look in the
access hole at the back of each drive. The drive with both the black and white switches
all the way to the left is Drive 1 (Figure 2-5).

- Place a diskette containing a copy of the disk operating system program (file name
DOS.SYS) into Drive 1. The diskettes labeled “Disk File Manager Master Copy” (DOS
1.0) and “Disk File Manager II Master Copy” (DOS 2.0S) have copies of DOS on them.

+ Turn the console power off and on. The disk drive whirrs as it transfers DOS from the
diskette to the computer’s memory.

While the boot is in progress, you will hear beeping sounds from the television
speaker if the sound level is turned up. After about 20 seconds, the BASICREADY
prompt will appear.

To all appearances, nothing unusual has occurred. What you can'’t see is that
during those 20 seconds the disk operating system program was loaded into

228 A GUIDE TO ATARI 400/800 COMPUTERS

DISK OFERATING SYSTEM IX VERSION 2.08
COFYRIGHT 1980 ATARI

A. DISK DIRECTORY I. FORMAT DISK
Ete RUN CARTRIDGE J. DUFLICATE DISK

C. COFY FILE K+ BINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FILE M. RUN AT ADDREGS
F. LOCK FILE N. CREATE MEM.SAV

G+ UNLOCK FILE 0. DUFLICATE FILE
H. WRITE DOS FILES

FIGURE 7-5. DOS 2.0S menu

memory. The computer can now interpret references to the disk drive.

You can boot DOS from any diskette that has file DOS.SYS. Booting DOS
transfers the machine language disk operating system program from file DOS.SYS
into the computer’s memory. With DOS 1.0, this includes both parts of the disk
operating system. With DOS 2.0S, it includes only the first part; it does not include
the disk utility package. In either case, the contents of file DOS.SYS remain in
memory until you turn off the computer.

THE DISK UTILITY PACKAGE (DOS MENU)

After you boot DOS, you can use any of the disk statements. The first one to use is
the DOS command. Simply type the following command and press RETURN:

DOS

The DOS menu appears on the display screen (Figure 7-5 or 7-6). If you are using
DOS 1.0, the menu appears immediately. If you are using DOS 2.0S, the disk utility
package must be loaded from disk; you must wait several seconds while this takes
place.

The DOS command transfers control of the computer from BASIC to the DOS
menu. If you boot DOS withouta ROM cartridge inserted in the computer, you will
never see the BASICREADY message. Instead, the DOS menu appears as soon as
DOS is booted.

Executing the DOS statement with DOS 2.0S transfers the disk utility package
into memory from disk file DUP.SYS. That file must be present on the diskette in
Drive 1 when the DOS statement is executed. The contents of file DUP.SYS go into

Chapter 7: THE ATARI 810 DISK DRIVE 229

the area of memory where BASIC programs reside. This destroys any BASIC
program present in memory. When you leave the DOS menu and return to BASIC,
your program will be gone, just as if you had issued a NEW command. At that point
there is no way to retrieve the program unless you saved it on diskette or cassette.
Later in this chapter we will discuss a way to have the computer automatically
preserve your BASIC program when it executes the DOS statement.

With DOS 1.0, the disk utility package is transferred into memory when you boot
DOS. Since it is present in memory when the DOS statement is executed, file
DUP.SYS is not used. In this case, the disk utility package resides in an area of
memory that does not conflict with a BASIC program. With DOS 1.0, therefore,
executing the DOS statement will not affect your program.

Determining the DOS Version

The time it takes for the DOS menu to appear is a foolproof way to determine
whether you are using DOS 1.0 or DOS 2.0S. If Drive 1 becomes active before the
menu appears, you are using DOS 2.0S. The version number also appears in the
upper right-hand corner of the DOS 2.0S menu (Figure 7-5).

The MEM.SAV File

When the computer executes the DOS statement under DOS 2.0S, it loads the disk
utility package from disk file DUP.SYS into memory. In the process it writes over
part of the memory area where BASIC programs reside. This section describes how
the computer can automatically preserve the contents of the overwritten memory

DISK OFERATING SYSTEM /24779
COFYRIGHT 1979 ATARI

A. DISK DIRECTORY I. FORMAT DISK
E. RUN CARTRIDGE J. DUFLICATE DISK

C. COFY FILE K+ EINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FILE M: RUN AT ADDRESS
Fe LOCK FILE N+. DEFINE DEVICE
G. UNLOCK FILE 0+ DUFLICATE FILE

He WRITE DOS FILE

NOTE: Item N, DEFINE DEVICE, is not implemented.

FIGURE 7-6. DOS 1.0 menu

230 A GUIDE TO ATARI 400/800 COMPUTERS

area with the special file MEM.SAV. This does not apply to DOS 1.0, so skip this
section if you are using that version of DOS only.

With DOS 2.0S, whenever the computer executes the DOS statement it searches
the diskette in Drive 1 for file MEM.SAV. If the file exists, the computer saves
everything in the memory area that will be used by the disk utility package onto file
MEM.SAV. Then it loads the disk utility package from file DUP.SYS and transfers
control to the DOS menu. When you return to BASIC, the contents of file
MEM.SAYV are restored to memory, leaving your program intact.

The disadvantage of using MEM.SAYV is the time it takes to save and restore the
memory area. Usually, it takes about ten seconds to load the disk utility package
from the DUP.SYS disk file. If there isa MEM.SAYV file, it takes an additional 20
seconds to save the program area; you must wait three times as long before you will
see the DOS menu. Later, when you return to BASIC, it takes another seven
seconds to restore the program area.

Both MEM.SAV and DUP.SYS must be on the same diskette, in Drive 1, when
the DOS statement is executed. If you want to use all of the space on a diskette for
your own files, put DUP.SYS and MEM.SAYV on a separate diskette (possibly on
the same diskette that has the DOS.SYS file), and put that diskette in Drive 1 before
you type the DOS command. That same diskette must be in Drive 1 when you
return to BASIC, or the program from memory cannot be restored.

One of the disk utilities creates special file MEM.SAV specifically to save, and
later restore, the contents of the memory area used by the disk utility package.
Instructions for creating a MEM.SAV file are provided later in this chapter.

The MEM.SAYV file also works with non-BASIC programs. If the MEM.SAV
file is present, the contents of the memory area that the disk utility package will
occupy are saved on it and then restored when you finish with the disk utilities. It
does not matter what the memory area was used for.

Ambiguous File Names

Many of the disk utilities ask you to enter one or more file names. You can always
enter an explicit file name. Sometimes, however, it is easier to use an ambiguous file
name. For example, you may be unable to explicitly state a file name because you
only remember the first three letters. You can have the disk operating system use
any file name it finds that starts with the characters you specify. As another
example, you may wish to copy all files with a certain extension from one disk to
another. In DOS 2.0S, you can do this without typing each individual file name.

The disk operating system treats the asterisk () and question mark (?) characters
as “wild card” characters. An asterisk represents an entire file name or extension.
For example, the file name #*.BAS is interpreted to mean “all files which have a
.BAS extension.” Similarly, the file name DATAFILE.* refers to all files named
DATAFILE, regardless of their extensions.

In a file name, characters to the right of an asterisk are ignored. For example,
*FILE.TXT is treated as *.TXT, but the name GAME=#.BAS will match all file

Chapter 7: THE ATARI 810 DISK DRIVE 231

names that begin with GAME and have a .BAS extension. The asterisk works in the
opposite way when it is part of an extension; characters to the left of the asterisk are
ignored. Thus the extension .A* is interpreted as .*, but .*A will match all
extensions that end in the letter A.

A question mark can represent any single character. For example, the file name
GAME?.BAS matches any five-character file names which begin with the four
letters GAME and have the extension .BAS.

mark represents one character position, so eight question marks represent all
possible file names.

If you use a consistent system in naming your files, the wild card characters will
provide you with a very powerful programming aid. This feature is even more useful
when combined with the conventions for extensions given in Table 7-1.

DOS MENU SELECTIONS

The DOS menu (Figures 7-5 and 7-6) offers many selections which manipulate
information stored on diskettes. This part of the chapter describes the selections
which are most useful toa BASIC programmer. A few of the items pertain mostly to
machine language programming; they are described at the end of the chapter.

When the DOS 2.0S menu first appears you will see this prompt message near the
bottom of the screen:

SELECT ITEM OR CRETURNI FOR MENU
&

The prompt for DOS 1.0 is similar:

SELECT ITEM
8

Whenever you see either of these prompt messages, you can choose an item on the
DOS menu. Each item is preceded by a single letter. To choose an item, type the
appropriate letter and press RETURN. Then proceed as described in the paragraphs
that follow. Most selections will ask you for additional information, such as a file
name or drive number. If you do not enter a letter now, but just press RETURN, the
menu is redisplayed.

The various menu items are all valid with any diskette you use with your ATARI
810 Disk Drive. You can switch diskettes any time the disk drive BUSY lamp is off.

You can abort any selection at any time by pressing the BREAK key. You will be
asked to choose another menu item.

Ifatany time you press the SYSTEM RESET key, the DOS menu releases control of
the computer. If the BASIC cartridge is installed, control returns to BASIC. You
will see the READY message. If there is no cartridge installed, DOS is rebooted and
the DOS menu reappears.

232 A GUIDE TO ATARI 400/800 COMPUTERS

DIRECTORY--SEARCH SFEC, LIST FILE?

FIGURE 7-7. Directory listing prompt

File lock flag

File name

File name extension
l — File size

—m, i~ .
*DOS SYS 038
*DUP SYS 041

628 FREE SECTORS

NOTE: Other files may also be listed. DOS 2.0S shown; DOS 1.0 does not include file DUP.SYS
and has other minor differences.

FIGURE 7-8. Master diskette directory

What Is on a Diskette

To display the names of all the files on a diskette, choose DOS menuitem A, DISK
DIRECTORY. When you select it, a prompt message appears on the screen (Figure
7-7). If you press RETURN in response to this prompt, the computer will search for all
file names on the diskette in Drive 1, and list them on the screen. If you are using
DOS 2.0S, the directory will contain at least files DOS.SYS and DUP.SYS (Figure
7-8). If you have DOS 1.0, the directory listing will not include file DUP.SYS.

Parts of the Directory

Each file in the directory is listed on a separate line. There are four parts to a
directory entry: the lock flag, the file name, the file name extension, and the file size
(Figure 7-8).

The lock flag is an asterisk which appears before the file names of some files. The
presence of an asterisk indicates that the file is locked. Locked files cannot be
changed or deleted. This safety feature lets you protect valuable files from acciden-
tal change or erasure. Other DOS menu selections lock and unlock files; these will
be described shortly.

Chapter 7: THE ATARI 810 DISK DRIVE 233

The file name and file name extension (if any) appear side by side in the directory
listing. Note that the directory does not put a period between them. File names less
than eight characters long are padded on the right with trailing spaces. Extensions
always appear at the ninth character position. You must include a period whenever
you type an extension, however.

Filesize is reported in the right-hand column of the directory listing. The number
listed is the number of 128-character blocks that the file uses. Large files use more
blocks than small files. The smallest files use only one block.

The last line of a directory listing displays the number of 128-character blocks
that are available on the diskette. This will be 707 on a blank DOS 2.0S diskette, and
709 on a blank DOS 1.0 diskette. The number listed is obtained by adding up the
sizes of all the files on a diskette and subtracting that sum from 707 (DOS 2.0S) or
709 (DOS 1.0). You will receive a “disk full”error if you try to store more data than
can fit in the available free space on a diskette.

Listing the Directory from Any Drive

You can get the directory listing of any drive connected to your ATARI computer.
When the directory listing prompt appears (Figure 7-7), type the drive number and a
colon before pressing RETURN. The following example lists the names of files on the
diskette in Drive 2:

DIRECTORY--SEARCH SFEC, LIST FILE?
D23

The capital letter D is optional.

Restricted Directory Listing

You can instruct the computer to display only those names which fit a particular
format. You do this with the help of ambiguous file names. For example, you can
list only those file names which start with the letter E, as follows:

DIRECTORY-~SEARCH SFEC, LIST FILE?
FoX o X

When the disk operating system displays the directory listing prompt (Figure 7-7), it
is requesting two things, the search specification (SEARCH SPEC) and the output
device name (LIST FILE). If you just press RETURN to answer this prompt, you are
accepting the default specifications. The disk operating system will search for all
files on Drive 1, and output them to the display screen.

You may specify your own ambiguous file name as the search specification. For
example, if you want to see all file names that have the extension .BAS, respond like
this:

DIRECTORY-~SEARCH SFEC, LIST FILE?
DLIX.EAS

234 A GUIDE TO ATARI 400/800 COMPUTERS

Since D1: is the default drive, you can leave it off, like this:

DIRECTORY-~SEARCH SFEC, LIST FILE?

X BAS
Either way, you get a listing of only those files that have the extension .BAS.

In the most extreme case, you can specify an exact file name you want to search
for. If the file is not on the diskette, its name will not be listed. In that case, the
directory listing will show only the available free space on the diskette.

Directory Listing on Any Device

The directory listing prompt (Figure 7-7) also requests entry of an output device, or
LIST FILE. Thus far we have not explicitly stated an output device. The disk
operating system has been using the default output device, the display screen. To
specify an output device, type a comma, the device name, and a colon, and press
RETURN. The following response would list all files from Drive 1 on the printer:

DIRECTORY--SEARCH SFEC, LIST FILE?
DLdx,x, [}

You can omit the file specification entirely. You will get a listing of all files on
Drive 1. The following response generates the same directory listing as the last
response:

DIRECTORY-~SEARCH SFEC, LIST FILE®

bF3
Remember to type a comma before the P:. The comma tells the disk operating
system that the P: is a response to the second item requested, the output device
(LIST FILE). If you omit the comma, the disk operating system will think you want
to search for all the file names on the diskette in the specified output device. In this
case that device is the printer; the task is clearly impossible.

To print the directory of a diskette in a drive other than Drive 1, type the drive
number and a colon before the comma, like this:

DIRECTORY--SEARCH SFEC, LIST FILE?

21,F8

LEAVING THE DOS MENU

To transfer control of the computer from the DOS menu to the the ROM cartridge,
choose DOS menu item B, RUN CARTRIDGE. Pressing the SYSTEM RESET key
has the same effect. If the BASIC cartridge is installed, the READY message
appears. If the Editor/ Assembler cartridge is installed, the EDIT prompt appears.
If there is no ROM cartridge in the computer, the message NO CARTRIDGE
appears; you must choose another menu item.

Ifthe MEM.SAV fileis active (DOS 2.0S only), do not use DOS menu item B to

Chapter 7: THE ATARI 810 DISK DRIVE 235

return to BASIC. Instead, press the SYSTEM RESET key. This will insure that the
memory area is correctly restored from file MEM.SAV.

COPYING FILES

To copy the contents of a file to a different file, choose DOS menu item C, COPY
FILE. Both files can be on the same diskette as long as the file names are different.
Both files can be on different diskettes as long as both diskettes are accessible
simultaneously. In other words, you must have two disk drives in order to copy a file
from one diskette to another. If you have only one disk drive and wish to copy a file
to a different diskette, you must use DOS menu item O, DUPLICATE FILE.

When selected, DOS menu item C displays a prompt message. It asks you to
specify the source and destination disk drive numbers and file names. Here is an
example:

COFY FILE-~FROM,T0?

FILEL.EAS,FILEL.EBEAK

I[n this example no drive number is specified for either file. The disk operating
system will use Drive 1 for both. Notice that the file names are separated by a
comma.

If the destination file already exists, it is overwritten by the contents of the source
file. If the destination file does not exist, it is created.

If the source file does not exist, error number 170 occurs. Other error messages
appear if there is not enough room on the destination diskette (error 162) or if the
destination diskette directory is full (error 169).

A message appears if the MEM.SAYV file is in use (DOS 2.0S only). It requests
permission to use the entire program area of memory for the copy operation (Figure
7-9). If you agree, the contents of file MEM.SAV will not be restored to memory
when you leave the DOS menu; any program you hoped to preserve by means of the
MEM.SAYV file will be gone when you return to BASIC. To allow this, type Y and
press RETURN. Any other response aborts the file copy operation, preserving the
integrity of file MEM.SAV. You can use the file copy operation and still preserve

TYFE "Y" IF OK TO USE FROGRAM AREA
CAUTION: A "Y" INVALIDATES MEM.SAV
%

FIGURE 7-9. Prompt requesting permission to use program area

236 A GUIDE TO ATARI 400/800 COMPUTERS

a program in memory. Simply leave the DOS menu and save the program
onto cassette or diskette. Then you can let the file copy operation invalidate file
MEM.SAYV, knowing that you can always reload your program from diskette or
cassette.

The file named DOS.SYS is a special file. The file copy operation, DOS menu
item C, cannot copy it. An error occurs if you try.

Copy with Ambiguous File Names

DOS 2.0S allows wild card characters in the name (or extension) of the file to be
copied from. If they are present, the destination can be a disk drive number only. Do
not specify a destination file name or extension. Here is an example:

COFY FILE--FROM,TO?

X EAK, D2
This response will copy all files with .BAK extensions from Drive 1 to Drive 2.

Files that have a .SYS extension are not copied during any ambiguous file name
copy operation. To copy a.SYS file, specify the entire file name explicitly, using no
wild card characters.

The Copy Append Option

In DOS 2.0S, the file copy operation (DOS menuitem C) can append one file to the
end of another. To do this, type the two characters / A directly after the destination
file name. Here is an example:

COFY FILE--FROM,TO?
DZINAMES + TXT, D3 {NUMEERS . TXT/A

The destination file must already exist. The / A suffix prevents the destination file
from being overwritten by the contents of the source file. Instead, the contents of the
source file are added to the end of the destination file.

Do not use the /A suffix to append BASIC programs stored with the SAVE
statement. It will not work. The first program will be tacked onto the end of the
second, but the LOAD statement will not recognize it. In effect, nothing happens.

You can append BASIC programs only if both programs are stored with the
LIST statement. Lines in the first file will be tacked onto the end of the second file.
Then when you issue an ENTER command to load the second file, BASIC merges
the two sets of program lines. It is just as if, starting with the second program in
memory, you typed in every line from the first file. Lines already in memory will be
replaced by later lines with the same line number. You may want to save the
program back into the file with the LIST statement. Doing so will eliminate
duplicate lines, which waste disk space.

File Copy with One Drive, Two Diskettes

If you have only one disk drive attached to your ATARI computer and wish to
transfer files from one diskette to another, you must use DOS menu item O,

Chapter 7: THE ATARI 810 DISK DRIVE 237

DUPLICATE FILE. It requests the name of the file you wish to transfer.

NAME OF FILE TO MOVE?
W

Type the name of the file you wish to transfer. Enter only one file name; the source
and destination file names are the same. Do not specify a drive number. DOS menu
item O always uses Drive | for both source and destination.

Youcan use wild card characters in the file name. In this case, all files that match
the ambiguous file name will be transferred, one at a time. However, files that have a
.SYS extension will not be transferred. If you want to transfera .SYS file, you must
specify the entire file name explicitly.

Next, a message appears if the MEM.SAV file is in use (DOS 2.0S only). It
requests permission to use the entire program area of memory for the file duplicate
operation (Figure 7-9). If you agree, the contents of file MEM.SAYV will not be
restored to memory when you leave the DOS menu; any program you hoped to
preserve via the MEM.SAYV file will be gone when you return to BASIC. To allow
this, type Y and press RETURN. Any other response preserves the integrity of file
MEM.SAV and the program area of memory. The file transfer will still take place,
but at a much slower pace.

With the preliminaries out of the way, the transfer begins. Messages appear on
the display screen, asking you to insert first the source disk and then the destination
disk. You may have to swap disks several times. Each time you insert a disk, you
must signal that it is ready by pressing RETURN on the keyboard.

When you insert the source disk, the computer reads part of the source file into its
memory. When you substitute the destination disk, the computer writes that piece
of the file onto the destination file. You may have to change diskettes several times if
the file is very large, or if you are moving more than one file.

CAUTION: Using DOS menu item O with DOS 1.0 effectively erases the program

area of memory. If you had a BASIC program in memory, it will be gone when you
return to BASIC after duplicating files.

REMOVING UNNEEDED FILES

After a while, you will probably end up with a number of files you no longer need.
To remove files from a diskette and make the space they used available for other
files, choose DOS menu item D, DELETE FILE(S). When you select it, the
following prompt message appears:

DELETE FILE SFEC

g

You must enter the disk drive number and file name of the file you wish deleted.

You may use wild card characters to specify an ambiguous file name and extension.
Next, this message appears:

TYFE "Y" TO DELETE...

238 A GUIDE TO ATARI 400/800 COMPUTERS

The diskette is searched for all the file names that match your specification.
Whenever a match is found, the file name is printed, followed by a question mark. If
you wish to delete the file, type the letter Y and press RETURN. Type any other letter
if you do not want the file deleted.

You may not delete any file that is locked. If you try to delete a locked file, error
number 167 occurs, and the delete selection is aborted.

To erase all files from a diskette, use *.* as the delete file specification, like this:

DELETE FILE SFEC
X, X

Disabling Delete Confirmation

Normally, DOS menu item D requires that you confirm every file name to be
deleted. This is a good way to avoid accidentally deleting the wrong file, but
becomes somewhat tedious when you use an ambiguous file name in order to delete
alarge number of files. If you want to circumvent the confirmation step for each file,
type the characters / N right after the file name. For example, the following response
deletes all files on Drive 1, without asking “yes” or “no” for each file:

DELETE FILE SFEC
X+ X/N

Be very careful when you use the / N suffix, since you cannot recover a file once it
is erased.

CHANGING FILE NAMES

To change the name of any file on a diskette, choose DOS menu item E, RENAME
FILE. The following prompt message appears:

RENAME —~ GIVE OLD NAME, NEW

8

Enter the old file name, a comma, and the new file name. You may specify a drive
number for the old file name, but not for the new name. Use DOS menu item C to
move a file to a different drive.

Error 170 occurs if the old file name you specify does not exist. Error 167 occurs if
it is locked.

CAUTION: If the new file name already exists on the diskette, you will end up with
two files with the same name. If this happens, future references to one file will also
affect the other. If you try to rename one, the other will be renamed also. The only way
to recover from duplicate file names is to delete both files and start over. If you are not
sure whether a file name is in use, list the file directory with DOS menu item A before
you rename a file.

Ambiguous file names are allowed. Here is an example:

RENAME — GIVE OLD NAME, NEW
X DAT X, TXT

Chapter 7: THE ATARI 810 DISK DRIVE 239

This will change all .DAT extensions to . TXT. The following response changes all
file extensions to .ZZZ:

RENAME - GIVE OLD NAME, NEW
XoXy X, ZZZ

Be very careful with ambiguous file name changes. It is all too easy to end up with
duplicate file names.

Do not change the name of file DOS.SYS, or the diskette will not boot. If you
change the name of the DUP.SYS file (DOS 2.0S only), you will not be able to load
the DOS menu from that diskette.

LOCKING FILES

Locking a file prevents any action that changes the information stored for that file,
including changing the file name. To lock files, choose DOS menu item F, LOCK
FILE. When you select it, this prompt appears:

WHAT FILE TO LOCK?
”

Enter the disk number and file name of the file you want locked. The following
example locks the DOS boot file, on Drive I:

WHAT FILE TO 1L.OCK?

DOS.HYH

Youmay use wild card characters to specify an ambiguous file name to be locked.
For example, *.% will lock every file. Similarly, #.BAS will lock all files with .BAS
extensions.

Itisa goodideatolock the DOS.SYS file,and the DUP.SYS file if it exists. That
prevents you from accidentally changing their names or contents.

REMOVING FILE LOCKS
To unlock files, choose DOS menu item G, UNLOCK FILE. When you select it,
this prompt appears:

WHAT FILE TO UNLOCK?
5

Enter the disk number and file name of the file you want unlocked. The following
example unlocks file MAILLIST.DAT, on Drive 2:

WHAT FILE TO UNLOCK?
D2 IMATLLIST.DAT

You may use wild card characters to specify an ambiguous file name to be
unlocked. For example, *.* will unlock every file. Similarly, *.BAS will unlock all
files with .BAS extensions.

240 A GUIDE TO ATARI 400/800 COMPUTERS

WRITING NEW DOS FILES

The disk operating system program is stored on one or two files. DOS 1.0 is on file
DOS.SYS, while DOS 2.0S uses two files, DOS.SYS and DUP.SYS. To write a
copy of these files onto a diskette in a specific drive, choose DOS menu item H,
WRITE DOS FILES. The programs are copied from the computer’s memory, not
from another diskette. The procedure is slightly different for DOS 1.0 and DOS
2.08S.

Write DOS 2.0s Files
In DOS 2.0S, this prompt message appears after you select DOS menu item H:

DRIVE TO WRITE FILES TO?
;N

Enter Drive number 1, 2, 3, or 4.
Now a prompt message appears asking you to confirm your choice by typing Y:

DRIVE TO WRITE FILES TO?

1

TYFE "Y" TO WRITE DOS TO DRIVE 1
&

If you type anything other than a capital Y, the operation will be aborted.

Write DOS 1.0 File
DOS 1.0 always writes file DOS.SYS to Drive 1. You cannot choose the drive. This
prompt message appears:

TYFE "Y" TO WRITE NEW DOS FILE
S

FORMATTING DISKETTES

Before you can use a new diskette it must be formatted. The formatting procedure
writes timing marks and other information on the diskette. The disk operating
system uses this information to ascertain where it is on the diskette. Because
formatting writes over everything previously on the disk, it will erase a used
diskette. This can be disastrous if you accidentally format the wrong diskette.

To format a diskette, choose DOS menu item I, FORMAT DISK. The following
prompt message appears:

WHICH DRIVE TO FORMAT?

8

Enter the number of the drive that contains the diskette you wish to format. Since
formatting a diskette will erase anything stored on it, you will be asked to confirm
your choice, as follows.

Chapter 7: THE ATARI 810 DISK DRIVE 241

WHICH DRIVE TO FORMAT?

1

TYFE "Y" TO FORMAT DRIVE 1
This is your last opportunity to avoid erasing the wrong diskette. It is a good time to
double-check the diskette in the drive to make sure it is the one you wish to erase.

When you respond with a Y to the above prompt, the drive will become active,
and you may hear beeps from the TV speaker. Any other response will abort the
selection. The format operation takes about one minute.

COPYING ENTIRE DISKETTES

Although DOS menu item C allows you to copy files as needed, you will frequently
wish to copy the contents of an entire diskette. To do that, choose item J, DUPLI-
CATE DISK. It copies all files on a diskette, even files with .SYS extensions. It can
copy from one drive to another. It can also copy using just one drive.

When you select DOS menu item J, this prompt message appears:

DUF DISK--S0URCE,DEST DRIVES?
5

CAUTION: Using DOS menu item J with DOS 1.0 effectively erases the program
area of memory. If you had a BASIC program in memory, it will be gone when you
return to BASIC after duplicating a disk.

Single-Drive Duplication

If you have only one drive, respond like this:

DUF DISK--S0URCE,DEST DRIVES?
Led

Now this prompt appears:

INSERT SOURCE DISK, TYFE RETURN

&

If the diskette you wish to copy is not already in the disk drive, insert it now. Press
RETURN. The computer will read part of the diskette’s contents into its memory. It
will then ask you to insert the destination disk, with this prompt:

INSERT DESTINATION DISK, TYFE RETURN
B

Place a formatted diskette into the drive, close the drive door, and press RETURN.
A few seconds later, the INSERT SOURCE DISK message will reappear. You
must change diskettes again. This process will repeat several times, depending on
how much memory your computer has and how much data is stored on the source
diskette. The diskette-swapping cycle will repeat until the entire disk is copied.

242 A GUIDE TO ATARI 400/800 COMPUTERS

Right after you first insert the source disk, another message will appear, but only
ifthe MEM.SAV file is in use (DOS 2.0S only). The message requests permission to
use the entire program area of memory for the duplicate disk operation (Figure 7-9).
If you agree, the contents of file MEM.SAYV will not be restored to memory when
you leave the DOS menu; any program you hoped to preserve via the MEM.SAV
file will be gone when you return to BASIC. To allow this, type Y and press
RETURN. Any other response aborts the duplicate disk operation, preserving the
integrity of file MEM.SAV. It is possible to duplicate a diskette and still
preserve a program in memory. Simply leave the DOS menu and save the program
onto cassette or diskette. Then you can let the disk duplication invalidate file
MEM.SAYV, knowing that you can always reload your program from diskette or
cassette.

Multiple-Drive Duplication

Duplicating diskettes is much easier if you have two disk drives connected to your
ATARI computer. Specify one drive as the source drive and the other drive as the
destination. When you use two drives to duplicate, there is no need to swap
diskettes. The following example will copy from the diskette in Drive | to the
diskette in Drive 2:

DUF DISK-~S0URCE,DEST DRIVES?

1,2

INSERT EOTH DISKETTES, TYFE RETURN

-

As with single-drive duplication, you will see another prompt message (Figure
7-9) if file MEM.SAV is active (DOS 2.0S only). Reply witha Y if it is all right to use
the entire program area of memory for the disk duplication. If it is not, reply with
an N; the disk duplication will be aborted.

CREATING A MEM.SAV FILE

To create the special file called MEM.SAV (DOS 2.0S only), choose DOS menu
item N, CREATE MEM.SAV. The file will be created on the diskette in Drive 1.
The following prompt message will appear:

TYFE "Y" T0 CREATE MEM.SAV

8
Enter Y to proceed with MEM.SAYV file creation; any other entry aborts the file
creation.

If the file already exists on the diskette, the message MEM.SAV FILE
ALREADY EXISTS appears and the operation is aborted.

BASIC PROGRAMS ON DISK

Five BASIC statements form a very useful connection between BASIC and the disk
operating system. The SAVE and LIST statements store programs on a diskette.
The LOAD, ENTER, and RUN statements retrieve programs from a diskette.

Chapter 7: THE ATARI 810 DISK DRIVE 243

Storing a Program

When you type a program into the computer, it will remain in memory until the
power is turned off, or until it is erased by a statement suchas NEW. The SAVE and
LIST statements allow you to store a program in a diskette file of your choice. You
must specify the disk drive number, the file name, and any file name extension.
Either of the following statements will store a program on the diskette in Drive [:

SAVE "DL1IMYFROG.EAS"
LIST "DLIMYFROG.LST"

You can omit the drive number, but not the device name (D: is the disk drive
device name). Drive 1 is assumed unless you specify otherwise. The following
statements will also write to the diskette in Drive 1:

SAVE "DIMENU.EBEAS"
LIST "DIMENU.LST"

Notice that we use extension .BAS with the SAVE statement and extension .LST
with the LIST statement. That makes it easy to identify whether we used LIST or
SAVE to store a particular file. This is important because the two statements do not
use the same recording format.

The LIST statement outputs in the same format regardless of the device. It sends
out the ATASCII code of every character in the program listing.

The SAVE statement abbreviates keywords with one-character tokens. Thus,
instead of storing five ATASCII characters for the keyword INPUT, it stores just
one character, the token for INPUT.

The SAVE statement always stores the entire program from memory. The LIST
statement can store all of the program or any part of it. You can specify the first and
last lines to be stored. For example, the following statement stores only lines with
line numbers between 10 and 50:

LIST "DIDATASTMT.LST",10,50

Retrieving a Program

The LOAD statement retrieves programs that were stored in tokenized format by
the SAVE statement. The ENTER statement retrieves programs that were stored in
straight ATASCII code by the LIST statement. Because of the different formats,
you cannot use LOAD and ENTER interchangeably.

You must specify a disk drive number, file name, and file extension. If the drive
number is absent, Drive | is used. The following statement retrieves a program
stored by a SAVE statement:

L.OAD "DZMATLLIST.EAG"

The following statement retrieves a program stored by a LIST statement:

ENTER "DICHESS.EBAS"

244 A GUIDE TO ATARI 400/800 COMPUTERS

The file name and extension must be the same as the ones you used to store the
program. Both LOAD and ENTER check to see if the file name you specify actually
exists on the diskette in the drive you specify. If not, error 170 results. If the file is
present, the new program is read in from the diskette, and BASIC displays the
READY message when program retrieval is finished.

The LOAD statement erases any program currently in memory. The new pro-
gram replaces the old one. The ENTER statement, on the other hand, merges the
program it retrieves with the program in memory. If there are incoming lines with
the same line numbers as existing lines, the incoming lines replace the existing lines.
To circumvent the merging, type NEW before using the ENTER statement.

The RUN Statement

Frequently, the first thing you will want to do after loading a program is to run it.
Normally this takes two commands, as in the following example:

LOAD "DIFAYROLL «EBAS"

READY

RUN

You can abbreviate this two-step process by adding the file name to the RUN
statement. Shorten the previous example like this:

RUN "DIFAYROLL . BAS"

The program will run as soon as it is loaded. The LOAD command becomes an
implicit step.

Chaining Programs

When executed, a programmed mode RUN statement will load and run another
program. Chapter 5 explained how this chaining process works with cassettes. It
works even better with diskettes.

To see how chaining works, we will create three small programs on a diskette. The
first program will load and run the second, and the second will load and run the
third. To begin, enter and save the first program:

NEW

READY

10 FRINT "FROGRAM ONE"
20 RUN "D13iF2.BAG"
SAVE "D1iF1.BASY

READY
&

That stores the first program in file P1.BAS, on the diskette in Drive 1.

The program is still in memory. Change it to become the second program, and
store the result in file P2.BAS.

Chapter 7: THE ATARI 810 DISK DRIVE 245

10 FRINT "FROGRAM TWO"
20 RUN "D13F3.EAS"
SAVE "D1IF2.EBEAS"

READY

f

Now you have stored two programs on the diskette in Drive 1. Make a few changes
to the second program, which is still in memory, to create the third and final
program, and store it in file P3.BAS.

10 FRINT "FROGRAM THREE"

20 END

SAVE "DLiF3,EAS"

READY

%

The diskette now has three chained programs on it. The first will load and run the
second, and the second will load and run the third. Use the RUN statement to load
and run the first program.

RUN "D1:F1.EBAS"
FROGRAM ONE
FROGRAM TWO
FROGRAM THREE

READY
8

The other two programs run automatically, with no action on your part.

Chained programs look to the user very much like one long program. Recall from
Chapter 5 that the user has to press the RETURN key to continue with each successive
program module on cassette. There is no need to do this with programs on disk.

The main drawback to chaining programs with the RUN statement is that it
clears all variables before it loads the next program. This means that one program
cannot use values that were input or calculated by an earlier program in the chain.

Subroutine Libraries

Over a period of time, programmers develop general purpose subroutines which
they use in one program after another. Chapter 4 introduced several such subrou-
tines (Figures 4-16 through 4-21,4-31, 4-33, 4-36, 4-37, and 4-38). Using subroutines
like these saves programming time, but somehow you must enter the subroutines
every time you use them. You can type them in, but that is dull and time-consuming.
You can avoid the retyping by building a library of subroutines on disk.

It is extremely easy to create and use a library of subroutines on disk. Every time
you write a subroutine, store in on disk with the LIST statement. Later, when you
want to include the subroutine in a program you are writing, use the ENTER
statement to retrieve it. It will merge with the program in memory.

246 A GUIDE TO ATARI 400/800 COMPUTERS

Variable Name Table

Recall from earlier chapters that ATARI BASIC keeps a table of all the variable
and array names you have used in programmed or immediate mode. The SAVE
statement stores this variable name table along with the tokenized program lines.
The LOAD statement replaces the current variable name table with the one it
retrieves from the disk file.

The LIST statement does not store the variable name table, nor does the ENTER
statement restore one to memory. The existing variable name table remains, unless
you use the NEW statement.

Over a period of time, the variable name table can become cluttered with obsolete
variable names. It is easy enough to remove these unwanted names. First, store the
program with the LIST statement. Then use the NEW statement to clear the
variable name table completely. Of course, this also erases the program lines. Load
the program back into memory with the ENTER statement.

USING DISK DATA FILES

The disk drive is ideally suited to storing large quantities of data. The BASIC
statements PRINT # and PUT store data on disk. The INPUT # and GET state-
ments read data back in.

Data Files, Records, and Fields

From the computer’s perspective, a data file is no different from a program file.
Both are simply collections of numbers. What makes the difference is the way in
which the numbers are interpreted. From the user’s standpoint, a program file
contains program lines and a data file contains numeric and string values. Files are
generally arranged in some kind of logical order. For example, one file might
contain a mailing list, which is nothing more than a collection of names and
addresses. Each name and address is called a record. Any name-and-address record
contains several items: name, street, city, state, and ZIP code. These specific data
items are called fields. Every record usually has the same fields. Only the values in
the fields vary.

File Accessing Methods

There are two ways to access disk files. One is called sequential access. A sequential
file is just like a file on cassette. To read or write the last item in the file, you must
read or write all previous items. For some applications, sequential access is
acceptable.

Random access allows more flexibility than does sequential access. You may read
or write any record in the file with equal ease, regardless of its location. For many
applications, random access is the best solution.

DOS 2.0S supports both sequential and random access. DOS version 1.0 sup-
ports only sequential access.

Chapter 7: THE ATARI 810 DISK DRIVE 247

How Data is Stored

To quickly find one particular character among the thousands stored on a diskette,
the disk operating system divides storage space on a diskette into 720 parts, called
sectors. Each sector holds exactly 128 characters.

DOS 2.0S reserves 13 sectors of each diskette. Sectors 1, 2, and 3 store the
program that boots the disk operating system itself into memory. Sectors 361
through 368 are used for the diskette directory. Sector 360 keeps track of which
sectors are in use, and which are free, on the whole diskette. This is called the
Volume Table of Contents. The last sector of every diskette, sector 720, is also
reserved. DOS 2.0S leaves 707 sectors free for you to use.

DOS 1.0 uses only sector 1 for the DOS boot program, leaving two additional
sectors for data storage. DOS 1.0 uses the other sectors reserved by DOS 2.0S for
the same purposes.

Tracks

To make it easier to find a particular sector, the 720 sectors of a diskette are
arranged into 40 concentric circles of 18 sectors each, called tracks (Figure 7-10). By
moving the read/ write head to a particular track, a maximum of 18 sectors will be
read before the desired one is found.

OPENING DATA FILES

Disk files must be opened before they can be used. Opening a file causes the disk
operating system to retrieve information about the file. You are informed whether
the file is on the disk, and if so, where it is on the disk. Opening a file also sets aside
an area of memory to be used as a file buffer. The file buffer is similar to the disk
buffer, but it is dedicated to the file. It allows you to access a small portion of the file
without activating the disk drive for every item accessed, and that saves a good deal
of time.

The OPEN statement opens an input/ output channel to a disk file. It looks like
this:

OFEN #2,8,0,"D1IFILENAME . .EXT"

This statement opens channel 2 for output to file FILENAME.EXT on Drive 1.

The first parameter in the OPEN statement is the channel number. As Chapter 4
explains, channels 1 through 5 are always available for your BASIC program.
Channels 6 and 7 are also available under some circumstances. The BASIC graphics
statements use channel 6 (see Chapters 8 and 9). The CLOAD, CSAVE, and
LPRINT statements use channel 7. If you use any of these statements, they will
automatically take over channel 6 or 7.

Aftera program opens a channel to a disk file, it refers to the channel number, not
to the file itself. The OPEN statement must occur in the program before any other
reference to the file occurs.

248 A GUIDE TO ATARI 400/800 COMPUTERS

Sectors

256 bytes of data stored on one sector

FIGURE 7-10. A diskette’s recorded surface

There are five disk access modes: input (mode 4), output (mode 8), update (mode
12), append (mode 9), and directory input (mode 6). The value of the second OPEN
statement parameter determines the access mode. We will describe the different
modes shortly.

The third OPEN statement parameter is ignored. Make this parameter 0.

The fourth and final OPEN statement parameter specifies the drive number and
file name. If you omit the drive number, Drive 1 will be used, but you must always
specify the disk drive with a capital D and a colon. You may specify any drive, file
name, and extension you like. Do not use DOS.SYS, MEM.SAV, or DUP.SYS,
however, as these files are needed for proper operation of the disk operating system.

If you open a file for anything other than mode 8 output, the file name must exist
on the drive as specified. If it does not, error 170 occurs.

Access mode 8 is the only mode that will cause a file to be created. The other

Chapter 7: THE ATARI 810 DISK DRIVE 249

modes expect the file to already exist. If the file does exist, access mode 8 will first
delete, then recreate the file. This will erase all information already in the file.

Normally, no more than three disk files can be open simultaneously. Each one
must use a different channel, of course. In DOS 2.0S there is a way to extend the
limit so there can be seven files open simultaneously. You must make a minor
change to the disk operating system. The procedure is described at the end of this
chapter.

CLOSING DATA FILES

There are many ways to close a channel. The END statement will close all open
channels. The following program opens a channel for output to a disk data file and
closes it implicitly with an END statement:

100 FRINT "NOW OFENING FILE..."
200 OFEN #1,8,0,"D1iDATAFILE.THMF"
300 FRINT "“"THE FILE IS NOW OFEN."
400 END

This program has a major flaw: it does not explicitly close the file. The best way to
close a channel that is open to a disk data file is with the CLOSE statement. The best
time to do it is right after you are finished with the file. This is especially important
with a file that has been opened for output. Not closing output files can result in loss
of data, or even destruction of data on another diskette.

Correct the last program by adding line 390, as follows:

100 FRINT "NOW OFENING DATA FILE..."
200 OFEN #1,8,0,"DLIDATAFILE . TMF"
300 PRINT "THE FILE IS NOW OFEN."
390 CLOSE 41

400 END

WRITING TO DATA FILES

Just opening and closing files is a fairly useless activity. Disk files are supposed to
store information. This section will show you how to modify the last program so it
will store information.

Information is sent to disk files in the same way it is sent to the program recorder
or printer: by means of the PRINT # statement. Anything you can print can be sent
to a file. In fact, you might visualize a sequential file as paper in the printer. The
printer puts each character it receives into the printer buffer. When the buffer is full,
the printer prints the buffer’s contents on the paper. Similarly, when information is
sent toa disk file, it goes into the file buffer. When the buffer is full, its contents are
written on the disk.

To direct the PRINT # statement to a disk file, use the channel that you assigned
in the OPEN statement for that file. The last example program assigned channel 1 to
the file DATAFILE. TMP. The following program writes some text on that file.

250 A GUIDE TO ATARI 400/800 COMPUTERS

100
200
300
310
320
390
400

When you run this program, the old file DATAFILE.TMP on your disk is deleted,
then recreated as a new, empty file. This happens because the OPEN statement
specifies access mode 8 (line 200). The OPEN statement also sets a pointer to the
beginning of the file buffer (line 200). At this point the file buffer looks like Figure

7-11.

The first PRINT # statement outputs 21 text characters to the file (line 310). They
end up in the file buffer. The file buffer pointer moves to the 22nd position. Since the
PRINT # statement does not end with a semicolon or comma, it also outputs an
EOL character. That moves the file buffer pointer to position 23. The file buffer now

FRINT "NOW OFENING DATA FILE..."
OFEN #1,8,0,"DLIDATAFILE ., TMF"
FRINT "THE FILE I8 NOW OFEN,"
FRINT 1§ "WORDS CANNOT DESCRIEBEY
FRINT #13"HOW SPEECHLESS T FELT"
CLOSE $#1

END

looks like Figure 7-12.

Start of Buffer

End of Buffer

¥
(€

|

)

Pointer

FIGURE

7-11. Empty disk file buffer

v

Start of Buffer

End of Buffer

E

WORDS CANNOT DESCRIBEO
L

]

Pointer

~
~

FIGURE

7-12. Disk file buffer with data

Chapter 7: THE ATARI 810 DISK DRIVE 251

Start of Buffer End of Buffer
; N
E E ¢
WORDS CANNOT DESCRIBEOHOW SPEECHLESS I FELTOQO
L I, 55
L4Y
Pointer

FiGURE 7-13. Disk file buffer with two fields

The next PRINT # statement outputs another 21 text characters, plus an EOL
character (line 320). These characters also end up in the file buffer. The pointer now
points to the 46th position. The file buffer looks like Figure 7-13. The program has
stored two fields of data in the file buffer. Each field is terminated by an EOL
character.

The CLOSE statement forces the contents of the file buffer to be output to
channel I (line 390). Since channel ! is linked to file DATAFILE.TMP, the contents
of the buffer are stored in it.

The file buffer has a capacity of 125 characters. The buffer actually takes up 128
bytes of memory, but three are not available. The contents of the buffer are written
to the diskette each time the buffer fills.

With sequential access, the file pointer can only be moved forward. The only way
to move the pointer backward is to close the file, then reopen it. Whenever a file is
opened, the pointer is set to the first character in the file.

Experiment with the example program above. Change the PRINT # statements
to store different data. Try using string variables and numeric variables and con-
stants. You may add more PRINT # statements, as long as they occur after the
OPEN statement and before the CLOSE statement.

Remember that ifany PRINT # statement terminates with a semicolon or comma
it will not output an EOL character to the file. The characters in the next PRINT #
statement become part of the same field. Here is an example:

100 OFEN #1,8,0,"DONEFIELD . TMF"

200 FRINT #1§"THIS XS THE FIRST"S

300 FRINT &L§i"aAaND THIS L& THE SECOND!
400 CLOSE H#1

G300 END

Output from the first PRINT # statement (line 200) is concatenated with output
from the second PRINT # statement (line 300). The result is one data field in the file
(Figure 7-14).

252 A GUIDE TO ATARI 400/800 COMPUTERS

Start of Buffer End of Buffer
j b)) *
E [£8
THIS IS THE FIRSTAND THIS IS THE SECONDO {
L n
T ASY
Pointer

FIGURE 7-14. Concatenated output

Commas in PRINT # Statements

In PRINT # statements, commas can occur as separators between items, like this:

745 FRINT #4353 "HELLO!M, "WHAT I8 YOUR NA
ME?Y

They can also occur at the end of a PRINT # statement, like this:
9456 FRINT #23"THE END",

The computer does not know the difference between writing data to a disk file and
writing data to the screen. On the screen, a comma causes spaces to be output
between items until the cursor is at the next column stop. A comma also suppresses
the EOL character. For more details, see Chapter 4. In a disk file, the file buffer
pointer takes the place of the cursor. Consider the following statement:

FRINT #13;1,2,3,

Assuming that channel 1 is open for output to a disk file, the statement above will
output one field to the file. Because commas separate the items, nine blank spaces
are appended to each character. Because a comma ends the statement, no EOL
character is output. Figure 7-15 illustrates this.

Because of the blank spaces inserted by commas, you should not use commas in
PRINT # statements that output to disk files. If you want items to be concatenated,
use a semicolon.

If you do not want items to be concatenated, you should put each field in a
separate PRINT # statement. Another solution is to explicitly output an EOL
character between fields, as shown below:

233 FRINT #S53"YES!"JCHR$(185) §"HE HAVE
NO EANANAS"

CHRS$(155) generates an EOL character.

Chapter 7: THE ATARI 810 DISK DRIVE 253

Start of Buffer End of Buffer

| D 1

—(C

} | 2 3 {
.
A 144

Pointer

FIGURE 7-15. Commas in PRINT # statements

If you intend to use the above technique extensively, you may wish to define a
string variable as an EOL character. Here is an example:

S5 DIM R$(1)
10 Re=CHRE(LSE) tREM EOL

+

431 FRINT 2 5 NAMES §R$ FRANK RS SERTALNU
MEE R

Writing with the PUT Statement

A PUT statement can output a single numeric value to a disk file. The value must be
between 0 and 255. The value is usually interpreted as an ATASCII character code.
Each value takes the same space on the file as one character from a PRINT #
statement. The PUT statement does not output an EOL character. The following
program will store the text “HELLO™ on a file, complete with the enclosing quotes
and a terminating EOL character.

10 OFEN #5,8,0,"DIHELLO, TXT"
20 FUT 45,34 IREM "

30 FUT #5,72REM H

40 FUT #5,69REM E

S50 FUT #5,76 REM L

G0 PUT 5,76 tREM L.

70 FUT #5,79REM O

80 FUT #5,34IREM "

0 FUT #5, 155 IREM (EO0L)
100 CLOSE 45

110 END

READING SEQUENTIAL DATA FILES

Once data has been stored on a disk file, it can be retrieved, or read from the file. The
INPUT # and GET statements read file data and assign the values to variables. To

254 A GUIDE TO ATARI 400/800 COMPUTERS

see how these statements work with the disk, first run the following program to
create the file DATAFILE.TMP:

200 OFEN #1,8,0,"DLiDATAFILE ., TMF"

310 FRINT #1:"DAMN THE TORFEDOES!''

320 FRINT #13"FULL SFEED AHEAD'"

3920 CLOSE #1

400 END

The next program will read data fields from DATAFILE.TMP and display them
on the screen:

100 DIM A$CL00)

190 REM Open file for input

200 OFEN #1,4,0,"DIDATAFILE .. TMF"

300 INFUT #13A%

400 FRINT A%

500 GOTO 300

4600 CLOSE #1

700 END

When you run the program, this appears on the screen:

DAMN THE TORFEDOES!
FULL SFEED AHEAD!

ERROR~ 136 AT LINE 300

Error 136 occurred because the program tried to read past the end of the file. Since
the program was stopped at line 300 by the error, the CLOSE statement was not
executed. In this case that is not important. The program did not write to the file, so
the file buffer never contained new data that needed to be written on the disk.

It is not good practice to write programs that end with errors. You can avoid the
end-of-file error by using the TRAP statement. Add a new line to the program
above, as follows:

100 DIM A$C100)

190 REM Open file for input

200 OFEN #1,4,0,"DLIDATAFTLE , TMF"

210 TRAF 400

300 INFUT #13A%

400 FRINT A%

500 GOTO 300

4600 CLOSE #1

700 END

Now the program ends neatly, without the error message.

To be really safe, the program should check to make sure that the error is in fact
an end-of-file error. Without proper checking, the program treats any error as an
end-of-file error. Here is a new version of the last program, with more careful error
checking:

100 DIM A%C100)

190 REM Open file for input
200 OFEN #1,4,0,"D1iDATAFYLE . TMF"

Chapter 7: THE ATARI 810 DISK DRIVE 255

210 TRAF 510

300 INFUT $#1;A%

400 FRINT A%

500 GOTO 300

509 REM Get error riumber

510 ERR=FEEK(19%)

519 REM Ernd of file?

520 IF ERR=13% THEN 600

G929 REM If not, print error rmumber
30 FRINT "ERROR NUMBER "jERR:" HAS 0OC
CURRED'™"

4600 CLOSE #1

700 END

The INPUT # statement reads one data field at a time. It keeps reading characters
until it encounters an EOL character. Then it assigns the field value to the next
variable on its list. The value type must match the variable type; an error results if
you try to read a non-numeric string into a numeric value.

Using GET to Read Files

The GET statement reads a file character by character. Each GET statement reads
one numeric value. Your program must decide how to interpret that value. Most
often it will use the CHRS function to interpret the value as an ATASCII character
code. The next program uses the GET statement to read the same file as the last
program.

1920 REM Open file for input

200 OFEN #1,4,0,"DLIDATAFILE TMF"
210 TRAF S510

300 GET 41,4

400 FRINT CHR&C(A)

500 GOTO 300

509 REM Get error number

510 ERR=FEEK(19%5)

919 REM End of file?

520 IF ERR=13% THEN &00

529 REM If rmot, print error number
530 FRINT "ERROR NUMEER "jERR:;" HAS OQC
CURRED!'"
400 CLOSE #1
700 END
OPEN TO APPEND

When you open a file for output (mode 8), everything in the file is erased, and the
pointer is set to the beginning of the file. It is possible to add to information that is
already in a file without erasing the old data.

If you specify mode 9 (append) when you OPEN a file, the pointer will be set to
the end of the file. The file must exist or error 170 will occur.

Suppose there is a disk file TALE.TXT which contains only the text “ONCE

256 A GUIDE TO ATARI 400/800 COMPUTERS

UPON A TIME” followed by an EOL character. Then the following program is
executed:

210 OFEN #2,9,0,"DITALE.TXT"

220 FRINT #23"THERE WAS A FLOFFY DISK
DRIVE"

230 FRINT #Z3"THAT HAD NO DISKETTE"
240 CLOSE #2

250 END

Because mode 9 (append) was used in the OPEN statement (line 210), the file buffer
pointer is set to the next available position on the file (Figure 7-16). When more text
is sent to the file (lines 220 and 230), it is appended to the end of the file (Figure 7-17).

Start of Buffer End of Buffer
IS |
E — 3
ONCE UPON A TIMEO j
L RS)
‘ L

Pointer

FIGURE 7-16. Opening a disk file to append

Start of Buffer

|

E E g
ENCE UPON A TIMEOTHERE WAS A FLOPPY DISK DRIVEOTHAT
L L

End of Buffer

e =]
(€

E

HAD NO DISKETTEO
--- = I 2

Pointer

FIGURE 7-17. Appending data to a disk file

Chapter 7: THE ATARI 810 DISK DRIVE 257

Whenever you use append mode, another sector (128 characters) is automatically
allocated for the file. This happens every time a mode 9 OPEN statement is
executed. A program can consume disk space at a rapid rate if it is not carefully
designed. Fortunately, there is another way to add data to an existing file, as the
next section describes.

OPEN FOR UPDATE

Mode 8 (output) and mode 9 (append) both permit only writing. Mode 4 (input)
permits only reading. In order to both read and write, you must use mode 12
(update). A file must exist before it can be opened for updating.

When a file is opened for update, the pointer is set to the beginning of the file, and
the data already in the file is left intact. The file may be read or written to at this time.
For each character that is read or written, the file pointer is moved forward one
position.

Data written to the file replaces previous data on a character-by-character basis.
Forexample, the next program creates a data file and writes the message “THIS IS
THE OLD DATA” on it.

100 OFEN #4,8,0,"DITESTFILE. TMF"
110 FRINT #43;"THIS IS THE OLD DATA"Y
120 CLOSE #4

130 END

This program updates the same file:

200 OFEN #3,12,0,"DITESTFILE., TMF"
210 PRINT #33"HELLOY

220 CLOSE #3

230 [END

The OPEN statement leaves the pointer at the beginning of the file (line 200). The
PRINT # statement output starts there. The five characters of “HELLO” and the
EOL character replace the first six characters of the data previously in the file. Two
fields are now stored in the file, demarcated by EOL characters (Figure 7-18).

The data already on file can be read. This moves the pointer forward in the file.
Thus you can start writing at any point between the beginning and the end of the file.
Simply read along until the pointer is at the desired position, then write. Either an
INPUT # statement or a GET statement will read data and move the file pointer
forward. INPUT # reads fields, while GET reads single characters. The following
example uses the GET statement:

100 TRAF 19003REM In case no file

190 REM Open file for update

200 OFEN #3,12,0,"DINORDS . TXT"

400 TRAF 1700IREM In case no $

790 REM Read characters wuntil $ found

800 GET #3,A1TIF CHR$(A)I="4" THEN 800

00 REM Dollar sian found

258 A GUIDE TO ATARI 400/800 COMPUTERS

Start of Buffer End of Buffer

W |
14

E E
HELLOOS THE OLD DATAO
L L 53

I 2

Pointer

FIGURE 7-18. Writing over existing data

1000 PRINT #3;"1234.56";

1100 REM Last semicolon above

1200 REM Imhibits EOL character
1300 CLOSE 43

1400 FRINT "UFDATE COMFLETE"

1500 GOTO 2000

1700 PRINT "NO DOLLAR SIGN IN FILE"
1800 GOTO 2000

1200 FRINT "FILE DOES NOT EXIST"
2000 END

The program opens a file for update (line 200). The file must exist or the program
willend (lines 100 and 1900). A GET statement reads each character of the file until

a dollar sign occurs (line 800). Then the next seven characters are replaced by the
number 1234.56 (line 1000).

STORING NUMBERS IN FILES

You may have already experimented with storing numbers in a file. There are
several ways to do it. The following program illustrates:

100 FRINT "NOW OFENING FILE..."

200 OFEN #1,8,0,"D1IDATAFILE . TMF"

300 FRINT "THE FILE IS NOW OFEN."

310 FRINT #13"MY ADDRESS I8 1234 NORTH
STREET"

320 FRINT 4131
330 A=108E=202
340 D=403E=50

350 FRINT #L13A,E,C,D+A, EXE
390 CLOSE 41

400 END

92,3;4,5
C=30

You can store numbers as part of a string value (line 310). You can store them

Chapter 7: THE ATARI 810 DISK DRIVE 259

directly, either from numeric constants (line 320), or using numeric variables and
expressions (line 350).

If you store numbers directly, you may read them back by using an INPUT #
statement that contains a numeric variable. The program below illustrates how
numbers should be stored and retrieved:

P9 REM Open disk file for owtput
100 OFEN #2,8,0,"DINUMEBERS.DAT"
109 REM Enter 10 rnumbers

110 FOR J=1 TO 10

120 FRINT "ENTER & NUMEBER TO STORE™;
130 INFUT N

139 REM Store each number on file
140 FRINT #23

1850 NEXT J

160 CLOSE #2

199 REM Open disk file for input
200 OFEN #2,4,0,"DINUMBERS DAT"
209 REM Resd 10 numbers

210 FRINT "YOU ENTEREDS:"

220 FOR I=1 T0 10

230 INFUT #2,N

239 REM Display esch stored number
240 FRINT N

250 NEXT I

260 CLOSE #2

300 END

The program creates a data file (line 100). It then asks you to enter ten numbers,
each of which it stores on the data file (lines 110 through 160). Notice how the
CLOSE statement activates the disk drive to write out any numbers that remain in
the file buffer (line 160). Finally, the program reopens the data file, this time for
input (line 200). Then it reads back and displays each number it stored (lines 220
through 250).

It is important to understand how numbers are read from disk files. As far as the
computer is concerned, a number being read from a file continues until the end of a
field is reached (as marked by an EOL character). If a comma is found, the number
being read will stop at that point, but additional data in the file will be read and
discarded untilan EOL is reached. None of the characters encountered between the
comma and the EOL character have any effect on the numeric value.

A single PRINT # statement can store more than one number when the numbers
are separated by commas, as shown here:

560 FRINT #331,2,3,

In this case there will be no EOL or comma stored after any of the values. The
commas in the PRINT # statement merely insert extra blank spaces, as described
earlier (Figure 7-15).

You cannot read such values into a numeric variable one at a time, as follows.

260 A GUIDE TO ATARI 400/800 COMPUTERS

450 INFUT #33X
660 INFUT #33Y
470 INFUT #337Z

Nor can you read them in with one INPUT # statement, like this:

792 INFUT #33;a,E,C

In either case an error will result, since embedded spaces are not allowed in
numbers.

If you use semicolons instead of commas to separate the numbers in the PRINT #
statement, they are all concatenated in the file. A subsequent attempt to read the
numbers back will interpret them as one number.

The way to avoid this problem is to make sure each value is separated by an EOL
character. Consider this program:

300 OFEN #4,8,0,"DINUMEBERS.DAT"
340 FOR I=1 TO 10

350 FRINT #4313

360 NEXT I

370 CLOSE #4

The ten values will be stored as one large number. The problem can be corrected by
removing the semicolon at the end of the PRINT # statement.

You may store values separated by semicolons, but you must store a comma
between each value. A comma can be placed between each value by putting it within
quotation marks, like this:

270 FRINT #43;QTY3","3FRICE:",";TOTAL

You must be very careful to read the values back the same way they are stored, in
this case as a set of three. The numbers stored by line 270 above must be read like
this:

450 INFUT #43Q,F,T
You cannot try to read one value at a time, like this:

450 INFUT #43Q
460 INFUT #43F
470 INFUT #43T

In this case, the second and third values will be discarded while BASIC looks for an
EOL character. The INPUT # statements on lines 460 and 470 will not work as you
expect. You can always read every character with a GET statement, searching for
commas and EOL characters as you go, but that is a lot of trouble.

In-short, you should separate every value with an EOL character. It requires no
more space than a comma, and it will result in a file format that is easy to use.

Chapter 7: THE ATARI 810 DISK DRIVE 261

RANDOM FILE ACCESS

Random access allows you to reference any part of a file without regard the the
remainder of the file. The BASIC statements that allow you to do this are NOTE
and POINT. These statements work only with DOS 2.0S. If you are using DOS 1.0,
you may skip this entire section.

The NOTE Statement

The NOTE statement is used to determine the current position of a file pointer. The
pointer location is returned as two pieces of information: the number of the last
sector referenced, and the number of the last character referenced within that sector.
Here is an example:

NOTE #2,5ECT,CHAR

This statement refers to the file opened on channel 2. It assigns the number of the
last sector accessed to variable SECT. It also assigns to variable CHAR the number
of the last character accessed in that sector.

The sector number returned is not relative to the number of sectors in the file; it is
the absolute sector number on the diskette. It may be any number from 1 to 719. The
first sector of the file is not necessarily sector number 1, and subsequent sectors of
the file may have sector numbers lower than the first. Sector numbers of a file may
or may not be sequential. The first sector might be number 148, for example, and the
second might be number 153, or 127.

The POINT Statement

The POINT statement is the opposite of NOTE. POINT moves the pointer to the
sector and character numbers you specify. A subsequent PRINT#, PUT, INPUT #,
or GET statement will start at that point. Here is an example:

120 6=2501C=103FOINT #3,6,C

These statements move the pointer for the file open on channel 3 to sector 250,
character 10.

The sector and character numbers must be specified by numeric variables. They
may not be constant values, even though their values are not changed by execution
of the POINT statement. The file number specified must refer to an open file.

The sector number should be an actual diskette sector number (1 to 719). The
character number must be between 0 and 125 (the number of usable characters in a
sector).

No checking is done to see if the sector you specify is part of the file being
referenced until the actual read or write operation is performed. When the opera-
tion does occur, the disk operating system will check that the sector being accessed is
part of the file specified by the channel number. If they do not match, one of the
following errors will result.

262 A GUIDE TO ATARI 400/800 COMPUTERS

+ Error 170 (end of file) occurs if an INPUT # or GET statement tried to read.
« Error 171 (point invalid) occurs if a PRINT # or PUT statement tried to write.

Using NOTE and POINT

NOTE and POINT allow you to randomly access data stored in files. Efficient use
of NOTE and POINT will allow your ATARI computer to perform complex data
processing.

The next three sections describe different random access methods. Each method
has its strengths and weaknesses. All require fairly long and complex programs.
Unfortunately, space does not permit sample programs to illustrate each method.

Indexed Data Files

One way to use NOTE and POINT is to maintain two files in place of one. One file
serves to store the actual data for each record your program needs to access. The
second fileis an index to the first file. It contains a key for each record in the first file.
Along with each key, the index file stores the location where the data record starts in
the first file. Each location is specified by a sector number and character number. At
the start of your program, the keys and their associated sector and character
numbers are read into arrays.

To find a record, the program searches through the index until it finds the key for
the desired record. Then it uses the associated sector and character numbers with a
POINT statement to position the disk to the proper data record. After that, it can
read the data record with INPUT # or GET statements or write the data record with
PRINT # or PUT statements.

Adding a record between two existing records is a time-consuming chore in an
indexed file. You must physically move each record that follows the new record in
order to open up a space for the new record. You must add the new key to the index
file, and also change the index file so all the keys after it point to the correct new
locations. Physically deleting a record requires the same amount of work, but in
reverse. You must move all the records that follow the deleted record down in the
file, remove the deleted key from the index, and change the pointers for all the keys
that follow it.

To save space, your program can store sector and character numbers in a string
variable, using the CHRS and ASC functions to convert between string and
numeric values. Only three characters will be needed for each record: two for the
sector number (1 to 719), and one for the character number (0 to 125).

The main strength of indexed or keyed file accessing is the speed with which you
can find a record. Searchingan array of keys in memory is much faster than reading
through a file record by record.

Linked List Data Files

Another random access method maintains a linked list of records. In a linked list,
each data record has a pointer to the next data record. The pointer consists of a
sector number and a character number.

Chapter 7: THE ATARI 810 DISK DRIVE 263

Tofind a record in a linked list, you must start with the first record and read each
record in turn until you find the one you want. This is no better than a straight
sequential file.

The advantage to a linked list is the ease with which you can add and delete
records. To add a record to a linked list file, the program stores the new record on
the diskette and notes its location (sector and character numbers). Next, the
program locates the record which should precede the new entry. We will call that
record the preceding record. The new record is set to point where the preceding
record now points. The pointer for the preceding record is changed to point to the
new record.

Deleting a record from a linked list is accomplished by setting the pointer in the
preceding record equal to the pointer stored in the record to be deleted.

Indexed Linked Data Files

For the fastest record lookup, addition, and deletion, you can use an indexed linked
list. This method uses an index file, so a particular record can be located by key.
Each data record is linked to the next one, so adding or deleting records only
requires changing pointers. The indexed linked list method is quite complex and
requires extensive programming to implement. You should probably not attempt it
unless you are an advanced programmer.

READING THE DIRECTORY

Another mode that can be specified by the OPEN statement is directory access
(mode 6). Directory access lets you read the disk directory as if it were a data file.
Each field in the “file” is one line from the directory.

You must specify a file name in the OPEN statement; it may be an ambiguous file
name. The “file” pointer will be set to the first character of the first field that matches
the file name specified.

When you read from the “file,” only the lines containing file names that match the
specified file name will be returned. File names that do not match will be automati-
cally skipped. At the end of the “file,” the “number of sectors free” line will be
returned, regardless of the file name you specified in the OPEN statement, even if
there was no match.

The program below will display the entire directory of the diskette in Drive 1,
without using the DOS menu:

10 DIM A$(20)

19 REM Open disk for directory access
20 OFEN #1,6,0,"Dix,x"

30 TRAF 20:REM For end of directory
40 INFUT #13A$

S0 FRINT A%

460 GOTO 40

90 END

If you want to list only those names which have a .BAS extension, change line 20
to read as follows.

264 A GUIDE TO ATARI 400/800 COMPUTERS

20 OFEN #1,6,0,"DIX,BAS"

Do not execute any other OPEN statement while the directory is open. If you do,
the “directory file” pointer will be moved, and subsequent directory file reads will be
confused.

MACHINE LANGUAGE PROGRAM FILES

The DOS menu contains a number of selections which facilitate reading, writing,
and executing machine language program files. These selections are used to manip-
ulate object files, which are files of binary numbers usually created by the ATARI
Assembler/ Editor. They canalso be used to read and write any block of contiguous
memory locations without respect to the memory contents.

Many ATARI computer users will not need these selections. If you are not
familiar with assembly language or machine language, some of the terms in this
section will be foreign to you. You may skip this entire section if you wish.

SAVING BINARY DATA

To save areas of memory onto a diskette or cassette, choose DOS menu item K,
BINARY SAVE. This selection is different in DOS 1.0 and DOS 2.0S.

Binary Save from DOS 1.0
When you select DOS menu item K in DOS 1.0, this prompt message appears:

SAVE-GIVE FILE, START, END

You must enter the file name and the starting and ending locations of the block of
memory you wish to save. The starting and ending locations are treated as hexade-
cimal numbers. Here is a sample response:

SAVE-~GIVE FILE,START,END
FROGRML . 0B, 3E00 , 4AFF

This will create an object file named PROGRM1.0BJ on Drive 1. The file will
contain the block of memory between locations 3E00 and 4AFF.
You may prefix the file name with a disk drive number, like this:

SAVE~GIVE FILE, START,END
D2IFROGRM3 ., 0EJ, 3D70, 42FF

Files created by DOS menu item K are usually read back into memory by DOS
menu item L, BINARY LOAD. After loading memory, item L normally returns
control of the computer to the DOS menu. If you save the binary file in a special
way, it will automatically be run after it is loaded.

To save a file so that DOS menu item L will load and automatically run it, you
must first place the program starting address in memory locations 736 and 737 (2EO

Chapter 7: THE ATARI 810 DISK DRIVE 265

and 2EI hexadecimal). Before entering the DOS menu, use POKE statements to do
this. The low byte of the starting address goes in location 736, the high byte in 737.
The following statements set up a starting address of 16400 (4010 hexadecimal):

A=16400

READY
FOKE 736, A~INT(A/256) %256

READY
FOKE 737, INT(A/256)

After setting up memory locations 736 and 737, enter the DOS menu and choose
item K. When you specify the file name, append the suffix /A. This causes the
starting address to be saved along with the binary data. Here is an example:

SAVE-GIVE FILE,START,END
FROGRM3 . 0EJ/ A&, 3CFF , 4EFF

Binary Save from DOS 2.0S
When you select DOS menu item K in DOS 2.0S, this prompt message appears:

SAVE-~GIVE FILE,START,ENDC(, INIT,RUN)
&

You must enter the file name and the starting and ending locations of the block of
memory you wish to save. The starting and ending locations are treated as hexade-
cimal numbers. Here is a sample response:

SAVE~~GIVE FILE,START,ENDC(, INIT,RUN)
FROGRML . OEJ, 3E00,4AFF

This will create an object file named PROGRM1.0BJ on Drive 1. The file will
contain the block of memory between locations 3E00 and 4AFF.
You may prefix the file name with a disk drive number, like this:

SAVE~~GIVE FILE,START,END(, INIT,RUN)
D2 IFROGRML.0BJ,3D70,42FF

You may also specify two additional memory locations. The first, the INIT
location, is the starting location of an initialization routine. The second, the RUN
location, is the starting location of the main program. These are locations that DOS
menu item L will use to automatically execute the program after it loads the
program into memory. These two addresses are interpreted as hexadecimal values.
Here is a sample response:

SAVE~-~GIVE FILE,START,ENDC,INIT,RUN)
FROGRM3.0EJ, 3CFF,4EFF ,4E00,4010

266 A GUIDE TO ATARI 400/800 COMPUTERS

The initialization address can be omitted with the run address still specified, like
this:

SAVE-~GIVE FILE,START,ENDC, INIT,RUN)
FROGRM4 . 0EJ,3E10,517F, ,4800

If an initialization address is specified, that routine will be executed first. The
routine must end with an assembly language RTS instruction. At that point,
execution branches to the run address.

Merging Binary Files

In DOS 2.0S, you can use the / A option of DOS menu item C (COPY FILE) with
binary files created by DOS menu item K (BINARY SAVE). The result is a
compound file. Acompound file is simply one or more binary files merged together.
Compound files allow you to store information from two or more separate, non-
contiguous areas of memory, without affecting all of the memory between those
areas.

Initialization and run addresses are handled a bit differently in compound files.
Each initialization address is still used, but only the final run address applies. As
each part of the compound file is loaded, it is checked for an initialization address. If
there is one, the initialization routine is executed before the next part of the
compound file is loaded. The final run address is taken from the last part of the
compound file.

LOADING BINARY FILES

DOS menuitem L, BINARY LOAD, loads a file created by DOS menu item K, or
one created by the Assembler/ Editor cartridge. It will also automatically execute
the loaded file, if the file was saved with a run address.

When you choose DOS menu item L, this prompt appears:

L.OAD FROM WHAT FILE?
B4

You must enter the name of the binary file to be loaded. Here is an example:

LOAD FROM WHAT FILE?
FROGRML + OEJ

This will load the binary data from file PROGRMI1.0OBJ into memory at the
locations specified when the file was created. The file may have been saved by DOS
menu item K with an automatic execution address. If so, execution begins imme-
diately at that address.

You can specify a disk drive number ahead of the file name, like this:

LOAD FROM WHAT FILE?
DZIFROGRMZ . OEJ

Chapter 7: THE ATARI 810 DISK DRIVE 267

The binary file may conflict with the area of memory used by the DOS menu
programin DOS 2.0S. If this happens, file MEM.SAV must exist on the diskette in
Drive 1. In this case, the part of the binary file that conflicts with the DOS menu
programis saved on file MEM.SAV until the binary file is executed. If the required
MEM.SAV is absent, the message NEED MEM.SAV TO LOAD THIS FILE

appears.

Preventing Automatic Execution

In DOS 2.0S, you can prevent automatic execution of a file that was created with an
initialization or run address. All you do is append the suffix /N to the file name.
Here is an example:

LOAD FROM WHAT FILE?
FROGRM3 . OEJ/N

EXECUTING A LOADED PROGRAM

To execute a machine language (object) program that is in memory, choose DOS
menu item M, RUN AT ADDRESS. This prompt message appears:

RUN FROM WHAT ADDRESS?
8

You must enter the starting address of the program. The address you enter is
treated as a hexadecimal number. Be very careful. Entering the wrong address could
cause the system to hang up. In that case you must turn the system off and back on
again.

The DOS menu branches to the machine language program with an assembly
language JSR instruction. If the machine language program ends with an assembly
language RTS instruction, control returns to the DOS menu.

THE AUTORUN.SYS FILE

DOS 2.0S recognizes a special binary file name, AUTORUN.SYS. If this file is
present when you boot DOS 2.0S, it will be loaded automatically. If it was saved
with initialization or run addresses, it will be executed automatically as well.

There is a standard AUTORUN.SYS file. It contains a program which estab-
lishes an RS-232 serial handler program in memory. The RS-232 handler is required
in order to use the serial ports of the ATARI 850 Interface Module.

You can have your own machine language program automatically loaded and
run as part of the power-on, DOS boot procedure. Simply use DOS menu item K to
save it on a binary file named AUTORUN.SYS. If your program ends with an
assembly language RTS instruction, control transfers to a built-in initialization
routine. Among other things, the initialization routine enables the use of the
SYSTEM RESET key. If your program does not end with an RTS instruction, it should
initialize memory location 580 (244 hexadecimal) to 0, and memory location9to 1.

268 A GUIDE TO ATARI 400/800 COMPUTERS

MODIFYING DOS 2.0S

This section describes two simple modifications you can make to DOS 2.0S. These
modifications are valid only on DOS 2.0S. Do not make them on DOS 1.0.

Freeing Memory with DOS 2.0S

DOS 2.0S is designed to support as many as four ATARI 810 Disk Drives. A
separate disk buffer is reserved in memory for each drive. If you have fewer than
fourdrives, you can increase the memory available to your BASIC programs. Each
drive you don’t use will yield 128 bytes (characters) of memory.

You can free the memory set aside for unused drives. You must change the value
stored in memory location 1802 to reflect the actual number of drives connected to
your computer.

Make sure the BASIC cartridge is in the computer. Then boot DOS by turning
the ATARI 400/800 computer’s power off and back on again. When the READY
message appears, type this command:

PRFEEK(1802)

The computer will print a code number that indicates the number of drives DOS
2.0S is currently set up to use. Table 7-2 translates the code into the number of
drives. Use Table 7-2 to determine the code for the number of drives you actually
have. Then use a POKE statement to change location 1802 to the code shown in the
table. For example, to change to a one-drive system, type this:

FOKE 1802,1

Next, type the DOS command to get the DOS menu. Put a blank diskette in
Drive 1. Format the diskette with DOS menu item I if necessary. Then write the disk
operating system program out to the diskette with DOS menu item H. You have just
created a new version of the disk operating system on diskette. Use this as your new
master diskette.

Now every time you boot from the diskette you just created, the memory savings

TABLE 7-2. Disk Drives Allowed by DOS

Number of Code
Drives Value*
| 1
2 3
3 7
4 15

* Values for memory location 1802

Chapter 7: THE ATARI 810 DISK DRIVE 269

will be in effect. If you boot from an old diskette, the memory savings will not be in
effect.

Allowing More Files Open at Once

Normally, only three data files can be open simultaneously. When you boot DOS, it
looks at memory location 1801. The number it finds there is the limit on files open.

With DOS 2.0S, you can change memory location 1801 to the number of files you
want to have open simultaneously. The maximum is seven. Each file requires an
input/output channel, and there are only seven of those available. There is a penalty
for increasing the limit, however. For each file you add, you lose 128 bytes of
memory. The memory is set aside for a file buffer when you boot DOS.

Make sure the BASIC cartridge is in the computer. Then boot DOS by turning
the ATARI 400/800 computer power off and back on again. When the READY
message appears, type this command:

PREEK(1801)

The computer will print the number of files it currently allows open at one time.
The number will probably be 3. Use a POKE statement to change location 1801 to
the number you want; remember, 7 is the practical maximum. For example, to
cause seven files to be open simultaneously, type this:

FOKE 1801,7

Next, type the DOS command to get the DOS menu. Put a blank diskette in
Drive 1. Format the diskette with DOS menu item I if necessary. Then write the disk
operating system program out to the diskette with DOS menu item H. You have just
created a new version of the disk operating system on diskette. Use this as your new
master diskette.

Now every time you boot from the diskette you just created, the new limit on
simultaneous files open will be in effect. If you boot from an old diskette, the old
limit will be in effect.

DISK CRASH

To close the chapter, we will describe one of the worst disk calamities that can occur,
a disk crash. There are two types of disk crashes: hard crashes and soft crashes.
Hard crashes happen when the diskette has a physical defect, like a rip or a piece of
dirt on it. A hard crash can cause damage to the read/ write head inside the drive.
The damaged head can, in turn, damage more diskettes. For this reason, always
handle diskettes with care.

A soft crash occurs when the data on the diskette becomes garbled. This most
frequently happens when one or more files have been written to but not closed, a
different diskette is placed in the drive, and the files from the first diskette are closed.
To fully appreciate the resulting mess you must experience it.

PRI
" gag et
ey oE g

ol FUEE ':-'-- ‘T TINICRNCE TR I PR B
-n-lll.r-'lFHJ'-..-dum.nl-r.-n-:-'rl'I"l:-- o L T CoCL M
T s ey el Me e p WL - it t ara
n-h.lrl-i-r.qiT-l.l“ﬂm.-t-.ra S CF - WEER

r8 pofd g e ved o B- - = LAE L=

- I d "= F.r =muh

o N = == iy =
i 00 AT o i B ek e s S " « poprr il
| dedroutede oy - pidialene - ! - T & |
- of lglas ! e ol b - . - sl Saka. mh
R . :ﬁﬂ-ﬁ_‘." r = = =1 .""la] 4 pm-

i [
T 'nmﬁhﬂmﬂdﬂulr&umun_.:ﬂ-dm

sliApaT upmnsf | mAR e 0t kL rapie ot
el glf rig ™ 1] o, chor S Mrieea | SaSi T D h Oy
‘S Aeuredl b e - - - - . = = b
. R e
- H A dge | - 'rl.-'..'l-i_h-l.u PR P71 Rl s % . a1 =g R
LA ot M~ cpad et ks - At o3 et -
. PR L AL

aiad Y
.:-G-:.l-uullilllp pEarer r A e rs e e et H R
s i b e i B R e R .-I I:-|J-'|I-..
10 2k T T 1 & A o e e IBENLL LA Ahia d e T AL

ey e et e i 2 Frm hm..nl--laﬂu.....nnpnm-.u- AL .
WANLE AR Al R e Al ekt Saghee, o7 2 ° o Balid S Al |
i Ti A il NP0

s T Sredrag, Macisired chghs o e Pull 87 - e ol - e J A0
c e iR ank o Gt bl LG - L) S L elh A ML e el
Sl if il AR AU A . Y o Peinp dhds] andh)
= =t ek g M=l gty

.m-u T P T IR P ...-..—.hl-l'..l...—-.-lﬁ-nm

8
INTRODUCTORY
GRAPHICS

Whatever you use your ATARI computer for, its graphics capabilities can enhance
any program you write. This chapter describes the various graphics modes you can
use with BASIC. In addition, you will learn a few tricks which will help you squeeze
more performance out of your computer.

There are nine graphics modes, numbered from 0 to 8, that you can use with
BASIC. You activate these graphics modes with the GRAPHICS statement, fol-
lowed by the number of the mode to activate. You will see later that variations on
these nine modes exist. For now, it is best to concentrate on some basic concepts
which you will need to know before going any further.

COLOR REGISTERS

In any graphics mode, you can control one or more foreground colors (text or
graphics color), the background color, and the border color which frames the
background. The ATARI computer has color registers — memory locations which
set the foreground, background, and border colors. For instance, press the RESET
key and enter this:

SETCOLOR 2,0,0

The background color turns black. Here, the BASIC statement SETCOLOR
changed the value of the register controlling the background color. In effect, the

271

272 A GUIDE TO ATARI 400/800 COMPUTERS

screen color changed instantly. The border color will change to green if you enter
this:

SETCOLOR 4,12,8
The following statement turns the text black:
SETCOLOR 1,040

Unlike other personal computers, which give you an irrevocable color choice
before drawing graphics, the ATARI computer allows you to change colors on the
screen by using the SETCOLOR statement at any time. With this approach it is
possible to draw invisibly on the screen, change a color register’s value, and
illuminate a fully-drawn graphics image in an instant.

Using SETCOLOR

The numbers (or numeric expressions) that follow SETCOLOR select which color
register to change, what color to change it to, and what the brightness (or /umi-
nance) of that color will be. From one graphics mode to the next, however, different
registers control foreground, background, and border colors.

The first number after SETCOLOR indicates which register to set; registers are
numbered from 0 to 4. The second number selects the color itself; colors are
numbered from 0 to 15. Table 8-1 lists the colors available, and iheir numeric values
for use with the SETCOLOR statement. The third and last number sets the
luminance from 0 (darkest) to 14 (brightest). Only even-numbered luminance
settings are meaningful. This number can actually exceed 14, but the color register
will ignore the excess value over 14. With the colors and luminance settings
available, up to 128 different shades of color are possible. The following short
program will give you some idea of the possible color combinations:

10 GRAFHICS 0

20 LIST (REM FUT SOME TEXT ON THE SCRE

EN

30 FOR I=0 TO 13

40 SETCOLOR 2Z,I,0¢REM SET BACKGROUND C

OLOR

50 SETCOLOR 4,15-1,0iREM SET BORDER CO

LOR

60 FOR J=0 TO 14 STEF 2

70 SETCOLOR 2,I,JiREM INCREASE EBACKGRO

UND LUMINANCE

80 SETCOLOR 0,0,14-J¢REM DECREASE TEXT
LUMINANCE

90 SETCOLOR 4,15-I,Ji{REM INCREASE EORD

ER LUMINANCE

100 NEXT J

110 NEXT I

The five color registers have preassigned color numbers and luminance values.
These are listed in Table 8-2. You can change the color number and luminance
values with the SETCOLOR statement.

Chapter 8: INTRODUCTORY GRAPHICS 273

TABLE 8-1. Color Numbers Used with SETCOLOR

Number Color Number Color
0 Grey 8 Light Blue
1 Gold 9 Blue-Green
2 Orange 10 Aqua
3 Red 11 Green-Blue
4 Pink 12 Green
5 Violet 13 Yellow-Green
6 Blue-Purple 14 Orange-Green
7 Blue 15 Orange

TABLE 8-2. Default (Preassigned) Color Register Settings

Register Color Luminance Actual
Number Number Value Screen Color
0 2 8 Orange
1 12 10 Aqua
2 9 4 Blue
3 4 6 Light Red
4 0 0 Black
The COLOR Statement

The COLOR statement should not be confused with the SETCOLOR statement. In
some graphics modes, multiple foreground color registers are available. The
COLOR statement selects one of the available color registers and uses that color
register to draw with. For instance, in graphics mode 7 it is possible to plot or draw
graphics in three foreground colors. The COLOR statement selects which of the
three possible registers to use when plotting points or drawing lines. Therefore, the
COLOR statement is often unnecessary in text modes, or in other modes which
have only one possible foreground color register.

The numeric expression after COLOR will often select different color registers,
depending on the current graphics mode. One consistent rule with COLOR is that
COLOR 0 will always select the background color register, while COLOR 1 will
always select the foreground color register. Tables 8-3 and 8-4 enumerate the color
registers selected by various COLOR statements in the different graphics modes.

In graphics mode 0 (the normal text mode) you cannot draw lines or plot points.
The COLOR statement does not select a color to plot or draw with. Instead, by
placing the code number of an ATASCII character after COLOR, you can select a
text or graphics character to plot with. For bar graphs, or for extensive use of the
mode 0 character graphics, the COLOR statement can be very useful.

274 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 8-3. Graphics Modes Summary

3 = §
g 5 5 50 & S b
= - - - @
E g% T2 |2E| 8| 23 3
w2 2 7 e 5 o ER I ns =
= LZ 2 & o S| & 3 [PN
) £ o £= 5 E B e e, | @ . 20 S »
B L) %] FC) 25|28 L= E S
2 B S S >] 53 95|83 wx s >
as S = O « " [N a0 (RO -3 =a
Normal text 0 1 color, 40 X24 1 (Color is not 2 4 ¥ 992
2 luminances selectable)
Double-width 1 5 20X20 (split) 0,1,23 4 4 | (see 674 (split)
text 20 X24 (full) Table 8-4) 672 (full)
Double-width, | 2 5 20 X 10(split) 01,23 4 4 | (see 424 (split)
double-height 20 X 12 (full) Table 8-4) 420 (full)
text
Four-color 3 4 40 20 (split) 0. 1,2 4 4 |COLOR I: |Mode 3:
graphics 40X 24 (full) register 0 434(split)
s 4 80 X40(split) 01,2 g | 4 [COLORZ A
80X 48 (full) register 1 [Mode 5:
) COLOR 3: 1174 (split)
T 4 160 X80 (split) 0 1,2 4 4 register 2 1176 (full)
160 X96 (full) COLOR 0: | Mode 7:
register 4 | 4190(split)
4200 (full)
Two-color 4 2 80 X 40 (split) 0 4 4 COLOR I: | Mode 4:
graphics 80X 48 (full) register 0 694 (split)
6 2 16080 (split) 0 g | 4 [COLORO: | 696(full
160 %96 (full) register 4 | Mode 6: !
2174 (split)
2184 (full)
High- 8 1 color, 320X160(split) | 1 (color is not 2 4 | COLOR 1I: 8112(split)
resolution 2 luminances | 320 X192 (full) selectable) register | 8138 (full)
graphics COLOR 0:
register 2

* In Mode 0, COLOR will accept an ATASCII character to plot with. For example, COLOR ASC(*“!") in Mode 0,
followed by PLOT or DRAWTO statements, will place ! characters on the screen.

TABLE 8-4. Color Register Assignments, Graphics Modes 1 and 2

Characters

Upper-case

alphabet (A-Z),
numbers, special
characters (! $ +-)

Lower-case*
alphabet

ATASCII

Values

32-90
160-218

61-122
225-250

Color Register
Assigned

Normal: 0
Inverse*: 2

Normal: 1
Inverse*: 3

*Lower-case and inverse characters display as normal, upper-case text. They are assigned to
different registers, however.

Chapter 8: INTRODUCTORY GRAPHICS 275

GRAPHICS STATEMENT OPTIONS

Graphics modes 1 through 8 set a split screen when the GRAPHICS statement
executes. Graphics mode 0 text is confined to the four lines at the bottom of the
screen. This is the rext window, and it is not always needed for displaying graphics.
You can eliminate the text window altogether, thus allowing you more vertical
display lines for graphics.

Toset up a graphics screen without a text window, add 16 to the expression after
GRAPHICS. For instance, the statement GRAPHICS 24 would put the display
into high-resolution graphics mode 8, with no text window. This yields 32 more
high-resolution lines than the statement GRAPHICS 8. Since the text window is
not used, the graphics mode selected makes use of the remaining part of the display
normally allocated to the text window.

By adding 32 to the expression after GRAPHICS, you eliminate the automatic
screen clearing normally performed by a GRAPHICS statement. However, don’t
get theidea that you can display normal (mode 0) text, then execute GRAPHICS 40
(graphics mode 8 with 32 added), and have the text stay on the screen. Once the new
graphics mode is in effect, anything on the screen is interpreted as being in the new
mode. To find out more about mixing graphics modes in your program, consult the
section on inserting text into graphics displays later in this chapter.

To combine the options of full-screen graphics without destroying the previous
contents of the graphics page, add 48 to the graphics mode desired. A good
application of this option is to selectively open and close the text window at
particular points in the program, as shown here:

10 GRAFHICS 8+16{REM FULL-SCREEN GRAFH
ICS

20 COLOR 1:FLOT 0,0

30 DRAWTO 319,191!REM DRAW A DIAGONAL
40 FOR DLAY=1 TO Z00:NEXT DLAYIREM DEL
AY LOOF

50 GRAFHICS 8+32i1REM OFEN THE TEXT WIN
DOW

60 FRINT "A DIAGONAL LINE"Y

70 FOR DLAY=1 TO 200:NEXT DLAYIREM DEL
AY LOOF

80 GRAFHICS 8+48IREM NOW CLOSE THE TEX
T WINDOW

90 GOTO 40

The screen flickers when the ATARI computer switches graphics modes, but the
unsightliness may be worth the trouble.

Using the Text Window

PRINT and INPUT statements use the text window for normal data entry and
display. The computer will force a program out of a full-screen graphics mode in

276 A GUIDE TO ATARI 400/800 COMPUTERS

order to display PRINT statements, accept responses to INPUT statements, or
display error messages. The computer erases the screen and returns to graphics
mode 0. You can program around this in graphics modes | and 2, which normally
display text, but other graphics modes will be more difficult to use with full-screen
graphics and some kind of text display or data entry. The method used earlier to
open and close the text window might be useful in this case.

EXPANDED TEXT: MODES 1 AND 2

In graphics modes | and 2, the text on the screen is expanded. A GRAPHICS 1
statement sets up a screen 20 characters wide and 20 rows deep. GRAPHICS 2
creates a screen 20 characters wide and 10 rows deep. In full-screen modes | and 2,
24 and 12 rows are available, respectively.

Displaying Expanded Text

In graphics modes 1 and 2, lower-case text and inverse video characters display on
the screen as normal upper-case text. The two high-order bits of each ATASCII
character, normally used to identify lower-case or inverse video text, are used as
color register selectors in these modes. In the text window, both upper-and lower-
case characters will display. In these expanded text modes, PRINT statements can
go to either the screen or the text window; therefore, you have to use different
syntax to place data on the screen. Try this short program:

10 GRAFHICS 1
20 FRINT #6}"ExFaNdEd TeXt"
30 FRINT "MODE 0 TEXT"

Expanded text displays at the top of the screen, and then normal text displays in
the text window. The first PRINT statement directs output to the mode 1 area. Any
time you want to display expanded text, use PRINT #6 in this mode.

If you want to eliminate the text window and have the entire screen contain
expanded text,use GRAPHICS 17 to set up a screen with 24 lines of 20 characters,
and use GRAPHICS 18 to display 12 lines of 20 characters.

Color Registers in Modes 1 and 2

Color register 4 is used to control the background and border colors. SETCOLOR
doesn’t control the colors of the expanded text on the screen, however. Instead, the
ATASCII character set is divided among the color registers.

As mentioned earlier, the high-order bits of each byte used for expanded text will
assign a color register. Although this appears to be a strange way to assign color
registers, you can take advantage of this feature to make screen displays much more
dynamic than mode 0 displays. Enter and run the following program.

Chapter 8: INTRODUCTORY GRAPHICS 277

10 GRAFHICS 17 ¢{REM FULL-SCREEN
20 PRINT #63 «Cx T TIx v Tx DxSx 3

30 FRINT #63;"Q X
40 FRINT #63'"X Marquee i
50 PRINT #6303 Pl

60 FRINT #6 3" xZxTIxQxTx I TxTx T« 03

70 SETCOLOR Z,4,8!REM SET THE NORMAL-V

IDED ASTERISKS

80 SETCOLOR 0,10,8¢REM SET THE REVERSE
ASTERISKS

20 FOR DLAY=1 TO S0INEXT DLAY

100 SETCOLOR 0,4,8¢REM RESET THE REVER
SE ASTERISKS

110 SETCOLOR 2,10,8IREM RESET THE NORM
AL ASTERISKS

120 FOR DLAY=1 TO S0INEXT DLAY

130 GOTO 70

GRAPHICS PROGRAMMING STATEMENTS

In graphics modes 2 through 8, four BASIC statements — PLOT, DRAWTO,
LOCATE and POSITION — control graphics input and output. You can actually
use these statements in any graphics mode, but you wouldn’t normally use them to
display or manipulate text.

PLOT and DRAWTO

The PLOT and DRAWTO statements enable you to plot points and draw lines on
the graphics screen. The PLOT statement illuminates a single point on the screen.
The following example, in graphics mode 3, plots random points on the screen in all
of the available colors:

10 GRAFHICS 3+16

20 COLOR RNDCO)X4!REM CHOOSE A RANDOM
FOREGROUND REGISTER

30 FLOT RNDCD)IX39,RNDC0)X19IREM FLOT K
ANDOM FOINT

40 GOTO 20

DRAWTO can best be illustrated by this graphics mode 8 program:

10 GRAFHICS 8+16

20 SETCOLOR 2,0, 0iREM BLACK EBACKGROUND
30 COLOR LiREM SELECT FOREGROUND REGIS
TER

40 FOR Y=0 TO 191 STEF 3

S50 FLOT 0,Y

460 DRAWTO Y,191

70 NEXT Y

80 GOTO 80

Because DRAWTO indicates only the column and row to draw to, the PLOT

278 A GUIDE TO ATARI 400/800 COMPUTERS

statement at line 40 is necessary in order to show which column and row to draw
from when connecting the line.

POSITION and LOCATE

The POSITION statement is functionally similar to PLOT. POSITION, however,
sets the coordinates without plotting. In the last example program, line 40 could be
rewritten as follows:

40 FOSITION 0,Y

Replacing this statement in the DRAWTO example program would produce a
slightly different result. Coordinate (0,Y) would not be illuminated. POSITION can
also be used to move the cursor in graphics mode 0, 1, or 2.

The LOCATE statement reads a point that you specify on the graphics screen and
passes its value back to a BASIC variable. Here is an example:

10 LOCATE 10,14,x

This LOCATE statement reads a value from the point at the eleventh row and
fifteenth column. This value identifies the color selected for the graphics point. The
value corresponds to the color statement value, which determines the color register
used for the graphics point. Table 8-3 shows the possible color values that LOCATE
will return to the variable.

FOUR-COLOR GRAPHICS: MODES 3, 5, AND 7

Three graphics modes — 3, 5, and 7 — have three foreground color registers
available, as well as one color register for the background and border color. The
three modes differ in resolution, and therefore in the amount of memory they use.

Notice that you can select the background color register, using a COLOR 0
statement, in order to erase selected parts of a graphics image. Here is an example:

10 GRAFHICS 7+16

20 SETCOLOR 2,0,0:REM ELACK EACKGROUND
30 COLOR 1:REM SELECT FOREGROUND REGIS
TER

40 STEFSIZE=1{REM DRAW EVERY LINE

G0 GOSUE 100

60 COLOR 0$REM DRAW WITH EACKGROUND CO
L.OR

70 STEFSIZE=46IREM UNDRAW EVERY SIXTH L
INE

80 GOSUE 100

90 GOTO 90

100 REM FLOT SUEROUTINE

110 FOR Y=0 TO 95 STEF STEFSIZE!REM DR
AW THE FIGURE

120 FLOT 0,Y

130 DRAWTO Y,95

140 NEXT Y

150 RETURN

Chapter 8: INTRODUCTORY GRAPHICS 279

Color Registers in Modes 3, 5, and 7

Background and border colors are controlled by color register 4. You can select
register 0, 1, or 2 for foreground colors. Color register 3 is not used in four-color
modes.

Graphics Mode 3

Executing a GRAPHICS 3 statement will turn the screen into 20 rows of 40
graphics cells. This is the lowest-resolution graphics mode on the ATARI compu-
ter. This mode allows you to plot points and draw lines in three different foreground
colors. You will need to use the COLOR statement to select the color register to plot
and draw with. This graphics mode is ideal for displaying large block letters and
creating simple games.

TWO-COLOR GRAPHICS: MODES 4 AND 6

Modes 4 and 6 allow one foreground and one background/border color register.
These modes have resolution equivalent to that of modes S and 7; however, modes 4
and 6 allocate less memory than the four-color modes. Four-color modes need two
bits of memory per graphics point for color register selection. In a two-color mode,
only one bit is needed. If a bit in the screen memory is set to 1, this selects the
foreground color register; otherwise, the background color is assumed. As a result,
memory consumption is nearly half that of four-color modes.

HIGH-RESOLUTION GRAPHICS: MODE 8

Graphics mode 8 offers the highest resolution possible on the ATARI computer,
but it also costs the most in terms of memory consumption. Resolution in split-
screen mode is 160 rows, with 320 points across. In full-screen mode, 192 rows of
320 points are available. In this mode, the foreground color cannot be selected.
In other words, the background/border color register controls the color of the
graphics points. However, you can set the luminance of the foreground color
register.

Extra Colors in Mode 8

Technically, graphics mode 8 allows only one foreground color, and that color
really is not unique from that chosen for the graphics screen background. It is
possible, however, to obtain other colors by manipulating the patterns of bits which
make up each point on the graphics screen.

In graphics mode 8, the screen has 320 separate horizontal positions. Each of
these 320 picture cells (or pixels) equals one half of a color cycle. A color cycle is
actually the amount of time the television receiver takes to illuminate two graphics
pixels (Figure 8-1).

280 A GUIDE TO ATARI 400/800 COMPUTERS

One One
color color
cycle cycle

e G et

Electron beam — —

pixels

FIGURE 8-1. Color cycles and pixels

By cleverly staggering the illuminated pixels, you will cause a color phase shift,
which is a by-product of changing the luminance of a television signal across color
cycle boundaries. Remember that the computer is not changing the color — only the
luminance of the signal. This forces a color change on the television set. Table 8-5
lists the bit patterns that generate colors produced by variations in luminance. The
exact color seen on the TV screen will be different for different TV sets.

The following program will generate the luminance-varied colors in horizontal
bands down the screen:

5 GRAFHICS 8:SETCOLOR 1,0,15

10 REM 4-COLOR MODE 8

20 DATA 85,170,255

30 SCRMEM=PEEK(88)+FEEK(89)x256
40 READ XIFRINT "EIT VALUE="}X
80 FOR I=SCRMEM TO SCRMEM+1000
85 REM CYCLE THROUGH THE COLORS
90 FOKE I,X

100 NEXT I

105 SCRMEM=SCRMEM+1000

110 IF X=25% THEN STOF

120 GOTO 40

Using PLOT and DRAWTO with Extra Colors

The luminance-varied, or phase-shifted, colors can be overdrawn with PLOT and
DRAWTO statements. After you run the example program listed above, type in a
few PLOT and DRAWTO statements. Then change the plotting color by alter-
nately typing COLOR 1 and COLOR 0. This method is good for setting back-
ground colors, but it is unwieldy for more advanced uses.

Chapter 8: INTRODUCTORY GRAPHICS 281

TABLE 8-5. Bit Patterns for Luminance-Varied Colors

Bit pattern Color generated
00 No illumination (mode 8 background)
01 Solid phase-shifted color #1
10 Solid phase-shifted color #2

11 White (mode 8 foreground)

In order to predictably use graphics plotting statements with extra colors, you
can simulate graphics mode 7 when the graphics screen is actually in mode 8.
Graphics mode 7 allows four color registers. In this mode, each color register is two
bits wide. By loading each color register with the bit pattern desired, you can use
COLOR statements to select which of these extra mode 8 colors to use.

By using POKE statements to change a few memory locations, you can retain the
mode 8 screen and manipulate it as if you had more colors available, as in mode 7.
The following program illustrates this graphics mode 7 simulation with full mode 8
resolution:

5 DEG (REM USE DEGREES

10 GRAFHICS 8

20 FOKE 87,7 tREM FOKE MODE 7 TO THE OF

ERATING SYSTEM

30 SETCOLOR 2,14,143S8ETCOLOR 1,0, 0:REM
USE THE MODE 8 COLOR REGISTERS

40 X=4601Y=403REM SET COORDINATES

50 FOR R1=12 TO 36 STEF 3

60 COLOR 1iR=R1:GOSUE Z10IREM FLACE EI

NARY 7017 DATA ON SCREEN

70 COLOR ZiR=R1+11GOSUE 2103IREM FLACE

EINARY 7107 DATA ON SCREEN

80 COLOR 3iR=R1+21GOSUE 210:IREM FLACE

EINARY ‘117 DATA ON SCREEN

?0 NEXT Rl

100 STOF

200 REM FLOT A CIRCLE (AFFEARS ELLIFTI

CAL DUE TO MODE 7 SIMULLATION)

210 FLOT X+R,Y

220 FOR ANG=0 TO 360 STEF 18

230 DRAWTO X+RXCOS(ANG) , Y+RXSINCANG)

240 NEXT ANG

250 RETURN

The disadvantage of this method is the error message you get when trying to use
PLOT or DRAWTO beyond the screen boundaries that are normal for graphics
mode 7. On the horizontal axis, each point plotted is two pixels wide. Therefore, the
screen resolution is cut in half on the horizontal axis (to 160 points), even though
PLOTand DRAWTO statements can cross the full width of the screen. Inmode 7, a
maximum of 96 rows are available. In graphics mode 8, 192 rows are available.

282 A GUIDE TO ATARI 400/800 COMPUTERS

Although the effective horizontal resolution is halved in this mode, the screen will
still hold 192 rows. This leaves 96 rows that you can’t use on the bottom half of the
screen. This is an unfortunate side effect, caused by trying to fool the computer. To
get around this problem, you have to again deceive the computer with some POKE
statements.

Memory location 89 holds a pointer to the beginning memory address of the
graphics screen. By modifying this pointer, it is possible to use the lower 96 rows.
The program listed below contains a subroutine at lines 1200 to 1290 which enables
you to plot or draw on either portion of the screen.

10 DEG (REM USE DEGREES

20 GRAFHICS 8

30 SETCOLOR 2,0,0

40 FOKE 87,7

50 FOR M=60 TO 120 STEF &0

40 FOR I=1 TO 3

70 COLOR I

80 R=20

Q0 X=30+IX8+RIY=MIREM SET RADIUS

100 FLT=1:GOSUE 1200

110 FOR ANG=0 TO 3460 STEF 12

120 FLT=0

130 X=IX8+30+RXCOS (ANG) {Y=M+RXEIN(ANG)
140 GOSUE 1200

150 NEXT ANG

160 NEXT I

170 NEXT M

180 STOM

L1120 REM KK KKK KKK KK K K K K K K K K K XK XK XK K K XK K XK X

1191 REM X 4-COLOR MODE 8 GRAFHICS X

1192 REM X SUE
1193 REM :
1194 REM XY=ROW (0-192) ,X=C0L(0-159)%
11959 REM XFLT=0(DRAWTO) ,FLT=1(FLOT) X

L1996 FEM 3K K K K K K K K K K K K XK XK XK XK K K K XK XK XK XK XK K XK

1200 SA=FEEK(8?)+15IREM START OF SCREE
N MEMORY

1210 IF FLT=0 THEN GOTO L1260

1220 IF Y<9&4 THEN FLOT X,YiRETURN

1230 FOKE 89,8A

1240 FLOT X, Y¥Y-96é

1250 GOTO 1300

1260 IF (X=180) AND (Y=946) THEN DRAWTOD

Xy Y IRETURN

1280 FOKE 89,8A

1290 DRAWTO X,Y-96

1300 FOKE 89,8A-19

1310 RETURN

To use this subroutine, set variable X to the column (0 to 160), set variable Y to
therow (0 to 191),and variable PLT to [for plotting or 0 for drawing. If you use this

Chapter 8: INTRODUCTORY GRAPHICS 283

subroutine for drawing, make sure that you have already performed a PLOT
statement in the same region of the screen.

INSERTING TEXT ON THE GRAPHICS SCREEN

The text window is always available for placing text on the same screen as graphics,
but no built-in method exists for overlaying text on the graphics images. It is easy to
insert text on a two-color graphics screen (graphics mode 4, 6, or 8). The technique
involves using a section of memory reserved for the character set.

A bit map of the character set resides in memory; location 756 contains the
starting address of the character set as a multiple of 256. Each character is defined in
eight-byte segments. Once located in the bit map, that character’s binary representa-
tion can be transferred, byte by byte, to predefined coordinates on the graphics
screen. The following program illustrates this technique:

10 DIM TXT#(64)

20 GRAFHICS 8

30 INFUT X,Y,TXT%

50 GOSUE 2000

40 GOTO 30

1995 REM TEXT CONVERSION SUEROUTINE

2000 SA=FEEK(89)XZ546+FEEK(88) IREM TOF
OF SCREEN RAM

2010 MODE=FEEK(87){REM DETERMINE GRAFH
ICS MODE

2020 IF MODE=8 THEN COLS=40:ROWS=192
2030 IF MODE=6 THEN COLS=Z20:ROWS=964
2040 IF MODE=4 THEN COLS=10:ROWS=24
2050 IF Y>ROWS OR X:COLS THEN RETURN
2060 START=SA+YXCOLS+XIREM START ADDRE
85 FOR DISFLAY

2070 FOR El1=1 TO LEN(TXT%)

2080 GOSUE 2200

2090 CHARSET=FEEK(756)%2561REM READ CH

ARACTER SET VECTOR

2100 CHARSET=CHARSET+E3x8

2110 FOR E2=7 TO 0 STEF -1

2120 FOKE STARTH+EZXCOLS, FEEK(CHARSET+E

2)

2130 NEXT EZ

2140 X=X+11IF Xx=COLS THEN START=START

+COLEXBIX=0IREM SCROLL TO NEXT LINE

2150 START=8TART+1

2160 NEXT E1

2170 RETURN

2195 REM ATASCII CONVERSION ROUTINE

2200 E3=ASC(TXT$(EL,EL))

2210 IF (E3<32) 0OR (E3x127 AND E3<16460)
THEN E3=E3+&64:RETURN

2220 IF E3:31 AND E3<96 THEN E3=E3-32
2230 RETURN

284 A GUIDE TO ATARI 400/800 COMPUTERS

Variables X and Y should be set to the column and row where the text will start
displaying. TXT$ can be dimensioned to some other length.

Lines 2000 to 2060 determine the graphics mode in effect, set the screen width for
text, and calculate the starting memory address for text insertion. The subroutine at
lines 2200 to 2230 converts the character code of each letter in TXTS to an offset;
that is, the number of bytes from the beginning of the character set table to the
character’s actual binary definition.

Lines 2100 through 2130 transfer the character’s eight-byte, bit-mapped defini-
tion to the appropriate area of the screen. Line 2140 scrolls the text to the next line if
the next character will not fit on the same line.

The string variable TXTS$ holds the string to display, and variables X and Y store
the column and row coordinates for the first letter to display. The column coordi-
nate can range from 0 to the number of columns available in the current mode. In
mode 4, the screen will fit ten characters across; in mode 6, 20 characters fit across
(similar to mode 2), and in mode 8, 40 characters will fit on each row. The row
number can range from 0 to the maximum number of rows available in the current
graphics mode. Therefore, you can place graphics much more flexibly on the
vertical axis.

This subroutine is fairly slow because of the PEEK and POKE statements used,
but it is possible to speed up the transfer of data from the character set table to the
graphics screen by writing an assembly language program to convert the character
data.

With this subroutine it is possible to display upper- and lower-case text and
graphics characters. Inverse video characters will display unpredictably.

FILLING THE SCREEN WITH SOLID COLORS

Along with the standard BASIC statements for graphics, a special command to the
operating system, called the X10 statement, will fill the screen boundary with a solid
color. The XIO statement requires some preparation before use, however. The
following BASIC statements set up the screen and draw a shape:

10 GRAFHICS 7

20 COLOR 1

30 FLOT 70,40

40 SETCOLOR 2,0,0

G0 DRAWTO 35,0

60 DRAWTO 34,0

70 FOSITION 0,40

80 FOKE 7653,1

90 XIO 18,%6,0,0,"6%"

Lines 80 and 90 pertain to the actual use of the XIO statement. The POKE
statement on line 80 uses the same number as a number used for color register
selection in the COLOR statement. Use Table 8-3 to select values to use with the
POKE statement. The fill color will respond to SETCOLOR statements as normal

Chapter 8: INTRODUCTORY GRAPHICS 285

point or line graphics on the screen. The XIO statement on line 90 will always have
the same format; use it exactly as shown in the example program.

Using the XIO Fill Command

The X1O fill command is designed to work with four-sided figures. However, if you
run the example above you will see what appears to be a triangle. Notice the
DRAWTO statement from coordinates (35,0) to (34, 0). This command willactina
predictable fashion only if you follow these steps:

. Use the PLOT statement to plot a point at the lower right-hand corner of the figure.

. Use the DRAWTO statement to draw a line to the upper right-hand corner.

. Draw a line to the upper left-hand corner.

. Use the POSITION statement to move the cursor to the lower right-hand corner.

. Use the POKE statement to place a number, equal to the COLOR statement used for
plotting, at memory location 765.

6. Perform XI10O #6,0,0,“S™.

These statements can be executed in the order specified, or you can reverse the
order of steps 1 through 4. XI1O works unpredictably if the first five steps are not
performed in the proper sequence. XIO has other limitations. First, if any illumi-
nated graphics pixels exist between the left and right sides of the figure to be filled,
XIO will stop filling the figure at that point. To understand this, enter the following
statement along with the example program at the beginning of this section:

(9 NS S

15 FLOT 25,29

The fill command works from left to right only. If the figure defined started at the
lower right-hand corner, the fill command will start at the top of the figure. If it
started at the upper right-hand corner, the fill operation will begin at the bottom of
the figure. This command is fast but very dumb. However, you can use this
command creatively to generate attractive graphics very quickly.

GRAPHICS APPLICATIONS

The programs in Figures 8-2, 8-3, and 8-4 serve as examples to use in programming
graphics with BASIC. Figure 8-2 illustrates how graphics mode 0 can still be used to
communicate graphics quite effectively. Figure 8-3 is a data entry program which is
usable in full-screen graphics mode 1 or 2. Compare this program to the String
Input subroutine in Chapter 4, written for graphics mode 0 (Figure 4-37). In Figure
8-4, a regression analysis program written for another computer has several graph-
ics statements added to it in order to maximize its usefulness on the ATARI
computer. Not only does this program output the numerical data needed, it adds
another dimension to the answer by graphing it in two colors.

As your knowledge of graphics grows, you will find yourself able to create more
sophisticated graphics displays. Chapter 9 will acquaint you with some of the
advanced graphics capabilities unique to the ATARI computer.

286 A GUIDE TO ATARI 400/800 COMPUTERS

10 hLM ERe CHART FROGRAM

RﬁM DATAE TO BE USED FOR 5 F L
REM OEACH FAXR TG MONTH, THEN SALES

20 DATA JAN, 800, FER, 820, MAR
21 DATH 765, 0FR, 779, MAY , 610
22 DATAH JUNSE50, JUL 780, AUG
23 DATA BO0,SEF,825,00T,840
29 DATA NOV,870,DEC,910
2% REM
26 REM
GRAFIH(‘

FSETCOLOR 2,12,12
I,0,0

OF MONTHS

MONTHS CFX3) X6 (3) , SALES (F)
READ TN THE SALES DATA

Q0 rnh T=1 TO P
100 READ XEIREM READ MONTH NAME

100 MONTHS CLENCMONTHS) +1) =X4%
120 READ NUM
SALES (L) =NUM

5T LOWEST &
- THEN 3]
.00 0RO LO=0 THEN LO=8A

I'UU I
LES(Y)
1460 NEXT X

167 REM

168 REM FIND FLOTTING SCALE
170 MID= (HIHLO) /72 EREM EX
180 SCALE=TNT (HI-L.0) /LINES

1920 SFPACE=TINT (COLME/F) IREM SFACTNG

191 REM

200 POKE 72, LIFRINT "1983 SALES (0007
gan

211 REM NOW FLOT THE DATA

220 FOR T=1 TO F

230 GOSBUE 1000

240 NEXT I

250 FOR XI=1 TO

260 POSTTION 31,1+3

270 M= (L-1)x3+1

280 FRINT MONTH® (M, M+2) 3" "i6ALES (L) ¢

D MEAN

(continued)

FIGURE 8-2. Bar chart

Chapter 8: INTRODUCTORY GRAPHICS 287

300 NEXT I

310 GOTO 310

1000 REM FLOT SUEBROUTINE

1010 X=IxXSFACE

1020 Y=((HI-(MID+SALES(I)) /2)) /8CALE
1025 COLOR ASCC"®'") {REM FLOT CHAR.
1030 FLOT X,Y

1040 DRAWTO X, LINES

1050 FOR J=1 TO 3

1060 FOSITION X, LINES+

1070 M= (I-132%3+d)

1080 FRINT MONTH® (M, M) §

1090 NEXT J

1100 RETURN

FIGURE 8-2. Bar

chart (continued)

10 LENGTH=7 §LINE=9$COL=10
15 GRAFHICS 1

20 FOSITION 0,LINEIFRINT #63"ENTER"
30 GOSUE 1200

40 STOF

XK MK KK K KK K K K K 2K K K K K K K KK 3K K 3K K K
X GRAFHICS MODE 1 OR 2 DATAX
NTRY M(]DULI... <

ANE TO ENTER ON

4 ¥ COL=COLUMN TO ENTER ON

7O FREM KKK KKK K K K K K K K K KK 3K K KK KK K KK
1280 DIM DS CLENGTH)

290 II KEOFEN=0 THEN OFEN #L1,4,0,"K3"

*
X LINDIHHMAX INIhY LENGTH X
X

ITION COL, LINE

1350 REM NOW GET DATA FROM THE KEYEOAR

b}

1360 GET
1370 IF X ZOAND X=90 AND LENCDS) <LE
NGTH THEN D$ (LENCDS)Y +1L)=CHRE{X) $7? #4630
HRG X)) 3 3GOTO 1340

1380 IF & THEN 1460 1REM BYPASS IF
NOT EaC i
1390 TF LFN(D$)%1 THEN 1460 3REM REJECT

(continued)

FIGURE 8-3. Data entry

288 A GUIDE TO ATARI 400/800 COMPUTERS

BACKSFACE TF NO DATA LEFT
1400 TF LEN$Y=1 THEN D%
1400 TF LENS) =L THEN D$=D% 1, LENC(DS)
=3
1420 FOSTTION COLALENCDS) 5 L INE
1430 FRINT #6353
1440 FOSITION COLALENCDE) , LINE
14460 TF X=18% THEN RETURN
L1470 GOTO 13460

FIGURE 8-3. Data entry (continued)

SELON WITH PLOTTING
L REM &aba . OM GOME COMMON Ba&XC P
ROGRAMS ¢ ATART ED.

-

LOWS
3 RE Lo 800
. Q00 :
LOTTING
I 0
10 FRINT "LINEAR REGRESSTON
20 FRINT
30 FRINT "NUMBER OF KNOWN FOINTS"?
40 TNFUT NIDIM XY (N, 2)
G0 700 SREM O INITIALLZE DATA
&0 JEC SO0 IREM SET SCALING
99 REM - LOOF TO ENTER COORDINATES OF
FOINTS
100 FOR T=1 TO N
110 FPRINT "X,Y OF FOINT "§I3
120 INFUT Xy YEXY (L 1) =X XY (L2 =Y
L% GOSUE 850 tREM FIND DATA EOQUNDS
: - ACCUMULATE TNTERMEDIATE SUMS

& SEN P ARAME
HBEALTNG, LINE

129
130
140
150
160
170 F |
180 NEXT I
189 F - COMPUTE CURVE COEFFICIENT
190 E=(NXRZ-KKJ) /A ONXL - UMD

200 &= (K-ExD) AN

220 PRINT "FOX) = "“gag" + (MR x X"
229 REM -~ COMPUTE REGRESSTON ANALYSIS
230 J=EXCRZ-JIXK/NY

2 REM GRAFHICS SUBROUTINES ADDED A% FOL

(continued)

FIGURE 8-4. Regression analysis with plotting

Chapter 8: INTRODUCTORY GRAPHICS 289

235 GOSURE

Su0

290 M=M-K~rE/N

250 K=Med
260 FRINT
270 R2mJ/M
280 FRINT
(RAZ) "
FRINT
FRINT
290 FRINT

INT
300 FRINT
300 FRINT
310 FRINT
340 FRINT

350 OFEN &
360 GET #1
370 GOSUE
380 GOTO 3
4699 RE
RAY -
700 FOR
EXT X

710 YMAX=0
720 XMAX=(0
750 RETURN

YCOE

FICIENT OF DE

e

"COEFFICTENT OF CORRELATIONS

COGARIRZ)

USTANDARD ERROR OF ESTIMATES
SARCK/ (N=-Z2 2

"PFRESS ANY KEY TO SEE GRAFH"
Le#s 0y "KEY

$ X9
Loon

380

INITIALTZE AR

0 NIXY (L, 1=03 XY (X, 2)=08N

RAMETER
00 ROW
810 COLMS
819 REM 80
E ¥

820 RETURN

849 KEM -~

Y X AND Y
850 IF XY(
860 TF XY (
890
899 REM -
ACTORS FOR
00 YSOAL
P10 XSCALE

e TEG T EOUND AR

I,1)~*Hﬁx THEN XMAX=XY (I,1)
T2 =YMaX THEN YMAX=XY (IL,2)

RETURN

==GET SUALING F

YMAX/ROWS
XMAX/COLME tREM SFACING

920 KETURN

999 REM -~

TNE -
1000 GRAFH

“LOTTING SUEROUT

ICS 7

(continued)

FIGURE 8-4. Regression analysis with plotting (continued)

290 A GUIDE TO ATARI 400/800 COMPUTERS

1010 SETCOLOR 0,12,2iREM X/Y AXIS COLO
F

1019 REM DRAW THE X AND Y AXES

1020 FLOT 0,05DRAKTD 0, ROWS

1030 DRANTD COLMS, ROWS

1040 COLOR ZIREM ORANGE FOINTS

1050 FOR I=2 TO N

1060 FLOT INTCXY(L,1)/XSCALE) , ROWS=INT
(XY (T,2)/YSCALE) INEXT I

1069 REM NOW FLOT THE TREND LINE

1070 COLOR 3

1080 FLOT 0,RONS-(A/YSCALE) SREM FLOT Y
INTERCEFT

1090 FOR I=1 TO N

1100 Y=A+XY (I, 1) xEIDRANTO XY (I, 1)/XSCA
LE , ROWS= (Y /YSCALE)

1110 NEXT I

1120 FOSITION 0,0FRINT "ACTUAL DATA=Y
ELLOW} TREND LINE=ELUE"

1130 PRINT "REGRESSION EQUATIONS":PRIN
T "FOO="JE"X + "3A

1140 RETURN

FIGURE 8-4. Regression analysis with plotting (continued)

9
ADVANCED
GRAPHICS

The previous chapter focused on ATARI computer graphics features available in
BASIC. The material in this chapter is more difficult, however, because BASIC is
not equipped to handle the more advanced graphics capabilities built into the
computer’s hardware. The ATARI computer is a highly capable graphics machine,
but bear in mind that you can face a great deal of frustration trying to understand
and exploit these features. Throughout this chapter you will find programs which
will help you become more familiar with otherwise difficult material. Some of the
programs are written for easy adaptation to subroutines that you can use in your
own programs.
This chapter will explore the following topics:

- Animating graphics displays with character set animation
- Display lists, which allow you to set up custom graphics displays
* Player-missile graphics, fast-moving graphics objects for games and other applications.

These are only a portion of the possibilities open to you as you become a more
accomplished ATARI computer user.

CHARACTER SET ANIMATION

The character set is a bit map; that is, a set of binary representations of each
character the computer displays. The standard character set resides in ROM,
starting at address 57344 (E000 hexadecimal). Address 756 (2F6 hexadecimal) is the
Character Address Base Register, abbreviated CHBAS, which is a pointer, or a
vector to the character set bit map. Normally, CHBAS points to address 57344
(E000 hexadecimal), but by placing a new address in CHBAS, a new character set of

291

292 A GUIDE TO ATARI 400/800 COMPUTERS

Binary Data Decimal
00110000 48
00010000 16
00111000 56
01111100 124
10111010 186
01001000 72
10000100 132
10000010 130
00110000 48
00010000 16
00111000 56
00111000 56
01111000 120
10101100 172
01001000 72
01000100 68
00110000 48
00010000 16
00111000 56
00111000 56
01111000 120
00101000 40
00101000 40
00010000 16
00110000 48
00010000 16
00111000 56
01111100 124
10111010 186
00111000 56
00010000 16
00101000 40
00110000 48
00010000 16
00111000 56
00111000 56
01111100 124
00111000 56
01001000 72
01001000 72

NOTE: Each character requires eight television scan lines. One memory byte defines which
picture elements to illuminate on each scan line.

FIGURE 9-1. Character bit maps

Chapter 9: ADVANCED GRAPHICS 293

your own design can take the place of standard characters. You can replace the
character set with a font that you like better, or you can invent characters in order to
create your own graphics. Consider the “characters”in Figure 9-1. The five “charac-
ters” form a crude, five-step animation sequence.

Youcandefine this animation sequence as characters, place the character defini-
tions in memory with POKE statements, reset the character address base register to
point to the animation characters, and then perform the animation. The following
sample program illustrates simple character set animation:

1 REM CHARACTER SET ANIMATION DEMO

5 DIM CHREASE(S)

10 DATA 48,16,56,124,186,72,132,130

20 DATA 48,16,56,56,120,172,72,68

30 DATA 48,16,56,56,120,40,40,16

40 DATA 48,16,56,124,186,56,16,40

50 DATA 48,16,56,56,124,56,72,72

51 REM == me e e CHARACTER SET DEFIN

ED) = o o

60 GRAFHICS 0

70 SETCOLOR 2,12,8iREM SET GREEN EACKG

ROUND

80 SETCOLOR 1,0,0:REM SET ELACK CHARAC
TERS

90 FOR H=1 TO 5

100 CHREASE (H)=(FEEK(742)~HX4)X256 t REM
SET CHARACTER EASE ADDRESSES

110 FOR I=CHREASE(H) TO CHREASE(H)+7
120 READ X

130 FOKE I,X:!REM MOVE THE CHARACTER SE
T DATA TO MEMORY

140 NEXT I

150 NEXT H

160 FOSITION 0,0

170 LIST :REM FUT TEXT ON THE SCREEN
180 FOR I=1 TO 5

190 FOKE 756,INT(CHREASE(I)/256)

200 IF I=2 THEN GOSUE 9000

210 FOR DLAY=1 TO 15:NEXT DLAY

220 NEXT I

230 GOTO 180

8999 REM ———m==m==m MARCHING SOUND SUER

?000 FOR Q=0 TO 3
9010 SOUND @,255,0,4
2020 NEXT Q

9030 FOR Q=0 TO 3
9040 SOUND Q,0,0,0
9050 NEXT Q

2060 RETURN

The DATA statements on lines 10 through 50 define the POKE values for five
characters.

294 A GUIDE TO ATARI 400/800 COMPUTERS

Character Offset

When you design a character set, keep in mind the difference between the ATASCII
value for a character and where in the character set table that character’s definition
lies. In the previous example, the space character definition was replaced in five
different character sets; each new character defined would display, rather than a
space. By using one POKE statement to cycle between character sets, it is possible to
change whole character sets instantly.

Designing your own character set will involve more than creating the bit map it
will use. Table 9-1 shows the actual offsets of ATASCII characters from the
beginning of the character set table.

Locating the Character Set in Memory

Before placing the new character set anywhere free memory exists, the character set
or sets will each have to begin ona 1024-byte boundary when using BASIC graphics
mode 0, or ona 512-byte boundary when using BASIC graphics mode [or 2. Inthe
previous program example, address 742 contains the high end of user-available
memory. In most cases you should be able to set a graphics mode 0 character set
table address by subtracting 4 from the current contents of this address. In this case,
address 742 provides the page, or 256-byte address region, where the table can
begin. Subtracting 2 from the contents of address 742 will yield the page where a
BASIC graphics mode 1 or mode 2 character set can begin.

USING DISPLAY LISTS

The graphics display on the ATARI computer is controlled by a special micro-
processor called A NTIC. This chip hasits own instruction set, similar in principle to
the 6502 microprocessor.The instruction set consists of display instructions, and

TABLE 9-1. Character Definition Offsets*

ATASCII Actual
Value Offset **
0-31 64-95
32-95 0-64
96-127 No change
128-159 192-223
160-223 128-191
224-255 No change

*Add eight times the offset shown to 57344 for the decimal starting location.
**Multiply this offset by 8 to locate the character definition.

Chapter 9: ADVANCED GRAPHICS 295

by combining a set of display codes you can write a program, called a display list,
which controls graphics output in ways which are not possible using BASIC.

Actually, the operating system creates display lists whenever a BASIC program
executesa GRAPHICS statement. ANTIC executes each instruction in the display
list. Based on each instruction, the contents of screen memory are interpreted as text
or graphics data. ANTIC then sends video control information to another proces-
sor (the CTIA chip). Therefore, ANTIC is a legitimate microprocessor. It has a
program counter (called the instruction register), a data memory register (called the
memory scan counter), and several control registers, each of which controls a
particular aspect of video output.

ANTIC can switch graphics modes from one display instruction to the next. In
other words, it is possible to set up a display with five lines of graphics mode 0 text at
the top of the screen, 60 lines of high-resolution graphics under that, and expanded
text on the rest of the screen (graphics mode 1 or 2 text, for example). Therefore,
you can mix graphics modes in horizontal sections down the screen.

The Display Processing Cycle

The following is a greatly simplified outline of the steps ANTIC performs when
executing display list instructions:

1. Fetch the display list instruction and load it into the instruction register.

2. The instruction indicates which graphics mode to use; ANTIC interprets the contents
of memory as graphics data or character display data.

3. If the instruction indicates character display data, ANTIC reads a byte of screen
memory, looks up the character set bit map, and transfers the bit-mapped character
image to the display.

4. If theinstructionindicates graphics display data, ANTIC transfers the data directly to
the display.

5. Increment the display list counter, which points to the next display list instruction.

6. Increment the memory scan counter by the number of bytes transferred from screen
memory to the display.

7. Repeat these steps from the beginning.

ANTIC and Video Output

ANTIC continually reexecutes the display list, fetching instructions, processing the
contents of screen memory, outputting video control signals to CTIA (the television
signal output controller chip), and jumping back to the beginning of the display list.
The television receiver, meanwhile, scans the surface of the screen horizontally with
anelectron beam, from left to right, as shown in Figure 9-2. When the beam reaches
the bottom of the screen, it jumps back to the top line.

Without going into the more complicated aspects of television broadcast theory,
each horizontal line on the screen is a scan line. The ATARI computer outputs a
video signal of 262 scan lines. At the end of every scan line, the television’s electron
beam turns off and resets to the left-hand side of the next scan line. After the last

296 A GUIDE TO ATARI 400/800 COMPUTERS

scan line, the electron beam returns to the upper left-hand corner of the screen,
during a latent period called the vertical blanking interval. During this interval,
the electron beam is shut off until the receiver is ready to scan the screen again.

ANTIC can control each scan line on the television receiver; however, not all 262
lines are visible. Because of a broadcast compensation factor called overscan, the
actual number of visible scan lines on a television receiver is closer to 200 than 260.
In the interest of compatibility with hundreds of different brands of televisions,
Atari set a conservative standard of 192 scan lines for its graphics displays under
BASIC. Depending on the graphics mode selected by a display list instruction,
ANTIC will output from I to 16 scan lines of video information for each horizontal
line the mode uses.

THE DISPLAY LIST INSTRUCTION SET

The four classes of display list instructions include the following:
+ Graphics display
+ Character display
- Display blank lines
+ Jumps.

FIGURE 9-2. Television scan lines

Chapter 9: ADVANCED GRAPHICS 297

In these classes of instructions, the following options are possible:

+ Load memory scan counter
+ Scroll display
- Call interrupt.

Display List Structure

Every display list should have a structure to it. First, the display list has to
compensate for overscan; the blank scan line instructions are designed for this
purpose. Second, display lists have to load the memory scan counter with the
starting address of memory which contains the actual graphics or text data to
display. Third, the display list will contain the actual display instructions, specifying
which graphics mode or modes to use. Lastly, a jump instruction directs ANTIC’s
execution back to the start of the display list. In some cases, the jump instructions
are necessary to continue display lists or display memory across address boundar-
ies. This will be discussed in detail shortly.

Blank Scan Line Instructions

Although ANTIC has eight blank scan line instructions (as shown in Table 9-2), the
only one that is used frequently is the instruction to send eight blank scan lines (code
112, or 70 hexadecimal) to the screen. This instruction is used at the beginning of the
display list.

Load Memory Scan Counter Instruction

The load memory scan counter instruction is not a separate instruction, but rather
an option that is available with all display mode instructions. By adding 64 (40
hexadecimal) to an instruction, you effectively set two instructions. First, ANTIC
loads the memory scan counter with the address contained in the two bytes imme-
diately following the current instruction. Second, the display mode instruction
executes. This option, sometimes called the LMS option, can be added to any
display mode instruction.

Jump Instructions

ANTIC uses two types of jump instructions. The first is a simple unconditional
jump that reloads the display list counter and continues executing the display list at
the new address. The second jump instruction should always be used at the end of a
display list. This second jump instruction waits for the start of the vertical blanking
interval, a 1400-microsecond pause that the television receiver performs after
scanning the last scan line on the screen. During this time, the electron beam used to
scan the picture tube returns to the upper left-hand corner of the screen. If ANTIC
simply jumps back to the first display list instruction without waiting for the vertical
blanking interval, the computer will lose synchronization with the television set,
resulting in poor picture quality.

298 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 9-2. Display List Instructions

Instruction BASIC : . | Bytes | Scan | Bits
Code Graphics Hol:.l,l‘g:;ml Per | Lines | Per é)e’::n{(;:;:;
Decimal Hex Mode 1 Line | Used | Pixel _
0 00 ki S | -
16 10 - - 2 .
Output 32 20 3 o 3 &
Blank Scan 48 30 = - 4 -
Lines 64 40 = & o 5
80 50 S o = 6
96 60 = - & 7
112 70 # & = 8
2 02 0 40 40 8 8
DDDDDDDDJ]*
3 03 = 40 40 10 8
ch 4 04 & 40 40 8 8
oo [CcTcalealeqt
5 05 “ 40 40 16 8
6 06 I 20 20 8 8
DDDDDD] *t
7 07 2 20 20 16 8
8 08 3 40 10 8 7} caf
C = 0 — Background
9 09 4 80 10 4 ! C = | — Register 0
10 0A 5 80 20 4 2 [CCt See codes 6, 7, 8
P 1 0B 6 160 20 5 1
raphics See code 9
Mod
— 12 0c - 160 2 I 1
13 0D 7 160 40 2 2
[CAT See codes 6, 7, 8
14 0E - 160 40 8 2
15 OF 8 320 40 1 1 DJ*
* D=0 — Register 2 fcc=00— Register 0 CC = 10 — Register 2
D =1 — Register | CC=01 — Register I CC= 11— Register 3

ANTIC Display Instructions vs. BASIC Graphics Modes

As mentioned earlier, ANTIC does not limit you to one graphics mode per screen.
Also, some ANTIC display modes are not available in BASIC. The first three
columns of Table 9-2 show ANTIC display instruction codes and their BASIC
graphics mode equivalents. Notice that ANTIC modes 3, 4, 5, 12, and 14 are not
directly usable with GRAPHICS statements, nor is there a direct correspondence
between the display list instruction and its equivalent BASIC graphics mode
number. Before going any further, a sample display list might prove helpful as an

Chapter 9: ADVANCED GRAPHICS 299

illustration. Figure 9-3 shows a display list for a screen set up in full-screen BASIC
graphics mode 2.

Notice the first three bytes: 112, 112, 112. Look up this instruction code in Table
9-2; this is the display instruction to output eight blank scan lines in the background
color. These three instructions take up 24 scan lines at the top of the screen. You
should normally place these three instructions at the start of any display list,
because they account for television overscan. Although you can omit these three
instructions, you might find it impossible to see the top edge of the graphics display
as a result.

The next instruction is three bytes long. The first byte, 71 (47 hexadecimal),
contains a display instruction with 64 (40 hexadecimal) added toit. This instruction
sets up one line of ANTIC mode 7 (BASIC graphics mode 2) text, and also loads the
memory scan counter with the two bytes that follow the instruction. Any display
mode instruction byte with 64 added to it will signify to ANTIC that the next two
bytes after the instruction will be an address to load into the memory scan counter.
Therefore, the instruction indicates that ANTIC should read display memory from
address 20539 (5038 hexadecimal) — low-order byte first, as usual — unless other-
wise directed by another display mode instruction with the load memory scan
option.

Instruction

Byte (Decimal Equivalent)

0 112 These instructions

1 L12 } set up 24 blank

2 112 scan lines

3 71 BASIC mode 2 instruction with LMS bits set

4 59 (3B) Address where screen memory

2 8(7) (50) starts (503B hexadecimal)

T 7

8 7

9 7

10 i

11 7

12 7

13 7

14 7

15 7

16 7

17 65 Jump and wait for vertical blank

18 0 (00) Address to jump back to for

19 79 (4F) reexecuting display list
NOTE: These ANTIC instructions set up the equivalent of BASIC graphics mode 2.

FIGURE 9-3. Sample display list program

300 A GUIDE TO ATARI 400/800 COMPUTERS

The next 11 instructions in the display list set the remaining lines of BASIC
graphics mode 2 text. After the last ANTIC mode 7 instruction, instruction code 65
precedes yet another two-byte address. This is a jump instruction, followed by the
address ANTIC should jump to for its next display list instruction.

This display list is quite simple. Custom display lists are often difficult to create
manually, mostly because so many bureaucratic rules apply to their construction
and use.

Creating Custom Display Lists

Suppose you wanted to cut a display into horizontal segments, as follows:

MODE 0 TEXT Normal text
(2 lines X 8 scan lines = 16)

|

f

I. Graphics mode 8

$ (80 lines X 1 scan line = 80)

L. ol I . Double-size text
i I [= | (6 lines X 16 scan lines = 96)

Total 192

First, you should plan a display screen with 192 scan lines in addition to the 24
required blank lines at the top of the display. Looking again at Table 9-2, the
column headed “Scan Lines Used”shows how to calculate a proper screen size. The
display above will hold exactly 192 scan lines. Make sure you set up the screen
properly, because ANTIC will display as many lines as you specify. However,
displaying too many lines will often cause an unsightly vertical roll on the video
screen.

Display List Placement

Several rules apply to the exact placement of the display list in memory. First, the
display list itself cannot cross a 1K address boundary because the display list
counter is not a full 16-bit register. Therefore, a portion of a display list that nears a
1K boundary might look like this:

Display List

Contents (Decimal) RAM Address
14 1020
61 Jump one byte past 1021
1 (01) (address 1024 1022
64 (40) 1023
[no instruction] 1024

14 1025

Chapter 9: ADVANCED GRAPHICS 301

The memory scan counter is not a 16-bit register either. Therefore, a display list
will have to contain the LMS option someplace afrer the display list begins in order
to reload the memory scan counter before crossing a 4K screen memory boundary.
Actually, the memory scan counter has limitations similar to the display list
counter. If a display list were constructed with enough display mode lines to cause
the memory scan counter to cross a 4K boundary (perhaps in ANTIC mode
15 — BASIC graphics mode 8), the instructions would appear as follows:

Instruction Instruction Memory
(Decimal) Register Scan Counter
15 16304 Increases by 40

79 } with LMS mask on
40 } These two bytes
64 { reload the memory
15 scan counter

ANTIC mode 15 instruction

16344 bytes per scan line
16344 I ANTIC mode 15
16344

16424 Jump instructions

do not increment the

memory scan counter

New scan counter
address loaded with
the LMS instruction

Other difficulties emerge: where in memory is a good place to put the display list?
It is possible to replace the display list set up in memory by the operating system; one
excellent area for display lists is page 6 (addresses 1536 to 1791, or 600 to 6FF
hexadecimal). ATARI BASIC normally leaves this area untouched.

It is not good practice to overlay existing display lists with new ones unless you
have very little memory to experiment with. There should be ample room for a
display list on page 6. Once the display list is placed into memory with POKE
statements (or using the display list loader program shown in Figure 9-4), the 16-bit
address at memory locations 560 and 561 (230 and 231 hexadecimal) must have the
new display list starting address placed in it. Next, the DMA control register
(SDMCTL) has to be turned off momentarily while the new display list start
address is placed at locations 560 and 561 (230 and 231 hexadecimal). Do this by
performing a POKE 559,0. Once the new address is in place and the DMA control
register is switched back on, the new display list takes effect. This process is shown
on lines 150 through 190 of the listing in Figure 9-4.

The Display List Loader Subroutine

Suppose you wanted to set up several different ANTIC modes on one screen. The
calculations and planning involved might take hours. The program in Figure 9-4
eliminates virtually all of the tedious details of display list creation; all you have to
do is set up a list of DATA statements in the program and identify the starting
address you want for the display list. Make sure you have used a GRAPHICS
statement to set up the screen mode that takes up the most memory of all the modes
you decide to use for the custom screen.

302 A GUIDE TO ATARI 400/800 COMPUTERS

1 REM DISFLAY LIST EXAMFLE FROGRAM WIT
H LOADER ROUTINE

10 DIM TOFSCRNCE) IREM “DIM’ THIS VARIA
ELE TO NO. OF SEGMENTS + 1

20 GRAFHICS 8IREM SET ASIDE MAXIMUM ME
MORY

30 SETCOLOR 2,0,0

40 DATA 2,3

30 DATA 6,1

60 DATA 7,1

70 DATA 15,144

80 DATA ~1,0

87 REM ——--THE FIRST FOUR DATA STATEME

NTH

88 REM —---ARE USED EY THE DISFLAY I.IS
T

89 REM —---L0ADER SUEROUTINE T0O SET UF

90 REM —---3 LINES OF BASIC MODE 0,
100 REM ---1 LINE OF BASIC MODE 1,
110 REM ---1 LINE OF BASIC MODE 2

120 REM ---AND 144 LLINES OF EASIC MODE
8

130 REM —---THE LAST DATA STATEMENT

131 REM ——-TERMINATES THE LIST...

140 LST=1536¢REM USE THE FREE RAM AREA
y FERFECT FOR DISFLAY LISTS

150 GOSUE 1700:REM SET UF THE DISFLAY

LIST

160 FOKE 559,0REM DISAELE DMA

170 FOKE S560,0:REM FLACE NEW DISFLAY L

IST ADDRESS

180 FOKE 561,646

190 FOKE 959,34iREM RE-ENAELE DMA

200 X=0:GOSUE 430:REM SET SEGMENT 0

210 FOKE 87,0!REM MIMIC MODE 0

220 FOKE 7352, 11REM INHIEIT CURSOR

230 FOSITION 15,0

240 FRINT #63"AN EXAMFLE"

250 FOSITION 12,1

260 FRINT #63"0F WHAT YOU CAN DO"

270 X=11GOSUE 430IREM SET SEGMENT 1

280 FOKE 87, LIREM MIMIC BASIC GRAFHICS
MODE 1
220 FOSITION 0,0

300 FRINT #é&3" MIXING &C N MODES"

310 PGOSUE A30IREM SET SEGMENT 2

L87, ZIREM MIMIC BASIC GRAFHICS

MODE 2

(continued)

FIGURE 9-4. Display List Loader program

Chapter 9: ADVANCED GRAPHICS 303

a0

340

250

3460

DE 8
A70 COLOR L

AB0 FLOT 040

390 DRAWTO 319,143

400 FLOT 3190

410 DRAWTO 0,143

420 STORF

FOKE 88, TOFSCRNCX) = CINTCTOPSCRNOX)
EUEIKIEE)

450 FOKE 89, INT(TOFSCRN(X) /72586) tRETURN
TAGTO FEM KKK KKK K MK K K K K K K XK K

14691 REM x
1692 REM %
1693
1694
1698
1696
1697
1698

1700

17, B EREM RE

X
THE STARTX
YOUR OWN %
8T. THIS %
N FCKES FOR S X
LE BEOUNDA&RY ERRORS, X
SMENT =1
x

X
X
X
X
*

1T FER B8 +PEEK (89 %2568
REM “TOF OF SC N ADDRESS

1730 BOURND=INTCLET/L024+ 1) %1 024) CREM
DEFINE NEXT 1K BEOUNDARY

1740 [: IFSCRNCDY 74096+ 1409
HIFEM T T4 BROUNDARY

1750 FOR TO LOCHZ

1760 FOKE X, L12iREM PLACE THE ‘BLANK 8
LINES’ INSTRUCTION AT THE START

1770 LOC=L0C+L

1780 NEXT X

1790 TOFSCRN(SEGMENT) =TOFSCRN(SEGMENT ~
1Y IREM SET ADDRESS FOR THIS SEGMENT
1800 READ MODE,REFEAT

1810 IF MODE<0 THEN OF=4651ADDR=L.8TIGOS
UE 2030 IRETURN

1820 INCR=403REM SET EYTE INCREMENT FO
R EACH MODE LINE

1830 IF MODEX=& AND MODE<=12 THEN INCR
=20

1840 IF MODE=8 0OR MODE=9 THEN INCR=10
1850 FOR X=1 FEAT

1860 IF LOCHEOUND-3 THEN 19003REM CHE
CK FOR 1K EOUNDARY

(continued)

FIGURE 9-4. Display List Loader program (continued)

304 A GUIDE TO ATARI 400/800 COMPUTERS

1870 0F=1:ADDR=EQOUNDIGOSUE 2030IREM IN
SERT A JUMF INSTRUCTION

1880 LOC=LOCH+L IEQUND=EQUND+1023

1890 GOTO 1900

1900 FOKE LOC,MODE:tREM FOKE THE MODE E
YTE

1910 REM FIRST MODE LINE MUST HAVE THE
LMS BYTE SET

1920 IF (SEGMENT-= =1 0OR X<x1) AND (EOUN
D2-TOFSCRN(SEGMENT) >=INCR) THEN 1980
1930 REM SET THE LMS EYTE

1940 0F=MODE+464

1950 ADDR=TOFSCRN(SEGMENT)

19260 XF BEOQUNDZ-TOFSCRN(SEGMENTY=INCR T
HEN EQUNDZ=EQUNDZ+40926 ADDR=ADDR+INCR
1970 GOSUE 2030

19280 LOC=L0OC+1LIREM INCREMENT DISFLAY L.
IST BYTE FOINTER

1990 TOFSCRN(SEGMENT)=TOFSCRN(SEGMENT)
+INCR

2000 NEXT X

2010 SEGMENT=SEGMENT+1

2020 GOTO 1790tREM READ THE NEXT SEGME

2030 FOKE LOC,0FIREM STORE JUMF CODE
2040 1L0C=1.0C+1

2050 POKE LOC,ADDR-CINT (ADDR/2%56)X256)
2060 LOC=LOCH]L

2070 FOKE LOC, INT(ADDR/2%56)

2080 RETURN

FIGURE 9-4. Display List Loader program (continued)

The DATA statement format consists of the ANTIC display mode (not BASIC
graphics mode) number to select, followed by the number of display lines to set up.
Therefore, on lines 40 through 80, three lines of BASIC graphics mode 0 text are
specified, one line of BASIC graphics modes 0 and 2, and 144 lines of BASIC
graphics mode 8. These display lines add up to 192 scan lines, just the right number
for the graphics display. At line 140, the variable LST is set to address 1536 (600
hexadecimal), and addresses 560 and 561 (230 and 231 hexadecimal) contain the
low-order and high-order bytes of this address.

Lines 200, 270, 310, and 350 set the variable X to a segment of the screen; that is,
segment 0 is the first screen segment defined in a DATA statement. Therefore, by
setting X and performinga GOSUB 430, the program resolves the screen addressing

Chapter 9: ADVANCED GRAPHICS 305

errors that would otherwise occur. Try running the example program. Alterna-
tively, you can just use lines 430 to 450 and 1700 to 2080 of the program as
subroutines in your own programs.

DISPLAY LIST INTERRUPTS

The interrupt feature is a highly advanced and somewhat exotic feature of ANTIC
display lists. At the end of each display mode line, ANTIC fetches the next display
instruction. If the display list interrupt mask — a predetermined overlay of bits on
a byte — is set, ANTIC will turn control over to a special routine which can be as
long as 18 machine cycles for the 6502 microprocessor. You can’t accomplish much
in 18 cycles, but there is often enough time to change a color register value, or reset
some register before returning from the interrupt to display list execution. The steps
involved are shown below.
Before executing a display list routine with interrupts, do these steps:

1. Load theinterrupt routine into some safe area of memory (the 255-byte area starting at
address 1536 (600 hexadecimal) is ideal).

2. Modify certain bytes of the display list to execute display list interrupts.

3. Enable display list interrupts with the statement POKE 54286,192.

4. Use the POKE statement to change addresses 512 and 513 (200 and 201 hexadecimal)
to the address of the first assembly language instruction to execute in the display list
interrupt routine. (Remember that the display list interrupt itself is the mask on the
display list instruction; the display list interrupt routine is not executed by ANTIC, but
rather by the 6502 microprocessor.)

The interrupt routine itself should do these steps:

1. Save all registers to be used by pushing them onto the 6502 stack.

2. Perform the interrupt routine. Keep it short, and make sure your total routine does not
exceed 18 cycles. Interrupt routines longer than 18 cycles will cause ANTIC to
broadcast bad video data.

3. Restore the registers you saved by pulling them off the stack and replacing them in their
appropriate registers.

4. Perform an assembly language RTI (return from interrupt) instruction to resume
display list processing.

Every time the interrupt service routine executes, these steps are required. Other-

wise, critical 6502 register values will be destroyed (and possibly your program as
well).

Example of a Display List Interrupt

The following example will be especially useful if you have no previous exposure to
assembly language programming. Suppose you wanted to have the top half of a
graphics mode 0 screen appear as it normally does, but instead of turning the text on

306 A GUIDE TO ATARI 400/800 COMPUTERS

the entire screen upside down (as you can do witha POKE 755,3), you wish to turn
the lower half of the screen upside down.

A display list interrupt mask placed on the display mode instruction halfway
down the screen will allow display list processing to stop long enough to set the
vertical reflect bit at address 54273 (C141 hexadecimal) to 4. This value does not
change until the vertical blanking interval starts. Once ANTIC jumps to the top of
the display list again, the vertical reflect bit is automatically reset.

Here is the assembly language listing, placed at the start of memory page 6:

0000 10 X= $600

0600 48 20 FHA $ySAVE ACCUMULATOR ON STACK

0601 A904 30 LDA #4

0603 8D0O1D4 40 STA $D401 $SET VERTICAL REFLECT EIT

0606 68 S0 FLA yRESTORE REGISTER’S FREVIOUS VALUE
0607 40 60 RTI ;GO EACK TO DISFLAY LIST FROCESSING

The following program is the BASIC program used to change the display list. By
changing the display instruction for the 12th line of the display, the top and bottom
halves of the display have opposite orientations. Try this program; the DATA
statements contain the display list interrupt routine:

S5 GRAFHICS 0

10 DLIST=FEEK(S60)+FEEK(561)%256IREM F
IND THE DISFLAY LIST START ADDRESS

20 FOKE DLIST+16,130!REM REFLACE LINE

4 OF THE DISFLAY WITH DLI INSTR.

30 FOR I=1536 TO 1543!REM FOKE THE DLI
SERVICE ROUTINE STARTING AT $600

35 DATA 72,169,4,141,1,212,104,64

40 READ X

50 FOKE I,X

60 NEXT I

65 FOKE 512,0

66 FOKE 513,6tREM FOKE THE DLI VECTOR

ADDRESS

70 FOKE S4286,192tREM ALLOW DLI EXECUT
ION

80 FOR I=0 TO 23

90 FOSITION 0,I!? "RIGHTSIDE UF'"}3

100 NEXT I

For a detailed look at addresses you can change with display list interrupts,
consult the A TA RI Personal Computer System Hardware Manual, available from
Atari, Inc. It is beyond the scope of this chapter to explore all of the possibilities
available to you with this interrupt capability. If your interest lies in this area, you
can at least see the general structure of the display list interrupt routine in order to
apply it effectively.

Chapter 9: ADVANCED GRAPHICS 307

PLAYER-MISSILE GRAPHICS

It is hard to take a term like “player-missile graphics” and treat it fairly, because it
connotes arcade games and other capabilities generally useless for practical applica-
tions. Players and missiles are special graphics objects designed for rapid movement
on the graphics screen. There are up to four player objects available, each with a
corresponding missile. Some simple examples of players are shown in Figure 9-5.

Each player object has a limit on its height, or vertical definition, and its width, or
horizontal definition. Each player object may have a maximum height of 256
vertical lines, which are limited to a width of eight bits. A player can extend from the
top to the bottom of the screen. Missiles are movable graphics objects, similar to
players but with only two bits of horizontal definition.

Player objects can indeed be used for games, but they can just as easily be used as
stationary graphics objects. For instance, a data entry program could use a player
object as a cursor, or all four players could be used as borders on the screen. There
are three main reasons for using player-missile graphics: independence, rapid
movement, and availability of more colors.

Player-missile graphics are totally independent of other ATARI computer gra-
phics. The graphics modes normally available on the ATARI computer are called
playfield graphics. PRINT, PLOT, DRAWTO, and other BASIC keywords per-
form playfield graphics. Player-missile graphics, on the other hand, are fully-
defined shapes such as those shown in Figure 9-5. Think of the player-missile
graphics capability as an overlay on the screen. This overlay has boundaries which
exceed the size of the playfield graphics borders and have no relation to the current
graphics mode. In addition, player-missile graphics images can appear to be in front
of or behind the playfield graphics on the screen, thus allowing you to write
programs with the illusion of three dimensions.

Players can move on the screen rapidly, without adversely affecting computing
speed. Consider the first player illustration (Figure 9-5), and how you would define
it using standard BASIC PLOT and DRAWTO statements. Moving this object
around on the screen involves erasing the object from its previous location, calculat-

FIGURE 9-5. Sample player bit maps

308 A GUIDE TO ATARI 400/800 COMPUTERS

ing the new screen coordinates for it, and then redrawing the object at the new
location. This takes up an enormous amount of computing power, because the 6502
microprocessor is doing most of the work. Player-missile graphics use a technique
called direct memory access, or DMA, through the ANTIC chip. DMA frees the
6502 microprocessor for other tasks; therefore, less 6502 time is used to move these
graphics objects around. Player-missile graphics bypass the 6502 microprocessor,
whereas playfield graphics manipulation has to go through the operating system
and, therefore, the 6502 microprocessor.

Player-missile graphics add more colors to the graphics display. Each player
object has its own color register, and these color registers are independent of those
used for playfield graphics. No matter what the playfield graphics mode is, there will
always be four extra color registers available for player objects. With player-missile
graphics, BASIC graphics mode 0 can have five colors on the screen. In other
playfield graphics modes, as many as nine colors can display on the screen at one
time.

It is difficult at first to understand player-missile graphics because BASIC only
has provisions in the language for playfield graphics. The organization and use of
player-missile graphics are quite different and much more involved because they
must be used at the machine level. This makes your programs harder to write.
However, this section contains subroutines that perform most of the functions
necessary to use player-missile graphics with BASIC.

Player-Missile Graphics Memory Organization

If you want to use player-missile graphics in your program, you need to set up a
table containing the definition of each player object. The best place for this table is
at the highend of RAM, where it will be least likely to interfere with other memory
which is already allocated. There is a restriction on where you can locate the table,
however. Player-missile graphics memory can be located on any 1024- or 2048-byte
boundary in memory, depending on the vertical resolution of the player.

Defining the Player

Each player is eight bits wide. You have to create a bit map of the object drawn.
Each part of the grid you filled in will have a binary value of 1, and each unfilled
square in the grid will have a value of 0. Therefore, the player’s bit-mapped image is
a series of one-byte numbers which will go into the player-missile graphics table.
The program in Figure 9-6 will help you design a player image. Plug a joystick into
port | and run the program. Notice that the borders on either side of the screen
confine you to a horizontal definition of eight picture cells. When you have finished
designing the player, press the RETURN key and the player image will display at close
to its actual size. If you want to make more changes to the player image, press the
space bar. When the flashing cursor reappears, you can once again use the joystick
to alter the player image. By pressing RETURN after looking at the actual-size player
image, you will see the player bit map defined on the screen, along with another look
at the player you created.

Chapter 9: ADVANCED GRAPHICS 309

9 REM CREATE FLAYER/MISSILE IMAGE

10 DIM CURSORCZ) 3 FLAYER(Z23,7)

20 GRAFHICS 3

30 SETCOLOR Z,0,03REM BLACK TEXT WINDO
W

40 FRINT "FLUG JOYSTICK IN FORT 13FRES
S TRIGGER"

S50 GOSUE 610 FFRINT

40 FRINT "USE TRIGGER TO DRAW OR ERASE
FLAYER.,"

70 FRINT "FRESS <RETURNX WHEN FINISHED
DRAWING ., "

80 GOSUE 670¢(REM SET UF THE SCREEN

?0 IF FEEK(Z764)=12 THEN GOTO 290:iREM E
XIT XF <=RETX> WAS HIT

100 GOSUE 770fREM READ THE JOYSTICK
110 IF CUF AND (CURSORCZ)<=0)) OR (DOW
N AND (CURSOR(2)>=23)) THEN GOTO 90
120 IF (LEF AND (CURSBOR(1)<=0)) OR (RI
GT AND (CURSORC1Y==7)) THEN GOTO 90
130 COLOR 1

140 TF FLAYERC(CURSOR(Z), CURSORCL))=0 T
HEN COLOR 0

150 FLOT CURSORC1I)Y+16,CURSOR(Z) IREM RE

~FOSTTION CURSOR

160 CURSOR(2)=CURSOR(2)-UF

170 CURSORC2)=CURSOR (Z)+DORN

180 CURSOR (1) =CURSOR L) ~LEF

1920 CURSORC(L)=CURSORCLY+RIGT

200 COLOR 2

210 FLOT CURSORCL)+16, CURSORCZ)

220 X1=STRIG0) tREM IF TRIGGER FRESSED
s TURN PLAYER BIT ON OR OFF

230 IF Xl=1 THEN 90

240 PLAYER(CURSOR (Z) , CURSOR (1))=1-8GN(
FLAYER(CURSOR(2) , CURSORCL) D)

250 COLOR 3

260 IF PLAYER(CURSOR(Z2) ,CURSORCLY)=0 T
HEN COLOR 0

270 FLOT CURSORCL)Y+146, CURSORCZ)

280 GOTO 90

290 GRAFHICS 7IREM RE-DISFLAY THE FLAY
ER IN HIGHER RESOLUTION

300 FOKE 764, 0REM CLEAR THE KEYEOARD
310 X2=21X3=0

320 X1l=761Y1=20

330 GOSUE 21L03REM DISFLAY THE FLAYER
350 FRINT "<RETURNZ TO END3:<SFACEX> TO
GO EACK TO FLAYER"

360 IF FEEK(764)=12 THEN GOTO 440 REM

(continued)

FIGURE 9-6. Player-Missile Image program

310 A GUIDE TO ATARI 400/800 COMPUTERS

IF

370
QT

380
390
400
410
420
430
440
MAF
450
460
470
480
490
G500
G510
520
ACH
530
540
5950
G360
G570
580
G390
600
610

620
630
4640
450
660
669

670
680
690
700
710
720
730
740
750

760
769

“HFACER, KEE

RETH HIT, DISFLAY FLAYER VALUES

IF FEEK(764)x33 THEN 3460tREM IF N
LOOKING FOR KEYFRESS

GRAFHICS 3+16

GOSUE 740 tREM RESET THE SCREEN
XL=168Y1=0

X2=1 ¢ X3=0

GOSUE 910

GOTO 90

GRAFHICS 0:REM DISFLAY FLAYER EIT
AND FLAYER IMAGE

FOR Y=0 TO 23

FOSITION 0,Y

FRINT "BEYTE "3Y}

X1=0

FOR X=0 TO 7

XZ=FLAYERCY , 7-X)

IF X2:=0 THEN $30
XL=X1+INTCOX2ZX2)AX+0. 010) IREM ADD E
EIT IN ORDER OF SIGNIFICANCE

NEXT X

FOSITION 12,YIFRINT X1}

NEXT Y
X1=243Y1=0

X2=ABC (" ") IXB=ASC(" ")

FOKE 752,1

GOSUE 910

GOTO 590

REM = WATT FOR TRIGE

ERZEMIT BEEEF -

IF STRIGC0)=1 THEN 620

SOUND 0,50,10,4

FOR DLAY=1 TO L10NEXT DLAY

SOUND 0,0,0,0

RETURN

REM uimsmmeame REM INITIALIZE VARIAELE

S AND SET SCREEN--

CURSOR (1) =0

CURSOR(2) =0

FOR R=0 TO 23

FOR C=0 TO 7

FLAYER(R,C)=0

NEXT C

NEXT R

COLOR 3

FLOT 15, 03DRAWTO 15,231FLOT 24,0:D

RAWTO 24,23

GRAFHICS 3+481RETURN
REM —=w=====ROUTINE TO READ JOYSTI

CK SETTING= = mmmoem

(continued)

FIGURE 9-6. Player-Missile Image program (continued)

Chapter 9: ADVANCED GRAPHICS 311

770 REM READ JOYSTICK ROUTINE

780 RDNG=STICKC0)

790 DOWN=0

800 UF=0

810 LEF=0

820 RIGT=0

830 IF RDNG=15 THEN RETURN

840 IF RDNG=14 THEN UF=1

850 IF RDNG=7 THEN RIGT=1

860 IF RDNG=13 THEN DOWN=1

870 IF RDNG=11 THEN LEF=1

880 GOSUE 630:{REM EEEF THE SFEAKER
890 RETURN

200 REM =ssessssssessass=DISFLAY THE PL
AYER sssssnemmmmaie

?10 FOR Y=0 TO 23

920 FOR X=0 TO 7

930 COLOR XZ

240 IF FLAYERC(Y,X)=0 THEN COLOR X3
250 FLOT X+X1l,Y+Y1

P60 NEXT X

970 NEXT Y

80 RETURN

FIGURE 9-6. Player-Missile Image program (continued)

Now that you have the player object in a coded form, you can repeat the process
for as many as four player objects.

Player Vertical Definition

Player objects can be defined in 128 bytes or 256 bytes. A player object defined in
128 bytes is projected on the display as shown in Figure 9-7. Each byte of this player
object takes up two television scan lines. Players defined in 256 bytes will only use
one scan line for each byte of the player object, as shown in Figure 9-8.

Note that the player objects differ in their projected sizes on the display. There-
fore, players defined in 256 bytes have twice the vertical resolution of 128-byte
player objects, and appear less “blocky” on the screen. You should decide whether
you need this extra resolution. Because all players must be defined with the same
length, this decision can save you a lot of memory. Player objects defined in 128
bytes are called double-resolution players, and players defined in 256 bytes are
called single-resolution players.

The Player-Missile Graphics Table

The player-missile graphics table must start at an address evenly divisible by 1024
for double-resolution players, or 2048 for single-resolution players. The BASIC

312 A GUIDE TO ATARI 400/800 COMPUTERS

immediate-mode statement 7PEEK (106)*%256 will display the last usable memory
address on your computer. In order to properly locate the table in memory, the
nearest 1024- or 2048-byte boundary address must be found.

Computer
memory
Display Each vertical
screen _ player byte

takes up two
TV scan lines

FIGURE 9-7. Displaying double-resolution players

Computer) 256-byte
memory $ player definition
. o Each player
Display — | byte takes
sereen s = ‘ up one TV
scan line

FIGURE 9-8. Displaying single-resolution players

Chapter 9: ADVANCED GRAPHICS 313

Laying Out the Table

The player-missile graphics table layout is shown in Figure 9-9. The table is fixed in
length. No matter how few players you define, the table will always be 1024 bytes or
2048 bytes long in order to fit all four players and missiles. The first section of the
table is vacant; this area of the table is available for other uses, such as storing
alternate player object definitions or display lists. After this vacant area are five
other areas where the missiles and players are defined.

The missile definition area will hold four missile objects, each two bits wide. As
with players, missiles can also be defined with double or single resolution.

The next four areas are all of equal size, and each area holds one player object.
Figure 9-9 shows the offser from the beginning of the player-missile graphics table
for each player and missile. You will use these offsets to move the objects on the
screen.

The next step is to reset address 106 (6A hexadecimal) with the address of the
player-missile graphics table. This step is necessary because the operating system
will use all available memory; the highest available addresses are always used to set
up the playfield graphics memory area. This conflict of memory use will adversely
affect playfield graphics, player-missile graphics, or both. At worst, your computer
will lock up.

Offset from PMBASE
(Double (Single
8 bits Resolution) Resolution)
0 0
Unused
o +384 +768
Mji511e 0 1l 2 3
rea +512 +1024
Player 0
+640 +1280
Player 1
+768 +1536
Player 2
+896 +1792
Player 3
+1024 +2048
NOTE: All locations shown are offsets from the start of the player-missile graphics table
base address (PMBASE).

FIGURE 9-9. Player-missile graphics table layout

314 A GUIDE TO ATARI 400/800 COMPUTERS

Calculating the Start Address

The ATARI computer will not resolve memory conflicts automatically; you will
have to do that yourself. Although you already know that the player-missile
graphics table has to reside on a 1K or 2K address boundary, the playfield display
has restrictions as well. Locating the player-missile graphics table at the highest part
of memory will cause addressing problems for playfield graphics. For example,
some areas of the display may not be usable, or PLOT statements will not place
graphics points at the expected row and column.

If playfield graphics screen memory is allocated normally, you can locate the
player-missile graphics table just before it without any memory conflicts. However,
if a program changes graphics modes, it is possible to start yet another conflict
which would eradicate the player-missile graphics table entirely. This problem
would occur if a program switched from GRAPHICS 0 to GRAPHICS 7, for
instance. In this case, the table would be erased entirely. The sensible thing to do is
to look at the GRAPHICS statements in your program; find the statement that
allocates the most RAM and plan the location of the player-missile graphics table
accordingly. To calculate the player-missile graphics starting address, perform the
following steps:

1. Use the PEEK function to determine the contents of address 560.

2. Use the PEEK function to determine the contents of address 561 and multiply the
result by 256.

3. Add the results of steps 1 and 2.

4. Divide the result of step 3 by 1024 if using double-resolution graphics, or by 2048 if
using single-resolution graphics.

5. Truncate the remainder, subtract 1, and multiply it by 1024 (double-resolution) or 2048

(single-resolution).

The result of step 5 is the starting address for the player-missile graphics table.

In a BASIC program,

1000 REM SINGLE = 1 MEANS SINGLE RESOLUTION
1010 PMBASE = PEEK(560) + PEEK(561) * 256

1020 IF SINGLE THEN DIVISOR = 2048

1030 IF (NOT SINGLE) THEN DIVISOR = 1024

1040 PMBASE = INT(PMBASE/DIVISOR - 1) * DIVISOR

Protecting The Player-Missile Graphics Table

Once you determine the ending address of the player-missile graphics table, use a
POKE statement to put this two-byte value in locations 14 and 15, with the
low-order byte first, as always. The operating system interprets the address con-
tained at locations 14 and 15 as an absolute lower limit for playfield graphics
memory allocation. Therefore, setting this address is critical to protecting the
player-missile graphics table from destruction whenever a new GRAPHICS state-
ment executes.

Chapter 9: ADVANCED GRAPHICS 315

Placing Players and Missiles in the Table

Now that memory has been safely set aside for the player-missile graphics table,
player and missile bit maps can go into it. The first step is to clear the areas of the
table that will actually hold data. Area | of the player-missile graphics table is
unused. There is no need to clear it, nor is there any need to clear areas of the table
which will not contain active bit maps.

Controlling the Player-Missile Graphics Display

There are several control registers which, as the name implies, control the actual
player-missile graphics display:

- Player-Missile base register

- DMA and graphics control registers
+ Width registers

- Color registers

-+ Horizontal position registers

+ Priority control register.

Some of these registers need to be set only once, when setting up player-missile
graphics, but others will require constant resetting, depending on how your pro-
gram will manipulate players and missiles. Atari technical manuals abbreviate the
names of these registers. The abbreviations are listed in the section headings which
follow.

The Player-Missile Base Register (PMBASE)

Memory locations 54279 and 54280 (D407 and D408 hexadecimal) will contain the
startingaddress of the player-missile graphics table. Since the address has to be ona
1K or 2K boundary, location 54279 must always be 0. Only the page number
(high-order byte of the address) is significant.

The Graphics Control Register (GRACTL)

The graphics control register enables direct memory access (DMA) for player-
missile graphics, along with the DM A control register explained below. GRACTL
is located at address 53277 (D01D hexadecimal), and you can select to enable player
DMA only (with a POKE 53277,2), missile DMA only (POKE 53277,1), or com-
bined player-missile DMA (POKE 53277,3).

The DMA Control Register (DMACTL)

Setting the DM A control register will switch player-missile graphics on or off. If the
GRACTL register is not set to enable player-missile DMA, you will only see
playfield graphics. DMACTL and GRACTL must both be set in order to display
players and missiles. DMA acts as a parasite on the 6502 microprocessor, in that it
steals machine cycles from the 6502. If you want to stop displaying player-missile

316 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 9-3. Player-Missile DM A Control Register Values

Value to Setting
POKE Which Results

4 Enable Missile DMA only
8 Enable Player DMA only
12 Enable Player-Missile DMA
Add 16 Single-line resolution
(double-line resolution = default)

graphics objects, reset the DMACTL register. This will give the microprocessor
some of its speed back.

Use the POKE statement to put a value from those shown in Table 9-3 in address
559 (22F hexadecimal) in order to set the DMACTL register.

Player Width Registers (SIZEPO - SIZEP3)

Four eight-bit registers, at addresses 53256 through 53259 (D008 through D00B
hexadecimal), control the horizontal size of the four players. By changing values at
these addresses, you can double or quadruple the width of player objects (but not
their height). If player size will not change in your program, the players are left at
normal size.

Address 53256 controls the first player’s width, address 53257 controls the second
player’s width, and so on. When writing programs to move the player objects
horizontally, the width register setting will affect that player’s horizontal position
register setting. (See the “Player Horizontal Position Registers” section later in this
chapter.) To set a player to double width, set its width register to 1; for quadruple
width, set the register to 3. A value of 0 or 2 will set the player to its normal width. As
an example, the statement to set the third player to double width would be POKE
53258,1.

Missile Width Register (SIZEM)

One register, at address 53260 (DO0OC hexadecimal), controls the size of all missiles.
The same settings as shown above for the player width registers apply to the missile
width register: 0 or 2 for normal width, 1 for double, and 3 for quadruple width.

Player-Missile Color Registers (COLPMO - COLPM3)

The four player-missile color registers are each one byte long, starting at address 704
(2C0 hexadecimal) for the first player and ending at 707 (2C3 hexadecimal) for the
fourth player. Both the player and its associated missile are set to the same color.
Table 9-4 shows the values to place in these registers with the POKE statement in
order to set the color and luminance combination you want.

Chapter 9: ADVANCED GRAPHICS 317

TABLE 9-4. Playfield and Player-Missile Color Register Values

Color Value*

Decimal Hex
Grey 0 0
Gold 16 10
Orange 32 20
Red 48 30
Pink 64 40
Violet 80 50
Purple 96 60
Blue 112 70
Blue 128 80
Light Blue 144 90
Turquoise 160 A0
Blue-Green 176 B0
Green 192 (@((]
Yellow-Green 208 DO
Orange-Green 224 E0
Light Orange 240 FO

*Add an even number, 2 to 14, to set luminance; 0 = no luminance, 14 = maximum luminance.

Player Horizontal Position Registers (HPOSPO - HPOSP3)

The player horizontal position registers are used to relocate player objects on the
horizontal axis. By simply changing register contents with POKE statements, you
can move the player object to the horizontal position you specify. Depending on the
width register setting for the player object, you can position a player at the left side
of the screen, then set a new horizontal position value which causes the object to
immediately reappear elsewhere on the screen. The minimum value of each position
register is 0, and the maximum value is 227. Depending on the player size specified
in DMACTL, these register settings will range between 40 as the leftmost visible
position and 190 as the rightmost position.

These registers are write-only registers; that is, you will not be able to use PEEK
to determine the location of a player. Therefore, your program will have to maintain
variables which contain, among other things, the current horizontal position of
player and missile objects on the screen. Later you will see an example of the
horizontal position registers in use. Player 0’s horizontal position register resides at
address 53248 (D000 hexadecimal); player 1 at 53249; player 2at 53250, and player
3 at 53251.

Missile Horizontal Position Registers (HPOSMo0 - HPOSM3)

Starting at address 53252 (D004 hexadecimal), four missile position registers
receive values used to reposition missiles on the horizontal axis.

318 A GUIDE TO ATARI 400/800 COMPUTERS

PLAYER-MISSILE GRAPHICS EXAMPLES

This section will present various tricks you can do with player-missile graphics.
These programs all use the subroutines introduced earlier in this chapter to set up
the player-missile graphics table in memory, initialize and load it, and control the
movement of the objects. However, in the previous section, the problem of moving
players and missiles up and down was never covered. We will now address this
problem.

Moving Players and Missiles Vertically

Player and missile objects move vertically by moving their bit maps higher in
memory (to place them lower on the screen), or lower in memory (to place them
higher on the screen). This process is very slow in BASIC. Using an assembly
language subroutine to perform the movement is much faster. The assembly lan-
guage program below will move player or missile objects’ bit maps byte by byte.

0000 10 x=$0600 JEEGIN ROUTINE HERE

00CE 20 LOCATION =$00CE yFLAYER LOCATION

00CD 30 LENGTH =$00CD fLENGTH OF FLAYER

0600 68 40 MOVEUF FLA sFULL ARGUMENT OFF STACK
0601 A001 50 LDY #$01 $INITIALIZE INDEX

0603 ELCE 460 UFMORE LDA (LOCATION),Y

0605 88 748 DEY s TRANSFER ONE EYTE UF
0606 91CE 80 STA (LOCATION),Y

0608 CA4CD 90 CFY LENGTH JFINISHED MOVING FLAYER?
060A C8 0100 INY $ADD 2 TO REGISTER

060E C8 0110 INY

060C 90FS 0120 ECC UFMORE JKEEF MOVING IF NOT DONE
0460E C6CE 0130 DEC LOCATION

0610 &0 0140 . RTS JOTHERWISE RETURN

0611 48 0150 MOVEDOWN FlL.A $ALS0O FULL HERE

0612 A4CD 0160 LDY LENGTH

0614 ELCE 0170 DOWNMORE LDA (LOCATION),Y

0616 C8 0180 INY fMOVE A EYTE DOWN

0617 91CE 0190 STA (LLOCATION),Y

0619 88 0200 DEY

04614 88 0210 DEY sDECREMENT THE INDEX
061E 10F7 0220 EFL DOWNMORE sCONTINUE IF MORE LEFT
061D E6CE 0230 INC LOCATION

061F &0 0240 RTS

You can incorporate this subroutine into a BASIC program easily enough by
running the following program:

4001 REM x F/M GRAFHICS MOVE ROUTINEX
4002 REM X===sooooosooooooomoomommmmes i)
4003 REM x RUN THIS FROGRAM TO LOAD x
4004 REM x THE MOVE ROUTINE INTO RAMX
4005 REM x STARTING AT ADDR 1536. x
G006 REM 3K K K K K K KK XK K K K K 3K 3K K WK K K 5K 5K XK XK XK XK X
4010 DATA 104,160,1,177,203,136,145
4020 DATA 203,196,205,200,200,144,245
4030 DATA 198,203,96,104,164,205,177
4040 DATA 203,200,145,203,136,136

Chapter 9: ADVANCED GRAPHICS 319

4050 DATA 16,247,230,203,96
4060 FOR I=1536 TO 1567
4070 READ J

4080 FOKE TI,J

4090 NEXT I

All ATARI computers have a reserved area of RAM (locations 1536 through 1791)
which will safely store subroutines such as this. Once loaded, the subroutine will
remain there until you either turn off the computer or decide to re-use the area for
something else. The player-missile graphics examples that follow assume that the
assembly language subroutine listed above is already loaded into memory before
you run them.

Simple Player Movement

In the example shown below, only one player will be used, and the movement will be
on the horizontal axis. The DATA statement at line 30 defines the player object.
Once its area is cleared, the player image moves into RAM. The player-missile base
register and the graphics and DMA control registers are activated for double-
resolution players at standard width. The player’s color — bluein this case — is set
by placing the composite color and luminance in player 0’s color register with a
POKE statement on line 130. The player object moves from left to right, by
increasing the value of player 0’s horizontal position register (lines 190 to 210).
Make the following changes to this program. First, experiment with the player’s
width setting. Then, alter the FOR-NEXT loop to allow movement from right to
left. You can also experiment with different color register values. Move on to the
next section after trying some variations.

10 GRAFHICS 0

20 SETCOLOR 2,0,0

25 REM FLAYER IMAGE DEFINED IN DATA ST
ATEMENTS EELOW

30 DATA 24,60,255,36,66

40 Y=64t{REM VERTICAL SETTING FOR FLAYE

R

50 A=FEEK(L06)-8IREM FIND END OF MEMOR
Y

60 FOKE S54279,AtREM FOKE START ADDRESS
TO FMEASE

70 START=256XA+5123REM START ADDRESS F

OR FLAYER 0 IMAGE

80 FOKE 559,461REM SET DMACTL

90 FOKE 53277,3'REM SET GRACTL

100 FOR I=START TO START+127

110 FOKE I,0:REM CLEAR FLAYER 0 AREA
120 NEXT I

130 FOKE 704,136iREM SET FLAYER 0 COLOD
R REGISTER

140 FOKE 53248, 0:REM SET FLAYER HORIZ.
FOSITION TO 0

320 A GUIDE TO ATARI 400/800 COMPUTERS

150 FOR I=8TART+Y TO START+4+Y

160 READ X:REM FUT FLAYER IMAGE IN MEM
ORY

170 FOKE I,X

180 NEXT I

190 FOR FOS=0 TO 228

200 FOKE 53248,F0S!REM MOVE FLAYER 0 1
COLOR CYCLE TO THE RIGHT

210 NEXT FOS

220 GOTO 190

Vertical and Horizontal Player Movement

The example program in Figure 9-10 shows more elaborate movement than the
previous example. The exception here is that the machine language subroutine for
vertical player movement is used. Notice also that each FOR-NEXT loop moves the
player object a bit differently in order to give some illusion of three dimensions.

Increased Player Resolution

The limitations of player images prevent players from being very useful for some
applications. The example shown in Figure 9-11 uses a player with 32 bits of reso-
lution, as defined in Figure 9-12.

Asyou cansee when running the program, BASIC moves the flying saucer across
thescreenina jerky manner. This is caused by both the slowness of the language and
the concatentation of the four player images.

Using the Priority Registers

A relatively easy example of setting priority between playfield and player-missile
graphics can be seen in Figure 9-13. The priority register can have several settings:

1 gives all players priority over playfield.

2 gives players 0 and | priority over all playfield registers, plus players 2 and 3.

4 gives playfield priority over players.

8 gives playfield color registers 0 and 1 priority over all players and playfield registers 2 and 3.

10 GRAFHICS 1+16

20 SETCOLOR 0,0,12

30 SETCOLOR 2,0,0

40 DATA 153,189,255,189,153

S0 GOSUE 360IREM DISFLAY A STAR FIELD
FIRST

(continued)

FIGURE 9-10. Player movement

Chapter 9: ADVANCED GRAPHICS

321

60 Y=1

70 A=FEEK(106)-8

80 FOKE 106,A

?0 FOKE $4279,AIREM FOKE FMEASE ADDRES
S

100 START=2Z36XA

110 FOKE 559,62 1REM SINGLE-LINE RESOLU
TION FLAYER DMA

120 FOKE $3277,31REM ENAELE FLAYER DMA
130 FOKE 532%56,0

140 FOR I=START+1024 TO START+1280

150 FOKE I,0:REM CLEAR THE F/M GRAFHIC
S AREA

160 NEXT I

170 FSTART=START+1024+Y

180 FOKE Z04,INT(FETART/256) tREM FOKE
HIGH~ORDER FART OF FLAYER ADDRESS

190 FOKE Z03,FSTART-(FEEK(204)%256) 11
REM FOKE LOW-O0RDER FLAYER ADDRESS

200 FOKE 205,5IREM FLAYER LENGTH

210 RESTORE

220 FOR I=FSTART TO FSTART+4

230 READ A

240 FOKE I,A

250 NEXT I

260 FOR TI=50 TO 120:G0SUE 320 INEXT I
270 FOKE $3256, 1 tREM DOUELE SIZE

280 FOR I=118 TO 147 STEF 21G0SUE 3203
GOSUE 32Z0INEXT I

290 FOKE $32546,31REM QUAD SIZE

300 FOR T=166 TO 250 STEF 2:1GOSUE 320
NEXT I

310 GOTO 130

320 A=USR(1ES3) {FOKE %3248, TI1COLR=COLR
+1

330 IF COLRX25S THEN COLR=0

340 FOKE 704,COLR

350 RETURN

360 FOR M=1 TO 22

370 X=RNDC0) %20

380 Y=RND(1)x24

390 FOSITION INT(X) ,INTCY)$? #65" " IRE
M FLOT RANDOM ‘STAR’ FOINTS

400 X=RNDC0)xX20

410 Y=RNDC(L)xX24

420 FOSTTION INT(X) ,INTCY)IFRINT %63,
430 NEXT M

440 RETURN

FIGURE 9-10. Player movement (continued)

322 A GUIDE TO ATARI 400/800 COMPUTERS

1R ;o 50L.UTTON

2R I LT MAGKE e
) G LOR 2

10 DATA 0,0,0,0,3,15,119,254,255,63,31,7,4,14,14

- oy

20 DATA Le2,2,31L,240,2 s & "39,f"’;‘},JD'J,‘”‘"J,‘.QU 15,0
A0 DATA 128,84,64,248, 15, 255, 255, 255,247 , 127 ,255,255,1%5,
240,0

40 Y=80
4% 0,0,0,0,192,240,236,187,255,252,248,224,32,112,
G0 K CL0E) 8 RE

FXND END OF MEMORY
HETD s AEREM POKE START (1[)[5 TO FMEASE
J()X‘»'NI\I M ‘:T(‘n!d ADDRESS FOR PLAYER/MISSTLE

80
0
100
110
120
130
140
150
160 { TN 3

170 POKE $G3248-4+H, X+HKE 3T
180 POKE S328&6+H, LIREM ¢
1920 FOR T=8TARTHSLEGY+CLEZBXHY TO ‘)Iﬁ
200 E
200
220
225 NEXT H

230 FOR D=0 TO 228 STEF 4
240 FOR TO 3

250
260
270
280 NEXT D
290 GOTO 230

TO 708

SET PLAYERS TO AQUA

FOSTTIONS

I\T +OE6EY+ CL2BXH)

228 THEN FOKE $3248+F,F08%

FIGURE 9-11. Player with 32 bits of resolution

In the example presented, the player object appears to be in front of the yellow
portion of the screen as it heads toward the middle of the picture. Before returning
to the left edge of the screen, the priority register is reset to give the yellow playfield
priority over the player, thus giving the impression that the player is going behind
the yellow playfield.

Chapter 9: ADVANCED GRAPHICS 323

'Playerli 1 I T
| [T [[]

!
1 N v I | N ?
FﬂayefS' 1]
ot e S

FIGURE 9-12

. Combining players

e
J

10
20
30
40
QEJECT

S50 DRAWTO 80,0

A0 DRAWTO 79,0

70 FOSTTION 45,90

80 FOKE 746%, LIREM ORANGE TRIANGLE

85 XTO 18,46,0,0,"53"

20 A=PEEKCL06) 24 REM FIND END OF MEMO
RY

100 FOKE
5 T P
L10 START
Fl.a ER/MIE
120 FOKE
130 FO
140 FOR J

SOLOR 3
GRAFHICS 7+16

N 60, 126,219,255,189,195,126,60
COLOR 2,040
125, 99 IREM CREATE @& PLAYFIELD

SOKATREM START ADDRESS FOR
LLE GRAFHICS TAELE

DMACTIL.

GRACTL.

2 T0 START+1L024

(continued)

FIGURE 9-13. Setting playfield and player-missile graphics priority

324 A GUIDE TO ATARI 400/800 COMPUTERS

150 FOKE J, 0tREM CLEAR FLAYER/MISSILE
AREA
160 NEXT J

170 FOR I=START+I80 TO START+E587

180 READ X

190 FOKE T,XtREM FUT THE FLAYER IN THE
TAELE

200 NEXT I

230 FOKE 623, 11REM GIVE FRIORITY TO FL

AYERS

240 FOKE 704,86 3REM FURFLE FLAYER

250 FOR K=&60 TO 180

260 FORE G

270 T

280 FOKE 623,41REM GIVE PLAYFIELD FRIO

RXTY

290 FOR J=180 TO &0 STEF -1

300 FOKE S3248,J

300 NEXT J

320 GOTO 230

FIGURE 9-13. Setting playfield and player-missile graphics priority (continued)

10
SOUND

The ATARI computer can generate sounds and music in two distinctly different
ways. [t can activate its own built-in speaker, and it can drive the television speaker.

THE BUILT-IN SPEAKER

The ATARI computer clicks its built-in speaker every time you press a key. It also
sounds the speaker to cue program recorder operation. The speaker is controlled by
memory location 53279. Storing a 0 there sends a pulse to the speaker. Pulsing the
speaker several times in rapid succession generates a tone. The faster the pulsing, the
higher the tone. The following program demonstrates this:

10 FPRINT “"TONE VALUE (1=HX, 10=L0)"
20 INFUT T

29 REM Loop estabhlishes duration

30 FOR J=1 TO 15

40 FOKE 33279,0:REM Speaker

49 REM Delay loop affects tone

50 FOR K=1 TO T

460 NEXT K

70 NEXT J

80 GOTO 10

BASIC doesn’t execute fast enough to create any high notes on the built-in
speaker, but it can be useful on some occasions. For example, you could modify the
Display Error Message subroutine (Figure 4-17) so that it sounds the speaker in
addition to displaying an error message.

325

326 A GUIDE TO ATARI 400/800 COMPUTERS

TELEVISION SPEAKER SOUND

The ATARI computer can make a wide variety of sound effects and music come out
of the television speaker. Such sounds can be simple or complex: they can have one,
two, three, or four voices. Each voice can vary in pitch by more than three octaves. It
canvary from a pure tone to a highly distorted one. Each voice has its own loudness
level, independent of the television volume setting.

The SOUND Statement

In BASIC, SOUND statements control the TV speaker. Turn up the volume control
on your television and try this example:

SO0UND 0,121,10,8

You should hear the note middle C. The numbers tell the computer to generate a
pure, undistorted middle C of moderate loudness. Every SOUND statement must
have four numbers (Figure 10-1). The first number determines which voice will be
used. The second number sets the pitch. The third number regulates distortion. The
fourth number controls the loudness. You can use a numeric variable or expression
in place of any number.

The sound continues until you turn it off. To do that, set the pitch, distortion, and
loudness to 0, like this:

SOUND 0,0,0,0

Voice

The ATARI computer has four independent voices. This means it can make as
many as four different sounds simultaneously. The different voices blend together
in the television speaker, like voices in a chorus. The first number in the SOUND
statement determines which voice the SOUND statement will affect. Voices are
numbered 0 through 3. You must use a separate SOUND statement to control each
voice. This sequence of immediate mode statements generates a C chord:

GOUND 0,121,10,8

READY
SOUND 1,96,10,8

READY
SOUND 2,81,10,8

READY
SOUND 3,60,10,8

READY

A simple FOR-NEXT loop will turn off all sound:
FOR J=0 TO 3:S0UND J, 0,0, 0NEXT J

Chapter 10: SOUND 327

SOUND 0, 121, 10, 8

Tk

Voice Pitch Distortion Loudness

FIGURE 10-1. SOUND statement parameters

Pitch

The second number in a SOUND statement sets the pitch. It can be between 0 and
255. The ATARI computer can produce all notes — sharps, flats, and naturals —
from one octave below middle C to two octaves above it (Figure 10-2). It can
produce a good many other tones as well. For example, there are six intermediate
values between middle C and the tone one-half step below it, B. Such tones do not
correspond exactly to any of the notes on the chromatic scale, so they will be of no
use for programming music. You can use them for sound effects, however. Run the
following program:

10 FOR J=-25%5 TO 2595

20 SOUND 0,AR5C)),10,8

30 FRINT "FITCH VALUESD "jaBS D)
40 FOR K=1 TO S0INEXT K

G0 NEXT J

40 SOUND 0,0,0,0

The program above shows off the ATARI computer’s complete tonal range. As
you listen, notice that the low notes seem to last longer than the high notes. Youcan
see that the program holds each tone for the same length of time (line 30). But the
tone produced by a pitch value of 255 is very nearly the same as that produced by
pitch values of 254, 253, and even 252. These low tones run together, sounding like
one sustained note. In contrast, there is a marked difference betweeen pitch values
11 and 10. Each change in pitch value is definitely discernible. The program glides
smoothly through the low tones but ends up hopping choppily through the high
tones.

Distortion

The ATARIcomputer produces both pure and distorted tones. The third numberin
a SOUND statement regulates distortion. It can be any value between 0 and 15.
Distortion values of 10 and 14 generate pure tones. Other even-numbered distortion
values (0, 2, 4, 6, 8, 10, and 12) introduce different amounts of noise into the pure
tone. The amount of noise depends on both the distortion value and the pitch value.

328 A GUIDE TO ATARI 400/800 COMPUTERS

— e = SO 25k

OO o ;
bl = T P Ty

= vvof\
LT ==
=

e) 26 28 29 31 33 35 37 40 42 45 47 S0 53 57 60 64
/'\ bﬁ L

\1J = OO o by

\ Vvof\bf\ 4

e 68 72 76 81 85 91 — . OO o

96 102 108 114 121

ngeobo,\b,-\ ;

oo— ODOA .

OO ~ b~
\Jvo

ND
(

0

108 114 121 128 136 144 153 162 173 182 193 204 217 230 243 255
o
o = =2

A#A
ol QIO = =
(AL olo o e
Je 5 OO T =
, e
255 243 230 217 204 193 182 173 162 153 144 136 128 121 114 108
o fla
UMW) ol OO =
S o 9o — —
) oio O#% o 01 85 81 76 72 68 64 60 57 53 50
121 114 108 ol 9
_it otc Ote Q ="= —
o e —
e N
)
N
J 47 45 42 40 37 35 33 31 29 28 26

FIGURE 10-2. SOUND statement pitch values and the chromatic scale

Some combinations of distortion and pitch combine to produce an undistorted
secondary tone with harmonic overtones. The secondary tone is different in pitch
from the pure tone. The following statement produces a pure C#:

SOUND 0,230,10,8
Change the distortion value to 12, as follows:
SOUND 0,230,12,8

A much lower secondary tone results. In fact, this secondary tone is lower than the
pure tone you get with an undistorted pitch of 255:
SOUND 0,255,10,8

Chapter 10: SOUND 329

Unfortunately, a secondary tone does not have a reliable pitch of its own. This
program demonstrates:

9 REM Start secondary tone

10 SOUND 0,230,12,8

20 FOR K=1 TO S0INEXT K

29 REM Turmn off sound

30 SO0UND 0,0,0,0

39 REM Wait random time

40 FOR K=1 TO S0xRNDC0)Y tNEXT K

49 REM Repeat; uwse BREAK to end

50 GOTO 10

Inthe program above, the variable pause that occurs while the sound is off (line 40)
randomly changes the pitch of the secondary tone (line 10).

Some combinations of pitch and distortion blank each other out. The result is
silence. Try this statement, for example:

SOUND 0,123,6,0

Generally speaking, odd-numbered distortion values (1, 3, 5, and so on) silence
the specified voice. But if the voice is off, a SOUND statement with an odd-
numbered distortion value causes a single click, then silence. Turning the voice off
then causes another click. Here is a program that demonstrates how odd-numbered
distortion values work:

10 FOR J=1 TO 20

20 SOUND 0,0,1,8

30 SOUND 0,0,0,0

40 FOR K=1 TO 100¢NEXT K

50 NEXT J

Table 10-1 summarizes sound characteristics for each distortion factor. The
following program will help you explore them in more detail:

10 FOR F=0 TO 2995

20 FOR D=0 TO 135

30 FRINT "“"FITCH="3F,"DIST="3;D

40 SOUND 0,F,D,10

50 FOR K=1 T0Q 40:NEXT K

60 NEXT D

70 NEXT F

Loudness

The fourth number in a SOUND statement controls the loudness of the specified
voice. It lets the program determine the audio level. It also allows the program to
mix a multiple-voice sound, with each voice at a different loudness level. You can
control the overall volume with the television volume control; if you turn it all the
way down, you will hear no sound.

The loudness value can be between 0 (silent) and 15 (loudest). Loudness change is

330 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 10-1. SOUND Statement Distortion Characteristics

Distortion Silences** Sesondary Comments
Value* Tones t
14 None None Pure tone
12 Many Many High tones less distorted
10 None None Pure tone
8 None None Static (low tones) to white noise
(high tones)
6 Few Few No change below pitch 200
4 Few Few Static (low tones) to throbbing
(high tones)
2 Few Few Same sounds as 6
0 Few None Blend of 4 and 8
* Any odd-numbered distortion value generates a single click when it turns
on a voice. Turning off the voice may generate another click.
** Some combinations of distortion and pitch values generate silence.
 Some combinations of distortion and pitch values generate a tone with
harmonic overtones.

linear: 8 produces a sound half as loud as 15, the value 12 is halfway between 8 and
15 in loudness, and so on. This program demonstrates the loudness range:

10 FOR J=-1% TO 1%
20 SOUND 0,121,10,ABSCJ)
30 NEXT J

40 SOUND 0,0,0,0

Pitch affects apparent loudness. For a combination of reasons, the highest-
pitched sounds seem quieter. Listen to the output of this program:

L0 FOR J=-30 TO %0

20 SOUND 0,AEBSC) 10,8

30 FOR K=1 TO S0INEXT K

40 NEXT J

50 SOUND 0,0,0,0

Statements that Turn Off Sound

As you have seen, a SOUND statement with 0 volume will turn off a single voice.
Some ATARI BASIC statements automatically turn off all four voices. When the
computer executes an END statement, it shuts off all four voices as it ends the
program. END also works in immediate mode. The RUN statement also turns off
all sound. A sound you start in immediate mode will not continue when you run a
programmed mode program, unless the program recreates it. Other statements that
turn off all sound include CLOAD, CSAVE, DOS, and NEW. Pressing the SYSTEM
RESET key turns off all sound voices, but pressing the BREAK key does not.

Chapter 10: SOUND 331

Duration

A characteristic of sound that is just as important as any other is its duration. The
SOUND statement has no duration parameter. There is no way the SOUND
statement alone can determine how long a sound remains on. It remains on until the
computer executes a statement that turns it off. Clearly this will not happen as long
as the computer is busy executing other statements.

One way to control sound duration is to interweave sound statements with other
program statements. A constantly changing sound results. The following program
generates random tones while it outputs a number:

10 DIM N$(40)

20 FRINT CHR$(129)IREM Clr screen
29 REM Restart in case of error
30 TRAF 20

40 FRINT "ENTER A NUMEBER"

S0 INFUT N

70 N$=GTR$ (N)

80 FOR J=1 TO LENC(N%$)

20 SOUND 0,64XRNDC0)Y+16,10,10
100 FRINT N$(J,Jd) s

110 SOUND 1,32xXRNDC0)Y+8,10,10
120 NEXT J

130 SOUND 0,0,0,0:S0UND 1,0,0,0
140 GOTO 20

Suppose you want a sound to last a specific length of time, then turn off. Your
program must turn the sound on, pause the right amount of time, then turn the
sound off. You can use SOUND statements to turn the sound on and off, but how
do you make the program pause? The easiest way is with a FOR-NEXT loop.
Several example programs have used this technique. Here is another:

10 SOUND 0,47,10,10

20 FOR K=1 TO 100INEXT K
30 SOUND 0,64,10,10

40 FOR K=1 TO 100INEXT K
S0 GOTO 10

Experiments show that in ATARI BASIC, empty FOR-NEXT loops iterate
about 445 times per second. Therefore, a loop that goes from 1 to 100, like the one
on line 40 above, causes a pause of just under one-quarter second. However, this
timing data is not guaranteed. Your ATARI computer may be slightly different.
You can conduct your own experiment to determine the speed of empty FOR-
NEXT loops on your computer. You will need a clock or watch with a second hand.
Type in this program:

10 FOR J=1 TO 33000 ¢NEXT J

Now type the command RUN. As you press the RETURN key to start the program,
note the position of the second hand. After 30 seconds have elapsed, press the
BREAK key. Type this immediate mode statement to calculate the number of empty

332

A GUIDE TO ATARI 400/800 COMPUTERS

FOR-NEXT loop iterations your computer executes every second:

PINT(J/30)

Sample Sound Effects

The ATARI computer can create many realistic sound effects. All it takes is the
right combination of voices, pitch, distortion, volume, and timing. Finding the right
combination for a particular sound can be difficult. There are no formulas that
apply; you will have to experiment. Experience will reduce the number of experi-
ments it takes to come up with a particular sound. As you learn how to create
different sounds, it will become easier to come up with new ones. Sometimes in the
pursuit of one effect you will discover a sound that would be perfect for another
effect. Make notes of such discoveries; they will expedite future experiments. To get
started, try the programs in Figure 10-3. Experiment with them and see if you can

improve them.

10

100
110
120
200

100
110
120
130
140
150
160
170
180
200

99 REM

?9 REM

"DURSTION" § $XNFUT D
THINK ==

FOR J=1 TO Dx10

SOUND 03 RNDCO)xB0+50,10,3
NEXT

EZND

29 T0 1
O 5
0,125,14,6

SOUND
NEXT K
SOUND
FOR K=l
NEXT WJ
END

0,0,0,0
TO JXGINEXT K

L DIRATIN =

Vb4

FOR J=1 TQ 30

SOUND 0,V-J,10,10
SOUND 1,F+J,10310
FOR K=1 TO 30-JINEXT K
SOUND 0,0,0,0

SOUND 1,0,0,0

FOR K=1 TO 103NEXT K
NEXT J

END

(continued)

FIGURE 10-3. Sample sound effects program listings

Chapter 10: SOUND

333

P9 REM s FYLLL ssme

100 FOR J=140 TGO 90 STEF -1
110 SOUND 0,Jd,10,10

120 FOR K=1 TO 20INEXT K
130 SOUND 0,0,0,0

140 FOR K=1 TO LO0INEXT K
150 NEXT

200 END

PG REM === FALLING OF
L00 FOR J=30 TO 200 &
L0t Upuds 10 J/ET
| =] TO JAL008

0,20,0,14
{ Le 255,00, L%
FOR K=1 TO 100 3INEXT K
FZ NI

P9 REM === EXPLOSTON s
100 F TO 10

110 SOUND 0,200,4,10-AB5C0)
120 SOUND 1,2895,4,10
130 SOUND Z s 4y 10
140 SOUND 3,108

160 FOR =1 TO 200 $NEXT
170 NEXT J

200 END

L0 FRINT "HOW MaNY SHOTS"§
Al ;
(}) (}\

100

GUNESHOTE e
=10 T0 D
110 0:5,0,1%5
120 =10 TO ZEINEXT K

130 SOUND 0,0,0,0

140 FOR =1 TO RNDCOIXZ00ENEXT
LS50 NEXT

200 END

10 FRINT
D9 REM

UDURATION™ 3 SINFUT D
JECHKHAMME R

I

(continued)

FIGURE 10-3. Sample sound effects program listings (continued)

334

A GUIDE TO ATARI 400/800 COMPUTERS

100
110
120
130
140
200

10

100
110
120
130
140
150
200

100
110
120
130
140
150
200

10

100
110
120
130
200

10

FRINT "DUF
?9 REM

10 PRINT "DURATION" SINFUT

FOR Js=10TO D

SOUND 0, L30+RNDCOIXE, 2,15

FOR K=10 TO 440+RNDCOYXL00 $NEXT K
i LTO 440+RNDCO)X)L00 ENEXT K

TION"§ SINFUT D
- N s

FOR . TGO D

FOR K=-160 TO 160 STER 2
SOUND 0, ARS (K +95,10,8
FOR L=l 7O LOENEXT L.
NEXT K

NEXT J

END

mams L0 GTREN s
FOR J=1TO D
SOUND 0,47,10,8
FOR L=l TO L00INEXT I
GOUND 0,64,10,8

FOR L=l TO L003INEXT .
NEXT

END

FRINT "DURATION"} SINFUT D
99 REM wws HOR ;

- HORN s
SOUND 0,121,10,8

GSOUND 1,128,10,8

SOUND 2,8,2,2

FOR J=10 TO DXZ70INEXT o
E-ND

3

FRINT "DURATION"; $INFUT D

99 REM === BUZZER =

100
110
200

110

RINT "DURATIOM

SOUND 0,42,2,18
FOR J=10TO DXZO0SNEXT
N

I LANFUT D
M s PHONE mems

FOR J=1 T0O D

SOUND 0,86,10,%5

(continued)

FIGURE 10-3. Sample sound effects program listings (continued)

Chapter 10: SOUND 335

120 SOUND 1,88,10,%5

130 SOUND 2,40,2,4

140 FOR K=1 TO S00INEXT K

180 FOR K=0 TO 3IS0UND Ky 0,0, 08NEXT K
160 IF J=D THEN GOTO 180

170 FOR K=1 TO 7850 ENEXT K

180 NEXT J

200 END

L0 FRINT "DURGTION" § S INFUT D
9P REM = ELRDS w

L00 FOR J=1 TO DXG

110 FOR K=3 TO 10

120 SOUND 0,K,10,8

130 NEXT KINEXT J

200 END

10 FRINT "DURGTION" § $INFUT D

P9 REM = GEA s

LO0 FOR L=1 TGO D

LL0 FOR J=0 TO 4%

120 SOUND 0,d,8,4

130 FOR K=l TO Z0+RNDCOIXL0ENEXT K
140 NEXT J

150 FOR J=4% TO 0 STEF -1

140 SOUND 0,J,8,4

170 FOR K=1 T0 S0+RNDCOI®I0INEXT K
180 NEXT JIFOR K=1 TO 300+RNDCOI®300IN
EXT K

190 NEXT L.

200 END

G REM === TAKEQFF ===
100 FOR L=L TO D

110 FOR J=0 TO 45

120 SOUND 0,J,8,U0/3

140 NEXT J

150 FOR J=4% TO 0 STEF -1
L&0 SOUND 0,J,8,J076+6

170 FOR K=l TQ 70+JX3INEXT K
180 NEXT J

190 NEXT L

200 END

FIGURE 10-3. Sample sound effects program listings (continued)

it =1 ||r rllll . Il.' II'II.'E

r S
r';"-_lllrllll-'I——'- l—-_— ------ -
) I - 0 %"
B = |
= romanl -
) n 1IN, $- i g
a1 Al .
' D FMET -
B i e
K
i Fhim . -
I o EER) B
' = = u., =y, ap
i h-l =1 " ==
. '-I.I
. Ll
a
m ki .
ok N
- = gl
i [- -
—_I_ N
1 SRl B R T = ===
=
4 =g kT - ==& -
' == B == - m = e
LR S T B - -
T L = - — I I I S
- .{-
T
- ==
- SR~ s -
. S oT = am
g - ==
- - - - = --
=g oF 1l

I

{.
;

11
COMPENDIUM OF
BASIC STATEMENTS
AND FUNCTIONS

This chapter describes the syntax for all ATARI BASIC statements and functions.
Statements are described first, listed in alphabetical order. Then functions are
described, also in alphabetical order. Included in the section on statements are
descriptions of two single-keystroke commands, BREAK and SYSTEM RESET. These
two differ from the rest of the BASIC statements, but are included here because they
affect program execution as much as any statement.

Thischapter serves as a reference for all statements and functions. The examples
in this chapter show you some of the ways you can correctly use each BASIC
statement. They by no means exhaust all possibilities. For more examples, many in
working programs, refer to earlier chapters.

IMMEDIATE AND PROGRAMMED MODES

All statements can be executed in immediate or programmed mode. In some cases
only one mode is practical.

BASIC VERSIONS

The features and attributes of all statements and functions described in this chapter
are those of standard ATARI BASIC (also known as Sheperdson BASIC). Other
versions of BASIC, such as Microsoft BASIC and BASIC A+, are not specifically
covered.

337

338 A GUIDE TO ATARI 400/800 COMPUTERS

NOMENCLATURE AND FORMAT CONVENTIONS

A standard scheme is used for presenting the general form of each statement and
function. Listed below are the punctuation, capitalization, and other mechanical
conventions used.

{1} Braces indicate a choice of items. One of the enclosed items must be
present. Braces do not appear in actual statements.
[1 Anythingenclosed by brackets is optional. Brackets do not appear in
actual statements.
Ellipses mean that the preceding item can be repeated. Ellipses do not
appear in actual statements.
Line numbers A beginning line number is implied for all programmed mode
statements.
Other All other punctuation marks — commas, semicolons, quotation
punctuation marks, and parentheses — must appear as shown.
UPPER-CASE Upper-case words and letters must appear exactly as shown.
italics Italicized items are used generically, not literally. They show where a
certain type of item is required. Definitions of the generic terms
describe the type of item required. Wherever an italicized item
appears, you must substitute an exact wording or value, according to
the generic term definitions listed below and in the statement
descriptions.

Generic Term Definitions

The following italicized abbreviations are used generically in statement and func-
tion definitions. Any italicized terms not listed here are peculiar to the statement in
which they appear. They are defined in the text that describes that statement.

chan Channel number for input or output; a numeric expression (numexpr) where
no functions are allowed, and which must evaluate exactlyto 1,2,3,4,5,6, or
7. Do not use fractional values.

col Display screen column number; a numeric expression which has a minimum
value of 0 and a maximum value of 39 in graphics modes 0 and 3, 19 in modes
1 and 2, 79 in modes 4 and 5, 159 in modes 6 and 7, and 319 in mode 8.
Non-integer values are rounded to the nearest integer.
const Any numeric or string constant. Quotation marks are treated as part of a
string constant’s value, not as delimiters.
dev A string constant or variable that specifies an input or output device. Mean-
ingful valuesare “C:”,“E:” “K:™,“P:"“R[n]:",“S:",and “D[n]:filename [.ext]".
D[n] A disk drive number which must be D, D1, D2, D3, or D4.
expr Any numeric, relational, or Boolean constant, variable, function, or expres-
sion; any valid combination thereof.
ext Any disk file name extension, one, two, or three characters long. Valid
characters are letters A through Z and digits 0 through 9.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 339

filename Any disk file name, one to eight characters long. Valid characters are letters
A through Z and digits 0 through 9. The first character must be a letter.
indev A string constant or variable that specifies an input device. Meaningful
values are “C:”,“E:”,“K:”,“R[n]:",“S:”, and “D [n]:filename [.ext]”.
linexpr A numeric expression that evaluates to an existing BASIC program line
number. Non-integer values are rounded to the nearest integer.

memadr A numeric expression, variable, or constant that evaluates to any memory
address. Memory addresses may range from 0 to 65535.
numexpr Anynumeric constant, variable, function, or any valid combination thereof.
numvar Any numeric variable name (not including arrays).
outdev A string constant or variable that specifies an output device. Meaningful
values are “C:”, “E:”, “P:”, “R[n]:”, “S:”, and “D[n]:filename[.ext]”.
row Low-resolution graphics row number; a numeric expression which has a
minimum value of 0 and a maximum value of 23 in graphics modes 0, 1, and
3;of 11 in mode 2; of 47 in modes 4 and 5; of 95 in modes 6 and 7;and of 191 in
mode 8.

strvar Any string variable name, not including substrings.

string Any string constant, variable, substring, or function that returns a string
value.

var Any numeric or string variable name, not including substrings or arrays.

Abbreviating Keywords
ATARI BASIC lets you abbreviate many keywords in order to save typing effort.
For example, you can type SE. and ATARI BASIC will automatically extend it to
SETCOLOR.

In this chapter, abbreviations that are permitted are listed at the beginning of the
discussion of each statement. You can use the abbreviated keyword wherever the
fully spelled-out keyword is allowed.

STATEMENTS

This section describes all the ATARI BASIC statements. The descriptions include
the general format of each statement, as well as one or more examples of the
statement in use.

[BREAK (BREAK))

Halts program execution and returns the computer to immediate mode.

Format: BREAK

Example: BREAK
Pressing the BREAK key interrupts every BASIC statement, although there is
sometimes a brief wait while the computer finishes an input or output operation.
Occasionally, the BREAK key will not interrupt the LPRINT statement. In this case,
only the SYSTEM RESET key will interrupt the output.

When the interrupt occurs, the computer switches to immediate mode and

340 A GUIDE TO ATARI 400/800 COMPUTERS

graphics mode 0, displaying the message STOPPED AT LINE line, where line is
replaced by the line number at which the program halted. You can continue
program execution with the CONT statement. Execution will resume at the start of
the next program line higher than /ine. If you type any other statement before
CONT, the programmed mode program will not resume.

Inimmediate mode, the BREAK key cancels the current logical line. The computer
skips to the start of the next logical line.

The BREAK key never turns off any sound voices nor closes any open input/out-
put channels.

Switches from BASIC to memo pad mode.
Format: BYE

Examples: BYE
B.

Does not affect memory used to store the BASIC program or variables. After
executing BYE, you can return to BASIC by pressing the SYSTEM RESET key. Any
BASIC program lines that were present are still there. The variable name table is
unchanged. If before leaving BASIC you booted the disk operating system, the
RS-232 serial device handler, or both, they are still booted when you return to
BASIC.

|[CLOAD (CLOA.)|

Operates the program recorder in playback mode, transferring a previously
recorded program from a cassette to the computer memory.
Format: CLOAD

Examples: CLOAD
CLOA.

First, the CLOAD statement opens channel 7 for input from the program
recorder. If channel 7 is already open to another device, an error occurs. When the
error occurs, the channel is closed automatically and you can use CLOAD
successfully.

When the computer executes a CLOAD statement, it sounds its speaker once.
This signals you to put the right tape in the program recorder, use the FAST
FORWARD and REWIND levers to position the tape to the correct spot, then depress
the PLAY lever. Finally, press any key on the keyboard (except BREAK). If the
volume on the television set is turned up, you will hear several seconds of silence
followed by one or more short bursts of sound from the television speaker. These
sounds indicate that the program is loading. The sound bursts cease when the
loading finishes.

The CLOAD statement can only load a tokenized BASIC program. Therefore, it
works with programs recorded by the CSAVE or SAVE statements. It does not

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 341

work with programs recorded by the LIST statement, which records BASIC text in
ATASCII code.

During the loading process, the CLOAD statement also replaces the resident
variable name table with the one for the incoming program.

CLOAD Invokes NEW

Using the CLOAD statement automatically invokes the NEW statement. Even
before the computer sounds its speaker, it clears all program lines and variables out
of memory. If you press the BREAK key when you hear the prompting tone, the
CLOAD operation halts, but any program that was in memory will be gone. None
of the new program will be present.

When the CLOAD operation ceases (successful or not, or complete or not), the
computer shuts off all sound voices and closes all input/output channels except
channel 0. Note that it closes channel 6, which many of the graphics statements use.

Halting CLOAD

Youcan haltthe CLOAD operation at any time by pressing the SYSTEM RESET key.
The BREAK key also works, except during the first 20 seconds after the CLOAD
operation starts, while the program recorder reads past the leader tone that prefixes
every program.

|CLOSE (CL.)|

Unassigns an input/output channel.
Format: CLOSE f#chan
Examples: CLOSE #1

CL. #UNITA

You must close a channel that is open for input, output, or both before you can
reassign it to a different device with an OPEN statement. Closing a channel that is
not open has no effect. No error occurs.

If channel chan is open for output to the program recorder or to a disk file, there
may be a partial data record in the computer memory, waiting to be output.
Normally, the computer only outputs whole records to these two devices. Closing
the channel forces output of any partial record, followed by an end-of-file record.

The END statement closes all open channels except channel 0, which BASIC uses
for standard communication with the keyboard and display screen.

CLR
Assigns 0 to all numeric variables. Undimensions numeric array variables and string
variables. Resets the pointer to the beginning of the list of DATA statement values.
Format: CLR
Example: CLR
CLR does not remove variables from the variable name table (VNT); only the

342 A GUIDE TO ATARI 400/800 COMPUTERS

NEW statement does that. Thus, CLR does not make room for new and different
variable names in a program that has run afoul of the 128-name limit imposed by the
VNT.

The CLR statement does cancel the length attributes of string variables and
numeric arrays. Therefore, after executing a CLR statement, you can redimension
numeric arrays and string variables as available memory permits.

I[COLOR (C.)

Determines which color register the next PLOT or DRAWTO statement will use. In
graphics modes 0, 1, and 2, also determines which character the next PLOT or
DRAWTO statement will display.
Format: COLOR numexpr
Examples: COLOR 1
C. ASC(“Z™)
COLOR Cl1+ADJ/3

The value of numexpr specifies which color register will be used by the PLOT or
DRAWTO statement. The value must be between 0 and 65535. Non-integer values
are rounded to the nearest integer.

There are five color registers, numbered 0 through 4. Table 11-1 correlates values
of numexpr with color register numbers in each graphics mode. It shows, for
example, that a COLOR 2 statement in graphics modes 3, 5, and 7 selects color
register 1.

Assigning Colors

Each color register specifies the hue and luminance of a color. The SETCOLOR
statement assigns specific hue and luminance attributes to a color register. The color

TABLE 11-1. Color Register Numbering and Availability

: : %
SETCOLOR COLOR numexpr Value in Graphics Modes

Register Number

3,8,7 4,6 8**

w N =
[
O =

0 0

A LN — O

* In modes 0, I, and 2, numexpr determines the character that will display;
see Tables 11-3 and 11-4.

** In mode 8, COLOR chooses luminance only. Color register 2 always controls hue.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 343

TABLE 11-2. Color Register Default Values
(SETCOLOR register numbers)

Registcel")llgll.xmher Hue Luminance Color
0 2 8 Orange
1 12 10 Green
2 9 4 Dark blue
3 4 6 Red
4 0 0 Black

registers default to the values shown in Table 11-2 whenever you turn on the
computer, press the SYSTEM RESET key, or execute a DOS or GRAPHICS
statement.

COLOR in Graphics Mode 0

In graphics mode 0, display elements are characters, not points. In this mode, the
COLOR statement determines the actual character that the PLOT and DRAWTO
statements will display. Table 11-3 lists values of numexpr and the character each
one produces in graphics mode 0. The value of numexpr can be between 0 and
65535, but values above 255 are converted modulo 256 to values between 0 and 255.

COLOR in Graphics Modes 1 and 2

Graphics modes | and 2 are similiar to mode 0, but there are two character sets.
Each character set has 64 elements. The standard character set contains the usual
upper-case letters, numbers, and punctuation. An alternate character set contains
special graphics characters and lower-case letters. The standard character set is
automatically selected every time you turn on the computer, press the SYSTEM
RESET key, or use the GRAPHICS statement. The statement POKE 756,226 selects
the alternate character set. The statement POKE 756,224 reselects the standard
character set.

Table 11-4 lists the values of numexpr which produce each of the 64 characters in
both character sets of graphics modes 1 and 2. Notice that each character can be
produced by any one of four values. Each of the values produces the same character,
but selects a different color register. The value of numexpr can be between 0 and
65535, but values above 255 are converted modulo 256 to values between 0 and 255.

COLOR in Graphics Modes 3 through 7

In graphics modes 3 through 7, the value of numexpr specifies which color register
will determine the hue and luminance that subsequent PLOT and DRAWTO
statements will use. Table 11-1 shows which color registers are available in each
mode. The value of numexpr can be between 0 and 65535; values above 3 are
converted modulo 4 to a number between 0 and 3.

344 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-3. COLOR and Graphics Mode 0
(Characters displayed by values of numexpr)

Els| Els| E|s| E|s| E|sg| E|s
Sz |§| 52 |6 2 |8 £z || 22 || £2 |
o/128 | [%] | 23/151 | [] | 46/174 | []| 69/197 92/220 115/243
1120 | [H | 24/152 | [&] | 47/175 70/198 93/221 116/244
2/130 [[0 | 257153 | [I] | 48/176 71/199 94/222 117/245 | [11]
3130 [[4]] 267154 | [&] | a9/177 | [1]| 72/200 | [H] | 95/223 | [] | 118/246
a2]| 27/~ | [§]] s0/178 73/201 96/224 | [#] | 119/247
5/133 | [a] | 28/156 51/179 74/202 97/225 120/248
6/134 29/157 52/180 75/203 98/226 121/249
7/135 30/158 53/181 76/204 | [L.] | 99/227 122/250
8/136 | [d] | 31/159 54/182 77/205 100/228 123/251 | [#]
9/137 | [a] | 327160 | []] 55/183 78/206 101/229 124/252 | [1]
10/138 | W] | 33/161 | [T] | s6/184 79/207 102/230 12§ | Bl
/139 | (% | 34162 | [7] | 57/185 80/208 103/231 126/254 | [4]
12/140 | [®]| 35/163 58/ 186 81/209 104/232 | 1] | 127/255 | [B]
13/141 | [Z] | 36/164 59/187 82/210 105/233 —/155 | EOL
14/142 | [=] | 37/165 60/188 | [<]| 83/211 106/234 —253 |
15/143 | []| 38/166 61/189 84/212 | [T] | 107/235 | [I2]

16/144 | [#] | 39/167 | [T]] 62/190 85/213 108/236 | [1]
17/145 | [] | 40/168 63/191 | ||| 86/214 109/237
18/146 | [=] | 41/169 64/192 | [@] | 87/215 110/238 | [1]
19/147 42/170 65/193 88/216 111/239
20/148 | [@] | 43/171 66/ 194 89/217 112/240
21/149 | [m] | 44/172 | [,]] 67/195 | [CC] | 90/218 113/241
22/150 | [1]] 45/173 [-] | 68/196 91/219 114/242

COLOR in Graphics Mode 8

In graphics mode 8, color register 2 determines the hue of all points, all lines, and the
background. The COLOR statement does not even indirectly control the hue of
points and lines, only their luminance. The value of numexpr specifies which color
register will determine the luminance (see Table 11-1). The value of numexpr can be
between 0 and 65535; values above 0 are converted modulo 4 to a number between 0

and 3.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS

345

TABLE 11-4. COLOR and Graphics Modes 1 and 2

(Characters and color registers selected by values of COLOR numexpr)

Coroill]l:efg‘;;ter Character* CO},:::::;;” Character*
0 1 2 3| s Al | o0 1 2 3 | su. Al
e 0 160 128 | [] [| e4 96 192 224 [¢]
3 o6t 129 | [[F | es 97 193 225
34 2 162 130 | [M] []| e 98 194 226
35 30163 131 M| 0 99 195 227
36 4 164 I3R2 [4] | e 100 196 228
37 s 165 133 [a] | e 101 197 229
38 6 166 134 70 102 198 230
39 7 167 135 | '] 70103 199 231
40 g8 168 136 (M| 72 104 200 232 | [H]
41 9 169 137 [| 73 105 200 233
2 10 170 138 W | 74 106 202 234 | [J]
43 1 171139 (W] 75 107 203 235
4 12 112 140 O] 76 108 204 236 | (L] [T
4s 13 a3 a4 | [S| 1m0 109 205 237
46 4 174 142 |] [=) | 10 206 238 [r1]
a7 15 175 143]| 7 11 207 23
@8 16 176 144 80 112 208 240
9 17 177 14s (el | 81 113 209 241
50 18 178 146 =] | & 114 210 242
51 9 179 147 83 11S 211 243
52 20 180 148 (@ | 8¢ 116 212 24 | [T] [
5321 181 149 m] | 85 17 23 24 | U [
s 22 182 150]| 8 118 214 246
ss 23 183 15l (v | 87 119 215 247
56 24 184 152 [| 88 120 216 248
s7 25 1ss 1s3 | [F] W] s a2t 27 269 | [Y] [4]
s8 26 186 154 | [3] [M | 9 122 218 2%
59 27 187 Nonef [E]] 90 123 219 251 (2]
60 28 188 156 | [«] 92 124 220 252 1
61 29 189 157 93 Nomel 221 253 L3
62 30 190 158 94 126 222 254 4]
63 31 191 159 95 127 223 255 | [.] [M
NOTE:

* For standard characters, POKE 756,224. For alternate characters, POKE 756,226.

** 155 selects the same character and color register as value 32.
T No value selects this color register/ character combination.

346 A GUIDE TO ATARI 400/800 COMPUTERS

COM

Reserves space in memory for numeric arrays and string variables.

Format: strvar (numexpr) strvar (numexpr)
COM)
numvar (numexpr [,numexpr]) numvar(numexpr[,numexpr))
Examples: COM A$(24), ARRAY1(25), ARRAY2(5.5)
COM NAMES$(30), ADDRI1$(30), ADDR2§(30), ADDR3%(30)

This statement is exactly the same as the DIM statement.

[CONT (CON.)|

Resumes execution of the next instruction after a program halt.
Format: CONT
Example: CONT

A program can be halted by executinga STOP or END statement, or by pressing
the BREAK key. Use the CONT statement to continue a halted program.

Program execution resumes with the first statement on the program line imme-
diately following the line where the halt occurred. Thus, if the halt occurs before the
end of a multiple-statement line, CONT will not finish off the line. Instead, execu-
tion will resume at the beginning of the next line.

CONT and the BReAk Key

If you press the BREAK key during a statement that takes some time to finish
(INPUT or LIST, for example), that statement will be interrupted and the program
will halt. A subsequent CONT statement restarts program execution at the first
statement on the next program line. The interrupted statement is not resumed.

It is possible to block execution of even the first statement on a program line. If
you happen to press the BREAK key just after the computer advances to the start of a
new program line, but before it starts executing the first statement on that line,
program execution will halt before that first statement is executed. A subsequent
CONT statement advances to the next program line and resumes execution there,
bypassing the whole program line on which the halt occurred.

CONT With No Halted Program

Youmayissue the CONT statement even if there is no halted program (that is, there
is no program running). The computer acts as though the program halted after the
first statement of the first program line. So the CONT statement starts program
execution at the beginning of the second program line.

CONT After Errors

Errors canalso halt program execution. You can often continue the program with a
CONT statement, but the computer never executes the statement which caused the
error, nor any statements that follow it on the same program line. So be careful

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 347

when you use the CONT statement after an error. Continuing programs after an
error is risky. The statement which is never executed may be vital. Skipping it
because it caused an error will cause problems later in the program. If you correct a
program error, resume execution with and immediate mode GOTO instruction.

CONT After SYSTEM RESET

You may attempt to continue program execution with the CONT statement after
pressing the SYSTEM RESET key. Execution will resume at the start of the program
line immediately following the one where the reset occurred. Chances are slim that
the program will work properly after a reset.

CONT in Programmed Mode

Ordinarily, you will only use the CONT statement in immediate mode. While it is
perfectly legal in programmed mode, it does nothing except take up extra memory
and slow the program down.

[CSAVE (CS.)|

Operates the program recorder in record mode, transferring a program from the
computer memory to a cassette.

Format: CSAVE

Examples: CSAVE
CS.

The CSAVE statement uses channel 7 for output to the program recorder. If
channel 7 is already open to another device, an error occurs, the channel is closed
automatically, and you can use CSAVE successfully.

When CSAVE executes, it sounds the computer speaker twice. This signals you
to put the right tape in the program recorder and use the FAST FORWARD and
REWIND levers to position the tape to the correct spot. Then depress the RECORD
and PLAY levers on the program recorder. Finally, press any key on the keyboard
(except BREAK). The computer turns off all active sound voices at this time. If the
volume on the television set is turned up, you will hear 20 seconds of a continuous
high-pitched tone. This will be followed by one or more short bursts of sound from
the television speaker. The sound bursts cease when the recording finishes.

The CSAVE statement records program lines in a tokenized format, not in
ATASCII code. It also records the program’s variable name table. Only the
CLOAD statement can read a program recorded by CSAVE. You cannot use the
ENTER or LOAD statements to read a CSAVE recording.

Halting CSAVE

To halt the CSAVE operation, press either the BREAK key or the SYSTEM RESET key.
The program recording will be incomplete. CLOAD cannot load an incompletely
saved program.

348 A GUIDE TO ATARI 400/800 COMPUTERS

Creates a list of values to be assigned to variables by READ statements.
Format: DATA const [,const ...]
Examples: DATA Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday
D. 100, -89, 1.414E-2
DATA 2+2
D. ARTICHOKE, BROCCOLI“SPINACH™,

The DATA statement specifies numeric values, string values, or both. The values
are assigned to numeric or string variables by one or more READ statements. A
comma signals the end of one constant and the start of another. DATA statements
may appear anywhere in a program. They need not be executed to be accessed by a
READ statement. No other statements may follow DATA statements on a program
line.

DATA Statement String Constants

Since commas separate constants, string constants cannot include them. All other
characters, including quotation marks and blank spaces, are considered part of a
string constant value. In fact, a string constant can consist of nothing but blank
spaces, or even of nothing at all. One comma immediately following another in a
DATA statement indicates a string constant with no value and a length of 0. The
same is true of a comma at the end of a DATA statement.

DATA Statement Numeric Constants

Numeric constants can be expressed in standard arithmetic notation or scientific
notation. Unlike string constants, they cannot be null; an error results when a
READ statement tries to assign a null constant to a numeric variable.

Arithmetic expressions are not evaluated. Instead, they are treated as string
values. For example, the expression 2+2 is considered a three-character string
constant, not a numeric constant with a value of 4.

DATA in Immediate Mode

No error occurs if you enter a DATA statement in immediate mode, but the
elements will not be accessible to a READ statement.

DEG (DE.)

Tells BASIC to expect arguments in degrees rather than radians, for subsequent
trigonometric functions.
Format: DEG
Examples: DEG
DE.

After executing the DEG statement, BASIC treats the arguments of trigonomet-

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 349

ric functions as degrees. To switch back to radians, use the RAD statement, turn the
computer off and back on again, or press the SYSTEM RESET key. BASIC also
reverts to radians after a NEW or RUN statement.

Reserves space in memory for numeric arrays and string variables.
Format: — {slr\-ar (numexpr) strvar (numexpr)
numvar (numexpr [,numexpr]) y numvar (numexpr [,numexpr])

Examples: DIM A$(24), ARRAY(25), ARRAY2(5,5)
DIM NAMES$(30), ADDR1$(30), ADDR2$(30), ADDR3$(30)

Numeric arrays and strings must be dimensioned before they can be used in any
other way. ATARI BASIC allows numeric arrays of one or two dimensions and
simple string variables with a length of one character or more.

Arrays

When an array is dimensioned, space is set aside in memory for each of its elements.
The value of each numexpr is rounded to the nearest integer to determine the
maximum size of the corresponding array dimension — in other words, the maxi-
mum value of that array subscript. When a program references an array, the value
of each subscript must be no less than 0 and no more than the maximum established
for that subscript by the DIM statement.

Strings
DIM statements declare the maximum lengths of string variables. In each case the

maximum length is the value of numexpr, rounded to the nearest integer. The actual
length of a string variable can vary between 0 and this declared maximum.

Size Restrictions

The absolute maximum size of any one string variable is 32,767 characters. Array
and string lengths are also limited by the amount of memory available at the time
the DIM statement is executed. Once dimensioned, array and string sizes can only
be changed after executing a CLR statement, which undimensions all arrays and
strings. An error occurs if a second DIM statement is executed in programmed
mode for a given array or string variable, even if the dimension or length is
unchanged.

Activates the disk operating system utilities menu.
Format: DOS

Examples: DOS
DO.

350 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-5. DOS Statement Utilities Menus

Disk Operating System

Version 1.0 Version 2.0S
A. Disk Directory A. Disk Directory
B. Run Cartridge B. Run Cartridge
C. Copy File C. Copy File
D. Delete File(s) D. Delete File(s)
E. Rename File E. Rename File
F. Lock File F. Lock File
G. Unlock File G. Unlock File
H. Write DOS File H. Write DOS Files
I. Format Disk L. Format Disk
J. Duplicate Disk J. Duplicate Disk
K. Binary Save K. Binary Save
L. Binary Load L. Binary Load
M. Run at Address M. Run at Address
N. Define Device N. Create MEM.SAV
O. Duplicate File O. Duplicate File

This statement causes the disk operating system menu of 15 utility functions to
appear on the display screen. If the disk operating system is not present, the DOS
statement puts the computer in memo pad mode (see the BYE statement).

When BASIC encounters a DOS statement, it clears the display screen, resets the
color registers to their default values (see Table 11-2), shuts off all sound voices, and
closes all input/output channels except channel 0. Note that it closes channel 6,
which many of the graphics statements use.

There are two versions of the disk operating system in use, version 1.0 and version
2.0S. The menus for the two versions differ. Table 11-5 itemizes both versions. See
Chapter 7 for specific information on each menu item.

Disk Operating System Version 1.0

When you use the DOS statement with version 1.0 of the disk operating system, the
utilities menu appears immediately on the display screen. You may choose any one
of the utilities, or return to BASIC. Chapter 7 has complete instructions for each
utility.

Toreturnto BASIC, press the SYSTEM RESET key, or choose menu selection B. If
there was a BASIC program in memory before you executed the DOS statement, it
will still be there unless you used the DUPLICATE DISK or DUPLICATE FILE
menu selections. If you did, your program will be gone when you return to BASIC.

Disk Operating System Version 2.0S

The utilities menu does not appear immediately when you use the DOS statement
with version 2.0S of the disk operating system. First the computer must load file

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 351

DUP.SYS into memory from Drive 1. This process takes about ten seconds. If file
DUP.SYS is not on the diskette in Drive 1, the computer simply returns to BASIC.

Before it loads file DUP.SYS, the computer checks to see if file MEM.SAV exists
on Drive 1. If so, the computer uses it to preserve the memory area which file
DUP.SYS will use. This area of memory contains the first part of any BASIC
program that happens to be in memory. It is also where the RS-232 device handler
resides when it is present. This save operation takes another 20 seconds.

After performing all these housekeeping chores, the computer displays the disk
utilities menu. You may choose any item, or return to BASIC. Chapter 7 has
complete instructions for each utility.

Toreturnto BASIC, press the SYSTEM RESET key, or choose menu selection B. If
the RS-232 serial device handler, a program, or both were present before you
executed the DOS statement, they will still be there only if the computer can copy
them back from file MEM.SAV. The recopy operation takes about seven seconds.
If you allow the computer to use the program area of memory during the COPY
FILE or DUPLICATE FILE menu selections, or if you used the DUPLICATE
DISK menu selection at all, file MEM.SAV cannot restore the RS-232 serial device
handler or your program.

If the RS-232 serial device handler is present before using the DOS statement but
is not restored from the MEM.SAYV file for any reason, and you use menu option B
to return to BASIC, any subsequent use of the SYSTEM RESET key causes a system
crash recoverable only by switching the computer power off and back on. This will
not happen if you return to BASIC with the SYSTEM RESET key.

The DOS Statement in Programmed Mode

The DOS statement is used mainly in immediate mode. You can use it in pro-
grammed mode, but it halts your BASIC program. There is no way to continue a
program from the point where the DOS statement halted it.

[DRAWTO (DR.)

Draws a straight line between the point last displayed and a specified end point.
Format: DRAWTO col,row
Examples: DRAWTO 10,15
DR. COLI,LROWI
DR. BASECOL+COLOFFSET,BASEROW+ROWOFFSET
This statement draws a line from the point last displayed by a PLOT or
DRAWTO statement to the column and row specified by the values of co/and row,
rounded to the nearest integer. The line drawn will be straight or as close to straight
as possible. The staircasing phenomenon causes a diagonal line to zigzag as it
approximates a straight line.
The ATARI computer uses memory location 90 to keep track of the row where
the DRAWTO statement will start the next line, and memory locations 91 and 92

352 A GUIDE TO ATARI 400/800 COMPUTERS

for the starting column. The DRAWTO and PLOT statements update these
memory locations, but none of the other BASIC statements do. Thus, statements
like GET, PUT,and POSITION have no effect on the starting point of the line that
the DRAWTO statement constructs.

The most recently executed COLOR statement determines which color register
will choose the line color. The DRAWTO statement uses the background color
register if no COLOR statement has been executed since you turned on the
computer.

DRAWTO in Graphics Modes 0, 1, and 2

The DRAWTO statement is primarily used in graphics modes 3 through 8, but it
also works in graphics modes 0, 1, and 2, which display characters rather than
points. In these modes, DRAWTO constructs a line of characters starting with the
character last displayed and ending at the position specified by co/ and row. The line
will be straight, subject to the staircasing effect. The last COLOR statement
executed determines which character will compose the line, and in modes 1 and 2,
which color register will choose the line color (see Tables 11-3 and 11-4). If no
COLOR statement has been executed since you turned on the computer, COLOR 0
is used.

Causes a program to halt.

Format: END
Example: END

In programmed mode, this statement ends the program execution, sets the
display screen to graphics mode 0, turns off all sound voices, and closes all
input/output channels except channel 0. A program does not have to end with an
END statement. When the computer runs out of BASIC statements, it ends the
program automatically, just as if it had encountered an END statement.

ENTER (E.)

Transfers a previously recorded BASIC program from cassette or disk to the
computer memory.
Format: ENTER indev
Examples: ENTER “C:”
E. PGM$
E. “D2:BUDGET.BAS”

The ENTER statement transfers BASIC text from physical device indev to its
memory. In this way it is like the CLOAD and LOAD statements, but there are
some important differences.

The ENTER statement does not erase existing program lines from the computer
memory before it transfers new lines into memory. It adds the new lines to any lines

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 353

already there. If a line to be added has the same line number as a line already in
memory, the line in memory is erased and the new line replaces it.

When the ENTER statement finds a new variable name in the incoming program
lines, it adds it to the existing variable name table (VNT) in memory. It does not
remove any names from the VNT.

The ENTER statement can only transfer BASIC text that isin ATASCII code, so
it works only with programs recorded by the LIST statement. It does not work with
programs recorded by the SAVE or CSAVE statements, which record programs in
a tokenized format.

The ENTER statement uses input channel 7 to receive program lines from the
program recorder and disk drive. It works fine even if channel 7 is already open.
However, it does close the channel when it finishes, blocking any prior claimant’s
further use. The ENTER statement also turns off all sound voices.

ENTER with the Program Recorder

The statement ENTER “C:” operates the program recorder in playback mode,
transferring a program from cassette to the computer memory. First, the computer
sounds its speaker once. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the PLAY lever on the program recorder. Finally, press
any key on the keyboard (except BREAK). If the volume on the television set is
turned up, you will hear several seconds of silence followed by one or more short
bursts of sound from the television speaker. These sounds mean the program
transfer is taking place. The sound bursts cease when the transfer finishes.

ENTER with the Disk Drive

In order to use the ENTER statement with a disk file name, the disk operating
system must be in memory as a result of a successful boot when you turned on the
computer (see page 27). If the disk operating system is absent, an error results. If it is
present but no file exists as specified, an error results. If everything is set up
correctly, the computer transfers the BASIC text from diskette to its memory.

Halting ENTER

You can interrupt the ENTER statement by pressing the SYSTEM RESET key. Any
program lines added to the computer memory before you press SYSTEM RESET will
remain in memory.

Pressing the BREAK key duringan ENTER operation will not stop the operation.
It will interrupt the operation, but only momentarily. This usually means some
pieces of the program being transferred never make it into memory.

Erasing Unused Variables from the VNT

The ENTER statement makes no changes to the existing program or VNT, except
to add to them. This suggests a method for eliminating unused variables from a
program’s VNT. Figure 11-1 elaborates.

354 A GUIDE TO ATARI 400/800 COMPUTERS

Start with the
program in memory.

F

Record the program
on cassette or disk
with the LIST statement.

7

Use the NEW statement
to clear the program
and variable name table
out of memory.

>

Read the program back

into memory with the ENTER
statement. A new VNT is
constructed at this time.

1>

If desired, record

the program on cassette
or disk with a CLOAD
or LOAD statement.

FIGURE 11-1. Clearing out the variable name table

Starts aloop that repeats a set of program lines until an automatically incremented
variable attains a certain value.

Format: FOR numvar = startexpr TO endexpr [STEP stepexpr]

Examples: FOR COUNT =1 TO 100

F. COUNTDOWN = 100 TO 1 STEP -1
F. INTERIM = START TO FINISH STEP INCREMENT

When FOR is first executed, numvar is assigned the value of startexpr. The
statements following FOR are executed untila NEXT statement is reached. numvar
is then incremented by the value of stepexpr (or by 1 if the STEP clause is not
present). After that, the new value of numvar is compared to the value of endexpr.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 355

The sense of the comparison depends on the sign of stepexpr. If the sign is positive
and the new value of numvar is less than or equal to endexpr, execution loops back
to the statement just after the FOR. The same thing happens if the sign of stepexpr
is negative and the new value of numvar is greater than or equal to endexpr. On
the other hand, if numvar is greater than endexpr (stepexpr positive) or less than
endexpr (stepexpr negative), execution continues with the instruction that follows
the NEXT statement. Because the comparison occurs after incrementing numvar,
the statements between FOR and NEXT are always executed at least once.

Nesting FOR-NEXT Loops

FOR-NEXT loops may be nested. Each nested loop must have a unique index
variable name (numvar). Each nested loop must be wholly contained within the
next outer loop; at most, the loops can end at the same point. Since ATARI BASIC
allows 128 different variables, you can have at most 128 levels of FOR-NEXT
nesting.

Loop Expressions Evaluated Once

The loop’s start, end, and increment values are determined from startexpr, endexpr,
and stepexpr only once, on the first execution of the FOR statement. If you change
these values inside the loop it will have no effect on the loop itself.

Terminating the Loop Early

You can change the value of numvar within the loop. This lets you terminate a
FOR-NEXT loop early. Somewhere inside the loop, set numvar to the end value
(endexpr), and on the next pass the loop will terminate itself.

FOR in Immediate Mode

FOR may be used in immediate mode. The entire loop must be entered on one line.
If NEXT is not present, the loop will execute once.

Use Caution with FOR-NEXT Loops

Do not start the loop outside a subroutine and terminate it inside the subroutine.
Do not branch into the middle of a FOR-NEXT loop; the loop must start with a
FOR statement. Avoid branching out of FOR-NEXT loops. This takes up memory
by leaving an unresolved entry on the run-time stack.

This statement retrieves a single numeric value from a previously opened input/
output channel.
Format: GET #chan, numvar

Examples: GET #1, NMBR
GET #CH, X

356 A GUIDE TO ATARI 400/800v COMPUTERS

Channel chan must be open for input. The GET statement assigns a one-byte
numeric value between 0 and 255 to numvar. The value assigned depends on the
device interrogated.

GET with the Keyboard

From the keyboard (device K:), the GET statement assigns to numvar the decimal
value of the ATASCII code for the next key or combination of keys pressed.
Appendix D lists the code produced by each keystroke. Program execution pauses
until a key is pressed.

The BREAK key does not produce an ATASCII code; pressing it halts the GET
operation. Pressing CTRL-3in response to a GET statement causes an error. CTRL-1
halts the screen display, as usual. The /A , CAPS/LOWR, SHIFT, and CTRL keys
themselves do not produce ATASCII codes of any kind, although they do change
the codes which other keys produce. The four yellow special function keys do not
produce ATASCII codes.

GET with the Program Recorder

The ATARI computer transfers data from the program recorder in blocks of 128
one-byte values. After opening the program recorder for input, the first GET
statement causes the computer to read a block into the cassette buffer area of its
memory, assign the first value to numvar, and stop the tape. Each subsequent GET
statement takes the next sequential value from the cassette buffer in memory. When
the entire buffer has been used, the computer starts the tape and reads another
block. ,

Any attempt to get data past the end of a file results in an error. Closing the input
channel stops the tape. You can close the input channel with a CLOSE or END
statement.

GET with the Disk Drive

The GET statement will read data from a disk file that has been opened for input.
The GET statement reads the one-byte values that were recorded by a PUT
statement. It can also read the multiple-byte values recorded by a PRINT state-
ment, one byte at a time. Each value it reads is the ATASCII code of the character
recorded by the PRINT statement.

The computer reads data from the disk drive in one-sector blocks, not one value
at a time. It reads the first block of values into the disk buffer area of its memory
when a data file is first opened for reading. A subsequent GET statement takes the
first value from the buffer in memory and assigns it to numvar. When the entire
buffer has been used, the computer fills the buffer from the next sector of the disk
file. The ATARI 810 Disk Drive has 125 one-byte values per sector.

The POINT statement causes the computer to read in a new block from the disk
file if it specifies a location that is outside the sector currently in memory.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 357

GET with the Display Screen

When used with the display screen (device S: or E:), the GET statement retrieves the
code of the character or graphics point displayed at the current cursor position. This
code observes the same rules as the one specified by the COLOR statement. In
graphics mode 0, the code specifies which character is displayed (see Table 11-3). In
graphics modes | and 2, the code specifies which color register is in use and which
character is displayed (see Table 11-4). In graphics modes 3 through 8, the value
retrieved indicates which color register is in use at the particular cursor position (see
Table 11-1).

Each time GET reads a value from the display screen, it moves right to the next
cursor position. It does this by updating memory location 84 with the row number
of the next cursor position, and memory locations 85 and 86 with the next column
number. The next statement that stores or retrieves data from the display screen
occurs in the new cursor position. However, none of this applies to the DRAWTO
or XIO statements, which maintain a separate cursor position in memory locations
90, 91, and 92.

If you use the GET statement on the last column of a given row on the display
screen, the cursor advances to the first column of the next line. If you try to access
the display screen without first repositioning the cursor aftera GET statement at the
last column of the last row, an error results.

Executinga PRINT statement aftera GET statement may change the code of the
character or graphics point just retrieved, spoiling the display. To circumvent this,
use the POSITION statement to move the cursor back one space. Then use the PUT
statement to rewrite the code just retrieved.

GET with RS-232 Serial Devices

There must be an open input channel to the proper RS-232 serial port of the ATARI
850 Interface Module, and this will be possible only if the RS-232 handler is in
memory as a result of a successful boot when you turned the computer on (see page
14). Inaddition, the serial port must be conditioned for concurrent input and output
with an X110 40 statement. Finally, the translation mode may need to be set with an
XI0 38 statement. All this must happen before executing a GET statement on the
channel in question.

With this protocol out of the way, a value comes through the serial port to the
ATARI 850 Interface Module. It translates the value to an ATASCII code if the
translation mode in effect requires it. Appendix D contains a table of ASCII and
ATASCII codes. The ATARI 850 Interface Module passes the values on to the
computer, one at a time.

[GOSUB (GOS.)|

Causes the program to branch to the indicated line. Whena RETURN statement is
subsequently executed, the program branches back to the statement immediately
following the GOSUB statement.

358 A GUIDE TO ATARI 400/800 COMPUTERS

Format: GOSUB linexpr
Examples: GOSUB 100
GOS. PYMTCALC
GOS. BASEAGE+ELAPSED

The GOSUB statement calls a subroutine. ATARI BASIC starts executing the
subroutine at line number /inexpr. This entry point need not necessarily be the
subroutine line with the smallest line number.

If linexpr does not evaluate to an existing line number, an error results.

Subroutine Termination

Each time the computer executes a GOSUB statement, it saves the return location
on the run-time stack. The return location specifies the BASIC statement that
follows the GOSUB statement which called the subroutine, even if it is on the same
program line as the GOSUB statement. At the end of the subroutine, the RETURN
statement clears the run-time stack entry as it branches back to the point where the
subroutine was called.

Branching out of a subroutine, for instance witha GOTO statement, will not clear
the stack. This takes up memory by leaving an unresolved entry on the run-time
stack. A program that does this repeatedly will eventually exhaust available
memory, and an error will result. But you can branch out of a subroutine with a
GOTO, IF-THEN, or similar statement if you first execute a POP statement to clear
the last return location from the run-time stack.

A program rarely runs out of memory because of run-time stack problems, but it
can happen. There is always some finite number of GOSUB statements that can
occur without a RETURN or POP statement occurring. Subroutines share the
run-time stack with FOR-NEXT loops, so the permissible level of subroutine
nesting depends on the concurrent level of FOR-NEXT loop nesting.

Subroutine Location

A GOSUB statement may occur anywhere in a program. A subroutine, on the other
hand, must begin at the start of a program line.

Unconditionally causes program execution to branch to the line indicated.
Format: GOTO linexpr

Examples: GOTO 1120
G. TABLE+OFFSET

Program execution continues immediately with the first instruction at line
number /inexpr. An error occurs if no such line number exists in the program.

[GRAPHICS (GR.)|

Sets one of the graphics modes; optionally clears the display screen.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 359

TABLE 11-6. GRAPHICS Statement Options

BASIC Graphics Suppress Text Suppress S
Mode ’ pVl:’indow. pl)Clear creen S Rk
0 = 32 =
| 17 33 49
2 18 34 50
3 19 35 51
4 20 36 52
5 21 37 53
6 22 38 54
7 23 39 55
8 24 40 56

Format: GRAPHICS numexpr
Examples: GRAPHICS 5
GRAPHICS 20
GR. 32+MODE

The GRAPHICS statement resets the screen display to the graphics mode
specified by the value of numexpr, rounded to the nearest integer. This statement
normally clears the display screen, too. To suppress this, add 32 to the graphics
mode number. Table 11-6 shows the appropriate values for each graphics mode.

When the computer executes a GRAPHICS statement, it reserves the amount of
memory required by the specified graphics mode, enables the text cursor (sets
memory location 752 to 0), and sets the color registers to their default values (see
Table 11-2).

Graphics Modes .

ATARIBASIC supports several different graphics modes. Mode 0 is the text mode
that you see when you turn on the computer. Modes 1 through 8 are graphics modes
that can either be full-screen or can have a four-line text window across the bottom
of the screen. The area inside the text window is graphics mode 0. Table 11-7
summarizes the characteristics of the different modes.

The Text Window

Modes 1 through 8 include a four-line text window at the bottom of the screen.
Mode 0 text output to channel 0 appears in the text window. The display screen
ignores anything that PLOT, DRAWTO, PUT, XIO, or PRINT statements
attempt to display in the text window via channel 6.

You can suppress the text window at the time the GRAPHICS statement is
executed by adding 16 to the value of numexpr (see Table 11-6). This will give you
the equivalent of four additional mode 0 lines of space of at the bottom of the
display screen.

360 A GUIDE TO ATARI 400/800 COMPUTERS

When the text window is absent, there is no place for output that would normally
go to it. Such output includes the question mark printed by an INPUT statement,
the ouput of a PRINT statement with no explicit channel number or with channel 0,
and the message that appears at any program break, whether caused by an error, a
STOP statement, or the BREAK key. If any text output occurs in graphics modes |
through 8 when no text window is present, the entire display screen reverts to
graphics mode 0. The screen is cleared and the text output appears at the top of the
screen.

Channels 0 and 6 for Output

The GRAPHICS statement opens channel 6 for output to the display screen (device
S:). Once you execute a GRAPHICS statement, you cannot use channel 6 unless
you first execute a CLOSE #6 statement. After such a CLOSE statement, you will
not be able touse the DRAWTO, PLOT, or LOCATE statements until you reopen
the display screen with a GRAPHICS statement (or an OPEN statement).

At the same time the GRAPHICS statement opens channel 6 for output to the
display screen graphics area, it opens channel 0 for output to the screen editor
(device E:) in the text area. In graphics mode 0, this area coincides with the channel 6
area, taking up the entire screen. In modes 1 through 8 when the graphics window is
present, the two areas are clearly separated. In modes 1 through 8 when the graphics
window is absent, using channel 0 returns the whole screen to mode 0.

TABLE 11-7. Graphics Modes Summary

Rows
S
z E 2 ol
@ s S £ B
g =8 £E 8 Color E &2 Mode
=] == S Registers =) Type
0 24 - 40 1%, 21, 4# 993 | Text
| 24 20 20 g 1.2, 3, 4t 513 Character Graphics
2 12 10 20 o L2 3 4f# 261 Character Graphics
3 24 20 40 0, 1,2, 4t# 273 | Graphics
4 48 40 80 0, 4t# 537 | Graphics
5 48 40 80 0,1,2,4M# 1017 | Graphics
6 96 80 160 0, 4t# 2025 Graphics
i 96 80 160 0,1,2, 4 3945 | Graphics
8 192 160 320 1+, 2t 4ft 7900 | Graphics
* Character luminance only; hue same as background.
f Background hue and luminance.
Border hue and luminance.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 361

Mode 0

Graphics mode 0 is a pure text mode. Its 24 lines can have as many as 40 characters
each. Standard margins exclude the first two columns on the left edge of the screen.

Mode 0 characters always display in the same color as the background, although
you can set the luminance of each separately (see Table 11-7).

Mode 0 Margins

You can use the POKE statement to reset the left and right margins. They must be
between 0 and 39. Memory location 82 has the left margin, 83 the right. The margins
do not stop your program from operating on the entire display screen. They only
affect where PRINT statement output will appear.

Mode 0 Cursor

The cursor shows where the next character will be displayed. You can change the
location of the cursor with the POSITION statement. You can also make the cursor
invisible and play other tricks with it by changing the value of locations 752 and 755
(see Appendix G).

Mode 0 Character Set

Mode 0 can display 128 different characters. Each character can be normal or
inverse. The standard character set uses the one-byte ATASCII encoding scheme
(see Table 11-3.). You can define your your own character set, as described in
Chapter 9.

Mode 0 Logical Lines

The ATARIcomputer organizes text on the mode 0 display screen into logical lines.
Logical lines can be 1 to 120 characters long, a maximum of three screen display
lines. An end-of-line (EOL) character signals the end of a logical line.

When the cursor reaches the bottom of the screen, the logical line at the top of the
screen scrolls off the top, making room for more text at the bottom.

Modes 1 and 2

Modes 1 and 2 are character graphics modes. Each display element comes from a
64-item character set. Mode 2 characters are twice as tall as mode | characters,
although both are the same width, as shown in Table 11-7. Both modes have
characters twice as wide as those in mode 0.

ATARIBASIC has two character sets for modes 1 and 2. The standard character
set contains the usual upper-case letters, numbers, and punctuation. An alternate
character set contains special graphics characters and lower-case letters. The stand-
ard character set is automatically selected every time you turn on the computer,
press the SYSTEM RESET key, or use the GRAPHICS statement. The statement
POKE 756,226 selects the alternate character set. The statement POKE 756,224

362 A GUIDE TO ATARI 400/800 COMPUTERS

reselects the standard character set. Table 11-4 identifies the characters in both
character sets. You can also define your own character sets.

Characters in modes 1 and 2 can appear in any of the colors specified by four
color registers. A fifth color register specifies the background color. Part of the
same code that determines which character will appear also determines which color
register will be used (see Table 11-4). The SETCOLOR statement determines which
color the color register produces.

If you print a string that is too long for one line, the extra characters wrap around
to the start of the next line. Modes | and 2 screens do not scroll, however. If you try
to display something below the bottom edge of the screen, an error results.

Modes 3 Through 8

Modes 3 through 8 display points, lines, and solid areas. The point size, number of
points per line, number of lines on the display screen, and number of color registers
used vary from one of these modes to the next. See Table 11-7 for details.

The cursor is never visible, but can be moved under program control. The
POSITION statement changes the cursor position in memory locations 84 (row)
and 85 and 86 (column). These locations store the next cursor position, not its
present position, and are used by most statements. Memory locations 90 (row) and
91 and 92 (column) store the current cursor position that the DRAWTO, PLOT,
and XIO statements use.

The DRAWTO, PLOT, and XIO statements are the most common in modes 3
through 8. Youcan also use the PUT statement, and even the PRINT # statement if
you wish.

IF-THEN

Conditionally causes the program to execute the indicated instruction or instructions.

Formats: IF expr THEN statement [:statement ...]
IF expr THEN linexpr

Examples: 1F NAMES$ =“LESTER ROADHOG MORAN” THEN RETURN
IF ZIP > 90000 AND NAMES$(1,1) <= “B” THEN PRINT #2;NAMES$
IF RESPONSES = “Y” THEN PRINT “HOW MANY”; :INPUT QTY
IF A = B THEN 1735
IF COST(NI,N2) THEN 25300+COST(NI,N2)/1E4

In the first format above, if the expression (expr) specifies a true condition,
BASIC executes the statements that follow the keyword THEN on the same
program line. If the specified condition is false, control passes to the first statement
on the next program line and BASIC does not execute any of the statements
following the keyword THEN.

In the second format above (the conditional branch format), the program
branches to line number /inexpr if the condition is true. Otherwise, execution
continues with the first statement on the program line that follows the IF-THEN
statement.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 363

Types of Expressions

The most common types of expressions (expr) used with the IF-THEN statement
are relational and Boolean expressions, since both evaluate to true or false. The
expression may also be a numeric expression. If its value is not 0, the condition is
considered true. If its value is 0, the condition is considered false and execution
continues at the first statement on the next higher program line. The expression
cannot have a string value, although it can compare strings.

Relational expressions which compare for less than (<), greater than (>), or not
equal (< >) can use a STRS function only on one side of the inequality sign. The
same limitation applies to the CHRS function.

String Comparisons

When expr is a comparison of strings, the ATASCII codes (listed in Appendix D)
for the characters involved determine the relative values of the strings. Strings are
compared character by character until a mismatch occurs. Then the string with the
higher ATASCII code in the mismatch position is considered greater. If no mis-
match occurs, the longer string is greater.

Statement Restrictions

If either a GOTO or REM statement is one of the many statements following the
keyword THEN, it must be the last statement on the line. Any statements that
follow it on the same program line can never be executed.

Additional IF-THEN statements may appear following the keyword THEN as
long as they are completely contained on the original IF-THEN line. However, a
Boolean expression is easier to read than nested IF-THEN statements. For exam-
ple, the following two statements are equivalent, but the second is easier to read.

10 IF A$ =“X” THEN IF B=2 THEN IF C> D THEN 50
10 IF A$ =“X” AND B=2 AND C> D THEN 50

INPUT (L)

Accepts character entry from the keyboard or other input device, evaluates it, and
assigns the value or values entered to the variable or variables specified.

Format: INPUT [#('han{}] var [,var ..]

Examples: INPUT RESPONSES
I. #4, RECORDS
I. #2, A, B, C
The INPUT statement gets a line of data from an input device. The input line
consists of zero or more ATASCII characters followed by an ATASCII end-of-line
(EOL) character. On the keyboard, the RETURN key produces an EOL character to

364 A GUIDE TO ATARI 400/800 COMPUTERS

end the input line. No matter what the input device is, the EOL character is required
to end the input line.

The computer interprets the input line as a string value, one or more numeric
values, or some combination of these. The way it interprets the input line depends
on the number and type of variables (var), but is entirely unaffected by which input
device is used.

When the chan option is absent, input comes from the keyboard via the editor
(device E:). When the chan option is present, the specified channel must be open for
input. The OPEN statement specifies the input device.

Multiple-Variable Input

Generally speaking, when a single INPUT statement calls for more than one value,
numeric or string, you can put each one on a separate input line by ending each
value with the EOL character (the RETURN key). In fact, you must terminate strings
this way. But you can also terminate a numeric value with a comma, and enter the
next value, whether string or numeric, on the same input line. Commas are treated
as part of string values, so they do not work as string value terminators.

Numeric Input

When BASIC encounters a numeric variable, it translates the input line — up to the
next comma — into a numeric value. Numeric input follows the rules for numeric
constants, detailed in Chapter 3. It consists of an optional sign (+ or -) followed by
one or more digits (0 through 9), with one optional decimal point. Blank spaces may
prefix or suffix the number, but may not separate the digits, signs, and decimal
points from each other.

Also allowed is a suffix for expressing the exponent part of a number in scientific
notation. The suffix comprises three parts: the capital letter E, an optional sign, and
a one- or two-digit number. The exponent must have a value generally between -99
and -1, or between 1 and 97. A value of 0 is not allowed, nor are fractional
exponents. There can be no decimal point in the exponent. The exponent value
cannot cause the numeric value as a whole to exceed its allowable range (see below).
Blank spaces cannot separate the exponent from the mantissa.

Numeric input must be larger (less negative) than -1E+98 and smaller than 1E+98,
Values closer to 0 than £29.99999999E-98 are rounded to 0.

If there are no characters before the next comma or EOL character, an error
results. This happens on the keyboard if you simply press RETURN. An error also
occurs if non-numeric characters occur, or if numeric characters occur in the wrong
places. Example include too many decimal points, the sign in the wrong place, or a
scientific notation exponent too large or too small.

String Input

Each string value must be on a separate input line. Only an EOL character (the
RETURN key) terminates string entry; commas are treated as part of the string value.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 365

The string value is the sequence of ATASCII characters exactly as they occur in the
input line, with no conversion or translation. If no characters come in before an
EOL character (the RETURN key), the string value is null, its length 0. On the other
hand, the number of characters that come in can exceed the dimensioned length of
the string variable to which they are assigned. If this happens, the INPUT statement
ignores the excess characters until the next EOL character (RETURN key).

INPUT from the Editor or Keyboard

If the INPUT statement uses the editor (device E:), BASIC displays a question mark
at the current cursor position on the graphics mode 0 screen as a cue to begin entry.
However, if chan is present, no question mark appears. With devices other than the
editor, no question mark appears on the display screen; this includes the keyboard
itself (device K:). If it takes more than one input line to enter all the values for an
INPUT statement, a new question mark appears (subject to the rules just stated) at
the beginning of each new line as a cue to continue entries.

The keyboard (device E: or K:) works the same way in the context of an INPUT
statement as it normally does. The cursor movement keys perform their usual
editing functions, the CLEAR key (SHIFT-<) clears the entire display screen, the
BREAK key halts the INPUT statement, the RETURN key terminates the entry line,
and so on. Chapter 2 explains these features in detail. Do not use the cursor control
keys (—,—,1,}, etc.) to move the cursor out of the logical input line and back in. This
may cause the question mark to become part of the input response.

When the input device is the keyboard (device E: or K:), each keystroke adds
another ATASCII character code to the input line. The keyboard can produce all
256 codes. Appendix D shows which keys and combinations of keys produce which
codes.

INPUT from Other Devices

The rules for the INPUT statement are the same regardless of the input device.
From devices other than the keyboard (device E: or K:), the EOL character
performs the function of the RETURN key. Commas can separate numeric values
requested by a single INPUT statement.

INPUT from the Disk Drive and Program Recorder

The computer transfers data from the disk drive and program recorder to its
memory in blocks of characters. On the ATARI 810 Disk Drive, there are 125
characters per block. The program recorder has 128 characters per block.

One block might contain part of a string value, one string value, one numeric
value, or several values separated by EOL characters or commas. BASIC assigns
values to INPUT statement variables from the block in memory on a first-come,
first-served basis. If it needs more characters, it gets another block from the disk
drive or program recorder.

Any attempt to get data past the end of a disk or cassette file results in an error.

366 A GUIDE TO ATARI 400/800 COMPUTERS

INPUT with RS-232 Serial Devices

There must be an open input channel to the proper RS-232 serial port of the ATARI
850 Interface Module, and this will be possible only if the RS-232 handler is in
memory as a result of a successful boot when you turned on the computer (see page
14). In addition, the serial port must be conditioned for concurrent input and output
with an X10 40 statement. Other XIO statements may be required to condition the
serial port. For example, the translation mode (for converting incoming ASCII
characters to ATASCII) may need to be set with an XIO 38 statement. All this must
happen before executing an INPUT statement on the channel in question.

With this protocol out of the way, input line characters come through the serial
port to the ATARI 850 Interface Module. It translates them to ATASCII charac-
ters according to the translation mode in effect. Two of the translation modes will
changeanincoming ASCII carriage return character to the ATASCII EOL charac-
ter required to end an input line. Appendix D has ASCIland ATASCII code tables.

The ATARI 850 Interface Module passes on the translated characters to the
computer, one at a time. It interprets them as a string or numeric value in the
manner described above.

ILET = (= or LE. =)|

The assignment statement, LET =, or simply =, assigns a value to a specified
variable.
Format: [LET] var = expr

Examples: LET A = B
LE. A$ = “Foreign Correspondent”
COURSE(I,N) = COURSE(I,N-1) + SIN(X/Y)
DECISION = RIGHT OR WRONG
REORDER = ONHAND < = MINIMUM

Variable var is assigned the value computed by evaluating expr. The variable can
be a simple numeric or string variable, a numeric array element, or a substring
(subscripted string variable). The variable must be the same type as the expression.
An exception allows BASIC to assign the value of a Boolean or relational expres-
sion to a numeric variable. Such expressions have a value of 1 if true, 0 if false.
Relational expressions that compare simply for less than (<), greater than (>), or
not equal (< >) can use a STRS function only on one side of the inequality. The
CHRS function is similarly restricted.

When you use substring notation to assign characters to a string, only the
specified substring is affected. Other parts of the string variable retain their previous
values. Parts that had no previous values have random values.

Displays all or part of the program currently in memory. Can also transmit all or
part of the program currently in memory to a specified output device.

T

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 367

Formats: LIST [linexpr, [.linexpr,]]

LIST outdev [linexpr, [,linexpr,]]

Examples: LIST

L.160
L. “P:”,100,200
L. “D:DOGBREED.BAS”

The first format above lists program lines to the display screen via the editor
(device E:), in graphics mode 0. Characters may list differently than they display in
other graphics modes when the program is run. The second format lists program
lines to a specific output device, outdev, which can be the display screen (device S:,
or via the editor, E:), in addition to the printer (device P:), one of the RS-232 serial
ports (device R[n]:), a disk file (device D[n]:filename [.ext]), or the program
recorder (device C:).

Any portion of the program may be listed using either format. If you specify two
line numbers and both exist, the program will list starting at /inexpr, and continuing
through linexpr,. The line numbers specified in a LIST statement do not have to
existin the program. If the starting line number (/inexpr,) does not exist, the listing
starts at the next higher line number. If the ending line number (/inexpr,) does not
exist, the listing ends at the next lower line number. If you specify only one line
number (/inexpr,), just that line will be listed, if it exists. If you specify no line
numbers, the entire program is listed.

Form of Output

The LIST statement automatically extends any keywords that you abbreviated as
youtyped themin. It also adds extra spaces around variables and keywords to make
the listing more readable.

Program lines are limited to three screen lines each, but these limits are calculated
before LIST expands the abbreviations and adds the extra spaces. You can there-
fore extend the apparent length of a program line past the normal limit by abbre-
viating extensively and leaving out unneeded spaces when you type it in. However,
such a line will be too long to edit.

The LIST statement sends out BASIC text in ATASCII code, no matter which
destination device is used. The ENTER statement can read it back from the
program recorder or disk drive. The CSAVE and SAVE statements cannot read a
LIST statement’s recording. The LIST statement does not record the variable name
table (VNT). See Figure 11-1 for a way to use the LIST and ENTER statements to
reset the VNT.

Input/Output Channels and Sound Voices

The LIST statement transmits to all devices on channel 7, except the display screen,
for which it uses channel 0. It works fine even if channel 7 is already open. However,
it does close channel 7 when it finishes, disabling any prior use. The LIST statement
also closes all sound voices.

368 A GUIDE TO ATARI 400/800 COMPUTERS

LIST with the Program Recorder

The statement LIST “C:” operates the program recorder in record mode, transfer-
ring a program from the computer memory to a cassette. First, it sounds the
computer speaker twice. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the RECORD and PLAY levers on the program recorder.
Finally, press any key on the keyboard (except BREAK). If the volume on the
television set is turned up, you will hear 20 seconds of a continuous high-pitched
tone. This will be followed by one or more short bursts of sound from the television
speaker. These sounds mean the program transfer is taking place. The sound bursts
cease when the recording finishes.

LIST with the Disk Drive

In order to use the LIST statement with a disk file name, the disk operating system
must be in memory as a result of a successful boot when you turned on the computer
(see page 27). If the disk operating system is absent, an error results. If it is present
but no file exists as specified, an error results. If everything is set up correctly, the
computer transfers the BASIC text from its memory to diskette.

LIST with the Printer

To print a listing of the program in memory on the ATARI printer, use the
statement LIST “P:”. The printer must be turned on. The ATARI 825 Printer must
also be switched online, and the ATARI 850 Interface Module it connects through
must be on as well. Printer character sets differ from the graphics mode 0 character
set, so some characters will look different on a printed listing.

The ATARI 825 Printer translates several ATASCII codes as control characters.
Strange things can happen when you list a program than contains control charac-
ters directly inside question marks. The printer performs the control code functions,
ruining the listing. This will not happen if the codes are specified using the CHRS
function.

LIST with the RS-232 Serial Ports

To use the LIST statement with one of the RS-232 serial ports, the RS-232 serial
device handler must be in memory as a result of a successful boot when you turned
on the computer (see page 14). If the device handler is absent, an error results. The
device may require conditioning with XIO statements before executing the LIST
statement. If everything checks out, the computer transfers the BASIC text from its
memory to the serial port. It does not check to see if the serial device received the
listing, or even if there is a serial device.

Halting LIST

Once LIST starts executing, you can interrupt it by pressing either the BREAK key or
the SYSTEM RESET key. Output ceases. Output to a cassette file will be incomplete,

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 369

but you will be able to read the recorded part with an ENTER statement.

When you interrupt a listing to a disk file, chances are very good that the file will
simply not exist. But if you use the BREAK key, or the SYSTEM RESET key near the
end of the listing, the computer may finish off the file before it halts the LIST
operation. And if the timing is wrong, pressing the SYSTEM RESET key will kill the
listing, abort the file, and lock up the system. Your only recourse then is to turn the
computer off and back on again.

Transfers a previously recorded BASIC program from an input device to the
computer memory.

Format: LOAD indev

Examples: 1LOAD “C:”

LO. “D:PROGRAMI1”
LO. PRGS$

The LOAD statement transfers a BASIC program from physical device indev to
memory. During the loading process, the LOAD statement also replaces the resi-
dent variable name table with the one for the incoming program.

The LOAD statement can only load a tokenized BASIC program recorded by the
SAVE statement. It cannot load programs recorded by the CSAVE statement,
which uses different timing, or by the LIST statement, which records BASIC text in
ATASCII code.

The LOAD statement uses input channel 7 for transfer from the program
recorder and disk drive. It works even if channel 7 is already open.

LOAD Invokes NEW

Using the LOAD statement automatically invokes the NEW statement. It clears all
previous program lines and variables out of memory.

When the LOAD operation ceases (successful or not, or complete or not), BASIC
shuts off all sound voices and closes all input/output channels except channel 0.
Note especially that it closes channel 6, which many of the graphics statements use.

LOAD with the Program Recorder

The statement LOAD “C:” operates the program recorder in playback mode,
transferring a program from cassette to the computer memory. First, the computer
sounds its speaker.once. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the PLAY lever on the program recorder. Finally, press
any key on the keyboard (except BREAK). If the volume on the television set is
turned up, you will hear several seconds of silence followed by one or more short
bursts of sound from the television speaker. These sounds mean the program
transfer is taking place. The sound bursts cease when the transfer finishes.

370 A GUIDE TO ATARI 400/800 COMPUTERS

LOAD with the Disk Drive

Inorder to use the LOAD statement with a disk file name, the disk operating system
must be in memory as a result of a successful boot when you turned on the computer
(see page 27). If the disk operating system is absent, an error results. If it is present
but no file exists as specified, an error results. If everything is set up correctly, the
computer transfers the BASIC text from diskette to its memory.

Halting LOAD

Once LOAD starts executing, you can interrupt it by pressing the SYSTEM RESET
key. There will be no program lines in the computer memory unless the load
operation had a chance to finish. Pressing the SYSTEM RESET key while loading a
disk file program may lock up the system. Your only recourse then is to turn the
computer off and back on again.

Pressing the BREAK key duringa LOAD operation will rarely stop the operation.
It will interrupt the operation, but only momentarily. Some pieces of the program
being transferred may never make it into memory.

[LOCATE (LOC.)

Retrieves the code of the character or graphics point displayed at a specified screen
display location.

Format: LOCATE col, row, numvar
Examples: LOCATE 5, 10, PIXEL
LOC. COL, ROW, SCRNVAL
LOC. PEEK(86)*256+PEEK(85), PEEK(84), ANSR

The LOCATE statement retrieves the code of the character or graphics point
displayed at the column and row specified by the values of co/ and row. It assigns the
code value to numvar.

The code is a one-byte numeric value between 0 and 255. It observes the same
rules as the code specified by the COLOR statement. In graphics mode 0, the code
specifies which character is displayed (see Table 11-3). In graphics modes 1 and 2,
the code specifies which color register is in use and which character is displayed (see
Table 11-4). In graphics modes 3 through 8, the value retrieved indicates which
color register is in use at the particular cursor position (see Table 11-1).

LOCATE Uses Channel 6

In order for the LOCATE statement to work, channel 6 must be open for input to
the display screen. The GRAPHICS statement does this.

Cursor Update

Eachtime LOCATE reads a value from the display screen, it moves right to the next
cursor position. It does this by updating memory location 84 with the row number
of the next cursor position, and memory locations 85 and 86 with the next column

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 371

number. The next statement which stores or retrieves data from the display screen
occurs in the new cursor position. However, none of this applies to the DRAWTO
or XIO statements, which maintain a separate cursor position in memory locations
90, 91, and 92.

If you use the LOCATE statement on the last column of a given row on the
display screen, the cursor advances to the first column of the next line. If you access
the display screen without first repositioning the cursor aftera LOCATE statement
at the last column of the last row, an error results.

PRINT After LOCATE

Executing a PRINT statement after a LOCATE statement may change the code of
the character or graphics point just retrieved, spoiling the display. To circumvent
this, use the POSITION statement to move the cursor back one space. Then use the
PUT statement to rewrite the code just retrieved.

[LPRINT (LP.)

Outputs characters to the system printer.
Format: LPRINT [expr] [{1 } lexpr 1] ...

Examples: LPRINT “Customer ”; CUST
LP. R$;* Score:”, INT(POSBL/RIGHT#*100)

This statement is like the PRINT statement, except that output goes to a printer
attached directly to the serial bus, like the ATARI 820 or 822 Printers, or to a
printer attached to the parallel port of the ATARI 850 Interface Module, like the
ATARI 825 Printer. The printer must be turned on. The ATARI 850 Interface
Module must be on also, if the printer is attached to it. If the printer is not ready to
print, the computer waits briefly, then an error occurs.

There are a number of acceptable variations on the LPRINT statement. LPRINT
by itself outputs an EOL character. When LPRINT is followed by one or more
expressions, the values of those expressions are printed. The way the values appear
depends on their nature and on the use of semicolons or commas between values.

Printing Numeric Values

Numeric values within certain limits are printed using standard arithmetic notation.
Scientific notation is used for values closer to 0 than +0.01 and for any values with
more than ten digits in front of the decimal point. Negative values are preceded by a
minus sign; positive values are not preceded by anything.

Printing String Values

By printing certain string values on some printers, you can activate different type
fonts and other special features. Chapter 6 has more information.

372 A GUIDE TO ATARI 400/800 COMPUTERS

Commas and Semicolons

LPRINT statement expressions must be separated by either a comma or a semi-
colon. Commas and semicolons control the spacing between printed values. A
semicolon causes the next value to print immediately after the value just printed; the
two are concatenated with no intervening spaces. A comma causes the next value to
print at the next column stop, several spaces over from the last value.

Column stops are ten characters apart, at columns [, 11, 21, and so on. If any
character is printed in either of the two spaces just ahead of a column stop (for
example, in column 19 or 20), that column stop is inactivated.

LPRINT and the ATARI 825 Printer

The LPRINT statement has some quirks when used with the ATARI 825 Printer. If
an LPRINT statement prints more than 40 characters, output from the next
LPRINT statement always starts a new line onan ATARI 825 Printer. A comma or
semicolon at the end of the LPRINT statement has no effect. But if an LPRINT
statement prints 40 characters or less and ends with a semicolon, or 38 characters or
less and ends with a comma, output from the next LPRINT statement starts on the
same line, at column41. Ineither case, output from the next LPRINT statement will
start a new line. LPRINT output to the ATARI 825 Printer is normal if no
semicolon or comma ends the statement.

Input/Output Channels and Sound Voices

The LPRINT statement uses channel 7 for output to the printer. If channel 7 is
already open to another device, an error occurs, which closes the channel. You can
then use LPRINT successfully.

The LPRINT statement shuts off all sound voices.

NEW

Deletes the current program and all variables from memory.
Format: NEW .
Example: NEW
This statement also shuts off all sound voices; closes all input/output channels

except channel 0, which remains open to the editor (device E:); and sets trigonomet-
ric functions to radians.

Terminates the loop started by a FOR statement.

Format: NEXT numvar
Examples: NEXT COUNT
N. J

When BASIC executes a NEXT statement, it increments the loop index variable

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 373

numvar by an amount specified in the corresponding FOR statement. The program
then either continues with the statement following NEXT or loops back to the
corresponding FOR, depending on the parameters set in the FOR statement. (See
the discussion of FOR earlier in this chapter.) .

If numvar does not match the loop variable of the most recently executed FOR
statement, an error occurs.

NEXT in Immediate Mode

A NEXT statement will terminate an immediate mode FOR-NEXT loop only if it
follows the FOR statement on the same immediate mode program line.

When BASIC encounters a NEXT statement at the beginning of an immediate
mode line, it looks for the most recent programmed mode FOR-NEXT loop that
matches and is still active. If it finds one, it continues the loop at the FOR statement.
If not, an error occurs.

INOTE (NO.)

Determines the current location of the file pointer for the specified disk file.
Format: NOTE #chan, sectvar, bytevar

Examples: NOTE #5, SCTR, BYTE
NO. #FILE2, S, B

This statement checks the current location of the pointer for the disk file open to
channel chan. It assigns the absolute sector number to numeric variable sectvar, and
the byte number within the sector to numeric variable bytevar. These variables
cannot be array elements. Channel chan can be open to a disk file for any operation.

NOTE is not available in version 1.0 of the disk operating system.

[ON-GOSUB|

Provides conditional subroutine calls to one of several subroutines in a program,
depending on the current value of an expression.

Format: ON numexpr GOSUB linexpr [[linexpr ...]

Examples: ON X GOSUB 100, 200, 300
ON SI GOSUB B+L*100,12000,12050,100

The program branches to the first line number (/inexpr) if the integer value of
numexpr is 1, the second if it is 2, and so on. The next RETURN statement
encountered sends the program back to the statement that follows the ON-GOSUB
statement.

The expression must have a value in the range 0 through 255 or an error occurs. If
the expression evaluates to 0 or to a value greater than the number of line numbers
listed, program execution continues with the next statement following the
ON-GOSUB.

374 A GUIDE TO ATARI 400/800 COMPUTERS

Causes a conditional branch to one of several lines in a program, depending on the
current value of an expression.

Format: ON numexpr GOTO linexpr [linexpr ...]
Examples: ON RESPONSE GOTO 1000, 2000, 3000, 4000, 5000
ON RND(0)*10 GOTO 100+SPEED#*10, 2000, 3000, 3000, 3000

The program branches to the first line number (linexpr) if the integer value of
numexpr is 1, the second if it is 2, and so on.

The expression must have a value in the range 0 through 255 or an error occurs. If
the expression evaluates to 0 or to a value greater than the number of line numbers
listed, program execution continues with the next statement following the
ON-GOTO.

Assigns an input/output channel number to a specific device, including a disk file.

Format: OPEN #chan, taskexpr, auxexpr, dev

Examples: OPEN #1, 4, 0, “C:”

0. #5, ACT, 0, “D:SCORE.DAT”
0. #2, 8,0, “P:”

Before BASIC can access an external device for input or output, it must open a
channel (chan) to it. If the channel is already open to another device, an error
occurs.

The value of the first expression (taskexpr) specifies the kind of activity (for
example, input or output) that will be going on; Table 11-8 elaborates. In most
cases, the second expression (auxexpr) is unused, as Table 11-9 shows. The follow-
ing sections explain the details for each device.

The final parameter in the OPEN statement, dev, selects the device that the
input/output channel will be associated with. The dev parameter can be a string
constant or a string variable. Table 11-10 lists the standard device names.

OPEN with the Program Recorder

The program recorder can be open for input or output, but not for both input and
output simultaneously.

Opening forinput operates the program recorder in playback mode. The compu-
ter sounds its speaker once. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the PLAY lever on the program recorder. Finally, press
any key on the keyboard (except BREAK). The program recorder takes about 20
seconds to read past the leader which starts every cassette file. Before it reaches the
end of the leader, the computer must input the first data value with a GET or
INPUT statement. After that, the tape stops, unless the program recorder receives
more instructions to keep it going.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS

375

TABLE 11-8. OPEN Parameter Number 1 (raskexpr)

Device Task Task
Number Description
Program recorder 4 Read
() Write
Disk file 4 Read
(D[n]:filename 6 Read disk directory
[.ext]) 8 Write — new file
9 Write — append
12 Read and write — update
Screen editor 8 Screen output
(E2) 12 Keyboard input & screen output
13 Screen input & output
Keyboard 4 Read
(K:)
Printer 8 Write
(P:)
RS-232 serial port 5 Concurrent read
(R[n]:) 8 Block write
9 Concurrent write
13 Concurrent read and write
Clear Text .
Read Writ
Screen Window e =
Screen display 8 Yes No No Yes
(S) 12 Yes No Yes Yes
24 Yes Yes No Yes
28 Yes Yes Yes Yes
40 No* No No Yes
44 No* No Yes Yes
56 No* Yes No Yes
60 No*, Yes Yes Yes
* Screen always cleared in graphics mode 0.
f No separate text window in graphics mode 0.

Opening for output operates the program recorder in record mode. The computer
sounds its speaker twice. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the RECORD and PLAY levers on the program recorder.
Finally, press any key on the keyboard (except BREAK). If the volume on the
television set is turned up, you will hear a continuous high-pitched marker tone
being written as the cassette file leader. Within about 30 seconds of the time the
OPEN statement is executed, the program must output 128 data bytes or close the
output channel. Otherwise, garbage will be recorded on the file and an error will

occur when the file is read back.

376 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-9. OPEN Parameter Number 2 (auxexpr)

Device Function Description Value
Program recorder Normal inter-record gaps 0
(C) Short inter-record gaps 128
Disk drive Ignored 0
(D[n):filename

Lext])

Screen editor Ignored 0

(E:)

Keyboard * Ignored 0

(K:)

Printer Normal characters 0

(P:) Sideways characters (ATARI 820) 83

RS-232 serial port Ignored 0

(R[~1]:)

Screen display BASIC graphics mode 0 0

(S:) BASIC graphics mode | |
BASIC graphics mode 2 2
BASIC graphics mode 3 3
BASIC graphics mode 4 4
BASIC graphics mode § 5
BASIC graphics mode 6 6
BASIC graphics mode 7 7
BASIC graphics mode 8 8

TABLE 11-10. OPEN External Devices (dev)

Device Name

Program recorder C:

Disk file D[n]filename [.ext]
Screen editor E:

Keyboard K:

Printer P;

RS-232 serial port R[n]:

Display screen S:

OPEN with a Disk File

In orderto use the OPEN statement with a disk file name, the disk operating system
must be in memory as a result of a successful boot when you turned on the computer
(see page 27). If the disk operating system is absent, an error results.

A disk file can be opened for data input, directory input, and for output in several
different modes. The value of taskexpr determines the mode, as Table 11-8 shows.
Normally, a maximum of three files can be open at one time. Chapter 7 explains a

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 377

way to increase this limit to seven files with version 2.0S of the disk operating
system.

A file name is required when opening the disk for directory input, but it need not
actually exist. The specified file name must exist when the task is input, update, or
append, or else an error occurs. If the task is simple output and the file does not
exist, it is created. If the task is simple output and the file exists, it is erased and a
new one created. If a newly created file is not closed properly, the sectors allocated
for it may remain allocated but unusable until the disk is reformatted.

OPEN with the Printer

The printer can only be opened for output. It must be turned on when the OPEN
statement is executed. If there isan ONLINE/LOCAL switch on the printer, it must be
in the “online” position as well. If the printer connects through the ATARI 850
Interface Module, it must be on also. If any of these conditions are not met, an error
occurs.

OPEN with the RS-232 Serial Ports

To use the OPEN statement with one of the serial devices, the RS-232 serial device
handler must be in memory as a result of a successful boot when you turned on the
computer (see page 14). If the device handler is absent, an error results. But the
computer reports no error if the device attached to the specified port is off, there is
no device attached, or the ATARI 850 Interface Module itself is off.

Inaddition to being opened, the serial device may require conditioning with XI10
statements. A given port can only be open on one channel at a time.

OPEN with the Display Screen

The OPEN statement links channel chan with the display screen when dev is S:. The
value of auxexpr specifies the graphics mode. The value of taskexpr determines
whether to clear the screen, whether a text window will be present, and whether the
screen is open for output only, or both input and output (see Table 11-8).

Each time the display screen is opened, the text cursor is reset, the color registers
are set to their default colors (see Table 11-2),and tab stops are set at columns 7, 15,
23,...,103,111,and 119. In graphics mode 0 the screen is always cleared. Also, the
cursor is visible unless you turn it off with a POKE 755,0 statement.

The different graphics modes require different amounts of memory. The OPEN
statement reserves memory for screen data and the display list in the highest part of
available memory.

OPEN with the Screen Editor

The screen editorisan input/output device that uses the keyboard for input and the
graphics mode 0 display screen for output. Each time the screen editor is opened, the
graphics mode is set to 0, the display screen is cleared, the text cursor is reset, the

378 A GUIDE TO ATARI 400/800 COMPUTERS

color registers are set to their default colors (see Table 11-2), and tab stops are set at
columns 7, 15, 23,. .., 103, 111, and 119.

The value of raskexpr determines whether the screen editor is opened for input,
output, or both. It can also enable a special input mode which causes INPUT
statements to use the display screen as the input device. When this happens, the
logical line where the cursor is located provides the value for the current INPUT
statement variable. The value ends at the next EOL character on the screen; the
RETURN key is ignored.

OPEN with the Keyboard
The keyboard (device K:) can be opened only for input.

PEEK

Listed in the Functions section at the end of this chapter.

Displays a point at the specified location on the display screen.
Format: PLOT col, row

Examples: PLOT 5,15
PL. COL, ROW

This statement plots a single dot of color on the screen at the column and row
specified by the values of co/ and row. The maximum row and column values vary
with the graphics mode (see Table 11-7). The most recently executed COLOR
statement determines which color register will choose the point color. The PLOT
statement uses the background color register if no COLOR statement has been
executed since you turned on the computer.

The PLOT statement updates memory location 90 with the row number at which
it plots, and memory locations 91 and 92 with the column number. A subsequent
DRAWTO statement will use this as the starting point of the line it constructs.

PLOT in Graphics Modes 0, 1, and 2

The PLOT statement is primarily used in graphics modes 3 through 8, but it also
works in graphics modes 0, 1, and 2. In these modes, PLOT places a character,
rather than a dot, on the screen. The last COLOR statement executed determines
which character will display, and in modes 1 and 2, which color register will choose
the character color (see Tables 11-3 and 11-4). If no COLOR statement has been
executed since you turned on the computer, COLOR 0 is used.

Changes a disk file’s pointer to a specified location.
Format: POINT #chan, sectvar, bytevar

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 379

Examples: POINT #5, SCTR, BYTE
P. #FILE2, S; B

This statement moves the file pointer to the sector number specified by the value
of numeric variable sectvar, and to the byte within the sector as specified by numeric
variable bytevar. If sectvar is outside the limits of the file, an error will occur. The
value of bytevar must be between 0 and 125. Channel chan must be open to a disk
file for input, update, or append (see OPEN).

This statement is not available in version 1.0 of the disk operating system.

[POKE (POK.)

Stores a byte of data in a specified memory location.

Format: POKE memadr, bytexpr
Example POKE 756,226

A value between 0 and 255, provided by bytexpr, is written into memory at
location memadr. 1f the memory location specified exceeds the maximum location
in memory (forexample, 16383 if you have 16K of memory), or accesses a read-only
memory location, POKE has no effect.

Use caution with POKE. Some memory locations contain information essential
to the computer’s uninterrupted operation. Change random memory locations and
you can destroy your program or lock up your system.

POP

Causes BASIC to forget the return location for the most recently executed FOR,
GOSUB, or ON-GOSUB statement.

Format: POP

Example: POP

The FOR, GOSUB, and ON-GOSUB statements place a return location on the
run-time stack. BASIC uses this location when it encountersa NEXT or RETURN
statement. The POP statement removes one entry from the top of the run-time
stack. No error occurs if the run-time stack is empty.

POP effectively changes the most recently executed GOSUB or ON-GOSUB
statement intoa GOTO or ON-GOTO statement, after the fact. The next RETURN
statement executed will branch to the instruction immediately following the second
most recently executed GOSUB or ON-GOSUB.

A POP statement executed inside a FOR-NEXT loop terminates the loop.
BASIC behaves as though it never executed the most recent FOR statement.

Moves the cursor to a specified location on the display screen.
Format: POSITION col, row

Example: ~ POSITION 10,3
POS. 5, BASE + N3

380 A GUIDE TO ATARI 400/800 COMPUTERS

All display screen input and output statements except DRAWTO, PLOT, and
XI0 obtain the next cursor position from memory locations 84 (row) and 85 and 86
(column). The POSITION statement changes the contents of these memory loca-
tions. The value of col specifies the new column, and the value of row specifies the
new row. The next GET, PRINT, PUT, INPUT, or LOCATE statement to the
display screen occurs at the new cursor position. The cursor does not visibly move
when the POSITION statement is executed; it moves when a subsequent statement
accesses the display screen.

If the POSITION statement moves the cursor off the edge of the screen, no error
occurs until a subsequent statement tries to use the display screen.

[PRINT (PR. or ?)|

Outputs characters to the display screen or another output device.

ol - o]

Examples: PRINT “Beware the Dog”
PR. “REMAINING ENERGY™ RE;
? #6, “X-axis”
? #3; AS$,A,B$,B.C5,C
There are a number of acceptable variations on the PRINT statement. PRINT by
itself outputs an ATASCII end-of-line (EOL) character. When PRINT is followed
by one or more expressions, the values of these expressions go out on channel chan,
which must be open for output. The way the values appear depends on their nature
and on the use of semicolons or commas between values, but does not depend on the
output device at all.

Printing Numeric Values

Numeric values within certain limits are printed using standard arithmetic notation.
Scientific notation is used for values closer to 0 than+0.01 and for any values with
more than ten digits in front of the decimal point. Negative values are preceded by a
minus sign; positive values are not preceded by anything.

Commas and Semicolons

PRINT statement expressions must be separated by either a comma or a semicolon.

Commas and semicolons control the spacing between printed values. A semi-
colon causes the next value to print immediately after the value just printed; the two
are concatenated with no intervening spaces. A comma inserts blank spaces
between the end of the value just printed and the next column stop.

Column stops are ten characters apart, at columns 11,21, 31,and so on, across an
entire logical line. If any character is printed in either of the two spaces just ahead of
a column stop (for example, in column 19 or 20), that tab stop is temporarily
inactivated.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 381,

A single PRINT statement can output an entire line or just part of a line. If the list
of PRINT statement expressions does not end with a comma or semicolon, the
computer outputs an EOL character after the last item on the list, terminating the
output line.

A comma or semicolon will suppress the EOL character. If the list ends with a
semicolon, the next PRINT statement outputs its first character directly after the
last character output by the current PRINT statement, with no intervening spaces.
If the list ends with a comma, the next output will be in the first position of the next
column field, with blank spaces in between.

PRINT with the Display Screen

PRINT statement output goes to the display screen if the chan option is absent, or if
it is present and opened for output to device S: or E:. Regardless of the graphics
mode, the PRINT statement always outputs characters from the 256-element
graphics mode 0 character set (see Table 11-3). In mode 0, the computer displays
these characters as is. It translates them to another character set for graphics modes
1 and 2, and to dots of color for graphics modes 3 through 8.

Graphics modes 1 and 2 have two character sets. Roughly speaking, the standard
set includes upper-case letters, digits, and punctuation, and the alternate set
includes lower-case letters and graphics characters. There are no inverse characters
ineither set, but each character can appear via any of four color registers. Table 11-4
shows both character sets.

Two things affect the translation of PRINT statement characters fora mode 1 or
2 display screen. First, memory location 756 chooses between standard and alter-
nate characters. POKE 756,226 chooses standard; POKE 756,224 chooses alter-
nate. Second, the ATASCII code of the PRINT statement character chooses the
color register and the exact character. To translate, look up the mode 0 character in
Table 11-3 and note its ATASCII code. Be sure to differentiate between the codes
for normal and inverse characters. Then find the code from Table 11-3 in Table
11-4. The column heading above the code in Table 11-4 gives the color register
number that the PRINT statement will use. Read across to the right in Table 11-4 to
get the mode 1 and 2 characters, both standard and alternate.

In graphics modes 3 through 8, the ATASCII codes of the PRINT statement
characters determine which color registers will choose the dot colors. In modes 3, 5,
and 7, the ATASCII code is reduced modulo 4 to a number between 0 and 3. In
modes4, 6,and 8, the ATASCII codeisreducedto0 or 1: evencodes are 0 and odd
codes are 1. The results of the reductions choose the color register the same way the
parameter of a COLOR statement does (see Table 11-1).

PRINT statement output starts at the current cursor location, which is stored in
memory locations 84 (row) and 85 and 86 (column). The DRAWTO, GET, INPUT,
LOCATE, PLOT, POSITION, PRINT, PUT, and XIO statements all affect the
cursor position.

382 A GUIDE TO ATARI 400/800 COMPUTERS

PRINT with the Program Recorder

To use the PRINT statement with the program recorder, channel chan must be open
for output to the program recorder.

A single PRINT statement might output only part of a record, so the computer
stores data headed for the program recorder in its memory until it has 128 bytes.
Then the entire block of data goes out. An EOL character forces output of the
block, even if it is not full. In this case, the 128th byte contains the length of the
block, stored as a hexadecimal number.

If the output channel is open for normal inter-record gaps, the tape can stop and
start in between blocks. With short inter-record gaps, the tape keeps moving and
your program must keep up with it, or garbage gets recorded.

PRINT with a Disk File

To use the PRINT statement with a disk file, channel chan must be open for output,
update, or append to the disk file.

In most respects, data is output to a disk file in the same way it is output to the
display screen. The computer transfers data to the disk drive in blocks. It stores
output from PRINT statements in its memory until it has a full block. An EOL
character forces output of the block, even if it is not full. The ATARI 810 Disk
Drive has 125 characters per block.

PRINT with the Printer

To use the PRINT statement with the printer, channel chan must be open for output
to the printer. The printer must be turned on when the PRINT statement is
executed. If there is an ONLINE/LOCAL switch on the printer, it must be in the online
position as well. If the printer connects through the 850 Interface Module, it must be
on also. If any of these conditions are not met, an error occurs.

Character sets on most printers differ from the one in graphics mode 0. None of
the ATARI printers can print the graphics characters, for example. The character
that does appear depends on the printer. Tables 6-1 and 6-2 summarize the ATARI
printer character sets.

PRINT with the RS-232 Serial Ports

To use the PRINT statement with one of the serial devices, channel chan must be
open for output to the proper RS-232 serial port. This will be possible only if the
RS-232 handleris in memory as a result of a successful boot when you turned on the
computer (see page 14). In addition, XIO statements may be required to condition
the serial port. For example, the translation mode (for converting incoming ASCII
characters to ATASCII) may need to be set with an XI10 38 statement. All this must
happen before executing a PRINT statement on the channel in question. The
computer reports no error if the device attached to the specified port is off, there is
no device attached, or the ATARI 850 Interface Module itself is off.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 383

With this protocol out of the way, PRINT statement characters go through the
ATARI 850 Interface Module to the serial port. It translates them to ATASCII
characters according to the translation mode in effect. Two of the translation modes
will change an outgoing ATASCII EOL character to an ASCII carriage return
character. Appendix D has ASCII and ATASCII code tables.

Sends a single numeric value to a previously opened output channel.

Format: PUT #chan, numexpr
Examples: PUT #1, NMBR
PU. #CH, X

Channel chan must be open for output. The PUT statement outputs the value of
numexpr, rounded to the nearest integer. If the value is not between 0 and 255, it is
output modulo 256 (256 goes out as 0, 257 as 1, 258 as 2, etc.).

PUT with the Program Recorder

To use the PUT statement with the program recorder, channel chan must be open
for output to the program recorder.

A single PUT statement might output only part of a record, so the computer
stores data headed for the program recorder in its memory until it has 128 bytes.
Then the entire block of data goes out. An EOL character forces output of the
block, even if it is not full. In this case, the 128th byte contains the length of the
block, stored as a hexadecimal number.

If the output channel is open for normal inter-record gaps, the tape can stop and
start in between blocks. With short interrecord gaps, the tape keeps moving and
your program must keep up with it, or garbage gets recorded.

PUT with the Disk Drive

The PUT statement will write data on a disk file that is open for output. The PUT
statement outputs one-byte values that can be read by a GET statement. The
INPUT statement cannot read the individual values a PUT statement writes.

The computer writes data to the disk drive in one-sector blocks, rather than one
value at a time. PUT statements fill the disk buffer area of computer memory, one
byte ata time. When the buffer is full, the computer writes the entire contents on the
disk file. The CLOSE statement writes out any bytes left in the buffer. On the
ATARI 810 Disk Drive, there are 125 values per sector.

The POINT statement can cause the computer to read in a new block from the
disk file if it specifies a location that is outside the sector currently in memory.

PUT with the Display Screen

When used with the display screen (devices S: or E:), the PUT statement displays
either a character or a graphics point at the current cursor position, depending on

384 A GUIDE TO ATARI 400/800 COMPUTERS

the graphics mode. In graphics mode 0, the value of numexpr determines which
character to display (see Table 11-3). In graphics modes | and 2, the value of
numexpr determines which color register to use and which character to display (see
Table 11-4). In graphics modes 3 through 8, the value of numexpr determines which
color register to use at the particular cursor position (see Table 11-1).

Each time PUT displays a value on the display screen, it moves right to the next
cursor position. It does this by updating memory location 84 with the row number
of the next cursor position, and memory locations 85 and 86 with the next column
number. The next statement that stores or retrieves data from the display screen
occurs in the new cursor position. However, this does not affect the DRAWTO or
XI0 statements, which maintain a separate cursor position in memory locations 90,
91, and 92.

If you use the PUT statement on the last column of a given row on the display
screen, the cursor advances to the first column of the next line. If you try to access
the display screen without first repositioning the cursor aftera PUT statement at the
last column of the last row, an error results.

PUT with the Printer

To use the PUT statement with the printer, channel chan must be open for output to
the printer. The printer must be turned on when the PUT statement is executed. If
there is an ONLINE/LOCAL switch on the printer, it must be in the online position as
well. If the printer connects through the ATARI 850 Interface Module, it must be
on also. If any of these conditions are not met, an error occurs.

PUT with the RS-232 Serial Ports

There must be an open output channel to the proper RS-232 serial port of the
Interface Module, and this will be possible only if the RS-232 handler is in memory
as a result of a successful boot when you turned on the computer (see page 14). In
addition, XIO statements may be required to condition the serial port. For exam-
ple, the translation mode may need to be set with an X10 38 statement. All this must
happen before executing a PUT statement on the channel in question. The compu-
ter reports no error if the device attached to the specified port is off, there is no
device attached, or the ATARI 850 Interface Module itself is off.

With this protocol out of the way, PUT statement values go through the ATARI
850 Interface Module to the serial port. It translates them to ATASCII characters
according to the translation mode in effect.

RAD

Tells BASIC to expect arguments in radians, rather than degrees, for subsequent
trigonometric functions.

Format: RAD
Example: RAD

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 385

Afterexecuting the RAD statement, BASIC treats the arguments of trigonomet-
ric functions as radians. To switch to degrees, use the DEG statement. BASIC
defaults to radians when it executes a NEW or RUN statement, or when you press
the SYSTEM RESET key or turn the computer off and back on again.

IREAD (REA.)|

Assigns values from DATA statements to variables.

Format: READ var [var ...]

Examples: READ NAMES$, RANKS$, SERIALNO

REA. LEVEL, GRADE, EVALS$

There is a pointer to the DATA list that determines which value to assign to the
first variable (var) in the READ statement. At the start of the program and after a
RESTORE statement, the pointer points to the first DATA statement value. As
each READ statement variable gets a value, the pointer moves ahead to the next
value.

The variables must match the type of the corresponding DATA statement values.
A numeric value assigned to a string variable causes no problem. A string assigned
to a numeric variable causes an error.

DATA statements need not be executed for the READ statement to find them.
An error occurs if the READ statement cannot find enough DATA statement
values.

READ in Immediate Mode

The READ statement may be executed in immediate mode as long as the program
in memory contains enough DATA statement values. Otherwise, an error occurs.

[REM (R. or .)|

Allows you to place explanatory comments, or remarks, in a program.

Format: REM comment
Examples: REM Error Handling Subroutine

R. Compute Interest
Get user response (Y or N only)

The comment is any sequence of characters that will fit on the current program
line.

Remark statements are reproduced in program listings, but are otherwise
ignored. A REM statement may be on a line of its own or it may be the last
statement of a multiple-statement line.

REM cannot occur ahead of any other statements on a multiple-statement line,
since BASIC treats all text following the REM statement as a comment, and
executes none of it.

386 A GUIDE TO ATARI 400/800 COMPUTERS

[RESTORE (RES.)|

Resets the pointer to the list of DATA statement values.
Format: RESTORE [linexpr]

Examples: RESTORE
RES. 140

The pointer determines which value the next READ statement will start with.
When no line number (/inexpr) is specified, the RESTORE statement moves the
pointer to the start of the first DATA statement in the program. When a line
number is specified, the pointer moves to the start of the first DATA statement on
or after that program line.

[RETURN (RET.)|

Causes the program to branch to the statement immediately following the most
recently executed GOSUB or ON-GOSUB statement.
Format: RETURN

Examples: RETURN
RET.

The RETURN statement gets the return location from the run-time stack. If a
POP statement has removed an entry from the stack, the program branches to the
statement following the next most recent GOSUB or ON-GOSUB statement.

If more RETURN (and POP) than GOSUB statements are executed in a pro-
gram, an error occurs. '

Switches from immediate mode to programmed mode. Optionally loads a program
from some input device to the computer memory. Executes the program in memory.
Format: RUN [indev]
Examples: RUN
RUN “C:”
RU. P§
RU. “D2:BUDGET.BAS”

Program execution starts at the lowest numbered line in the program. The RUN
statement turns off all sound voices and closes all input/output channels, thereby
disabling any graphics modes. It sets trigonometric functions to radians.

Program Load Feature

When the indev option is present, the RUN statement transfers a BASIC program
from physical device indev to memory, then runs that program.

The RUN statement can only load a tokenized BASIC program recorded by the
SAVE statement. It cannot load programs recorded by the CSAVE statement,
which uses different timing, or by the LIST statement, which records BASIC text in
ATASCII code.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 387

During the loading process, any program previously in memory is erased. The
variable name table for the incoming program replaces the one in memory.

The RUN statement uses input channel 7 for transfer from the program recorder
and disk drive. It works even if channel 7 is already open. However, it does close the
channel when it finishes.

RUN with the Program Recorder

The statement RUN *“C:” operates the program recorder in playback mode,
transferring a program from cassette to the computer memory. First, the computer
sounds its speaker once. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the PLAY lever on the program recorder. Finally, press
any key on the keyboard (except BREAK). If the volume on the television set is
turned up, you will hear several seconds of silence followed by one or more short
bursts of sound from the television speaker. These sounds mean the program
transfer is taking place. The sound bursts cease when the transfer finishes.

RUN with the Disk Drive

In order to use the RUN statement with a disk file name, the disk operating system
must be in memory as a result of a successful boot when you turned on the computer
(see page 27). If the disk operating system is absent, an error results. If it is present
but no file exists as specified, an error results. If everything is set up correctly, the
computer transfers the BASIC text from diskette to its memory and executes it.

Halting RUN

Once program execution begins, you can interrupt it by pressing the SYSTEM RESET
key. If the computer was in the middle of loading a program, there will be no
program lines in the computer’s memory unless the load operation had a chance to
finish. Pressing the SYSTEM RESET key while loading a disk file program may lock
up the system. Your only recourse then is to turn the computer off and back on
again. :

Pressing the BREAK key stops the program. It rarely stops a program load. It will
interrupt the load, but only momentarily. Some pieces of the program being
transferred may never make it into memory.

Transfers a BASIC program from the computer’s memory to an output device.
Format: SAVE outdev

Examples: SAVE “C:.”
S. “D:PROGRAMI1”
S. PRGMS

The SAVE statement transfersa BASIC program from memory to output device

388 A GUIDE TO ATARI 400/800 COMPUTERS

outdev. Normally outdev specifies the program recorder (device C:) or a disk file

- (device D[n 1:filename [.ext]). Specifying another output device, such as the print-
er or display screen, generally results in gibberish showing up on the device. It may
make sense to use the SAVE statement with one of the RS-232 serial ports (devices
R[n]:), depending on what you have attached to the port.

The SAVE statement outputs a tokenized BASIC program that only the LOAD
and RUN statements can load. The CLOAD and ENTER statements cannot load a
program that the SAVE statement saves. During the recording process, the SAVE
statement also saves the variable name table for the outgoing program.

Input/Output Channels and Sound Voices

The SAVE statement uses channel 7 for output. It works even if channel 7 is already
open. However, it does close the channel when it finishes. The SAVE statement also
shuts off all sound voices.

SAVE with the Program Recorder

The statement SAVE “C:” operates the program recorder in record mode, transfer-
ring a program from the computer’s memory to a cassette. First, it sounds the
computer speaker twice. This signals you to put the right tape in the program
recorder and use the FAST FORWARD and REWIND levers to position the tape to the
correct spot. Then depress the RECORD and PLAY levers on the program recorder.
Finally, press any key on the keyboard (except BREAK). If the volume on the
television set is turned up, you will hear 20 seconds of a continuous high-pitched
tone. This will be followed by one or more short bursts of sound from the television
speaker. These sounds mean the program transfer is taking place. The sound bursts
cease when the recording finishes.

SAVE with the Disk Drive

In order to use the SAVE statement with a disk file name, the disk operating system
must be in memory as a result of a successful boot when you turned on the computer
(see page 27). If the disk operating system is absent, an error results. If everything is
copasetic, the computer transfers the BASIC text from its memory to diskette. If the
specified file already exists, it is replaced by the program in memory.

SAVE with the RS-232 Serial Ports

To use the SAVE statement with one of the RS-232 serial ports, the RS-232 serial
device handler must be in memory as a result of a successful boot when you turned
on the computer (see page 14). If the device handler is absent, an error results. The
device may require conditioning with XIO statements before executing the SAVE
statement. If everything checks out, the computer transfers the BASIC text from its
memory to the serial port. It does not check to see if the serial device received the
program, or even if there is a serial device.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 389

Halting SAVE

You can halt the SAVE operation at any time by pressing either the BREAK key or
the SYSTEM RESET key. The program recording will be incomplete. The LOAD and
RUN statements cannot load an incompletely saved program.

|[SETCOLOR (SE.)|

Assigns hue and luminance attributes to one of the color registers.

Format: SETCOLOR regexpr, huexpr, lumexpr

Examples: SETCOLOR 222
SE. REGNO, HUE, LUM

Numeric expression regexpr must have a value between 0 and 4. It determines
which color register is affected by the current SETCOLOR statement.

The value of huexpr must be between 0 and 15. It specifies one of the 16 hues
(colors) listed in Table 11-11.

The value of numeric expression /umexpr establishes the luminance (brightness)
of the hue. Its value must be an even number between 0 and 14. Odd numbers yield
the same luminance as the next lowest even number (e.g., 3 produces the same result
as 2).

If the values of any of the expressions are not integers, they are rounded to the
nearest integer. The values of huexpr and lumexpr may actually range up to 65535,
though values larger than 15 are converted modulo 16 to values between 0 and 15.

The color registers are set to the default values listed in Table 11-2 whenever you

TABLE 11-11. Hues (Values of Auexpr for SETCOLOR statement)

Number Hue Range*
0 Black to white
1 Brown to gold
2 Orange to yellow
3 Terra cotta to pink
4 Mulberry to magenta
3 Violet to lavender
6 Indigo to white
7 Sky blue
8 Royal blue to baby blue
9 Turquoise blue
10 Ultramarine to powder blue
11 Midnight blue to aquamarine
12 Sea green to turquoise green
13 Forest green to Kelly green
14 Olive
15 Khaki to yellow

* Television adjustment affects hue radically, as does luminance value.

390 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-12. Color Register Uses

Graphics Color Register

e 0 1 2 3 4
0 = C* G, Bz s Bo
1 C C C C Ba, Bo
2 C (@ (& C Ba, Bo
3 P P P - P, Ba, Bo
4 P - - - P, Ba, Bo
5 P P P % P, Ba, Bo
6 P - - - P, Ba, Bo
7 P P P - P, Ba, Bo
8 o p* P, Ba - Bo

NOTE: C = Character Ba = Background * Determines luminance only; hue same
P = Point or Line Bo = Border as background.

turn on the computer, press the SYSTEM RESET key, or execute a DOS or
GRAPHICS statement.

The Color Registers

ATARI BASIC uses five memory locations to specify colors on the field of the
display screen. These locations are called color registers.

The COLOR statement chooses which of the color registers many graphics
statements will use when they display characters, points, or lines. Thus it works in
conjunction with the SETCOLOR statement to determine the hue and luminance of
items on the display screen. Table 1 1-12 summarizes color register use in the various
BASIC graphics modes.

There are five color registers, numbered 0 through 4. Table 11-1 correlates the
COLOR statement with color registers in each graphics mode. It shows, for exam-
ple, thata COLOR 2 statement in graphics modes 3, 5, and 7 selects color register 1.

I[SOUND (SO.)|

Turns one sound voice on or off. Also sets the voice’s pitch, distortion, and volume.

Format: SOUND voicexpr, pitchexpr, distexpr, volexpr

Examples: SOUND 2, 100, 10, 15

SO. V1, P, D, V2

Each SOUND statement sets the tone produced by one of the ATARI computer’s
four voices. Numeric expression voicexpr determines which voice is affected. Its
value must be between 0 and 3.

The value of numeric expression pitchexpr sets the pitch. Its values range from 0
(highest note) to 255 (lowest note), as Table 11-13 shows.

The value of numeric expression distexpr establishes the distortion of the tone. Its
value must be an even number between 0 and 14. A value of 10 or 14 is a pure tone.
For pitchexpr values between 126 and 255, distexpr values 0 and 4 produce about

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 391

the same sound. If a voice is on, an odd value of distexpr turns the voice off.

Numeric expression volexpr adjusts the voice’s volume setting. The value must be
between 0 (no sound) and 15 (full volume). Values can be as high as 65535 without
causing an error, but above 15 they turn the voice off.

When pitch, distortion, and volume are all 0, the voice is silenced. A subsequent
odd-numbered distortion produces a single click. Alternately executinga SOUND
statement that has 0 pitch, distortion, and volume with a SOUND statement that
has an odd-numbered distortion produces a stream of clicks.

If the values of any of the expressions are not integers, they are rounded to the
nearest integer. The values of pitchexpr and distexpr may actually range up to
65535, although values larger than 15 are converted modulo 16 to values between 0
and 15.

All four voices are turned off when you press SYSTEM RESET or when BASIC
executes any of the following statements: CLOAD, CSAVE, DOS, END, ENTER,
LIST (except to the display screen), LOAD, NEW, RUN, SAVE.

ISTATUS (ST.)|
Retrieves the status of the most recent input or output operation on the specified
channel.

Format: STATUS #chan, numvar

TABLE 11-13. Musical Notes for Pitch Values
(Values of pitchexpr in SOUND statement)

Value Note Value Note
29 C 91 F

31 B 96 E

33 A#/B® 102 D#/E?
35 A 108 D

37 G#| AP 114 c#/Db
40 G 121 C

42 F#/G? 128 B

45 F 136 A#/Bb
47 E 144 A

50 D#/E? 153 GH/ AP
53 D 162 G

57 cH/Db 173 F# /B
60 ' 182 F

64 B 193 E

68 A# B 204 D#/E?
72 A 217 D

76 GHIAD 230 c#/pb
81 G 243 C

85 F#/G?

392 A GUIDE TO ATARI 400/800 COMPUTERS

Examples: STATUS #5, STAT
ST. #C, S

This statement assigns the status code of the last activity on channel chan to
variable numvar. If the code is higher than 128, an error occurred. Status codes are
listed in Appendix B.

If numvar is an array element, BASIC reports no error when it executes the
STATUS statement. However, subsequent references to the same array result in
errors, until the array is redimensioned.

[STOP (STO.)|

Causes a BASIC program to halt execution.
Format: STOP

Examples: STOP
STO.

The computer returns to immediate mode (graphics mode 0). The message
STOPPED AT LINE line is displayed, where /ine is the line number at which the
STOP was executed. If the STOP statement is executed in immediate mode, the line
number information does not appear.

The CONT statement will restart the program at the beginning of the program
line that immediately follows the one where the halt occurred. CONT will not
restart a multiple-statement immediate mode line.

The STOP statement does not turn off any sound voices or close any open
input/output channels.

ISYSTEM RESET (SYSTEM RESET)|

Halts program execution immediately; returns the computer to immediate mode.

Format: SYSTEM RESET
Example: SYSTEM RESET

Pressing the SYSTEM RESET key stops the computer dead in its tracks, no matter
what it is doing. An initialization process occurs. Trigonometric functions use
radians, not degrees. Color registers return to their default values (Table 11-2). The
display screen comes under control of the screen editor in graphics mode 0. Display
screen margins and tab stops are reset. All sound voices are silenced. All input/out-
put channels except channel 0 are closed abruptly; data may be lost.

You may attempt to continue program execution with the CONT statement.
Execution will resume at the start of the next program line higher than the one
where the reset occurred. The program is not likely to work properly after a reset.

Branches to the line number indicated when a subsequent error occurs ina BASIC
program.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 393

Format: TRAP linexpr

Examples: TRAP 20000
T. ERRLINE

This statement sets a flag that causes the program to branch to the line number
indicated (/inexpr) when an error occurs subsequently. This disables the automatic
error handling which halts the BASIC program. Instead, the BASIC program must
handle the error condition itself. TR AP must be executed before an error occurs, or
no branch takes place when the error does occur.

Each type of error has a code number. The code of the most recently occurring
error is stored in memory location 195. PEEK(195) retrieves the error code. The
error codes and their messages are listed in Appendix A.

The expression 256 * PEEK(187) + PEEK(186) reveals the line number on
which the error occurred. If the error occurred in immediate mode, the line number
is not meaningful.

The occurrence of an error clears the flag set by the TRAP statement. Executing
another TRAP statement resets the flag. Executing a TRAP statement where the
value of /linexpr is between 32768 and 65535 turns off the flag.

General input/output statement.

Format: X10 cmd, #chan, numexpr,, numexpr,, dev

Examples: X110 18,#6,0.0,“S:”

XIO LOCK, #3, 0; 0, FILEL$

The X10 statement can perform a wide variety of input and output operations.
The value of emd specifies the operation. Table 11-14 lists the possibilities.

Channel chan needs to be open for input or output, as appropriate, except for the
X10 3 (open) statement. The final parameter, dev, selects the input or output device.
The remaining parameters provide supplementary information; the exact use
depends on the operation. All parameters must always be present, although not all
are always used. Tables 11-14 through 11-17 present each X1O operation’s require-
ments for the various parameters. In each case, BASIC rounds numeric values to
the nearest integer if necessary.

FUNCTIONS

ATARI BASIC functions are described below in alphabetical order. Nomenclature
and abbreviations are described at the beginning of this chapter.

Returns the absolute value of a number. This is the value of the number without
regard to sign.

Format: ABS(numexpr)

Example: IF A = ABS(A) THEN PR. “POSITIVE”

394 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-14. X1O Commands

. BASIC
Action Command Equivalent numexpr, numexpr,
General:
Open channel 3 OPEN Table 11-8 Table 11-9
Read line S INPUT 0 0
Get character 7 GET 0 0
Write line 9 PRINT 0 0
Put character 11 PUT 0 0
Close channel 12 CLOSE 0 0
Channel status 13 STATUS 0 0
Screen graphics:
Draw Line! 17 DRAWTO 0
Fill Area® 18 None 0 0
Disk:®
Rename file! 32 DOS Menu 0 0
Delete file® 33 DOS Menu 0 0
Lock file’ 35 DOS Menu 0 0
Unlock file® 36 DOS Menu 0 0
Move pointer™® 37 POINT® 0 0
Find file pointer >¢ 38 NOTE® 0 0
Format entire disk® 254 DOS Menu 0 0
RS-232 serial port:’
Output partial block 32 None 0 0
Control DTR, RTS, XMT 34 None Table 11-15 0
Baud rate, word size, 36 None Table 11-16 Table 11-16
stop bits, and ready
monitoring
Translation mode 38 None Table 11-17 ATASCII code
Concurrent mode 40 None 0 0
NOTES:
! Move cursor to start of line with POSITION statement before X10 17.
% Use POKE 765, numexpr to choose fill color register, and draw vertical boundary lines before
XIO 18.
% Disk operating system must be in memory.
* The dev parameter of X10 32 specifies file to change.
® The dev parameter specifies the file, not the file to which #chan is open.
® Not available with version 1.0 of the disk operating system.
" The RS-232 serial device handler must be in memory.

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 395

TABLE 11-15. XIO 34 (Serial) Parameter numexpr,

Add one number from each Seleated val
column to get value of e Celed vauey
of numexpr,
numexpr,
DTR RTS XMT DTR RTS XMT Value
No change 0 0 0 Off Off 0 162
Turn off 128 32 2 off Off 1 163
(XMT to 0) Off On 0 178
Turn on 192 48 3 Qi On : 179
(XMT to 1) On Off 0 226
On Off | 227
On On 0 242
On On 1 243
TABLE 11-16. X10O 36 (Serial) Parameters numexpr, and numexpr,
Ny numexpr,
(Add one value from each column) Pry
Stop Bits Value | Word Size Value| Baud Rate Value DSR CTS CRX Value
1 0 8 bits 0 300 0 No No No 0
2 128 7 bits 16 45.5 1 No No Yes 1
6 bits 32 50 2 No Yes No 2
5 bits 48 56.875 3 No Yes Yes 3
79 4 Yes No No 4
110 5 Yes No Yes]
134.5 6 Yes Yes No 6
150 7 Yes Yes Yes 7
300 8
600 9
1200 10
1800 11
2400 12
4800 13
9600 14
9600 15
ADR

Returns the decimal starting address of a string variable or string constant in the
computer’s memory.

Format: ADR(string)

Example: A = USR(ADR(SUBRY))

396 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE 11-17. X10 38 (Serial) Parameter numexpr,

Add one value from each column

Line Translation Input Output
Feed ATASCII — ASCII Parity Parity
Append Value Mode Value Mode Value Mode Value
No 0 Light 0 Ignore 0 No change 0
Yes* 64 Heavy 16 0oddf 4 0dd 1
None 32 Even' 8 Even 2
IgnorcT 12 Bit on 3

* Line feed character appended after carriage return (ATASCII EOL).

T Check parity as indicated, then clear parity bit.

It is possible to put a machine language programina BASIC string variable. The
ADR function can determine the starting address of the string variable, which is the
same as the starting address of the machine language program in it. This address can
be used with the USR function to execute the machine language program.

ASC

Returns the ATASCII code number for a specified character.
Format: ASC(string)
Example: 1F ASC(RESPONSES$) < 78 THEN 990
If the string is longer than one character, ASC returns the ATASCII code for the

first character in the string. If string is empty, ASC returns 44. ATASCII codes are
listed in Appendix D.

ATN

Returns the arctangent of the argument.
Format: ATN(numexpr)
Example: PRINT ATN(T)

Computes the arctangent in radians of numexpr, or in degrees if the DEG
statement is in effect. The angle returned is in the range - /2 through +m/2.

Returns the string value of the specified ATASCII code.
Format: CHRS(numexpr)
Example: PRINT CHRS$(65))

Returns the character represented by the integer value of numexpr, interpreted as
an ATASCII code. Appendix D has a table of ATASCII character codes. Meaning-

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 397

ful values of numexpr lie between 0 and 255. The value can range up to 65535
without error; values 256 and higher are converted modulo 256 to numbers between
0 and 255.

Relational expressions that compare for less than (<), greater than (>), or not
equal (< >) can use a CHRS function only on one side of the inequality sign.

CLOG

Returns the common logarithm of a number.

Format: CLOG(numexpr)

Example: A = B*CLOG(A)

Computes the common (base 10) logarithm of numexpr. An error occurs if
numexpr is 0 or negative.

Returns the cosine of an angle.

Format: COS(numexpr)

Example: COS(3.1415)

Computes the cosine of numexpr radians, or numexpr degrees if the DEG
statement is in effect.

EXP
Returns e raised to a power.
Format: EXP(numexpr)

Example: RATE = EXP(SUMPOW)
Computes e (the base of natural logarithms, 2.71828179) raised to the power
numexpr.

FRE

Returns the number of bytes of RAM memory currently available.

Format: FRE(numexpr)

Example: 7 FRE(0)

The memory available to you is that which is not already taken by the operating
system, the disk operating system, the display screen data, the display list, or a

BASIC program and its data.
The value of numexpr is not used by FRE. An error occurs if it is absent or its

value is outside the range #=9.99999999 E+98.

Returns the integer portion of a number.
Format: INT(numexpr)

398 A GUIDE TO ATARI 400/800 COMPUTERS

Example: A = (INT(A/2)¥100+.5)/ 100
Returns the largest integer less than or equal to the value of numexpr.

Returns the length of a string.

Format: LEN(string)

Example: AS(LEN(A$)+1) = B§

Counts the number of characters in string, including all spaces and nonprinting
characters, from the start of the string to the last character used.

Returns the natural logarithm of a number.

Format:1.OG(numexpr)

Example:A = B¥LOG(A)

Computes the natural (base e) logarithm of numexpr. An error occurs if numexpr
is 0 or negative.

PADDLE

Returns the current value of the paddle specified.

Format: PADDLE(numexpr)

Example: PLOT PADDLE(0)/6, PADDLE(1)/12

The value returned is an integer between 1 and 228 based on the rotation of
paddle number numexpr (Figure 11-2), or the resistance of a device connected to
game controller jack numexpr. The paddles are numbered 0 through 7. If the paddle
number is less than 0 or greater than 255, an error occurs. If the paddle number is
between 8 and 255, PADDLE returns a somewhat unpredictable number.

PEEK

Returns the contents of a memory location.

Format: PEEK (memadr)

Example: LMARGN = PEEK(82)

The value returned is the decimal equivalent of the binary value stored at memory
location memadr. Appendix G lists some useful memory locations.

PTRIG

Determines whether the trigger button of the specified paddle is on or off.
Format: PTRIG(numexpr)
Example: IF PTRIG(1) = 0 THEN PRINT “Boom!”

The value returned is 0 if the trigger of paddle number numexpr is being pressed,
1 if released. The paddles are numbered 0 through 7. If the paddle number is less

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 399

Full clockwise
rotation

Full counterclockwise
rotation

NOTE: Intermediate values vary from paddle to paddle.

FIGURE 11-2. PADDLE values

than 0 or greater than 255, an error occurs. If the paddle number is between 8 and
255, PTRIG returns a somewhat unpredictable number.

RND

Returns a random number.
Format: RND(numexpr)
Example: 1F RND(0) < 0.3 THEN DAMAGE = ON
Returns a floating point number greater than or equal to 0 and less than 1. The

value of numexpr has no effect on the value of the random number returned, but it
must be present.

Identifies a number as positive, negative, or zero.
Format: SGN(numexpr)
Example: IF SGN(A) = -1 THEN PRINT “NEGATIVE”

The SGN function returns +1 if numexpr is positive, -1 if it is negative, and 0 if it is
zero.

Returns the sine of an angle.
Format: SIN(numexpr)
Example: SIN (ANG)

400 A GUIDE TO ATARI 400/800 COMPUTERS

Computes the sine of numexpr radians, or numexpr degrees if the DEG statement
is in effect.

SOR
Returns the square root of a positive number.

Format: SQR(numexpr)

Example: HYPOT = SQR(LEGI"2 + LEG272)

A negative value of numexpr causes an error. SQR (numexpr) operates faster
than (numexpr)~(0.5).

STICK

Identifies the current position of a joystick.
Format: STICK (numexpr)
Example: 1F STICK(0) = 14 THEN ROW = ROW - |

The value returned is an integer between 0 and 15, based on the position of stick
number numexpr (Figure 11-3). The joysticks are numbered 0 through 3. If the stick
number is less than 0 or greater than 255, an error occurs. If the stick number is
between 4 and 255, STICK returns a somewhat unpredictable number.

=

FIGURE 11-3. STICK values

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 401

STRIG

Determines whether the trigger button of the specified joystick is on or off.
Format: STRIG(numexpr)
Example: 1F STRIG(l) = 0 THEN PRINT “Boom!”

The value returned is 0 if the trigger of stick number numexpr is being pressed, 1
if released. The sticks are numbered 0 through 3. If the stick number is less than 0 or
greater than 255 an error occurs. If the stick number is between 4 and 255, STRIG
returns a somewhat unpredictable number.

STR$S

Converts a numeric value to a string.
. Format STRS$(numexpr)
Example: ZIP$ = STRS$(ZIP)

The value of numexpr is converted to ATASCII string characters. The characters
are the same as those that would be printed by a PRINT numexpr statement.
Therefore, STRS (2/3) = “0.6666666666™ and STRS$ (12300000000) = “1.23E + 10.”
If numexpr exceeds the limits for numeric values, an error occurs.

Relational expressions that compare for less than (<), greater than (>), or not
equal (< >) can use a STRS function only on one side of the inequality sign.

USR

Branches to a machine language program, optionally passing values.

Format: USR(memadr [.numexpr ...])
Example: A = USR(1536,ADR(AS$),ADR(B$))

When BASIC encounters a USR function, it pushes its current location within
the BASIC program on the hardware stack and calls the machine language program
which starts at memory location memadr. The machine language routine must
already be there. Figure 11-4 illustrates how the USR function uses the hardware
stack.

Function Arguments

The value of each USR function argument, numexpr, must be between 0 and 65535.
BASIC passes the values to the machine language program via the hardware stack.
Starting with the last numexpr on the list, BASIC evaluates each expression,
converts the value to a two-byte hexadecimal integer, and pushes the integer onto
the hardware stack (Figure 11-4). After pushing the final value onto the stack, it
pushes a one-byte count of the number of arguments. The machine language
program must pull all this off the stack (with PLA instructions, for example) before
it returns to BASIC. Evenif there are no arguments, the machine language program
must pull the one-byte argument count off the stack.

402 A GUIDE TO ATARI 400/800 COMPUTERS

Current
top of stack

Number of USR arguments

First USR argument \

Second USR argument

Zero or more
arguments allowed

b)]
0
b)]
[{§

Last USR argument

Return address in
BASIC program

Contents of stack
before USR A

b)Y
TC
148

Bottom of
stack

NOTE: The low byte is first and the high byte is second in all two-byte stack values. The starting
address of the machine language routine is not pushed onto the stack, nor is it included
in the argument count.

FIGURE 11-4. USR and the hardware stack

Function Value

The machine language program can return a two-byte hexadecimal value via
memory locations 212 and 213, low byte in 212, high byte in 213. When the machine
language program returns, BASIC converts the contents of these locations to a
numeric value between 0 and 65535.

Returning to BASIC

The machine language program returns to BASIC by executing an assembly
language RTS instruction, which pulls the return location off the hardware stack
(Figure 11-4). This fact makes it clear why the machine language program must pull
all argument-related data off the stack before returning.

VAL converts a numeric string to a numeric value.
Format: VAL(string)

Chapter 11: COMPENDIUM OF BASIC STATEMENTS AND FUNCTIONS 403

Any number of blank spaces

Optional plus or minus sign

Any number of digits (0 through 9),
in any order

Optional decimal point

Any number of fraction digits
(0 through 9), in any order

Optional exponent, comprising:
Capital letter E
Optional plus or minus sign
One or two digits

Any number of blank spaces
.,L. P S0 Sy i — I

[1 H+£}1] D. [-][1.3‘.:] [Ef£3D[DI] []

FIGURE 11-5. Acceptable numeric format for VAL

Example: TOT = VAL(AS$) + VAL(BY)

Returns the numeric value represented by string. If the first character of string is
not a numeric character, an error occurs. Otherwise, szring is converted character by
character until a non-numeric character is encountered. Figure 11-5 illustrates
acceptable numeric format in string values.

If the numeric value of string is too large or too small (for example, 1E99), an
error occurs.

A
ERROR MESSAGES
AND EXPLANATIONS

The ATARI computer reports errors by number. This appendix explains what
those numbers mean. Some of the error titles in this appendix differ slightly from
error titles in standard Atari, Inc., manuals. In those cases, the standard title
appears in lighter type directly beneath the title used in this appendix.

2 Out of Memory
Memory Insufficient

There is not enough RAM available for the BASIC program or variables, or there
are too many levels of FOR-NEXT loop nesting or subroutine nesting.

3 Bad Value

Value Error
A numeric value is too large, too small, or negative when it should be positive.
4 Too Many Variables

A program can have at most 128 different variable names. Variable names once
used but now absent may still count toward this limit (see Figure 11-1).

5 String Length Exceeded
String Length Error

A substring specifies a character past the end of the dimensioned string length.

405

406 A GUIDE TO ATARI 400/800 COMPUTERS

6 DATA List Exhausted
Out of Data Error

A READ statement tried to read past the end of the DATA statement list of values.

7 Number Greater Than 32767

A numeric value is negative or greater than 32767 in a situation where such a value is
not allowed.

8 INPUT Statement Type Mismatch
INPUT Statement Error
An INPUT statement encountered a mismatch betweeen variable and value type.

Nurmeric values cannot contain letters, puctuation, graphics characters, and so
forth.

9 Array or String Dimension Error

A DIM statement includes a string variable or array that is already dimensioned, or
an array larger than 32,767 bytes. Or, the program tried to use an undimensioned
string variable or array, or a nonexistent array element.

10 Expression Too Complex
Argument Stack Overflow

An expression has too many levels of parentheses or function nesting.

11 Numeric Overflow
Floating Point Overflow/Underflow Error

The program tried to divide by zero, or in some other way tried to calculate or use a
number larger in magnitude than 9.99999999 X 10°".

12 Line Not Found

A GOSUB, GOTO, IF-THEN, ON-GOSUB, or ON-GOTO statement tried to
branch to a nonexistent line number.

13 NEXT Without FOR

No Matching FOR Statement
No FOR statement was executed for the NEXT statement just executed. Possibly
nested FOR-NEXT loops are crossed. A POP statement (which does not follow a

GOSUB statement) in the middle of a FOR-NEXT loop effectively disables the
most recently executed FOR statement.

Appendix A: ERROR MESSAGES AND EXPLANATIONS 407

14 Line Too Long

The statement is too complex or exceeds one logical line.

15 GOSUB or FOR Line Deleted

A RETURN or NEXT statement can no longer find the line which contained its
companion GOSUB or FOR statement.

16 RETURN Without GOSUB
RETURN Error
A RETURN statement was executed before a GOSUB statement.

17 Undecipherable Statement Encountered
Garbage Error

Faulty RAM, a POKE statement, or a machine language subroutine changed a
program statement to meaningless, unexecutable garbage.

18 Invalid String Character

The program tried to convert a non-numeric string to a numeric value with the VAL
function.

19 Program Too Large
LOAD Program Too Long

The program being loaded will not fit in the available RAM.

20 Bad Channel Number

Device Number Larger

The program tried to use channel 0 or a channel number larger than 7.

21 Not LOAD Format
LOAD File Error

A LOAD statement tried to load a program and found data or a program that was
recorded by the CSAVE or ENTER statement.

128 BREAK Abort

You pressed the BREAK key while the computer was in the middle of an input or
output operation.

129 Channel Already Open
IOCB Already Open

The program tried to use a channel that was already in use. BASIC graphics

408 A GUIDE TO ATARI 400/800 COMPUTERS

statements automatically use channel 6; other statements use channel 7. When this
error occurs, the troublesome channel may be automatically closed.

130 Unknown Device
Nonexistent Device

The program tried to use an unknown device. Table 11-10 lists standard device
names. Note that the serial ports (device names R:, R1:, R2:, R3:, and R4:) are
recognized only if the RS-232 serial device handler is present as the result of a
successful boot when you turned on the computer (see Chapter 2).

131 Output Only
IOCB Write Only

A GET or INPUT statement used a channel opened for output only.

132 XIO Syntax Error
Invalid Command

Something is wrong with an XIO command.

133 Channel Not Open
Device or File Not Open

The program tried to use a channel before opening it.

134 Unknown Channel Number
Bad IOCB Number

The program can only use channels 1, 2, 3,4, 5, 6, and 7.

135 Input Only
IOCB Read Only

A PRINT or PUT statement tried to use a channel that was open for input only.

136 End of File
EOF

The program encountered an end-of-file record or tried to read a disk sector that
was not part of the open file.

137 Record Truncated
Truncated Record

The computer encountered a data record longer than 256 bytes and truncated it.

Appendix A: ERROR MESSAGES AND EXPLANATIONS 409

138 Device Does Not Respond
Device Timeout

The specified external device does not respond in a reasonable amount of time.
Make sure that all power switches are on, all connecting cables are properly and
securely attached, and all ONLINE/LOCAL switches are in the “online” position.

139 Device Malfunctions or Refuses Command
Device NAK

The program recorder or disk drive malfunctioned or cannot perform a command.
The ATARI 850 Interface Module cannot perform a command, typically five-bit,
six-bit, or seven-bit input at a too-high baud rate, or serial device not ready
(readiness checking enabled).

140 Framing Error
Serial Bus

Serial bus data inconsistency. Cassette or diskette may be faulty or defective.

141 Cursor Out of Range

Row and column limits vary with different graphics modes (see Table 11-7).

142 Data Frame Overrun
Serial Bus Data Frame Overrun

Serial bus data inconsistency. Cassette or diskette may be faulty or defective.

143 Data Frame Checksum
Serial Bus Data Frame Checksum

Serial bus data inconsistency. Bad recording on, or readback from, cassette or
diskette. Cassette or diskette may be faulty or defective.

144 Disk Error
Device Done Error

The diskette is physically protected against writing, or the diskette directory is
scrambled.

145 Read-After-Write Compare Error, or
Bad Screen Mode Handler

The disk drive detected a difference between what it wrote and what it was supposed
to write. Or, there is something wrong with the screen handler.

410 A GUIDE TO ATARI 400/800 COMPUTERS

146 Function Not Implemented

The program tried to output to the keyboard, input from the printer, or some such
impossible action.

147 Insufficient RAM for Graphics Mode
Insufficient RAM

Different graphics modes require different amounts of RAM (see Table 11-7).

150 Serial Port Open
Port Already Open

Each serial port can be open to only one channel at a time.

151 Concurrent Mode Error
Concurrent Mode I/O Not Enabled

A serial port must be opened for concurrent mode before enabling current mode
input/output with the XIO 40 statement (see Tables 11-8 and 11-14).

152 Concurrent Mode Buffer Error
Illegal User-Supplied Buffer

The program specified an inconsistent buffer length and address during the startup
of concurrent input/output using the optional program-provided buffer feature.

153 Concurrent Mode Active
Active Concurrent Mode I/O Error

The program tried to conduct input or output on a serial port while another serial
port was open and active in concurrent mode.

154 Concurrent Mode Inactive
-Concurrent Mode I/O Not Active

The input or output just attempted via a serial port requires concurrent mode.

160 Drive Number Unknown
Drive Number Error

The drive number can only be D:, D1:, D2:, D3:, or D4..

161 Too Many Files Open

Normally, only three disk files can be open at the same time. Chapter 7 explains a
way to extend this limit with DOS 2.0S.

Appendix A: ERROR MESSAGES AND EXPLANATIONS 411

162 Disk Full

There is no room on the diskette; all sectors are in use.

163 Unrecoverable System Error
Unrecoverable System Data I/O Error

During the input or output of data the computer found an error which it cannot
determine the cause of nor recover from.

164 File Number Mismatch

A POINT statement moved the file pointer to a sector not part of the open file. Or, a
disk file is scrambled; the intra-sector links are disorganized and inconsistent.

165 Bad File Name
File Name Error

A file name started with a lower-case letter, contained illegal characters, or used
wild card characters (and ?) improperly.

166 POINT Data Length Error

A POINT statement tried to move to a nonexistent byte number in a sector.

167 File Locked

Locked disk files cannot be written to or erased, or have their names changed.

168 Unknown XIO Command
Command Invalid

The program tried to use an X1O command that does not exist or is not defined for
the specified device.

169 Directory Full

A diskette directory has room for 64 file names. The amount of disk space available
(number of sectors free) has no bearing on this.

170 File Not Found

The specified file name is not in the directory of the diskette now in the specified disk
drive.

171 POINT Invalid

The program tried to access a disk sector that is not part of the open file.

B

STATUS STATEMENT

CODES

This appendix lists the values returned by the STATUS statement, followed by a
message telling what the number means. For a more detailed description of the
messages, see Appendix A.

412

Decimal
Code

1

3
128
129
130
131
133
134
135
136
137
138
139
140
141
142
143

Meaning

Operation complete and OK

End of file approaching: next read gets last data in file*
BREAK abort

I/O channel already open (IOCB in use)
Unknown device

Opened for write only

Device or file not open

Unknown I/O channel number

Opened for read only

End of file

Record truncated

Device does not respond

Device malfunctions or refuses command
Serial bus input framing error

Cursor out of range

Serial bus data frame overrun error
Serial bus data frame checksum error

*This code differs from the error code in Appendix A.

Appendix B: STATUS STATEMENT CODES

413

Decimal
Code

144
145
146
147
160
161
162
163
164
165
166
167
168
169
170
171

Meaning

Disk write-protected

Bad screen mode/Read-after-write compare error
Function not supported by handler
Insufficient RAM for screen mode
Disk drive number unknown

Too many open disk files

Disk full

Fatal 1/O error

Disk file number mismatch

File name error

POINT data length error

File locked

Unknown XIO command
Directory full (64 files)

File not found

POINT invalid

C
DERIVED
TRIGONOMETRIC
FUNCTIONS

While the following list of derived functions is by no means complete, it does
provide some of the most frequently used formulas. Certain values of x will
invalidate some functions (for example, if COS(x) = 0 then SEC(x) is nonreal), so
your program should check for them.

ARCCOS(x) = -ATN(x/SQR(-x % x + 1)) + 1.5707633
Returns the inverse cosine of x(ABS(x) <1).

ARCCOT(x) = -ATN(x) + 1.5707633

Returns the inverse cotangent of x.
ARCCOSH(x) = LOG(x + SQR(x * x - 1))

Returns the inverse hyperbolic cosine of x (x> = 1).
ARCCOTH(x) = LOG((x + 1)/(x - 1))/2

Returns the inverse hyperbolic cotangent of x (ABS (x> 1).

ARCCSC(x) = ATN(1/SQR(x * x - 1)) + (SGN(x) - 1) * 1.5707633
Returns the inverse cosecant of x(ABS (x) > 1).

ARCCSCH(x) = LOG((SGN(x) * SQR(x # x + 1) + 1)/x)
Returns the inverse hyperbolic cosecant of x (x > 0).
ARCSEC(x) = ATN((SQR(x * x - 1)) + (SGN(x) - 1) * 1.5707633
Returns the inverse secant of x(ABS(x) > = 1).
ARCSECH(x) = LOG((SQR(-x * x + 1) + 1)/x)
Returns the inverse hyperbolic secant of x (0 < x < = 1).
ARCSIN(x) = ATN(x/SQR(-x * x + 1))
Returns the inverse sine of x (ABS(x)< 1).

414

Appendix C: DERIVED TRIGONOMETRIC FUNCTIONS

415

ARCSINH(x) = LOG(x + SQR(x * x + 1))
Returns the inverse hyperbolic sine of x.
ARCTANH(x) = LOG((1 + x)/(] - x))/2
Returns the inverse hyperbolic tangent of x (ABS(x) < 1).
COSH(x) = (EXP(x) + EXP(-x))/2
Returns the hyperbolic cosine of x.
COT(x) = COS(x)/SIN(x)
Returns the cotangent of x(x <> 0).
COTH(x) = EXP(-x)/(EXP(x) - EXP(-x)) % 2 + I
Returns the hyperbolic cotangent of x (x <> 0).
CSC(x) = 1/SIN(x)
Returns the cosecant of x (x <> 0).
CSCH(x) = 2/(EXP(x) - EXP(-x))
Returns the hyperbolic cosecant of x (x <> 0).
LOG,(x) = LOG(x)/LOG(a)
Returns the base a logarithm of x (a > 0, x> 0).
LOGuo(x) = LOG(x)/2.30258509
Returns the common (base ten) logarithm of x(x > 0).
MODa(x) = INT((x/a - INT(x/a)) % a +0.05) * SGN(x/a)
Returns x modulo a: the remainder after division of x by a(a <> 0).
SEC(x) = 1/COS(x)
Returns the secant of x (x <> m /2).
SECH(x) = 2/(EXP(x) + EXP(-x))
Returns the hyperbolic secant of x.
SINH(x) = (EXP(x) - EXP(-x))/2
Returns the hyperbolic sine of x.
TAN(x) = SIN(x)/ COS(x)
Returns the tangent of x (x <> 0).
TANH(x) = -EXP(-x)/EXP(x) + EXP(-x)) * 2 + 1
Returns the hyperbolic tangent of x.

D
CODES,
CHARACTERS,
AND KEYSTROKES

Table D-1 lists all 256 characters in the standard ATARI display screen graphics
mode 0 character set. It gives the ATASCII code for each character. You can use the
code with the CHRS function to generate the character itself. All these characters
can also be produced by a keystroke or combination of keystrokes. Table D-1 also
includes that information.

The keystroke(s) shown in Table D-1 always produce the code number indicated.
As long as the computer is operating in graphics mode 0, they also generate the
character shown. But in other graphics modes, a particular code may produce a
different character (see Table 11-4), or even a graphics dot.

A few of the codes generate control characters. When displayed by a PRINT
statement, nothing actually appears on the screen. Instead, the cursor moves or
some other control process occurs. You can output control characters with a
PRINT statement: either use the CHRS function or type an escape sequence inside
quotation marks (see Chapter 4). When you type an escape sequence, a character
appears on the screen, but the control process does not occur. The process happens
only when the control character is displayed while the program is running. The
character you see only represents the control process that will take place. However,
if a program displays ATASCII code 27 immediately before the control character,
the representative character displays and the control process does not occur. Table
D-1 shows the representative characters, marked with footnotes that explain the
control processes the characters implement.

416

Appendix D: CODES, CHARACTERS, AND KEYSTROKES 417

Lower-Case Characters

Many of the characters can be typed directly only when the keyboard is in lower-
case mode. Such characters are marked in the “Keystrokes to Produce Character”
column of Table D-1 with the symbol (LOWR). Pressing the LOWR key once puts the
keyboard in lower-case mode. Pressing the CAPS key (SHIFT-LOWR key) puts the
keyboard back in upper-case mode.

Inverse Characters

Almost half the characters are inverse characters. To type them directly, the
keyboard must be in inverse mode. Such characters are marked in the “Keystrokes
to Produce Character” column of Table D-1 with the symbol (J\). Pressing the
key once puts the keyboard in inverse mode. Pressing it again puts it in normal
mode. Every time this key is pressed, it switches to the opposite mode.

TABLE D-1. Codes, Characters, and Keystrokes

8 8

= 5 8 £.5 = 5 5 .5

— S -~ D = = =g - D =
e8| =& | ® 2o T 22 88 | =& | » 8. T 2=
Qo < O <0 - a0 < Q <0 - &)
0 IE NULL CTRL- | E VT CTRL-K
1 II‘ SOH CTRL-A 12 E FF CTRL-L
2 l] STX CTRL-B 13 E} CR CTRL-M
3 E] ETX CTRL-C 14 l;' SO CTRL-N
4 E EOT CTRL-D 15 D Sl CTRL-O
5 m ENQ CTRL-E 16 [EJ DLE CTRL-P
6 ACK CTRL-F 17 EI DClI CTRL-Q
7 BEL CTRL-G 18 E] DC2 CTRL-R
8 gl BS CTRL-H 19 DC3 CTRL-S
9 E] HT CTRL-I 20 E] DC4 CTRL-T
10 IE] LF CTRL-J 21 B NAK CTRL-U

A GUIDE TO ATARI 400/800 COMPUTERS

418

TABLE D-1. Codes, Characters, and Keystrokes (continued)

1)EIRY)

aonpoid * g = i — o = ~) < w o ~ = =) -~V 1
0} S3)01)SAdY &
(Auy 3p)
)eiey) * #* , ' = (=] — (o] o <+ g} el ~ 0 = - vV n
DSV
13)oeiey) S H H ., — | | | | 2 =IRES el |, P
[IDSVLV A . g EOCH R I Ao I I 3) R) R Oy o
PO,
ﬂv U o 24 <t LAl O r~ 0 (= (=] = o o <t v O [Sl o o] () () =
[Bwnaq < < < < < < < < v Lal v v v v v Ul sl s O O
L% 11 =
mnpodd | 5 B ¥ o 8 @ B § 8 4 B £ & £ & £ E E £ £
O O] O] B = wm wm 4 Zl 2 7 Z % %z %] %] %] 7]
(fuy 31) 8
I13)dele Z ' o = 14 %
pew | B B X g BE 2 B B 2 B 5 .
7 = " N NER
msyv | 2
— o~ Lag) - wn
wosvay | (= (] (=]] (2]] (4] (=] (] (0] [] (=] (=] (5] [s] [2e] o] [-_] [~ [~
5= £ ~ m
TSI = = | | | 0G| (2
3po) = © o = —_
g | 8 8 % 8 8 & 8 8 8 ® 8 8 3 8 %8 5 % 8 8 %

419

Appendix D: CODES, CHARACTERS, AND KEYSTROKES

TABLE D-1. Codes, Characters, and Keystrokes (continued)

13108IBY)D " " 3 = _ M W W W r\nz
4 ! ! _ . ._. R R R R R
S.emi & o = P > F X > N p E E £ E 2 E 2 £ 5 2
0) SaOIISAd =
S e z % & % % 6 2 2 2 2 2
(Auy 31)
npemRy) | ¥ ©w 2 > - R - o © o W o
DSV
IR)RIBY) = : x - : -
wsvv | (2] [=B 2] = B B b (=] A [L (o] [#] (2] [5] (2]
PR Y 3 T 88 5 8 2R 3 & I &’ X 5& & 8 3
—ﬂEmUOQ (@)} (o)} (@)} (=)} [=)) [=)} m m
19)08IBYD i) H
Janpoig N m L < @M U A @WK O E - =s ¥ oa 2 ZzZ 0O & O
0] S 013SA3) » o
(Auy 31)
13)08IBY) A o ® < m @] o (SS9 (4] o) —_ 7 =3 iR o @) -9 o
IIDSV
s | R JEHEEHEEEE
GRT £y o ... =l =] e o
msviy | 7 = et — x| 2] =] m -
po)H & &

420

A GUIDE TO ATARI 400/800 COMPUTERS

TABLE D-1. Codes, Characters, and Keystrokes (continued)

2 B
w) w
— = & 3 s o 5 _ =) v v 3
Q = D=1 - -~ -~ -~
E. |28 | =8% | 2388 |E,|R8|=8% | 283
$% | cF| 957 | 23E | 5% |28 | 557 |g3f
= G = =
A0 | «C | «88 | 2&8 | ad | <5 | <8 | 2&£8
102 o+ f (LOWR) F 122 z (LOWR) Z
103 g (LOWR) G 123 E { CTRI;
104 h (LOWR) H 124 m | SHIFT- =
2 6 ESC\CTRL-<
105 i LowR) 1 | 125 @) i
ESC\SHIFT-<|
. . 7
106 J (LOWR) I 126 E a~ ESC\BACK S
107 k (LOWR) K 127 II’R DEL ESC\TAB
108 II] 1 (LOWR) L 128 u (A\) CTRL-,
109 ™ m (LOWR) M 129 I} (M) CTRL-A
110 |E n LowrR) N | 130 .] (M) CTRL-B
111 0 (LOWR) O 131 u (A) CTRL-C
112 p (LOWR) P 132 n (M) CTRL-D
113 ¥ q (LOWR) Q 133 ﬂ (M) CTRL-E
114 r (LOWR) R 134 (A\) CTRL-F
115 S (LOWR) S 135 (N) CTRL-G
116 t (LOWR) T 136 ﬂ (/\) CTRL-H
117 @ u (LOWR) U 137 H () CTRL-I
118 v (LOWR) V 138 I! (N) CTRL-J
119 w (LOWR) W 139 n (M) CTRL-K
120 X (LOWR) X 140 n (N) CTRL-L
121 y (LOWR) Y 141 i () CTRL-M

Appendix D: CODES, CHARACTERS, AND KEYSTROKES

421

TABLE D-1. Codes, Characters, and Keystrokes (continued)

=} =}

T T - U N -
32| SE | QES | 28E |23 |cSE| 92| 232
AC | <O < U2 oA O AL | <0 <02 | a0
142 ! (A) CTRL-N 162 n () SHIFT-2
143 ﬂ (MN) CTRL-O| 163 m (M) SHIFT-3
144 E (N) CTRL-P 164 ﬂ (M) SHIFT-4
145 n (N) CTRL-Q| 165 _"; (M) SHIFT-5
146 = (N) CTRL-R| 166 ;_‘{ (A) SHIFT-6
147 (A) CTRLS | 167 - (1) SHIFT-7
148 n (N) CTRL-T 168 (M) SHIFT-9
149 E (A) CTRL-U 169 (A) SHIFT-0
150 m (N) CTRL-V 170 3) *
151 n (A) CTRL-W| 171 ﬂ (N +
152 n (AN) CTRL-X 172 N
153 u (N) CTRL-Y 173 u N -
154 u (M) CTRLZ| 174 n N .
155 | EOL’ b 175 N
156 '“ sowsurt- |76 | i (M) 0
157 ” ESC\SHIFT>| 177 “ (n) 1
158 '2 _]‘?i%\CTR'f 178 (M) 2
159 | EY” BSCEFT || 17 m (A3
L . .(S)::?\CE par | 180 a4
161 n (A) SHIFT-1| 181 e (NS

422

A GUIDE TO ATARI 400/800 COMPUTERS

TABLE D-1. Codes, Characters, and Keystrokes (continued)

L £

s |BE| _ 5o |ds8 | |BE|_8-|§,.:
Eg |2 | G55 | 835 | f¢ |25 |C0f< | £3¢8
88 |56 | %8s | §£6 | &8 |56 | %8s | ££5
182 &) 6 202 N J

183 N 7 203 (N K

184 o4 M 8 204 I! (ML

185 o N9 205 (MM

186 (N sHIFT- | 206 (M) N

187 B (ONE 207 0} (N O

188 () < 08 | (B (A) P

189 E (N = 209) (M Q

190 N > 210 m (MR

191 W (M) SHIFT-/| 211 [ONES

192 m (M) SHIFT-8| 212 T N T

193 (M) A 213 (MU

194 m (M B 214 | RW (N)V

195 i (N C 215 (MW

96 | B (M) D 216 (M) X

197 m (n) E 217 (N Y

198 m (N F 218 N Z

199 m N G 219 m (A) SHIFT-,
200 m (M) H 220 (M) SHIFT-+
201 1 N 1 221 m (A) SHIFT-.

Appendix D: CODES, CHARACTERS, AND KEYSTROKES 423

TABLE D-1. Codes, Characters, and Keystrokes (continued)

8 e
B & 5 .5 =5 5 .5
— ey -~ D - —~ o Rt -~ D -
E 3% | =8% | £3% |E. |28 | %2 | £5¢
e |SE| Q3% | 532 |82 |22 | 222 | 583
] e
Ao | <0 | «0=Z & O Ao | <0 <02 | &0
222 (M) SHIFT-# 239 (N) (LOWR)
0
2 |) swirr- | 240 | [(N (LOWR)
P
224 u (MN) CTRL-. 241 m (MN) (LOWR)
Q
225) cown) | 242 | R (A) (LOWR)
A = R
226 m (N) (LOWR) | 243 E (N (LOWR)
B S
227 m (M) (LOWR) | 244 1, (M) (LOWR)
¢ T
2 | 8 w aown) | 245 | [(N) (LOWR)
D U
229 m (M) (LOWR) | 246 WA (N) (LOWR)
E v
230 n (N) (LOWR) | 247 (M) (LOWR)
F w
231 m (N) (LOWR) 248 (M\) (LOWR)
G - X
232 () (LOWR) 249 (M) (LOWR)
H = Y
13 n M) (Lowr) | 250 o (1) (LowR)
1
234 u () (LOWR) 251 n (M) CTRL-;
J
235 (M) (LowR) | 252 Il O s
K
14
236 n (N) (LOWR) 253 E ESC\CTRL-2
L
15
7 AN) ESC\
237 1 NN i 254 ﬂ (CTE{L-BACK s
16
ik m (N <k0\\’ll> 255 I] (éT;)C\CTRL->
Notes

"The character [ch represents a control character. In most cases, this control character does nothing;
CHR$(27) is generally a nondisplaying character. However, if the next character displayed is a
control character (ATASCII codes 27, 28, 29, 30, 31, 125, 126, 127, 156, 157, 158, 159, 253, 254, or
255), the control process does not take place. Instead, the representative character itself appears.

424 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE D-1. Codes, Characters, and Keystrokes (continued)

Notes (continued):

The character (%] represents the control character which moves the cursor up one row. If the
character displayed just before this was ATASCII code 27, the character (#] displays; the cursor does
not move.

*The character represents the control character which moves the cursor down one row. If the
character displayed just before this was ATASCII code 27, the character] displays; the cursor does
not move.

*The character represents the control character which moves the cursor one column left. If the
character displayed just before this was ATASCII code 27, the character displays; the cursor does
not move.

®The character represents the control character which moves the cursor one column right. If the
character displayed just before this was ATASCII code 27, the character displays; the cursor does
not move.

5The character B) represents the control character which clears the screen and moves the cursor to
the home position. If the character displayed just before this was ATASCII code 27, the character L3}
displays; the screen is not cleared.

"The character 4] represents the control character which moves the cursor one column left and
replaces the character there with a blank space. If the character displayed just before this was
ATASCII code 27, the character ki displays; the cursor does not move.

8The character (#] represents the control character which advances the cursor to the next tab stop. If
the character displayed just before this was ATASCII code 27, the character L3 displays; the cursor
does not move.

“The ATASCII end-of-line character.

The character [represents the control character which deletes the line on which the cursor is
located. If the character displayed just before this was ATASCII code 27, the character 3 displays:
the deletion does not occur.

"The character £ represents the control character which inserts a line above the one on which the
cursor is located. If the character displayed just before this was ATASCII code 27, the character £
displays; the insertion does not occur.

2The character & represents the control character which clears the tab stop (if any) at the current
cursor position. If the character displayed just before this was ATASCII code 27, the character &
displays; no tab stop is affected.

"The character represents the control character which sets a tab stop at the current cursor
position. If the character displayed just before this was ATASCII code 27, the character displays;
no tab stop is set.

“The character [represents the control character which beeps the built-in speaker; nothing is
displayed. If the character displayed just before this was ATASCII code 27, the character [
displays: the speaker remains silent.

®The character Kl represents the control character which deletes the character to the right of the
cursor, shifting the remainder of the logical line one space to the left. If the character displayed just
before this was ATASCII code 27, the character Kl displays; no deletion occurs.

The character [3 represents the control character which inserts a blank space to the right of the
cursor, shifting the remainder of the logical line one space to the right. If the character displayed just
before this was ATASCII code 27, the character [3 displays; no insertion occurs.

ABBREVIATIONS

E

ATARI BASIC
KEYWORDS AND

Keyword Abbrev. Keyword Abbrey. Keyword Abbrev.
ABS GOTO G. PUT PU.
ADR GRAPHICS | GR. RAD

AND IF READ REA.
ASC INPUT L. REM R. or .
ATN INT RESTORE RES.
BYE B. LEN RETURN RET.
CLOAD CLOA. LET LE. RND

CHRS LIST L. RUN RU.
CLOG LOAD LO. SAVE S.
CLOSE CL: LOCATE LOC. SETCOLOR SE.
CLR LOG SGN

COLOR C. LPRINT LP. SIN

COM NEW SOUND SO.
CONT CON. NEXT N. SQR

COS NOT STATUS ST.
CSAVE CS. NOTE NO. STEP

DATA D. ON STICK

DEG DE. OPEN 0. STRIG

DIM DI. OR STOP STO.
DOS DO. PADDLE STR$

DRAWTO DR. PEEK THEN

END PLOT PL. TO

ENTER B POINT B. TRAP T.
EXP POKE POK. USR

FOR F. POP VAL

FRE POSITION POS. XIO X.
GET GE. PRINT PR. or ?

GOSUB GOS. PTRIG

425

F
MEMORY USAGE

The ATARI computer memory is divided into three general categories: random
access memory (RAM), read-only memory (ROM), and input/output locations
(I/0O). Figure F-1 shows how memory is generally allocated onan ATARI compu-
ter. The other figures and tables in this appendix amplify this figure.

426

427

Appendix F: MEMORY USAGE

dew Krowew 199ndwod 008 /00y [AVLV "I-4 24091

Y4

WV 23ed
0137 JISVd
8- 219l

3391

09601

116t

Y L zis
oIsvd £q ag3punie)
pasn NV Y uapIsay WV washs
L-d 2lqeL pue waskg 3uneiadQ
Sunerad 4Aq v=d AqEL
Pasn AVY 1611
G-4 3lqel Z6L1
6L801
138euepy
waIsAg a1y pue
SOa 49 pasn WV Y
0l-4
‘674 SAIqEL
afesn
Klowa
T-4 2and14
WOX ISV
9-4 91qel.
8YTES
sdiyd 0/1
€4 9[9BL 89¢8¢
SI01097
7 W2ISAS
Sunesadg
WO A 99BL
walshs £ES8S
SuneradQ
-4 ?1qeL
SESS9 SESS9

agesn Aloway "7~ AUNDI]

e :_./_H_
(apotw soyde: B
uo spuadap az18 1dueNd) Seydsic) § INVY 2314 H_HEHE

(L= dqu 298) VY waisss Funeiadg

(1uasasd 2a3p

A GUIDE TO ATARI 400/800 COMPUTERS

428

12 ISV I WV Disve B

| pue g-.| sajge| 228) mCCB

228 DSV 1)) 2FpL

ATpLILIRD YTy §

(9-4 214

wva[]
wou[_]

:puasdag

EE........................

A

NO

N9l

ARt
pasnup) pasnup pasnup) pasnu[)
(-1 Qe 23%) sdiy2 O | (€= 21qeL 228) sdiyd O | (=1 219 298) sdiyd O | (g4 21qe] 228) sdiyd2 O |

saunnods juted Funeolq saunnod wiod sunvolq saunnol wod Funeo|| saunnod witod Funeoy _
- = A9

(1--1 alqe 22%) (-4 21qe] 225) (1= 21qe | 23s) (1-4 aqe] 2as)

NOY wajshsg JNOY walsig J0{0}: RUEIINN AOY wajsis

Bunerdg 3uneladQ dunesdg 3unesadg

Nt

sadpLIe) ON

(191ndwod 08 1YV .LV)
Squ 28pe) iy

(1ndwod go§ AV LYV)
sadpuae) sy pue 1yac|

{uQ a8pnae) 1|

Appendix F: MEMORY USAGE 429

65536
Operating system ROM (see Table F-1)
57344
Floating point routines
55296
1 O chips (see Table F-3)
53248
Unused
49152

Left cartridge RO [M, when present

——————————] 40960

Right cartridge RO[M. when present
(ATARI 800 [computer only)

——————————————————— 32768

RAM (8K to | 40K additional) | 24576

10879

DOS, when | present
5
Operating system RAM T,
(see Table F-5)
0
FIGURE F-3. Memory locations without BASIC resident
: 65536
Operating system ROM (see Table F-1)

57344

Floating point routines
- 55296

1/ O chips (see Table F-3)

53248

Unused
49152
BASIC ROM (see Table F-6)
40960
Right cartridge RO}M. when present

(ATARI 800 [computer only)

32768

BASIC program. [buffers. tables.
run-time | stack 24576
(8K to 32K | additional)

10879
DOS, when | present
1792
8K BASIC and Operating system
RAM (see Table F-7)
0

FIGURE F-4. Memory locations with standard ATARI BASIC resident

430 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE F-1. Operating System ROM
(Memory Locations 55296-65535)

Location Usage
55296-57393 Floating point routines
57344-58367 Character set
58368-58533 Vectors (see Table F-2)
58534-59092 ClO
59093-59715 Interrupt handler
59716-60905 S10
60906-61047 Disk handler
61048-61248 Printer handler
61249-61666 Cassette handler
61667-62435 Monitor
62436-65535 Display and keyboard handler

TABLE F-2. Operating System Vectors
(Memory Locations 58368-58533)

Type of

Location Memory Usage
58368-58383 ROM Editor
58384-58399 ROM Screen
58400-58415 ROM Keyboard
58416-58431 ROM Printer
58432-58447 ROM Cassette
58448-58495 ROM Jump vectors
58496-58533 ROM Initial RAM vectors

TABLE F-3. 1/O Chips (Memory Locations 53248-55295)

Type of
Location Memory Usage

53248-53503 1/0 CTIA or GTIA
53504-53759 1/0 Unused
54760-54015 10 POKEY
54016-54271 10 PIA
54272-54783 10 ANTIC
54784-55295 1/0 Unused

Appendix F: MEMORY USAGE

431

TABLE F-4. Operating System RAM (Memory Locations 512-1151)

Location

512-553
554-623
624-647
648-655
656-703
704-711
712-735
736-767
768-779
780-793
794-831
832-847
848-863
864-879
880-895
896-911
912-927
928-943
944-959
960-999
1000-1020
1021-1151

Usage

Interrupt vectors
Miscellaneous

Game controllers
Miscellaneous

Screen RAM (depends on graphics mode)
Colors

Spare

Miscellaneous

DCB

Miscellaneous

Handler address tables
| Channel 0 (IOCBO0)
Channel | (IOCBI)
Channel 2 (I0OCB2)
Channel 3 (IOCB3)
Channel 4 (I0OCB4)
Channel 5 (IOCBS)
Channel 6 (IOCB6)
Channel 7 (IOCB7)
Printer buffer

Spare

Cassette buffer

ejelcfololslele

TABLE F-5. RAM Used by Operating System, Resident Cartridge,
or Free RAM (Memory Locations 0-2047)

Location

0-127
128-255
256-511
512-1151

1152-1791
1792-2047

Usage

Operating system zero page RAM

User zero page RAM

Stack

Operating System RAM (see Table F-4)
User RAM

User Boot Area

432 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE F-6. BASIC* ROM (Memory Locations 40960-49151)

Location

40960-41036
41037-41055
41056-42081
42082-42158
42159-42508
42509-43134
43135-43358
43359-43519
43520-43631
43632-43743
43744-44094
44095-44163
44164-45001
45002-45320
45321-47127
47128-47381
47382-47542
47543-47732
47733-48548
48549-49151

* Applies to standard ATARI BASIC only.

Usage

Cold start

Warm start

Syntax

Search

Statement name table
Syntax tables
Memory manager
Execute CONT
Statement table
Operator table
Execute expression
Operator precedence
Execute operator
Execute function
Execute statement
CONT subroutines
Errors

Graphics

1/ O routines
Floating point

TABLE F-7. RAM Used by BASIC* (Memory Locations 0-255F)

Location

0-127
128-255
256-511
S512-1151
1152-1405
1406-1535
1536-1791
1792-End of
free RAM

* Applies to standard ATARI BASIC only.
** The actual memory locations depend on program and variable usage.

Usage

Operating system zero page RAM
BASIC zero page RAM (see Table F-8)
Stack
Operating system RAM
Syntax stack
Input line buffer
Free RAM
BASIC program:
Syntax buffer or argument stack**
Name table**
Value table**
Tokenized program**
Array-strings area**
Run-time stack**

Appendix F: MEMORY USAGE

433

TABLE F-8. BASIC Zero Page RAM (Memory Locations 128-255)

Location Usage

128-145 Program pointers
146-202 Misc. BASIC RAM
203-209 Unused

210-255 Floating point work area

TABLE F-9. RAM Used by DOS Version 1.0 and
File Management System (FMS)

Location Usage

1792-4863 File management system RAM
4864-9855 Disk operating system (DOS) RAM
9856-10879 Disk 1/0O buffers

TABLE F-10. RAM Used by DOS Version 2.0S and
File Management System (FMS)

Location Usage
1792-4863 File management system RAM
4864-9855 Disk operating system (DOS) RAM
9856-10879 Drive 1-4 buffers and sector buffers 1-2
10880-LOMEM Disk operating system (DOS)

Utility programs (Sector buffers 3-7)

G
USEFUL PEEK AND
POKE LOCATIONS

Many memory locations are dedicated to certain specific uses. This appendix lists
the locations that are of interest to BASIC programmers. Locations not listed are of
little interest or are most easily accessed via standard BASIC statements. The PEEK
function lets you read the contents of memory locations, and the POKE statement
lets you change the contents.

In BASIC, all memory locations and their contents are expressed in terms of
decimal numbers. Memory locations are addressed by number, from 0 to 65535.
Each memory location contains a numeric value between 0 and 255. It takes two
consecutive memory locations to store values greater than 255. In this case, the total
value equals the value of the first location, plus 256 times the value of the second.
For example, PEEK(85) + 256 * PEEK(86) is the current column position of the
cursor. Conversely, the statements POKE 85, COL - INT(COL/256) * 256 and
POKE 86, INT(COL/256) * 256 change the cursor column to the value of variable
COL.

Some memory locations are known by name as well as numeric location. Such
names are listed in parentheses after the memory location title.

Memory Configuration

14,15 Display Screen Lower Limit (APPMHI)
These locations contain the highest location available for program lines and
variables. Memory above that is used for the screen display.

434

Appendix G: USEFUL PEEK AND POKE LOCATIONS 435

88,89 Screen Memory Address (SAVMSC)
These addresses contain the lowest address of the screen memory. The value at
that address is displayed at the upper left-hand corner of the screen.

106 Top of RAM Address (Most Significant Byte) (RAMTOP)
This location contains a value 16 times the number of 4K RAM blocks present.
PEEK (740)/4 gives the number of 1K blocks present.

741,742 Free Memory High Address (MEMTOP)
Atanytime, PEEK(741) + 256 * PEEK(742) - 1 is the highest memory location
in the free memory area. The value changes when power is turned on, SYSTEM
RESET occurs, or a channel is opened to the display.

743,744 Free Memory Low Address (MEMLO)
This location contains the address of the first location in the free memory region.
The value changes when power is turned on or SYSTEM RESET occurs.

Display Screen

77 Attract Mode On/Off (ATRACT)
Setting this location to 0 disables attract mode on the display screen. This
happens automatically whenever a key on the keyboard is pressed. Setting this
location to 254 enables attract mode. This happens automatically after nine
minutes without a key being pressed.

82 Left Margin of Text Area (LMARGN)
Specifies the column of the graphics mode 0 left margin. PEEK (82) will be
between 0 and 39, 0 being the left edge of the screen. The default is 2.

83 Right Margin of Text Area (RMARGN)
Specifies the column of the graphics mode 0 right margin. PEEK (83) will be
between 0 and 39, 39 being the right edge of the screen. The default is 39.

84 Current Row Cursor Position (ROWCRS)
Specifies the row where the next read or write to the main screen will occur.
PEEK (84) will be at least 0; its highest value depends on the graphics mode (see
Table 11-7).

85,86 Current Column Cursor Position (COLCRS)
Specifies the column where the next read or write to the main screen will occur.
PEEK (85) will be at least 0; its highest value depends on the graphics mode (see
Table 11-7). Location 86 will always be 0 in graphics modes 0 through 7.

87 Display Mode (DINDEX)
This location contains the current screen mode.

90 Starting Graphics Cursor Row (OLDROW)

This location determines the starting row for the DRAWTO and XIO 18 (graph-
ics FILL) statements.

436 A GUIDE TO ATARI 400/800 COMPUTERS

93 Cursor Character Save/Restore (OLDCHR)
This location contains the character that is underneath the visible text cursor.
The value is used to restore the hidden character when the cursor moves.

91,92 Starting Graphics Cursor Column (OLDCOL)
This location determines the starting column for the DRAWTO and XIO 18
(graphics FILL) statements.

94,95 Cursor Memory Address (OLDADR)
This location contains the memory address of the current visible text cursor. The
value is used in conjunction with OLDCHR (location 93) to restore the original
character hidden by the cursor when the cursor moves.

96 Ending Graphics Cursor Row (NEWROW)
This location determines the ending row for the DRAWTO and XIO 18 (graph-
ics FILL) statements.

97,98 Ending Graphics Cursor Column (NEWCOL)
This location determines the ending column for the DRAWTO and XIO 18
(graphics FILL) statements.

201 Display Screen Tab Interval (PTABW)
Specifies the number of columns between each tab stop. The first tab will be at
column number PEEK (201). The default is 10.

656 Text Cursor Row Position (TXTROW)
Specifies the row where the next read or write to the split-screen text window will
occur. PEEK (656) will be between 0 and 3, 0 being the top of the split-screen text
window.

657,658 Text Cursor Column Position (TXTCOL)
Specifies the column position where the next read or write to the split-screen text
window will occur. PEEK (657) will be between 0 and 39, 0 being the first column
of the split-screen text window. Location 658 is always 0 unless you change it.

675-680 Display Screen Tab Stop Map (TABMAP)
The tab stops are retained in a 15-byte (120-bit) map. Each bit corresponds to a
column ona logical line. If the bitis on, a tab stop is set in that column (see Figure
G-1). Whenever you open the display screen (device S: or E:), each byte of this
map is assigned the value 1, thereby providing default tab stops at columns 7, 15,
23, and so on.

752 Cursor Inhibit (CRSINH)
When this location has a value of 0, the display screen cursor will be visible.
When the value is nonzero, the cursor will be invisible. Cursor visibility does not
change until the next time the cursor moves.

755 Character and Cursor Control (CHACT)
This location normally has a value of 2. Other values can make the cursor opaque
orinvisible and can make all characters display upside-down. Table G-1 lists the
other values and characteristics.

Appendix G: USEFUL PEEK AND POKE LOCATIONS 437

Column

Numbers 0 | 2 3 4 5 6 7
[olofo]ofofofo]1] Locationers

Column

Numbers 8 9 10 11 12 13 14 15
[ofofofofofofo]1] rocationers

Column . i

Numbers 112 113 114 115 116 117 118 119 :
[o{ofolofofo]o[r] Locationsso

NOTE: Each bit corresponds to one screen column. If the bit is on, a tab stop is set in that column.
Default condition is illustrated.

FIGURE G-1. Tab stop bit map

TABLE G-1. Cursor and Character Control (Values of PEEK(755))

Decimal Cursor Characters
Value Transparent Opaque Present Absent Normal Inverted
0 X X X
| X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X

756 Character Address Base (CHBAS)
This variable determines which character set will be used in screen modes 1 and 2.
A value of 224 provides the capital letters and number set; a value of 226 provides
the lower-case letters and graphics character set.

765 Fill Data (FILDAT)
This location contains the data value for the region to be filled by an XI10 18
command.

766 Display Control Characters (DSPFLG)
When this location is 0, the ATASCII codes 27-31, 123-127, 187-191, and
251-255 perform their normal display screen control functions (see Table 4-1).
When this location is nonzero, these ATASCII codes generate characters on the
display screen (see Table 4-1).

659 Split-Screen Text Window Screen Mode (TINDEX)
This location contains the current split-screen mode.

438 A GUIDE TO ATARI 400/800 COMPUTERS

660,661 Split-Screen Memory Address (TXTMSC)
These locations contain the lowest address of the split-screen memory. The value
of that address is displayed at the upper-left hand corner of the split-screen text
window.

665-667 Split-Screen Cursor Data
These locations contain the split-screen equivalents of OLDCHR (location 93)
and OLDADR (locations 94 and 95).

763 Last ATASCII Character or Plot Point (ATACHR)
This location contains the ATASCII code for the character most recently written
or read, or the value of the graphics point last displayed. The value at this
location is used to determine the line color when a DRAW or X10 18 (FILL) is
performed.

54273 Character Control Register (CHACTL)
Same as location 755 (CHACT).

Display Lists
512,513 Display List Interrupt Vector (VDSLST)

These locations store the address of the instructions that will be executed in the
event of a display list interrupt.

559 DMA Control Register (SDMCTL)
This location enables or disables direct memory access. The default value is 22,
which enables DMA for fetching display list instructions and for retrieving
normal playfield display data. A value of 0 disables DMA. Table 9-3 lists values
which relate to player-missile DMA.

560,561 Display List Address (SDLST)
This location stores the address of the active display list.

54286 Non-maskable Interrupt Enable (NMIEN)
This location enables or disables the display list interrupt and the vertical blank
interrupt. A value of 0 disables the display list, 128 disables the vertical blank and
enables the display list, and 192 enables both.

Player-Missile Graphics

623 Player/Playfield Priorities (GPRIOR)
This location determines what color will display when players overlap playfield
objects. A value of | gives all players priority over the playfield. A value of 2 gives
players O and | priority over all playfield registers, and priority over players 2 and
3 as well. A value of 4 gives the playfield priority over players. A value of 8 gives
playfield color registers 0 and 1 priority over all players and priority over
playfield registers 2 and 3.

Appendix G: USEFUL PEEK AND POKE LOCATIONS 439

704-707 Player-Missile Color Registers (COLPMO0-COLPM3)
Each of these locations determines the color of a player and its associated missile.
Table 9-4 lists the values which produce the available colors.

53248-53251 Player Horizontal Position Registers (HPOSP0-HPOSP3)
Each of these locations determines the horizontal position of one player. Values
range between 0 (the left edge of the screen) and 277 (the right edge of the screen).

53256-53259 Player Width Registers (SIZEP0-SIZEP3)
Each location changes the magnification factor used to display one player. A
value of 0 or 2 displays a player at normal width, 1 displays twice normal width,
and 3 displays quadruple width.

53260 Missile Width Register (SIZEM)
This location controls the magnification of all four missiles. A value of 0 or 2
displays missiles at normal width, 1 displays twice normal width, and 3 displays
quadruple width.

53277 Graphics Control Register (GRACTL)
Along with location 559 (DMACTL), this location controls DMA for player-
missile graphics. A value of 2 enables player DMA only, a value of 1 enables
missile DMA only, and a value of 3 enables both

54279,54280 Player-Missile Base Register (PMBASE)
These locations contain the starting address of the player-missile definition table.

Cassette Buffer

61 Cassette Buffer Pointer (BPTR)
This location contains a pointer to the next location to be used in the cassette
buffer. The value may be anything from 0 to the value in BLIM (location 650). If
BPTR = BLIM, then the buffer is full if writing or empty if reading.

63 Cassette End-of-File Flag (FEOF)
This location is used by the cassette handler to indicate whether an end-of-file has
been detected. If the value of this location is 0, an end-of-file has not yet been
detected; if the value is not 0, it has been detected.

64 Beep Count (FREQ)
This location contains the number of beeps requested by the cassette handler.

649 Cassette Read/ Write Mode Flag (WMODE)
This location specifies whether the current cassette operation is read (value = 0)
or write (value = 128).

650 Cassette Buffer Size (BLIM)
This location contains the number of active data bytes in the cassette buffer.
BLIM will have a value from 0 to 128.

440 A GUIDE TO ATARI 400/800 COMPUTERS

1021-1151 Cassette Buffer (CASBUF)
These locations are a buffer used by the cassette handler to read data from and
write data to the program recorder.

Keyboard -

17 BREAK Key Flag (BRKKEY)
A 0 in this location indicates that the BREAK key has been pressed.

694 Inverse Video Keystrokes (INVFLG)
When this location is 0, keystrokes generate ATASCII codes for normal video
characters. If the value is nonzero, keystrokes generate ATASCII codes for
inverse video characters.

702 Shift/Control Lock Flag (SHFLOK)
Meaningful values for this location are 0 (normal mode — no locks in effect), 64
(caps lock), and 128 (control lock).

764 Keyboard Character (CH)
This location reports the value of the most recently pressed key, or the value 255,
which indicates no key has been pressed.

767 Start/Stop Display Screen (SSFLAG)
When this location is 0, screen output is not stopped. If the value is 255, output to
the screen is stopped. The value is complemented by pressing CTRL-I.

53279 CONSOLE Switch Port (CONSOL)
This location has two uses. PEEK (53279) tells whether a special function key is
pressed. To ensure an accurate reading, do a POKE 53279,8 before doing a
PEEK(53279). Table G-2 lists the values that result from various combinations
of special function keys.

POKE 53279,0 extends the cone of the built-in speaker. POKE 53279.8
retracts it. Alternate the two statements repeatedly to produce a series of clicks
from the speaker. The operating system effectively does an automatic POKE
53279,8 every 1/60 second.

Sound Control

65 Input/Output Noise Control (SOUNDR)
This location is normally nonzero. In that case, noise is audible over the televi-
sion audio circuit during disk or cassette read and write operations. If this
location is 0, the noise is inhibited.

Printer

29 Printer Buffer Pointer (PBPNT)
This location specifies the current position in the computer’s printer buffer. The
value ranges from 0 to PBUFSZ (location 30).

Appendix G: USEFUL PEEK AND POKE LOCATIONS 441

TABLE G-2. Special Function Key Detection (Values of PEEK (53279))

Decimal Function Key(s)
Value Being Pressed

OPTION, SELECT, and START
OPTION and SELECT

OPTION and START

OPTION

SELECT and START

SELECT

START

None

~NonMpbhWwWN—O

30 Printer Buffer Size (PBUFSZ)
This location specifies the size of the computer’s printer buffer. The value is 40 for
normal mode or 29 for sideways mode.

960-999 Printer Buffer (PRNBUF)
The printer handler collects output from LPRINT statements to the printer in
the computer’s printer buffer, sending it out when an EOL occurs, or when the
buffer is full.

Free Area

1536-1663 Conditionally Available
These locations are normally free for machine language programs, display lists,
and so forth. However, whenever the INPUT statement retrieves more than 128
characters, it uses these locations to hold the characters in excess of 128.

1664-1791 Unconditionally Available

These locations are always free for machine language programs, display lists, and
so forth.

BASIC Program Control

186,187 Stop Line Number (STOPLN)
These locations report the line number in which a BASIC program halts because
of a STOP or TRAP statement, an error, or use of the BREAK key.

195 Error Number (ERRSAYV)
If an error occurs, its number is placed in this location. Appendix A translates
error numbers to messages.

212,213 USR Function Value (FRO0)
A machine.language program or subroutine can use these locations to send a
numeric value to the BASIC program which called it.

251 Radians or Degrees (RADFLG or DEGFLG)
If the value of this location is 0, trigonometric functions calculate in terms of
radians, if 6, in terms of degrees.

442 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE G-3. Interrupt Status/ Enable Bits

Bit Interrupt

0 Timer |

1 Timer 2

2 Timer 4

3 Serial output (byte) transmission finished
4 Serial output data needed

5 Serial input data ready

6 Other key

7 BREAK key

564 and 565 Light Pen Position (LPENH and LPENYV)

Location 564 reports the horizontal position of a light pen. Location 565 reports
the vertical position. These are not the same as the actual screen row and column
numbers. There are 228 horizontal positions (each is called color clock). The
leftmost horizontal position is 67. Each time you move the light pen one position
to the right, the value inlocation 564 increases by 1. After the value reaches 255, it
resets to 0 and resumes counting by 1 from there. The rightmost horizontal
position is 7. There are 96 vertical positions, numbered from 16 at the top of the
screen to 111 at the bottom.

Interrupt Control

53744 IRQ Interrupt Status/Enable (IRQST/IRQEN)
This location reports interrupt status via PEEK, or enables interrupts via POKE.
Each bit corresponds to a different interrupt (see Table G-3). With PEEK, a 0 bit
means the corresponding interrupt is present and a 1 bit means it is not present.
With POKE, a 0 bit disables the corresponding interrupt and a 1 bit enables it.

H
CONVERSION TABLES

This appendix contains the following conversion tables:

- Hexadecimal-Binary Numbers
- Hexadecimal-Decimal Integers

Use Table H-1 to convert between hexadecimal numbers in the range 0-OF and
binary numbers in the range 0000-1111.

Convert larger binary numbers to hexadecimal numbers by converting four
binary digits at a time, working from right to left. If there are fewer than four binary
digits in the leftmost group, add leading zeros. Here is an example:

1001012 = 001001012
N S,
2
2 5
2516

Convert hexadecimal numbers larger than OF to binary one digit at a time. Here is

an example: /37\12

TABLE H-1. Hexadecimal-Binary Conversion

Hexadecimal Binary Hexadecimal Binary
00 0000 08 1000
01 0001 09 1001
02 0010 0A 1010
03 0011 0B 1011
04 0100 0C 1100
05 0101 0D 1101
06 0110 0E 1110
07 0111 OF 1111

443

444

A GUIDE TO ATARI 400/800 COMPUTERS

TABLE H-2. Hexadecimal-Decimal Integer Conversion

The table below provides for direct conversions between hexa-

Hexadecimal fractions may be converted to decimal fractions

decimal integers in the range 0—FFF and decimal integersin as follows:
the range 0-4095. For conversion of larger integers, the
table values may be added to the following figures: |. Express the hexadecimal fraction as an integer times
167", where n is the number of significant hexadecimal
Hexodecimal Decimal Hexadecimal Decimal places to the right of the hexadecimal point.
a1 000 4 096 20 000 131 072 0. CA9BF2), = CA9BF3,, x 1676
02 00C 8 192 30 000 196 608
03 000 12 288 40 000 262 144 2. Find the decimal equivalent of the hexadecimal integer
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216 CA9 BF316 = 13278 |95‘0
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288 3. Multiply the decimal equivalent by 16™"
08 000 32768 90 000 589 824
09 000 36 864 A0 000 655 360 13 278 195
0A 000 40 960 80 000 720 896 x 596 046 448 x 10716
08 000 45 056 C0 000 786 432 0.791 442 096
0C 000 49 152 DO 000 851 948
0D 000 53 248 EO 000 917 504 Decimal fractions may be converted to hexadecimal froctions
OE 000 57 344 FO 000 983 040 by successively multiplying the decimal fraction by 1610
OF 000 61 440 100 000 1 048 576 After each multiplication, the integer portion is removed to
10 000 65 536 200 000 2097 152 form a hexadecimal fraction by building to the right of the
11 000 69 632 300 000 3145728 hexadecimal point. However, since decimal arithmetic is
12 000 73728 400 000 4194 304 used in this conversion, the integer portion of each product
13 000 77 824 500 000 5 242 880 must be converted to hexadecimal numbers.
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032 Example: Convert 0.895)(to its hexadecimal equivalent
16 000 90 112 800 000 8 388 408 0.895
17 000 94 208 900 000 9437 184 i |
18 000 98 304 A00 000 10 485 760 (W%
19 000 102 400 B0O 000 11 534 33%
1A 000 106 496 C00 000 12 582 912 120
1B 000 110 592 D00 000 13 631 488
1C 000 114 688 E00 000 14 680 064 @L‘%
1D 000 118 784 F00 000 15 728 640 //_—
1E 000 122 880 1 000 000 16 777 216 GTM’
IF 000 126 976 2000 000 33 554 432 0.E51 54
0 1 2 3 4 5 6 A 8 9 A B8 € D E F
00 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
03 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05 0080 0081 0082 0083 0084 0085 00865 0087 0088 008? 0090 0091 0092 0093 0094 0095
06 0096 0097 0098 0099 0100 01Q1 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
08 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 018 0187 0188 0189 0190 0191
oC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
oD 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 022G 0221 0222 0223
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

Appendix H: CONVERSION TABLES 445
TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued)

0o 1 2 3 4 5 6 7 8 9 A B cC Db ¢ r
10 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11| 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
1a | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 | 038 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
IC | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
ID | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
IE | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
IF | 049 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
20 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 | 0592 0593 0594 0595 059 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 | 0608 0609 0610 0611 0612 0613 0614 0615 (416 0617 0618 0619 0620 0621 0622 0623
27 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 Q636 0637 0638 0639
28 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
24 | 0672 0673 0674 0675 0676 0677 0478 0679 0680 0681 0682 0683 0684 0485 0685 0687
28 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2¢ | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
20 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
26 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30 | o768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 | o784 o785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 083
34 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
3% | 0B4 0B85 0866 0867 0B48 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37 | 0880 0881 0882 0883 0B84 0B85 0885 0887 0888 0889 0890 0891 0892 0893 0894 0895
38 | 089 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 091
39 | 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3a | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C | 090 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
ac 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 099% 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

446

A GUIDE TO ATARI 400/800 COMPUTERS

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued)

0 1 2 3 4 5 6 7 8 5 A B C D E F

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 " NLZF g e
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4C 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
7 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
54 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1524 1535
60 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61 1552 1553 1554 1555 1556 1587 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1562 1663
68 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 171

68 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C 1728 1729 1730 173) 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

Appendix H: CONVERSION TABLES 447
TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued)
0o 2 3 45 6 7 8 9 A B c o0 &

70 | 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
70| 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1835 1837 1838 1839
73 | 1840 1841 1842 1843 1844 1845 1845 1847 1848 1849 1850 1851 1852 1853 1854 1855
74 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 187

75 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76 | 1888 1889 1890 1891 1852 1893 1894 1895 189 1897 1898 1899 1900 1901 1902 1903
77| 1904 1905 1906 1507 1908 1909 1910 1911 1912 1313 1914 1915 1916 1917 1918 1919
78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E | 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 203
7F | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
80 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 | 2080 2081 2082 2083 2084 2085 208 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 | 209 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 211

84 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
8 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 219

89 | 2192 2193 2194 2195 219 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8R | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 243

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 244)1 2442 2443 2444 2445 2446 2447
99 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9a | 2484 2465 2466 2467 2468 2469 2470 247\ 2472 2473 2474 2475 2476 2477 2478 2479
98 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C: 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 251

90 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9t | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
QF 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

448 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued)

0 | 2 3 4 5 6 7 8 9 A B [D E L
A0 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al 2576 2577 2578 ‘2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 272\ 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 12826 2827 2828 2829 2830 2831
81 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B85 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
87 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
88 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 298¢ 2987 2988 2989 2990 2991
8B 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC 3008 3009 3010 3011 3012 3043 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
co 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
c2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
€3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
Cc5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
Cé 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
CZ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
Ccs8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
c9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 2231
ca 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CcB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
cC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
cb 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 332 3327

Appendix H: CONVERSION TABLES 449
TABLE H-2. Hexadecimal-Decimal Integer Conversion (continued)

0 1 2 3 4 5 6 7 8 9 A B (N D £ F
DO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DI | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2 | 3360 336) 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 339
D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 | 3440 344) 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 347
D9 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA | 3488 3480 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
E0 | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 359 3597 3598 3599
E1 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
€2 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 363
E3 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 | 3664 3665 3666 3667 3668 3669 3670 371 3672 3673 3674 3675 3676 3677 3678 3679
E6 | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
£7 | 369 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EC | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FI | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 | 3888 3889 3890 3891 3892 3893 3894 3895 389% 3897 389¢ 3899 3900 3901 3902 3903
F4 | 39504 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
FS | 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 39%3 3964 3965 396 397
F8 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 403
FC | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

I
THE ATARI
XL SERIES

The ATARI XL series of computers was introduced in 1983 as Atari’s new line of
home and business computers. The XL computers (the 600X L, 800X L, and 1200XL)
are improved versions of the ATARI400 and 800 personal computers with a few new
features. Atari no longer makes the 400 and 800 models and has discontinued
production of the 1200XL.

The XL series runs the same BASIC programs that the ATARI 400 and 800
computers run and can use many of the programs that you buy from other manufac-
turers. Most cartridges that were designed for the ATARI 400 and 800 computers
work with the XL series.

Some of the new features available on the XL series are

A built-in BASIC (600X L and 800X L only), which eliminates the need for the “BASIC
Computing Language” cartridge.

* New graphics modes (some of which are available on late model ATARI 400 and 800
computers) that give you more colors on the screen at any one time.

* A European character set that can replace some of the graphics characters.

- A self-test mode.
A smaller, more attractive keyboard.

With the addition of these features, a few other features were eliminated. The X1
computers have only one cartridge slot (there are two on the ATARI 800), and there
are now only two game controller jacks instead of four.

450

Appendix I: THE ATARI XL SERIES 451

The 600X L and 800X L are essentially identical, except that the 600X L has 16K of
memory, while the 800X L has 64K of memory. Like the ATARI 800, however, these
computers can use only 48K of this memory.

THE NEW HARDWARE PACKAGE

The XL series looks a great deal like the ATARI 800 computers, although both the
600XL and 800X L are smaller. The setup of the computers is almost identical to that
of the ATARI 400 and 800, except that the cable for connecting to a television can be
detached from the computer. The power supply is also larger and connects to the
computer with a different type of plug.

The locations of the keys for the XL series are very similar to those on the ATARI
400 and 800 computers. One key has been added, and a few have been moved. Figure
I-1 shows the keyboard for the ATARI 600X L, which is identical to that of the ATARI
800XL.

A new key is the HELP key in the lower-right corner of the keyboard. Some
application programs use this key to let you ask for information. Notice that the ™
key has replaced the A key, and that it is now to the right of the right SHIFT key.

You do not need to open a door to insert cartridges in the XL series. On the
1200XL, the cartridge slot is on the side; on the 600X L and 800XL, it is on the top.

SOFTWARE COMPATIBILITY

Almost every BASIC program written for the ATARI 400 and 800 computers will
work on the XL series computers. If you follow the programming instructions in this
book, you should have no problems.

Some application programs, however, will not work on the XL series. Many
disk-based programs will not work correctly unless the program manufacturer has

ATARI 600 X1

Photo by Richard Cash

FIGURE I-1. ATARI 600XL Keybdard

452 A GUIDE TO ATARI 400/800 COMPUTERS

made special efforts to support the XL series. Unfortunately, it is impossible to know
which programs will work without testing them or asking your dealer.

Programs that use the XL’s new features will not run on the ATARI 400 or 800
computers. When you write programs, be sure that each feature you use is appro-
priate for the machine you expect to run the program.

NEW GRAPHICS MODES

The XL series has an enhanced graphics chip called a GTIA (the old chip is called the
CTIA). The GTIA/CTIA is the chip that lets you use the different graphics modes
described in Chapters 8 and 9 of this book. The XL series has all nine graphics modes
that the ATARI400 and 800 computers had (modes 0 through 8), as well as seven new
modes (modes 9 through 15). However, only modes 9, 10, and 11 are supported by
Atari.

Some ATARI 400 and 800 computers (generally, those purchased during late 1981
or later) have GTIA chips in them. To test whether yours does, enter this program:

10 GRAPHICS 9
20 GOTO 20

If your screen becomes black, you have the GTIA chip. If it remains blue, you have the
CTIA chip. You can have the CTIA chip replaced with a GTIA chip by an authorized
dealer, although the upgrade is often expensive.

The new graphics modes allow you to make interesting images with more colors
than before. Each mode has 15,360 separate pixels that you can set with the colors
available. Mode 9 lets you have one color, but with 16 different luminances, thus
enabling you to make accurately shaded drawings. Mode 11 is similar to mode 9, but
you have only one luminance and 16 different colors at a time. Mode 10 gives you 9
colors on the screen at once; however, you have to use POKE commands to set some
of the colors.

Graphics modes 9, 10, and 11 each use 8138 bytes of screen memory, just like mode
8. The new graphics modes allow you to use 80 columns by 192 rows of pixels. Unlike
modes 1 through 8, the new modes do not have a split-screen capability. These modes
have long thin pixels, so that images can have great detail vertically, but not horizon-
tally. Table I-1 gives the additional information for these modes.

In mode 9, the SETCOLOR command sets the single color, and the COLOR
command selects the luminance. Use the following SETCOLOR command with
color register 4 and luminance 0, using Table 8-1 to select the color:

SETCOLOR 4, HUE, O

In your program, the COLOR command can take values from 0 to 15 to indicate the
luminance (the higher the number, the brighter the color). The following program

Appendix I: THE ATARI XL SERIES 453

TABLE I-1. New Graphics Mode Summary

3 e 3 s 3 S)
£ g X L | BE| &) 33 |2
o g2 2 7 g g [22|.&| 38 |%
= £% £ s 5 E B x &, | 5. 20 |53
o @ g S = S = o O 20| ®o 2. g3
2 S 23 B 5% 53 $°| 8% ¥= s =
as [CP= SR wn e = O RO | RO &= =8
High- 9 1 color, 80192 (full) 4 None | None | 0-15: 8138
resolution 16 luminances determines
shaded luminance
graphics
High- 10 9 80X 192 (full) |0, 1,2, 3,4, | POKE | None | COLOR 4: | 8138
resolution plus POKE | 704 register 0
graphics 705-707 COLOR 5:
register |
COLOR 6:
register 2
COLOR 7:
register 3
COLOR 8:
register 4
High- 11 16 colors, 80X 192 (full) 4 None | None | 0-15: 8138
resolution I luminance determines
graphics hue

demonstrates the interesting shading effects of mode 9. It draws five thin horizontal
pipes, followed by one fat vertical pipe.

10 GRAPHICS ¢

20 SETCOLOR 4, 10, O

30 FOR PIPE = O TO 4

40 FOR I = 0 TO 15

SO0 COLOR I

60 PLOT 31, PIPEx40+1 : DRAWTO 75, PIPEx40+I
70 PLOT 31, PIPEx*40+30-1 : DRAWTO 75, PIPE®40+30-1
80 NEXT I

90 NEXT PIPE

100 FOR J =1 TO 15

110 COLOR J

120 PLOT J, O : DRAWTO J, 191

130 PLOT 30-J, 0 : DRAWTO 30-J, 191

140 NEXT J

150 GOTO 150

As you can see, the horizontal pipes look much more realistic than the vertical pipe,
since the shades blend with each other better. This is because the pixels in this mode
are 4 times as wide as they are high.

454 A GUIDE TO ATARI 400/800 COMPUTERS

Graphics mode 11 is just like mode 9, except that the SETCOLOR command
chooses the one luminance for register 4, and the COLOR command chooses the
color to use:

SETCOLOR 4, O, LUM
Change lines 10 and 20 from the previous program to read:

10 GRAPHICS 11
20 SETCOLOR 4, O, 10

The program now draws multicolored pipes, where the color varies evenly over the
range of hues available.

Mode 10 lets you use 9 colors, but you have to use the POKE command to set the
background and three of the colors. Table I-2 shows the locations to set. Notice that
colors 4 through 8 can be set with either the SETCOLOR or POKE command;
however, for consistency, most programmers prefer to set all of the colors in mode 10
with POKE.

When you use the POKE command, you have to combine the hue and luminance
into one number. You can do this by multiplying the number of the hue by 16 and
adding the luminance value, and then using the POKE command. For instance, to
make the background violet (hue 5) with luminance 10, give the command

POKE 704, 5#146+10

The following program sets the nine colors with random values. They were set by
choosing a random hue, multiplying it by 16, and adding it to a random luminance:

10 FOR I = 0 TO 8

20 POKE 704+1, (RND(O)#15%16&) + RND(O)*13
30 NEXT I

40 GRAPHICS 10

50 XSTART = RND(O)x%79

60 YSTART = RND(0O)%191

70 XEND = RND(O) %79

80 YEND = RND(0O)#191

90 COLOR RND(O)=8

100 PLOT XSTART, YSTART : DRAWTO XENLD, YEND
110 GOTO S0

After assigning the colors in lines 10 through 30, the program chooses a random color
from the 8 and draws a line from one random point to another.

Since each of the three graphics modes takes up 8138 bytes, you can easily run out
of memory onan ATARI 600XL if your program is more than a few dozen lines long.
You should not have any problems using them in programs on the 800XL.

Appendix I: THE ATARI XL SERIES 455

TABLE I-2. Mode 10 POKE Locations

Color Location for SETCOLOR register
POKE
0 (background) 704 Can’t use
1 705 Can’t use
2 706 Can’t use
3 707 Can’t use
4 708 0
S 709 |
6 710 2
7 711 3
8 712 4

USING THE EUROPEAN CHARACTERS

You can display European characters instead of the graphics characters by using the
command POKE 756, 204. This changes the characters in ATASCII positions 0
through 26, 96, and 123 to characters that have special punctuation marks. These are
shown in Table I-3.

For example, the following program prints out a monetary table of dollars and
British pounds:

10 GRAPHICS O

20 POKE 754, 204

30 EXRATE = .690

40 PRINT "The exchange rate is $1.00 = "; CHR$(8); EXRATE

50 PRINT "How many dollars'"; : INFPUT DOLLARS

60 IF DOLLARS = O THEN END

70 PRINT "$"; DOLLARS; " equals "; CHR$(8); DOLLARS x* EXRATE
80 GOTO SO

Another use for the new character set is to print words in the European languages.
For instance, to print the word canon with a tilde over the first n, give the command:

PRINT "ca"; CHR#$(14); "on"

THE XL SERIES SELF-TEST

The XL series has a self-test program that lets you test the memory, sound, and
keyboard. To start the tests, give the BYE command (on the 600XL or 800XL), or
remove the “BASIC Computing Language” cartridge and press the SYSTEM RESET
button (on the 1200XL). You can now select which test to run by pressing the SELECT
key and then pressing the START key.

456 A GUIDE TO ATARI 400/800 COMPUTERS

TABLE I-3. European Characters

Decimal Value Character Decimal Value Character

0 a 15 5
1 u 16 u
2 N 17 a
3 E 18 a
4 ¢ 19 1
5 0 20 e
6 0 21 e
7 i 22 il
8 £ 23 €
9 i 24 a

10 u 25 a
I i 26 A
12 0 96 i
13 a 123 A
14 0

The tests ensure that your ATARI XL computer is working properly. If any of the
tests do not work, you should take the computer to an authorized service center for

repair. However, it is extremely unlikely that your computer should fail any of the
self-tests.

J
BIBLIOGRAPHY

BASIC

Albrecht, Finkel, and LeBaron. What to Do After You Hit Return. Rochelle
Park, N.J.: Hayden Book Company.

Coan, James S. Advanced BASIC. Rochelle Park, N.J.: Hayden Book
Company.

Coan, James S. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company.

Dwyer, T., and Critchfield, Margot. BASIC and the Personal Computer.
Reading, Mass.: Addison-Wesley, 1980.

Neirson, John M. The Little Book of BASIC Style. Reading, Mass.:
Addison-Wesley, 1978.

Assembly Language Programming

DeJong, Marvin. Programming and Interfacing the 6502, With Experiments.
Indianapolis: Howard W. Sams, 1980.

Foster, Caxton C. Programming a Microcomputer: 6502. Reading, Mass.:
Addison-Wesley, 1978.

Leventhal, Lance A. 6502 Assembly Language Programming. Berkeley:
Osborne/ McGraw-Hill, 1979.

457

458 A GUIDE TO ATARI 400/800 COMPUTERS

Osborne, Adam. An Introduction to Microcomputers: Volume 1 — Basic
Concepts. 2nd ed. Berkeley: Osborne/ McGraw-Hill, 1980.

Scanlon, Leo J. 6502 Software Design. Indianapolis: Howard W. Sams.
Zaks, Rodnay. 6502 Applications Book. Berkeley: Sybex, 1979.

Periodicals

Atari Connection. 1265 Borregas Avenue, P.O. Box 427, Sunnyvale, California
94086.

BYTE. 70 Main Street, Peterborough, New Hampshire 03458.

Compute! P.O. Box 5406, Greensboro, North Carolina 27403.

Creative Computing. 39 East Hamover Avenue, Morris Plains, New Jersey
07950. ’

Desktop Computing. 80 Pine Street, Peterborough, New Hampshire 03458.
Micro. P.O. Box 6502, Chelmsford, Massachusetts 01824.

Microcomputing. 80 Pine Street, Peterborough, New Hampshire 03458.
Personal Computing. P.O. Box 13916, Philadelphia, Pennsylvania 19101.
Popular Computing. 70 Main Street, Peterborough, New Hampshire 03458.
Purser’s Magazine. P.O. Box 466, El Dorado, California 95623.

Recreational Computing. 1263 El Camino Real, Menlo Park, California 94025.

Atari Publications

The following publications are available from Atari, Inc., 1265 Borregas Avenue,
P.O. Box 427, Sunnyvale, California 94086.

Albrecht, Bob; Brown, Jerald R.; Finkel, LeRoy. Atari BASIC. New York,
Chichester, Brisbane, Toronto: John Wiley & Sons, Inc., 1979.

ATARI 810 Disk Drive Operator’s Manual.

ATARI 400/800 Disk Utility.

ATARI 400/800 Operating Systems.

ATARI 825 80-Column Printer Operator’s Manual.

ATARI 850 Interface Module Operator’s Manual.

ATARI Personal Computer System Operating Systems User’s Manual and
Hardware Manual.

ATARI 400/800 Basic Reference Manual.
ATARI 400/800 Disk Operating Systems Reference Manual.

INDEX

A key, 23
Abbreviations, 44, 73-74, 339, 425
ABS, 99, 393
ADR, 100, 395
Amplified input instructions, 131-33
Amplified Instructions program, 134-35
AND, 71-72
Animation, character, 291-94
Antenna switch, 15
ANTIC
compared to BASIC, 298
example, 299-300
instructions, 297
purpose, 294-96
Arithmetic operators, 68, 69
Arrays
dimensions, 66
optimal use of, 179
size restrictions, 349
sizes, 79-80
string simulation, 110-12
using, 65-67
Arrow keys, 23, 57,95
ASC, 100, 104, 396
ASCII
characters, 416-24
on printers, 209
Assembly language, 180-81. See also Binary files;
Machine language
Assignment statements, 75-78, 348, 366
ATARI 400 computer
compared to ATARI 800 computer, 1-3
keyboard, 3
memory, 6
ATARI 800 computer
compared to ATARI 400 computer, 1-3
keyboard, 3
memory modules, 6, 7
ATASCII
characters, 416-24
in strings, 103-105
ATN, 99, 396
AUTORUN.SYS file, 267

BACK S key, 24, 95
Backups, 30-31
Bar Chart program, 286-87
BASIC
elements of, 59
leaving, 43
ROM cartridge, 42
starting up, 14, 41-42
statements, 74
versions, 337
Binary files. See also Assembly language; Machine
language
auto-execution prevention, 267
execution address, 264-65

Binary files (continued)
initialization address, 265
loading from disk, 266-67
merging on disk, 266
saving on disk, 264-66

Blank cassettes, 25

Blank diskettes
preparing, 30
selecting, 26

Blank spaces, 45

Boldface printing, 218-19

Boolean expressions, 71-72

BOOT ERROR message, 28

Booting
DOS, 27-28, 227-228
serial device handler, 14

Branching
optimal, 179
statements, 80-91

BREAK key
accidental use, 39
disabling, 175-76
during program, 33-34, 96
summary, 339-40
using, 21
BYE, 42, 340
Byte, defined, 6

Calculator mode. See Immediate mode
CAPS/LOWR key, 22-23
Carriage return. See also EOL character
on display screen, 114-16
printer, 202-03
and PRINT statements, 92
and right margin, 130
Cassette buffer, 188, 439-40
Cassette program loading, 33
Cassettes, 25. See also Program recorder
capacity, 7
Chaining
from cassette, 185-86
from disk, 244-45
chan, 338
Channels
closing, 168
defined, 166-67
opening, 167-68
Characters
animation, 291-94
ASCII codes, 416-24
ATARI 825 Printer control, 210-13
ATASCII codes, 416-24
bit maps, 283-84, 291-93
changing, 291-94
emphasized, on ATARI 825 Printer, 218-19
entering with joystick, 176-78
graphic, 108
graphics mode 0, 361

459

460 A GUIDE TO ATARI 400/800 COMPUTERS

Characters (continued)
graphics modes 1 and 2, 361-62
keystrokes to produce, 416-24
non-keyboard, 61
on printers, 209-12
selected by COLOR, 344
sideways on ATARI 820 Printer, 210
sizes on ATARI 825 Printer, 214-17
storage, 103
typing, 22-23
wild card, 230-31
CHRS, 100, 105-106, 396-97
in program listings, 213
Chromatic scale, 327, 328
Clear Display Lines subroutine, 139, 143
Clear Instruction Area subroutine, 140, 143-44
CLEAR key, 24
Clearing display screen, 126
CLOAD, 33, 53, 184, 330, 34041
CLOG, 99, 397
CLOSE, 168, 341
with cassette files, 190
with disk files, 249, 251
CLR, 79-80, 34142
col, 338
Colons, 50
COLOR, 273, 34245
extra colors, 281
Color adjustments, 34
Color cycles, 279-80
Color phase shift, 280
Color registers
default values, 343
defined, 271-74
modes | and 2, 276-77
modes 3, 5, and 7, 279
modes 4 and 6, 279
mode 8, 279
selected by COLOR, 345
summary table, 342
uses, 390
Colors
hues, 272-73, 389
luminance, 272-73
luminance-varied, 279-82
phase-shifted, 279-82
Column stop, 116
Columnar output, 116-25
COM, 346
Command Input program, 132
Commas
during input, 94
in PRINT statements, 92-93
Compiler. See Interpreter
Compound expressions, 68
Computed GOTO. See ON-GOTO
Concatenation, 108
Conditional statements, 90
const, 338
CONT, 96-97, 346-47

Control characters, ATARI 825 Printer, 210-13

Copying. See Duplicating

COS, 99, 397

CSAVE, 52, 183-84, 347
turns sound off, 330

CTRL key, 22-23

Cursor, 20, 361
controlling, 126-30
memory locations, 435-38
position, 128-29
and PRINT statements, 92
Cursor movement, 55
by joystick, 164-65
keys, 23

Data entry
grouping, 14549
joystick for numeric input, 160-62
reviewing and changing, 149, 152
user responses, 130, 135, 127
Data files. See Files
DATA, 76-78, 348
Debugging, 178
Decimal-aligned Gas Cost program, 124
Decimal-aligned output, 122-25
Decimal-aligned Printer Output program, 204-05
Deferred mode. See Programmed mode
DEG, 100, 348-49
DELETE key, 24, 56, 95

dev, 338

Device names, 166
Dialects, 58
DIM, 79, 349
Direct memory access, Player-Missile and, 308
Direct mode. See Immediate mode
Disable BREAK Key subroutine, 143-44, 176-77
Disk buffer, 227
Disk directory, 29-30, 226
any drive, 233
clearing, 238
listed anywhere, 234
reading in a program, 263-64
restricted listing, 233-34
viewing, 232-34
Disk drive. See also Diskettes
crash, 269
determining drive number, 17
power on, 17
program loading, 33
usefulness, 8
using, 26-32
Disk operating system. See DOS
Disk utilities, 28-32, 226-28
Diskettes, 26-27. See also Disk drive; Disks
booting, 27-28
capacity, 8
construction, 222-24
duplicating, 30-31, 241-42
formatting, 30, 240-41
how data is stored, 247
volume table of contents, 247
write-protecting, 224
Disks. See also Disk drive; Diskettes
hard, 222
sectors, 247
theory, 221
tracks, 247
Winchester, 222-223
Display Error Message subroutine, 139, 143-44
Display List Loader subroutine, 301-05
Display lists
custom, 300-01

INDEX

461

Display lists (continued)
instructions, 296-98
interrupts, 305-06
memory. locations, 438
placement, 300, 301
purpose, 295
sample, 299-300
structure, 297

Display screen
clearing, 126
color or black-and-white, 3
memory locations, 435-38
output, 114-25
resetting margins, 129-30
television set or monitor, 3-4
theory, 295-96
modes of operation, 4
as window on data, 155-60

Do-nothing subroutine, 131

DOS, 27-29
booting, 27-28, 227-228
booting problems, 31
modifying version 2.0S, 268-69
turns sound off, 330
versions, 226, 229
writing new boot files, 240

DOS menu, 228-29
leaving, 234-35
making selections, 231
preserving memory, 229-30
using, 28-32
versions compared, 350

DOS statement, 228-29, 349-51

DRAWTO, 277-78, 351-52
extra colors, 280-81

Duplicating
diskette, 30-31
program, 31-32
D[n], 338

Editing
during input, 95
programs, 53-57
810 Disk Drive. See Disk drive
825 Printer, connecting, 9, 11
850 Interface Module, 9, 11
power on, 17
using, 35
END, 48, 97, 168, 352
closes disk files, 249
turns sound off, 330
ENTER, 33, 352-54
with disk drive, 243-44
program recorder, 184
Enter Bowling Scores program, 14345
Enter Valid Date subroutine, 14344, 170-73
Entry mask. See Input mask
EOL character, 114-16, 168. See also
Carriage return
disk files, 250-51
printer, 202-03
Error Handler program, 140, 142, 143-44
Errors
correcting typographical, 38-39, 53-57
data entry, 125-26, 135, 137, 162-63, 172
handling, 138-39

Errors (continued)
messages, 38, 45, 405-11
trapping, 137-39
Esc key, 24
Escape sequences, 24, 104-05
EXP, 99, 397
Expense Analysis program, 96
expr, 338
Expressions, 67-72
ext, 338

Fields, grouped input, 146
File names, 225
ambiguous, 230-31, 233-34, 236-38
in disk directory, 233
changing, 238-39
duplicate, 238
extensions, 225
File numbers. See Channels
filename, 338
Files
appending to on disk, 255-57
cassette, 188, 189
closing, 189-90, 249
copying and appending on disk, 236
copying on disk, 235-37
deleting from disk, 237-38
disk buffer, 250-53
disk pointer, 250-53, 256
disk, 224, 246
DOS, 240
dummy record, 189, 192, 195
duplicating with one disk drive, 236-37
end of, on cassette, 188
end of, on disk, 254-55
increasing number open simultaneously, 269
indexed and linked on disk, 263
indexed on disk, 262
linked list on disk, 262-63
locking on disk, 239
machine language. See Binary files;
Machine language
numeric values on disk, 258-60
opening on cassette, 188
opening on disk, 24749
random access on disk, 261-62
reading from cassette, 191-92
reading sequential disk, 253-55
sizes, in directory, 233
trailer record, 193, 196
unlocking on disk, 239
updating on disk, 257-58
writing on cassette, 190-91
writing on disk, 249-53
Floating point numbers, 61
FOR, 83-86, 354-55
Formatting
date entry, 170-71
diskettes, 30, 240-41
display screen, 114-25, 155-60
printer output, 203-04
410 Program Recorder. See Program recorder
FRE, 100, 397
Function keys, 20
Functions, 97-101
derived, 414-15

462 A GUIDE TO ATARI 400/800 COMPUTERS

Functions (continued)

format, 98

string, 100

system, 100-101

using, 98-99
Future Value Instructions program, 136
Future Value program, 127

Game controllers
choices, 9, 10
data entry with, 149, 153-55
using, 34-35
Game tokens, entering with joystick, 177-78
Gas Cost program, 117
General Input subroutine, 140-41, 14344, 169
shortcomings, 174
GET
for date entry, 171-72
from cassette, 191-92
with disk files, 225, 257-58
with keyboard, 169-70
GOSUB, 88, 357-58
GOTO, 80-81, 358
GRAPHICS, 275, 358-62
Graphics
applications, 285-90
characters, 22-23, 108
Data Entry program, 287-88
extra colors, 279-82
memory locations, 435-39
solid color fill, 284-85
summary of modes, 360
summary of options, 359
text mode resolution, 4
text with, 283-84
Graphics modes
character, 275-77
four-color, 278-79
high-resolution, 279
line and point, 277-79
summary, 275
two-color, 279

Hatch, plug-in cartridge, 5
Home position, 126

IF-THEN, 90-91, 362-63
Immediate mode, 42
arithmetic, 43
reexecuting, 57
indev, 339
Index variable, 83
Indirect mode. See Programmed mode
INPUT, 93-95, 363-66
to any channel, 168-69
from cassette, 191
with disk files, 254-55, 257-60
eliminating question mark, 174
in text window, 275-76
unsuitable for date entry, 171
Input. See Data entry
Input and output, 166
Input masks, 133, 170-71
Input Two Digits subroutine, 143-44, 172-73
Input utilities, 139-44
Input with Prompt subroutine, 140, 142-44

Input/output channels. See Channels
Input/output statements, 91

INSERT key, 24, 56, 95

Installation instructions, 1, 13
Instruction register, 295

Instructions, programming data entry, 131-33
INT, 99, 397-98

Integers, 61

Interpreter, 9

Inverse characters, 23

IOCB. See Channel

Joystick, 9. See also Game controllers
as data entry device, 153
as display controller, 155-61
for character entry, 176-78
for menu selection, 163-66
for numeric input, 160-62

Keyboard, 20-25
ATARI 400 compared to ATARI 800, 3
automatic repeat, 21
memory locations, 440
Keyboard controllers, 9. See also Game controllers
Keywords, 73, 425

LEN, 100, 398
LET, 75-76, 366
Letters. See Characters
Line feed, 92
Line length, 21
ATARLI 825 Printer, 214-17
limit, 43
printer, 202-03
Line numbers, 48-50, 179
as addresses, 59
calculating, 81, 89
linexpr, 339
LIST, 50-51, 55, 366-69
with disk drive, 243
with program recorder, 183-84
Listing. See Program listing
LOAD, 33, 369-70
program recorder, 184
Disk drive, 243-44
LOCATE, 176, 278, 370-71
Locked files, 232, 239
LOG, 99, 398
Logic operators, 71-72
Logical lines, 46, 115, 118, 361
and margins, 130
Logical unit numbers. See Channels
Loops, 83-86
delay, 164, 331-32
nested, 84-86
LPRINT, 371-72
Luminance-varied colors, 279-82

Machine language programs. See also Binary files
executing, 267
from BASIC, 401-02

Mailing List Display program, 195-97

Mailing List Entry program, 192-95

Mailing List Labels program, 207-08

Margins, 118, 361
resetting, 129-30

INDEX

463

MEM.SAYV file, 229-30, 235-36, 237, 351
creating, 242
memadr, 339
Memo pad mode, 13
Memory
ATARI 800 modules, 6
capacity, 1, 6
RAM and ROM, 6
usage, 426-33
useful locations, 434-42
Memory locations, addressing, 113
Memory scan counter, 295
Menus
in data entry, 162-63
joystick with, 163-66
Microspacing, 217-18
Mistakes. See Errors
Mixed-type expressions, 72
Move Cursor with Stick subroutine, 143-44, 164-65
Music. See Sound

Name-and-Address program, 146-53
Nesting
loops, 84-86
subroutines, 89
NEW, 48, 330, 372
circumventing program merging, 184
NEXT, 83-86, 372-73
Nonprinting characters, 116, 164
NOT, 71-72
NOTE, 261-63, 373
Null string, 60
Numbers, 61
ranges, 63
roundoff, 63
scientific notation, 62
storing on disk, 258-60
Numeric expressions, 69
Numeric functions, 99-100. See also Functions
Numeric Input with Joystick subroutine, 143-44,
161-62
Numeric strings, 108-109
Numeric values, inputting, 364
Numeric variables, 64. See also Variables
numexpr, 339
numvar, 339

Object files. See Binary files
ON-GOSUB, 89-90, 373
ON-GOTO, 82, 374
OPEN, 167-68, 374-78
appending to disk files, 255-57
cassette, 188-89
disk file, 247-49
printer, 201
sideways characters on ATARI 820 Printer, 210
updating disk files, 257-58
Operands, 68
Operating system, defined, 9
Operators, 68, 73
precedence of, 68-69, 72-73
OR, 71-72
outdev, 339
Output
display screen, 114-25
formatting on printer, 203-04

Output (continued)
paging on printer, 205-06
screen and printer mixed, 201

PADDLE, 101, 154-55, 398
Paddles, 9. See also Game controllers
Parentheses, 68-69
PEEK, 100, 113, 398
Phase-shifted colors, 279-82
Physical lines, 46
Pixels, 279-80
Player Movement program, 320-21
Player-Missile
bit maps, 308
color registers, 316-17
controlling, 315
defining players, 308-11
examples, 318-21
horizontal movement, 319-20
horizontal position, 317
increased resolution, 320-23
memory locations, 437-39
priority with playfield, 320-22, 323-24
table layout, 311-13
table location, 314, 315
table protection, 314
two-dimensional movement, 320-21
uses, 307
vertical definition, 311-12
vertical movement, 318-19
width, 316
Player-Missile Image program, 308-11
Player-Missile Movement subroutine, 318-19
Player-Missile/ Playfield Priority program, 323-24
Player-Missile 32-bit Resolution program, 322
PLOT, 277-78, 378
extra colors, 280-81
POINT, 261-63, 378-79
POKE, 113, 379
POP, 88
POSITION, 126-28, 278, 379-80
Power off, 18-19
Power on, 14-20
console, 18, 19
printer, 18
television, 14-15
Precedence of operators, 68-69, 72-73
PRINT, 91-93, 380-83
after LOCATE, 371
to any channel, 168-69
on cassette, 190-91
commas in disk files, 252-53, 260
to disk files, 249-53, 258-60
EOL character, 114-16
with printer, 201
in text window, 275-276
Printer. See also 825 Printer
ATARI 825 microspacing, 217-18
ATARI 825 paper movement, 213
choices, 9-11
connecting, 9, 11
line buffer, 203
memory locations, 440-41
using, 35

464 A GUIDE TO ATARI 400/800 COMPUTERS

Program examples
Amplified Instructions, 134-35
Bar Chart, 286-87
Clear Display Lines, 139
Clear Instruction Area, 140
Command Input, 132
Decimal-aligned Gas Cost, 124
Decimal-aligned Printer Output, 204-05
Disable BREAK Key, 177
Display Error Message, 139
Display List Loader, 301-04
Enter Valid Date, 173
Error Handler, 142
Expense Analysis, 96
Future Value, 127
Future Value Instructions, 136
Gas Cost, 117
General Input, 141
Graphics Data Entry, 287-88
Input Two Digits, 173
Input with Prompt, 142
Joystick menu selection, 165-66
Mailing List Display, 196-97
Mailing List Entry, 194-95
Mailing List Labels, 208
Move Cursor with Stick, 165
Numeric Input with Joystick, 162
Player Movement, 320-21
Player-Missile Image, 309-11
Player-Missile Movement, 318-19

Player-Missile/ Playfield Priority, 323-24

Player-Missile 32-bit Resolution, 322
Regression Analysis, 288-90
Right-justified Gas Cost, 121
Screen Data Window, 159-60
Sound Effects, 332-35
String initialization, 109-10
String Input, 175
Top of Page, 206
Program execution
changing sequence, 80
halting and resuming, 96
Program lines, 46
Program listing, 50-51
by page, 205
control characters in, 212-13
halting, 51
on printer, 199-201

Program recorder, 51-53. See also Cassettes

program recording formats, 187

storing data on, 187-91

tape counter, 53, 185

using, 25-26
Program statements, 45-46
Programmed mode, 47
Programming languages, 58
Programs

adding lines, 54

application, 8-9

chaining from cassette, 185-86

chaining from disk, 244-45

changing lines, 55-57

classes of, 8

clearing from memory, 48

cursor movement in, 126-29

debugging, 178

Programs (continued)
deleting from diskette, 32
deleting lines, 54
duplicating on disk, 31-32
editing, 53-57
execution sequence, 49, 59, 60
faster, 178-79
input and output, 113-14
libraries on cassette, 186-87
libraries on disk, 245
loading, 33
loading from cassette, 184
loading from disk, 243-44
machine language, 180-81
merging from cassette, 184
merging from disk, 244
more compact, 179
optimizing, 178-80
renaming on disk, 32
running, 33
saving machine language on disk, 264-66
saving on cassette, 52-53, 183-84
saving on disk, 243
screen output, 114-25
tokenized, 187
user input, 130

Prompt messages, 95, 131

Pseudo-arrays, string, 110-12

PTRIG, 101, 154-55, 398-99

PUT, 383-84
on cassette, 190-91
on disk files, 253
on display screen, 169
on printer, 201

RAD, 100, 384-85
RAM. See also Memory

adding, 35-37

defined, 6
READ, 76-78, 385
Read-only memory. See ROM
Read/write memory. See RAM
READY message, 18-20, 28
Recursion, 89
Redimensioning arrays and strings, 79-80
Regression Analysis program, 288-90
Relational expressions, 69-70
REM, 74-75, 386

branching to, 80-81

and program optimality, 179-80
Renaming program on diskette, 32
RESTORE, 78, 386
RETURN key, 21, 55
RETURN, 88-90, 386
Right-justification

ATARI 825 printer, 219

display output, 120-22

Right-justified Gas Cost program, 121
RND, 99, 399
ROM cartridges

contain programs, 8-9

installation, 13-14
ROM, defined, 6
row, 339
RS-232 serial device. See Serial device

INDEX

465

RUN, 34, 48, 386-87
disk drive, 244
program recorder, 185

SAVE, 387-89
disk drive, 243
program recorder, 183-84
Scan lines, 295-96
Scientific notation, 62
Screen Data Window program, 156-61
Screen. See Display screen
Semicolons, in PRINT statements, 92-93
Serial device handler, 267
booting, 14
Serial interface jacks, 18
SETCOLOR, 271-72, 389-90
SGN, 99, 399
SHIFT key, 22
Significant digits, 44, 63
SIN, 99, 399-400
Slide switch, 15
SOUND, 326-30, 390-91
Sound
distortion, 327-29, 330
duration, 331-32
effects, 332-35
loudness, 329-30
memory locations, 440
musical notes, 391
pitch, 327-29
turning off, 330
voice, 326
Sound Effects programs, 332-35
Spaces, 45
Speaker, built-in, 325
Special function keys, 20
SQR, 99, 400
Stack, hardware, 181
Staircasing, 351
Starting up. See Booting; Power on
STATUS, 391-92
Status codes, 412-13
Step variable, 83-84
STICK, 101, 153-54, 400
Stick. See Joystick
STOP, 97, 392
STRS, 100, 401
STRIG, 101, 153-54, 401
Strikeouts, 218
string, 339
String Input subroutine, 143-44, 174-75, 285
String variables, 64. See also Variables
initializing, 109-10
lengths, 79-80
Strings, 60
arrays, 110-12
comparing, 71, 363
concatenating, 106-108
inputting, 364-65
numeric, 108-109
redimensioning, 79-80
size restrictions, 349
special characters in,104
storage, 103
subscripts, 106
using, 103-112

strvar, 339
Subroutines, 86-89, 179
libraries on cassette, 186-87
libraries on disk, 245
termination, 358
Subscripts
string, 106
array, 66
printed 213-14
Substrings, 106. See also Strings
Superscripts, printed, 213-14
Syntax, 58
System components, 1
SYSTEM RESET key, 21, 42, 97, 392

Tab feature, 118-20
TAB key, 24, 95
Tape counter, 185
Tape recorder. See Program recorder
Tape. See Cassettes
Television channel, computer, 15, 16
Television monitor
connecting to computer, 4, 5
as display screen, 4
Television set
connecting to computer, 4
as display screen, 4
tuning, 15
Text window, 275-76, 359-60
Top of Page subroutine, 205-07
Trailing zeros, 123
TRAP, 137-39, 392-93
end of disk files, 254-55
Truncation, 44
Turning on power. See Power on

Underlining, printed, 214
USR, 101, 180-81, 401-02
Utilities

disk, 28-32

data entry, 139-44

VAL, 100, 402-03

var, 339

Variable name table, 112, 341, 347, 367
cassette, 187
clearing, 353-54
disk programs, 246

Variables. See also String variables; Numeric variables

assigning values, 75-78

inputting values, 93-95

naming, 64, 65, 73

number of, 112

optimal use of, 179

printing values, 92-93

storage, 112
Vertical blanking interval, 296-97
VNT. See Variable name table

Write-protecting
cassettes, 25-26
diskettes, 26-27

XI0, 393-96
graphics fill, 284-85

=k == -

HEg =gl
L N TEE
S =

[EFEEN
=_m . . g0

. a
i [
B [
i n
n
! i 1
1:
1 . ot
N [
B 1
|I | 11
[i . .
>
L . =
.
[-
n ot o
[
[-
1 =
f B
[
[. N
[. .
[
[[
|-
L
- . .
B
i N N N
| -
!

el T

Here’s an invaluable all-in-one guide for ATARI® 400/800™
computer users. The authors provide complefe operating
instructions and troubleshooting tips on hardware, 'peripherals
and compatible software. Plus there are two chapters devoted.
solely to the superb ATARI® computer graphlcs capabilities.

For beginning programmers there are tutorials in ATARI® BASIC,
plus instructions for use of color graphics and sound. For more
experienced programmers, the book provides a comprehenswe

reference of BASIC statements and functions

)

Everything you need to unlock the full power of your ATARI®
computer is contained in these pages.

ATARI® is a registered trademark of Atari, Inc

Hill*

	Cover

	Contents

	Introduction

	Presenting The Atari Personal Computers

	How to Operate the Atari Computer

	Programming in BASIC

	Advanced BASIC Programming

	The Program Recorder

	Atari Printers

	The Atari 810 Disk Drive

	Introductory Graphics

	Advanced Graphics

	Sound

	Compendium of BASIC Statements and Functions

	A: Error Messages and Explanations

	B: Status Statement Codes

	C: Derived Trigonometric Functions

	D: Codes, Characters, and Keystrokes

	E: Atari BASIC Keywords and Abbreviations

	F: Memory Usage

	G: Usefule PEEK and POKE Locations

	H: Converstion Tables

	I: The Atari XL Series

	J: Bibliography

	INDEX

