




The Concise Atari ST Reference Guide

The Concise

Atari ST

Reference Guide



The Concise Atari ST Reference Guide



The Concise Atari ST Reference Guide

THE CONCISE

ATARI ST

REFERENCE GUIDE

by

K.D. Peel

Glentop Press Ltd



The Concise Atari ST Reference Guide

JANUARY 1988

All programs in this book have been written expressly to illustrate specific
teaching points. They are not warranted as being suitable for any particular
application. Every care has been taken in the writing and presentation of this
book but no responsibility is assumed by the author or publishers for any errors
or omissions contained herein.

Copyright © Glentop Press Ltd 1986
World rights reserved

No part of this publication may be copied, transmitted or stored in a retrieval
system or reproduced in any way including but not limited to photography,
photocopy, magnetic or other recording means, without prior permission from
the publishers, with the exception of material entered and executed on a
computer system for the readers own use.

First printed August 1986
Revised and reprinted May 1987
Fully revised and reprinted January 1988

ISBN 1 85181 172 9

Published by: Glentop Press Ltd
Standfast House
Bath Place

High Street
Barnet

Herts EN5 5XE

TEL: 01-441-4130

Written using Wordstar, diagrams GEM DRAWand typeset from Ventura

Printed in Great Britain by Bell and Bain Ltd., Glasgow



The Concise Atari ST Reference Guide

CONTENTS

Preface

Acknowledgements

Chapter 1 - Atari ST Hardware

Atari ST block diagram 1.2
General hardware description 1.3
Main system & device subsystem diagram 1.4
Atari ST console I/O 1.6

Monitor/TV output 1.6
Monochrome monitor 1.6
Colour monitor 1.6
Television 1.6

Monitor output 1.7
Parallel printer interface 1.8
RS232 modem interface 1.9

RS232signal levels 1.9
Floppy disk controller interface 1.10
Direct memory access port (DMA) 1.11

Command modes 1.11
Musical instruments digital interface (MIDI) 1.13

Midi signal levels 1.13
Plug-incartridge port 1.14

Intelligent keyboard I/O (ikbd) 1.15
Mouse/joystick interface 1.16

PortO 1.16
Portl 1.16

Power supply 1.17
Power levels 1.17

Processor device outlines 1.18

MC68000 16-bit microprocessor (CPU) 1.19
WD1772A floppy disk controller (FDC) 1.21

FDC instruction bytes 1.21



The Concise Atari ST Reference Guide

MK68901 multi-function processor (MFP) 1.23
MFP hardware interrupts 1.24

MFP configuration registers 1.24

MC6850 asynchronous communications interface
adaptor (ACIA) 1.27

ACIA control/status register 1.28

YM2149programmable sound generator (PSG) 1.29
Direct memory access controller (DMA) 1.30
Memory management unit (MMU) 1.30

Video controller (Shifter) 1.31
General housekeeping (Glue) 1.31

Chapter 2 - THE OPERATING SYSTEM (TOS) OVERVIEW

Operating system overview 2.3

Basic input/output system (BIOS)
GEM BIOS

2.4

2.4

XBIOS 2.4

Line-A routines 2.4

Basic disk operating system (BDOS) 2.4

Virtual device interface (VDI) 2.4
Application environment services (AES) 2.5
Application programs 2.5

Memory allocations 2.6
Memory map 2.6
System tables 2.7

Configuration registers 2.8
Resource mangement overview 2.9

CPU resources 2.9

Graphics concept overview 2.10

Overview of screens 2.12
High resolution screen 2.12
Medium resolution screen 2.12
Low resolution screen 2.12

Color palette table 2.13

Physical to logical screen transposition 2.13

High resolution screen 2.13

Medium resolution screen 2.14

Low resolution screen 2.14
Colour generation 2.15

Colour changing 2.15

Animation 2.15

VI



The Concise Atari ST Reference Guide

Sound concept overview 2.16
Sound control register 2.16
Parallel data I/O 2.17
Sound configuration registers 2.18

Tone frequency calculations 2.18
Noisefrequency calculations 2.18
Envelope calculations 2.19

Shape 2.19
Period/cycle 2.19

GEM disk operating system (GEMDOS) 2.20
Memory model 2.21
Base page 2.21
CP/M 68K format 2.22
File header format 2.22

Symbol table 2.23
Relocation table 2.23

ST file system 2.25
ST disk system 2.26
ST BIOS comparisons 2.27
Interrupt handler overview 2.27
System initialization 2.28

Cartridge software 2.31
Boot sectors 2.32
Boot loader 2.34
Boot ROM 2.35

Implemented functions 2.35
Peripheral device communications 2.36

Communications overview 2.36
RS232 interface 2.37
Parallel port interface 2.38
Midi interface 2.39

Control/status register functions 2.40
Intelligent keyboard interface 2.41

Keyboard 2.41
Mouse 2.41
Joystick 2.41
clock/program control 2.42

Floppy disk interface 2.43
Formatting a floppy disk 2.44
WD 1772A DMA channel interface 2.45

DMA interface 2.47
DMA bus boot code 2.48

Hard disk partitioning 2.50

VII



The Concise Atari ST Reference Guide

Chapter 3 - The ATARI Operating System

General 3.2
Register usage 3.2

Traps 3.3
Trap #13 access 3.3

BIOScalls (trap #13) 3.3
Critical interrupt handlers 3.6

Trap #14 access 3.7
XBIOS calls (trap #14) 3.7

Trap #1 access 3.15
GEMDOS calls (trap #1) 3.15

Supervisor/user toggle 3.23
Test for mode 3.23
User to supervisor mode 3.23

Supervisor to user mode
Extended BDOScalls (trap #2)

3.23
3.24

GEM VDI access 3.24
GEM AES access 3.24

Interrupt Handler (VBI) 3.26

Chapter 4 - GEM VDI

GEM VDI function calls 4.2
VDI parameter blocks 4.3

Control table 4.3
Attribute table 4.4
Points table 4.4

Parameter block sizes 4.5
The GEM VDI calls 4.8

Workstation function calls 4.8
Output functions 4.10
General drawing primitives 4.11

Attribute functions 4.13
Raster operations 4.16

Input functions 4.18

implemented 4.18
not implemented 4.20

Inquire functions 4.22
VDI style patterns
VDI text alignment

4.26

4.46

Escape functions 4.27

implemented 4.27
not implemented 4.30

VIM



The Concise Atari ST Reference Guide

File formats 4.33

Bit image 4.33

File header 4.33
Data encoding 4.33

Meta file Sub Op codes 4.35

Output page 4.35

GEM draw 4.36

Chapter 5 - GEM AES

GEM AES function calls 5.2
General 5.2

AES parameter block 5.3

Control table 5.3

Global array 5.3
Typical AES application call 5.4

Handles and coordinates 5.4
AES parameter block sizes 5.5
GEM AES components 5.5
The GEM AES Libraries 5.6

Application library 5.6
Event library 5.8

Keystroke selection 5.11
Icon selection 5.11

Menu library
Menu bar control

5.12

5.13
Object library 5.14

Object tree 5.14

Object library tables 5.15
Font types 5.16
Colour fields 5.16

Form library 5.20
Edit keys 5.21
Alerts 5.22

Graphic library 5.24
Scrap library 5.27

File selector library 5.28
Window library 5.29

Window parts bit representation 5.30
Resource library 5.35

Data structure types 5.36
Shell library 5.37

IX



The Concise Atari ST Reference Guide

Chapter 6 - The IKBD commands

General 6.2
Keycodes 6.2
Data packets 6.2
Commands 6.3

. Reset 6.3
Set mouse button action 6.3
Set mouse relative position reporting 6.3
Set mouse absolute positioning 6.3
Set mouse keycode mode 6.3
Set mouse threshold 6.3
Set mouse scale 6.3
Interrogate mouse position 6.3
Load mouse position 6.4
Sey y base position 6.4
Set y base position at top 6.4
Resume 6.4

Disable mouse 6.4

Pause output 6.4
Set joystick event reporting 6.4
Set joystick interrogation mode 6.4
Joystick interrogation 6.4
Set joystick monitoring 6.4
Set fire button 6.4
Set joystick keycode mode 6.5
Disable joysticks 6.5
Set time of day clock 6.5
Interrogate time of day clock 6.5
Memory load 6.5
Memory read 6.6
Controller execute 6.6

Status inquiries 6.6
Data packet functions 6.7



The Concise Atari ST Reference Guide

Chapter 7 - The Line-A calls

General 7.2
Line-A access 7.2
Initialization pointers 7.2
The Line-A routines 7.3

Put pixel 7.3
Get pixel 7.3
Line 7.3
Horizontal line 7.3
Filled rectangle 7.4
Line-by-line filled polygon 7.4
Bitblt 7.5
Textblt 7.5
Show mouse 7.5
Hide mouse 7.5
Transform mouse 7.6
Undraw sprite 7.6
Draw sprite 7.6
Copy raster 7.6
Contour fill 7.6

Logic table 7.6
Line-A parameter blocks 7.7
Sprite definition block 7.7
Format flag 7.7
Memory definition block 7.7
Line-A parameter table 7.8
Bitblt table 7.10

Chapter 8 - The Blitter calls

General 8.2
Blitter operation 8.2

Clipping 8.2
Skew 8.2
Endmasks 8.2
Overlap 8.2

Blitter control/status 8.3
HOG bit 8.3
BUSY bit 8.3

Blitter access 8.3
Blitter flow diagram 8.4
Blitter parameter table 8.6

XI



Xii

The Concise Atari ST Reference Guide

APPENDICES

A System variables
Exception vectors A.2
Hardware bound interrupts A.3
Application interrupts A.3

Error processor state dump A.3
System variables A.4
Bomb error codes A.6

B Configuration registers
Memory B.2
Display B.2
DMA/disk B.3
Sound B.4
Blitter B.5
MK68901 B.6
MC6850 B.6

C Printer and terminal escape codes C.2
Typical Epson printer codes C.4
VT52 terminal escape codes C.5

D Keycode definitions D.2
ASCII codes D.3
GSX compatible keyscan codes D.4
VDI standard keyboard codes D.5
Keyboard codes D.7

E Callable functions E.2
BIOS Trap #13 E.2
XBIOS Trap #14 E.2
GEMDOS Trap #1 E.4
Extended BDOS Trap #2 E.5
GEM VDI E.6
GEM AES E.9

IKBD command set E.12
Line-A routines E.13

F Parameter blocks F.2
System start-up block F.2
Device drivers F.3
Device state block F.3
Program parameter blocks F.5



The Concise Atari ST Reference Guide

VDI parameter block F.7
AES parameter block F.8

Line-A tables F.9

Sprite definition block F.12
Header blocks F.13

Cartridge header block F.13
Application header block F.13

G MC68000 instruction summary G.2
Address modes G.21
Allowable address mode types G.22

Data storage G.23
Data types G.24

H MC68000 instruction codes H.2
Bit manipulation, move peripheral, H.4

immediate instructions
Move byte instruction H.5
Move longword instruction H.5
Move word instruction H.5
Miscellaneous instructions H.6
Add Quick, subtract quick, set conditionally H.7

and decrement instructions
Branch conditionally instructions H.8
Conditional tests H.8
Move quick instructions H.9
OR, divide and subtract decimal instructions H.9
Subtract and subtract extended instructions H.9
Emulation instruction (Line-A) H.10
Compare, exclusive OR instructions H.10
AND, multiply, add decimal, exchange H.ll

instructions

Add, add extended instructions H.ll
Shift/rotate instructions H.12
Emulation instruction (Line-F) H.13

Address mode encoding H.14

I Error codes 1.2

BIOS error codes 1.2
BDOS error codes 1.3

Miscellaneous error codes 1.4

XIII



The Concise Atari ST Reference Guide

J BASIC GEM J-2
GEMSYS J2
VDISYS J-2
SYSTAB J-2

BASIC assembler J.6
Hand coding J.7

K Program development tools K.2

Atari MC68000 assemblers K.2
Seka K.2
Hisoft K.4

GST K.5
Metacomco K.6

Digital Research K.7

General assembler compatibility K.9
Assembler directives compatibility K.10

Assembler conversions K.11
Calling procedures K.14

C compilers K.16

L Example programs L.2
GEM L.3

Application and accessory header file
GEM demonstration program

L.3
L.8

GEM demonstration assembly program L.9

TOS L.17
Display demonstration program
TOS header file

L.17

L.19
Character printing program L.20
Sound demonstration program L.22

Line-A L.26
Line-A parameter table L.26

Sprite demonstration L.28

M Glossary M.2

N Schematic diagrams N.2

ST schematic diagram N.2

ROM cartridge N.4

Index

XIV



The Concise Atari ST Reference Guide

PREFACE

This book is intended as a compact reference guide to the Atari ST range of
computers, it provides detailed information on the Atari ST hardware, an
overview of the operating systems and the operating system calls. It also covers
all types of machine including the Megas and blitters as well as the three
generations of operating system used in the ST's todate:

a) OS supplied on disk
b) TOS in ROM
c) 'New TOS' in ROM

The majority of the book has been prepared in both decimal and hexadecimal
notation to make reading and data entry less complicated for the beginner, and
those who wish to use the VDI and AES tables from BASIC. I hope the use of
decimal will not be too distressful to the purists, but most assemblers will accept
either format as an input. The diagramatic presentation of data in memory and of
stacks follows the Motorola MC68000 user's manual format of low memory
towards the top of the page; presentation of memory maps follows the
convention of high memory towards the top of the page. All memory
representations are annotated to avoid confusion.

The Atari ST range of computers contain one of the largest ROM's (192K) of
the current range of home/low cost business computers available. This offers an
enormous wealth of data and routines that the user may wish to access; about six
times that of most computers. This information is presented in a condensed
group tabular form to provide association between the different types of calls
available, and to get it all in. General descriptions of all the facilities available
(disk, file, interfaces etc) are provided to present the reader with at least an
outline understanding of their operation.

The book covers the programming of the Atari ST in three parts:

Chapter 1 gives an overview of the Atari ST hardware and expansion ports,
also included is a short description of the peripheral interface circuits.

Chapter 2 presents an overview of the operating systems, the management of
memory and resources, control of serial I/O, screen functions and file handling.

The following chapters provide the operating system calls for the Atari OS,
GEM, the line-A graphic functions, the intelligent keyboard command
instructions and the blitter.

The Appendices contain the system variables, configuration registers and a
summary of the MC68000 instruction set.

XV



The Concise Atari ST Reference Guide

Acknowledgements

The author wishes to thank Atari Corp. (UK) Limited for its assistance in the
preparation of this book by providing much of the technical data, which is
reproduced with the kind permission of Atari Corp. (UK) Limited.

The contents of the Atari STROM are the copyright of Atari Corp.

Atari ST and TOS are the trademarks of Atari Corp.
CP/M and CP/M 68K are the registeredtrademarks of Digital Research Inc.
GEMand GEM Desktop are trademarks of Digital Research Inc.
MS is a trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines

Corporation.
Epson is a trademark of Epson Corporation.
Motorola is a registered trademark of Motorola Inc.
Metacomco is a trademark of Tenchstar Ltd.

GSTis a trademark of GSTHoldings Ltd.
Kseka is a trademark of Andelos Software 1985

Devpak is a trademark of Hisoft Ltd.

Disclaimer

Neither Atari nor the author make any representation or warranty with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. No responsibility for the
use of the information contained hereto, nor for any infringements of patents or
other rights of third parties which result from such use shall be assumed.

XVI



The Concise Atari ST Reference Guide

Foreword

by JackTramiel

When we introduced the ST series of computers at Atari, we coined the
phrase 'Power without the Price'. This sums up all that had been in our minds
when we decided to design a range of powerful but low-cost machines that could
be used for all applications ranging from sophisticated games to complex
business and scientific uses.

During the past few years, ever since I was responsible for bringing the first
mass-produced electronic calculators and then the first true computers to the
public at an affordable price, my whole aim has been to bring the benefits of
technology to thoseof average income. Wehave to get high technology out of the
hands of the few into the hands of the many. As I have said before we want
'classes for the masses'. Ifyou give somebody some sophisticated machinery then
you'll be surprised what they can do with it. Time and again we have been
amazed at what users have done with the technology when it is made freely
available at an affordable price.

And that brings me on to this series of books, edited by my old acquaintance
Robin Bradbeer. It is impossible to give all the information necessary to
completely cover all the uses of a computer in the instruction manual. Also, if
more than one person explains something they bring out differing strengths of
the system. Thisseries of books should help all users of the ST to get to know the
machine better and therefore use it more productively. Who knows, we at Atari
may yet again be surprised by what you, the user, can do with the affordable
technology that we have provided.

JackTramiel
1986

XVII



The Concise Atari ST Reference Guide

XVIII



The Atari ST Hardware

Chapter 1

Atari ST Hardware
Atari ST block diagram 1.2

Generalhardware description
Main system & device subsystem diagram

1.3

1.4
Atari ST console I/O 1.6

Monitor/TV output 1.6

Monochrome monitor 1.6

Colour monitor 1.6
Television 1.6

Monitor output 1.7

Parallel printer interface 1.8
RS232 modem interface 1.9

RS232 signal levels 1.9
Floppy disk controller interface 1.10
Direct memory access port (DMA) 1.11

Command modes 1.11

Musical instruments digital interface (MIDI) 1.13
Midi signal levels 1.13

Plug-in cartridge port
Intelligent keyboard I/O (ikbd)

1.14

1.15
Mouse/joystick interface 1.16

PortO 1.16
Portl 1.16

Power supply 1.17

Power levels 1.17
Processor device outlines 1.18

MC68000 16-bit microprocessor (CPU) 1.19
WD1772A floppy disk controller (FDC) 1.21

FDC instruction bytes 1.21
MK68901 multi-function processor (MFP) 1.23

MFP hardware interrupts 1.24
MFP configuration registers 1.24

MC6850 asynchronous communications interface
adaptor (ACIA) 1.27

ACIA control/status register 1.28

YM2149 programmable sound generator (PSG) 1.29
Direct memory access controller (DMA) 1.30

Memory management unit (MMU) 1.30
Video controller (Shifter) 1.31
General housekeeping (Glue) 1.31

1.1



The Concise Atari ST Reference Guide

Atari ST Block Diagram

MC 68000
MPU

Control Logic

1.2

Memory
Controller

Buffer

ACIA
MC685tf

ACIA
MC685fj

MFP
MC689(lt

PSG
YM21'49

FDC
WD1 772A

DMA Interfase

ROM
Cartridge ROM

192K

RAM 51
to 4Mbyte

2r^

Video Shifttr R£B Analogue
—- Monochrme

(Modulator)

J Keyboard
Interface

RS232
Interfacfe

Parallel
Interface

Sound
Channel

Floppy dish:
Interface'

Hard disk
Interface?

Keyboard

, Input
MIDI lnterfa^e_ Output

- Modem

Printer

Audio

Floppy disk

Hard disk



The Atari ST Hardware

General Hardware Description

The Atari STcomputer system consists of a console unit featuring an integral
keyboard, a display screen, sound subsystem, peripheral input/output and an
operating system. Expansion ports are provided for the connection of a variety of
peripheral devices i.e. a mouse, joystick, printer, modem, external floppy disk,
ROM cartridge application program etc.

The Atari ST console contains an 8MHz MC68000 16 bit microprocessor, at
least 512K of resident RAM and a 192K ROM operating system. A Mostek
MK68901 multi function peripheral (MFP) device provides the general purpose
interrupt control and timers and a single direct main memory access channel,
giving both high (hard disk) and low speed (external floppy disk) access support,
through a 32-bit FIFO to the 8 bit device controllers.

User input is via the integral intelligent keyboard, an external mechanical and
or optical mouse, or a switch type joystick. The keyboard communicates with the
main console section bidirectionally at 7 Kbits/s via a 1MHz HD6301 8 bit
microprocessor in the keyboard unit, and a MC6850 asynchronous
communications interface adapter (ACIA) in the console.

The display may be either a monitor, high resolution black and white or
colour (The Atari STM also caters for a standard television display unit). The
console interrogates the display device to determine the type attatched, ensuring
the high frequency syncsignals are not sent to low frequency monitors. There are
three display resolutions, 320x200 16 colour low resolution, 640x200 4 colour
medium resolution and 640x400 high resolution monochrome. The display
memory is part of the main memory and provides a matching bit-pixel
relationship to the physical screen in high resolution mode.

The music system sound effects and audio feedback output are created
through the monitor or television speaker, at frequencies in the range of 30Hz to
128Khz, via three independant voice channels. The programmable sound
generator outputs may consist of a noise and a tone mixed at a fixed or variable
amplitude defined by the envelope generator.

1.3



The Concise Atari ST Reference Guide

Main System and Device Subsystems

MONITOR

RGB COMPOSITE

GRAPHIC
SYSTEM
SHIFTER

32K BIT MAP

320X200 16 COLOUR

640 X 200 4 COLOUR

640 X 400 MONO

DMA
INTERFACE

(DIRECT MEMORY
ACCESS)

HARD DISK

CONTROLLER

PARALLEL
INTERFACE

CENTRONICS

PRINTER

8-BIT BIDIRECTIONAL

MC68901 MFP

MIDI
INTERFACE

OMNI-POLY AND

MONO NETWORK

INPUT/OUTPUT

1.4

PLUG-IN
CARTRIDGE

APPLICATIONS,

LANGUAGES ETC.

128k ROM MAX

MAIN SYSTEM

8 MHZ M68000

PROCESSOR

16 MBYTE ADDRESS

RANGE

SOUND SYSTEM

PROGRAMMABLE

SOUND

GENERATOR (PSG]

YAMAHA YM 2149

3-INDEPENDANT

VOICES

192K ROM

512KRAM (MIN)

MC6850 ACIA

MC 6850 ACIA

FLOPPY DISK
INTERFACE

SUPPORTS 2 DRIVES

WD1772AFDC

FLOPPY DISK
DRIVE

360/720 KBYTES

FORMATTED

RS232
INTERFACE

RTS/DTR/CTS/DCD/

RING

50-19200 BAUD

MC68901 MFP

KEYBOARD
INTERFACE

HD 6301

MOUSE/JOYSTK
PORT

2 BUTTON MOUSE

JOYSTICK
PORT

KEYBOARD



The Atari ST Hardware

The musical instruments digital interface (MIDI) enables the ST to integrate
with music synthesisers, sequencers, drum boxes etc. which incorporate the MIDI
interface; enabling OMNI, POLY and MONO networking.

Printer output is achieved via the parallel and RS232 interfaces, the latter also
being available for modem and general communication.

The floppy and hard disk interfaces provide the off-line data and program
mass storage facilities. The hard disk drive interface is accessed through the DMA
controller but the hard disk controller itself is off board. An on-board Western
Digital WD1772A interfaces the floppy disk drive, which may be either integral
or the Atari ST 3 1/2" disk drives SF 354 or SF 314.

The operating system may be either in 192K of ROM, or an imagefile on disk,
loaded by the disks boot sector, featuring the GEM operating environment of
windows, icons, pull down menus. The ST is also supplied with two language
implementations, an interpreted BASIC and Atari LOGO.

The ST can accept other operating systems loaded via the boot sector or
brought up by a driver in an 'AUTO' folder.

1.5



The Concise Atari ST Reference Guide

Atari ST Console I/O

MONITOR/TV OUTPUT

Monochrome Monitor

Atari SMI 24

71.25 Hz scan rate

Colour Monitor

Atari SC1224 RGB

50/60 Hz scan rate

13 way DIN 13S socket

Pin Function

1 Audio out
2 Composite video
3 General purpose output
4 Monochrome detect
5 Audio in

6 Green
7 Red
8 Ground

10 Blue
11 Monochrome

12 Vertical sync
13 Ground

Television

(where fitted)

RCA pin jack

Core : RF modulated video

Shield: Ground

Sync 5V active low 3.3Kohm
Audio IV pk-pk lOKohm
Video IV pk-pk 75ohm

ST signal processing device

(Reserved in older models)
TTL PSG I/O A
TTL MFP active low, 1K pull up to 5V

(+12V, 10mA shell for SCART connector)

** Note: Older versions of the ST reserved pin 2 and pin 8, this could be a
source of trouble with some peripherals. Always use pin 13 for ground if possible

1.6



The Atari ST Hardware

MONITOR OUTPUT

The monitor output supports either a high resolution black and white
monitor (Atari SM124) or a medium resolution colour monitor (Atari SC1224).
Sound is reproduced through the display device speaker.

Any suitable monitor may be attached, typical performance parameters of
such monitors are as follows:

Resolution

Video Bandwidth
Slot pitch (typ)
Input video

audio
Sync
Vertical scan

Horizontal scan

Low

452x585

Medium

653x585

High
895x585 pixels

lOMhz 18Mhz 18Mhz
0.64mm 0.41mm 0.31mm
1 VDC pk-pk
1 VDC pk-pk

5 VDC active low
50/60Hz 50/60Hz 71.2Hz

15.7Khz 35.7Khz

1.7



The Concise Atari ST Reference Guide

PARALLEL PRINTER INTERFACE

MFP -— 0

0

0

PSG I/O port B
I/O port A E

Main Console I/O port

I Strobe The paranel port interface
provides an 8-bit data
communication channel

2-9 Data controlled by a strobe signal
II Busy generated by the ST, indicating

that data bits are available on

the data lines for transfer to the

peripheral, and a busy signal
generated by the peripheral (usually a printer) indicating either that it is busy,
has a fault or possibly out of paper if a printer.

13 1
OOOOOOOOOOOOO)

OOOOOOOOOOO 0/

Pin Function

1 Strobe
2 Data 1 \
3 Data 2 1
4 Data 3 1
5 Data 4 1
6 Data 5 1
7 Data 6 1
8 Data 7 1
9 Data 8 /
10 n.c

11 Busy
12-17 n.c

18-25 Ground

25 14

25 way DB 25S socket
Data generated at a
typical rate of 4kbytes/s
by the PSG I/O port B

Acknowledge is not supported

The parallel port strobe signal generated by the PSG I/O port A (pin 1),
supplies the data transfer synchronization. The busysignal (pin11) is read by the
console MFP and provides the handshake control.

The strobe signal is active low, the busy signalactive high, with a IKohm pull
up resistor to +5V. All signals are at TTL levels.

1.8



The Atari ST Hardware

RS232/MODEM INTERFACE

. o

0

MFP o

o

0

PSG write only

I/O port A3
o

(FF8802)

Main Console I/O port

2 Tx transmit Thfi RS232
3 Rx receive interface is controlled
5 CTS clear to send via the PSG I/O portA
8 DCD data carrier detect (RTS and DTR) and the
22 Rl ring indicator MFP (CTS, DCD and

RI) transmitting and
receiving data within

4 RTS ready to send the range 50 to 192K
20 DTR data terminal readibaud' the timinS

synchronization is
generated by the
multi-function

processor (MFP) timer D. (Only the 'New TOS' supports RTS/CTShandshaking.)

The interface supports hardware handshake control:

RTS \ Transmit
DTR / PSG I/O port A

CTS \
DCD I
Ring /

Receive

MFP inputs

and software control through Xon/Xoff protocol.

Pin Function

1 Grd Protective ground
2 Tx Transmit data
3 Rx Receive data
4 RTS Ready to send
5 CTS Clear to send
6 n.c

7 Gnd Signal ground
8 DCD Data carrier detect
9-19 n.c

20 DTR Data terminal ready
21 n.c
22 Ri Ring indicator
23-25 n.c

13

25 14

25 way DB 25P plug

RS232 Signal Levels

Zero +3v
One -3v

to +12v
to -12v

1.9



The Concise Atari ST Reference Guide

FLOPPY DISK INTERFACE

0

0

WD1772A
0

0

0

0

0

PSG 0

0

Main Console I/O port

4 index pulse

8 motor on

9 direction in

10 step

12 write gate

2 select side

5 drive 0

6 drive 1

Note that the DIN socket shield must not be
connected on the ST side

The floppy disk
interface is based on

an on-board Western

Digital WD1772A disk
controller and

supports a maximum
of two drives. There is

no hardware sensing
of disk removal. The

drives provide fast
storage and retrieval of
data and programs on
3 1/2" flexible micro
disks.

Pin Function

1 read data TTL

2 select side 0 TTL

3
4

logic ground
index pulse TTL

5 select drive 0 TTL

6 select drive 1 TTL

7

8

logic ground
motor on TTL

9 direction in TTL

10
11

step
write data

TTL

TTL

12 write gate TTL

13 track 00 TTL

14 write protect TTL

14 way DIN 14S socket

1.10

active low, IK pull up
active high (high sys reset)
pair with read data
active low, IK pull up
active low (high sys reset)
active low (high sys reset)
pair with write data
active low \
active low I
active low I- (inverted)
active low I
active low /
active low, IK pull up
active low, IK pull up

Data is written to 512 byte sectors.



The Atari ST Hardware

DIRECT MEMORY ACCESS PORT

This port can be used to provide access to a hard disk or a compact disk. The
hard disk controller (target), not supplied with the basic ST system, is
communicated with-by a sequence of six bytes (from initiator system) which
provides format, read and write facilities etc. in one direction only. The command
protocol used is referred to as ANSI X3T9.2, a SCSI-like small computer systems
interface, of which the STsupports a small subset.

The Atari hard disk descriptor block consists of a six byte command packet
conforming to the following:

Six byte command packet

Byte Bit Function
no. no. range

0 0-4

5-7

Operation code U-31
Controller number 0-7

1 0-4 Head number 0-31
5-7 Drive number 0-7

2 0-5 Sector number 0-63
6-7

3 0-7

4 0-7

Cylinder number high
Cylinder number low
Sector count

5 0-7 Control byte

Hard disk command code summary

Op code Commanc
Dec Hex

5 05 Verify track \ Multi-sector
6 06 Format track 1 transfer
8 08 Read sector 1 with

10 0A Write sector / implied seek
11 0B Seek
13 0D Correction pattern
26 1A Mode sense

There is only one DMA channel, it is shared by both high speed (upto
8Mbit/s) and low speed (250 to 500Kbit/s) 8-bit device controllers.

1.11



The Concise Atari ST Reference Guide

DMA interface port socket

10
Coooooooooo^
\o OOOOOOO 0/

19 11

19 way DB 19S socket

Pin

1

Function

data 0 \
Signal type

2 data 1 1
3 data 2 1
4 data 3 l_ TTL

5 data 4 1
6 data 5 1
7 data 6 1
8 data 7 /
9 chip select TTL active low

10

11

12

13
14

15

16

interrupt request
ground
reset

ground
acknowledge
ground
Al

TTL active low, IK pull up

TTL active low (system reset)

TTL active low

TTL

17

18

ground
read/write TTL

19 data request TTL active low, IK pull up

The 'New TOS' supports more than one device attatched to the DMA port,
without the need for special software, on power up.

1.12



The Atari ST Hardware

MUSICAL INSTRUMENT INTERFACE (MIDI)

Main Console

o

0

Rx receive data

return

I/O port

The MIDI interface functions through an MC6850 asynchronous
communications interface adaptor (ACIA) whose control/status register is
located at $FFFC04 (16776196); data is passed in the register at offset 2 from the
control/status register.

Data is transmitted serially via the MIDI ports through two pins
asynchronously using the protocol:

One start bit, 8 data bits, One stop bit and no parity at 31.25 Kbaud.

The MIDI OUT port also supports the optional through port which merely
provides the MIDI IN signals through an opto-coupled isolator at the MIDI OUT
connector.

Control of the port is available through the ST's extended BIOS.

MIDI in MIDI out

5 way DIN 5S socket 5 way DIN 5S socket

Pin Function Pin Function
1 n.c 1 Thru tx data
2 n.c 2 Shield ground
3 n.c 3 Thru loop return
4 In rx data 4 Out tx data
5 In loop return 5 Out loop return

The Midi ports may be used to network data between connected computers,
they operate in RS232 current loop mode'.That is;

Signal levels zero 5ma
one zero current

1.13



The Concise Atari ST Reference Guide

PLUG-IN CARTRIDGE PORT

This port provides a plug-in cartridge facility that does not sense in hardware
the presence of a cartridge. The cartridge ROM occupies addresses in the range:

$FA0000 (16384000) to $FBFFFF (16515071) - 128 Kbyte, Bank switching
provides a means of accessing even more.

1 39
iiiiiiiiiiiii

n inn

hhlililililililililililiL,
lililililililllililih • i' i

2 40
40 way socket

Pin Function Pin Function

1 power +5 Vdc 21 address 8

2 power +5 Vdc 22 address 14

3 data 14 23 address 7

4 data 15 24 address 9

5 data 12 25 address 6

6 data 13 26 address 10

7 data 10 27 address 5

8 data 11 28 address 12

9 data 8 29 address 11

10 data 9 30 address 4

11 data 6 31 ROM3 select

12 data 7 32 address 3

13 data 4 33 ROM4 select

14 data 5 34 address 2

15 data 2 35 upper data strobe
16 data 3 36 address 1

17 data 0 37 lower data strobe

18 data 1 38 ground
19 address 13 39 ground
20 address 15 40 ground

Only the lower 15 address lines are available to the ROM cartridge which
does not provide a 'write' line.

1.14



The Atari ST Hardware

INTELLIGENT KEYBOARD (ikbd) INTERFACE

The Atari intelligent keyboard performs a variety of functions that include
the decoding of the key switch matrix, decoding mouse, trackerball and joystick
data and providing the time of day. It communicates with the main processor
over a high speed bi-directional serial link providing a convenient
mouse/joystick interface.

The keyboard consists of a series of make/break key switches for which the
ikbd generates keyboard scan codes for each key press and release, chosen
mainly for compatibility with the Digital Research graphic system (GSX). The key
codes, table Appx D.4, are defined for the whole range of international keyboards
such that each code has a predefined key press meaning, irrespective of the
presence of the key switch. The break code for each key is signified by bit 7 of the
corresponding make code for the key being set; the codes #$F6 to #$FF are
reserved for keyboard system functions.

The keyboard controller contains a 1 MHz HD6301 8-bit microprocessor that
communicates with the ST's MC6850 asynchronous communications interface
adaptor (ACIA) at a fixed 7.8 Kbit/s. The keyboard not only transmits the
encoded key scan codes (with a two key rollover), it also enables the programmer
to interrogate the status, define the read rates and sensitivity of the mouse and
joysticks under software control.

The time-of-day clock incorporated in the keyboard controller is held to a
resolution of 1 second and may be read and set from software. The keyboard may
be reset, without affecting the time held by the clock, to its power-up parameters.

When reset, the keyboard controller performs a simple ROM (checksum),
RAM and key (stuck) series of checks, correct operation is indicated by the return
of the version/release number of the ikbd controller.

1.15



The Concise Atari ST Reference Guide

MOUSE/JOYSTICK INTERFACE

The mouse and joysticks work on the basic unit of an 'event', this is defined
as either the opening or closing of a switch, or of motion beyond a predefined
programmable threshold level. The mouse is capable of a resolution of 200 events
per inch (4 events/mm) and is scanned at such a rate as to permit tracking
velocities of up to 10 in/s (250mm/s).

Motion, which produces make then break cursor keycodes, can be reported in
three different ways; relative, absolute and cursor key motion (motion per
keystroke is independently programmable in both axes). The mouse buttons can
also be treated as part of the mouse or as additional keyboard keys.

1 5

\.. • •/
6 9

9 way DB 9P plug

Joystick
Pin Function

Mouse/Jstk 0
Function

XB/Up
XA/Down
YA/Left
YB/Right
n.c

left button/Fire
+5v

Gnd

right button/Joy 1

1

2

3

4

5

6

7

Up
Down

Left
Right
reserved
Fire

Power

Gnd
n.c

Port 0 is configured
for mouse operation

Port 1 is the second

joystick interface

The mouse unit provides
interactive input to programs
like the desktop applications,
permitting a convenient method
of selecting from a menu of
facilities shown symbolically
as icons or simply as text.
Port zero is configured for
the mouse, but may also be

fire connected to a joystick.

The joystick is invariably used in games applications; but may also be used
instead of the cursor keys, for fine control of the screen cursor position (one pixel
movement).

The joystickfire and mouse buttons close to ground.

1.16



The Atari ST Hardware

POWER SUPPLY

The seperate power supply provides power for the main system board, the
keyboard controller, any connected expansion ROM and expansion RAM.

The supply is fused, the levels are regulated for over-voltage and incorporate
over-current protection.

7 way DIN 7P plug

The power levels are:

5VDC @ 3A 5%

+12VDC @ 0.03A 10%

-12VDC @ 0.03A 10%

Pin

1 +5 VDC

2 n.c

3 Ground

4 +12 VDC

5 -12 VDC
6 +5 VDC

7 Ground

The power supply may be integral with the main unit (1040ST, Mega ST).

1.17



The Concise Atari ST Reference Guide

PROCESSOR DEVICE OUTLINES

MC68000 8 MHz microprocessor
WD1772A floppy disk controller
MK68901 multi-function processor
MC6850 asynchronous communications interface adaptor
YM2149 programmable sound generator

CUSTOM DESIGNED DEVICES (ULAS)

Direct memory access controller (DMA)
Memory management unit (MMU)
Video controller (Shifter)
General housekeeping (Glue)
Blitter

There have been three generations of operating system for the Atari ST
todate:

a) OS supplied on disk
b) TOS in ROM
c) 'New TOS' in ROM

The blitter chip requires the 'New TOS', but the 'New TOS' does not
necessarily require the blitter chip.

1.18



The Atari ST Hardware

MOTOROLA MC68000 MICROPROCESSOR

Signal I/O
The following is a very brief description of the signal I/O of the Motorola

MC68000.

Vcc
Ground
Clock

Processor / pQ1 "-l
status T pQ2

Synchronous
control a

s»<*-p

AO
to Address bus [_)

A23 w

— DO

to O Da^ bus D
- D15

r—\ Asynchronous
L-/ control

o
Bus arbitration

control

IPLO \ . .
IPL1 I- 'nterruPt
IPL2 / control

A high-density, N-channel, silicon-gate depletion load 16-bit Microprocessor
in a 64 pin DIL package.

The Address bus (AO - A23) enables the MC68000 to address 16 megabyte of
data or 8 Megaword of instructions. The address bus provides the level being
serviced, during an interrupt, on address lines AO to A3 while A4 to A23 are held
high.

The Data bus (DO - D15) enables the transfer of word and byte-sized chunks
of data. During an interrupt acknowlege, a vector number may be placed on lines
DO to D7 by a peripheral device.

1.19



The Concise Atari ST Reference Guide

Bus arbitration control allows a peripheral device to control the MC68000
bus (bus master); any externalrequest will be granted on a priority basisbetween
the competing devices.

Interrupt control provides a priority level from peripherals requesting
processor control enabling selection of multiple interrupts on a priority basis.
Zero implies that there is no interrupt present and 7 is a non maskable interrupt.

Level Autovector

7 high
6
5

Non maskable interrupt
MC68901 multi function processor

4
3

Vertical blanking sync

2

1 low
Horizontal blanking sync.

System control informs the processor that bus errors have occurred and also
resets or halts the processor.

Processor status: each time a memory or I/O call is made the processor
provides the following information on the processor status lines to a peripheral
device: whether the processor is accessing data or program memory space or
servicing an interrupt; and whether the processor is in user or supervisor mode.

The Motorola MC68000's separate parallel address and data buses are used to
transfer data using an asynchronous bus structure controlled by the processor,
internal or external, which has current bus control.

Interfacing with the 8-bit M6800 and 6500 family of synchronous peripheral
devices is catered for through the use of memory-mapped I/O and a modified
bus cycle.

1.20



The Atari ST Hardware

WD1772A FLOPPY DISK CONTROLLER

$FF8604
7

Access
data

0byte

$FF8606 8

Mode
control 2

1

C

r/w

A1

AO

Status,
reg

Cmd
reg

Sector

reg

Track

reg
Data

reg

ommands are passed to the FDC (and an external HDC), by selecting the
appropriate FDC or HDC function (Read status/write command, sector, track or
data) through the configuration register ($FF8606) and sending instructions or
data via the access byte ($FF8604).

MODE BYTE ($FF8606)

Bits
1 0

00
01
1 0

1 1

Register
Read ' Write

Status
Track
Sector
Data

Command
Track
Sector
Data

Bit 7 selects Write (1) or Read (0)

The WD1772A floppy disk controller supports eleven instructions, these
should only be loaded into the data byte register when the status bit (bit 5,
$FFFA01) is off. The instructions enable head location, reading and writing
sectors, tracks and the forced interrupt of a disk operation:

1.21



The Concise Atari ST Reference Guide

INSTRUCTION BYTE ($FF8604)

1.22

Type 1 command

0000
0001

001 .
010.
011.

1
0
0
0
0

0
0

.00

.01

. 1 0

. 11
1..

1

Restore \ To track 0 position
Seek / Track position

Step Towards last track
Step in Towards inner track
Step out Towards outer track
Update track register Toggle bit
2ms \
3ms Step
12ms rate
6ms /
With verify \ Toggle
Without Spin-up disable / bits

Type 2 command

10 0 Read Sector
10 1 Write Sector

... 1 write 'deleted data' mark \
• • 1 . precompensation enabled
•1 • . 30msdelay
1 .. . without 'spin-up' delay

• •• 1 •••• multiple sector read/write /

Toggle
bits

Type 3 command

110. ..00 Read address
111. ..00 Read track
1111 0 Write track

Read diskette ID

... 1 write 'deleted data' mark \
• • 1 . precompensation enabled
•1 • . 30msdelay
1 ... without 'spin-up' disable /

Type 4 command

110 1 ..00 Force interrupt

0 0.. end with no interrupt
0 1.. interrupt on index pulse
10.. immediate interrupt

Toggle
bits



The Atari ST Hardware

MC68901 MULTI-FUNCTION PROCESSOR

Data^
(8) -

RS1 -
RS5^

CS^
R/W^
DS -

DTACK^

Resetset CIClock

Internal
control logic

IEI IRQ
IEO IACK

Daisy chain

Timer
C&D

_OSC

Timer
A&B

USART,

GP~
I/O

TCO
TDO

Xtah
Xtal2

TAO
TAI
TBO
TBI

Serial in
Tx clock
Serial out
Serial clock
Rx ready
Tx ready

I0-I7

Bit I/O interrupts
& modem control

The MC68901 contains a single channel USART capable of operating in full
duplex, at a rate of 62.5Kb/s asynchronous, IMb/s synchronous from an internal
or external Baud rate generator. The USART also supports DMA handshake
signals and modem control.

There are four timers with independant operation and vectored interrupts,
the timers have the following preferred timer uses:

Timer A: Stand alone applications and independent software vendor.
B:Primarily Screen Graphics (hblank, sync etc.)
C: System timing (GSX, GEM, Desktop, etc). Suitable for delays and

general timing applications (200Hz).
D: RS 232 port baud rate control.

Eight individually programmable I/O pins with interrupt capabilities are also
available.

1.23



The Concise Atari ST Reference Guide

MC68901 INTERRUPT CONTROL

MFP HARDWARE BOUND INTERRUPTS

Priority Function

15 high
14

13

12

Monochrome monitor detect
RS232 ring indicator
Timer A

RS232 receive buffer full

GPI (7)
GPI (6)
Timer A

11

10

9

8

RS232 receive error

RS232 transmit buffer empty
RS232 transmit error
Horizontal blanking counter Timer B

7

6

5

4

3

2
1

0 low

FDC/HDC - Interrupt
'Keyboard and MIDI
Timer C (system clock)
RS232 baud rata generator
Blitter interrupt (reserved)
RS232 clear to send
RS232 data carrier detect
Parallel port busy

GPI (5)
GPI (4)
Timer C

Timer D

GPI (3)
GPI (2)
GPI (1)
GPI (0)

*Test MC6850 status bit to differentiate between keyboard and MIDI interrupts.

MFP CONFIGURATION REGISTERS

These are located at address $FFFA01-16775681 and may be accessed via the
following offsets:

Offset Function Offset Function
Dec Hex Dec Hex

1 01 Gen purpose I/O 25 19 Timer A control
3 03 Active edge 27 IB Timer B control
5 05 Data direction 29 ID Timer C & D control
7 07 Interrupt enable A 31 IF Timer A data
9 09 Interrupt enable B 33 21 Timer B data
11 0B Interrupt pending A 35 23 Timer C data
13 0D Interrupt pending B 37 25 Timer D data

15 OF Interrupt m-serv A 39 27 Sync character
17 11 Interrupt in-serv B 41 29 Usart control
19 13 Interrupt mask A 43 2B Receiver status

21 15 Interrupt mask B
Vector base address

45 2D Transmitter status

23 17 47 2F Usart data

1.24



The Atari ST Hardware

The MC68901 usart registers are accessible from ExtendedBIOS (XBIOS)

SYNCHRONOUS CHARACTER REGISTER

I7l6l5l4l3l2l1l0~l SCR = $FFFA27

Used to synchronize incoming received data acting as the matching character

USART CONTROL REGISTER

7l6l5l4l3l2l1l0l UCR = $FFFA29

0

0 = odd, 1 = even

off, 1 = enable

•async
•async
async

0 0 -sync

8 bits per word
1 - 7 bits per word
0 - 6 bits per word
1 - 5 bits per word

0 = normal, 1 = Divide by 16

Start 1 2
and 1 1/2 used by div by 16
stop 1 1
bits 0 0

TRANSMIT STATUS REGISTER

7|6|5|4|3|2|1|0~| TSR = $FFFA2D

Interrupt
generated

END B TE

0 = disable Tx and clear flag
1 = enable normal operations

0 0 high imp \ Configure Tx
0 1 low o/p when
1 0 high / Tx disabled
1 1 loopback async (connect o/p to i/p)
Normal Tx
Send a break

0 Tx enabled
1 Tx disabled after last character sent

Disable Tx
Enable Rx when Tx disabled after last character sent

0 Tx status register read
1 Word transmitted and Tx buffer empty

Tx buffer read
Tx word transferred to Tx shift register

10

1.25



The Concise Atari ST Reference Guide

RECEIVE STATUS REGISTER

I 7 I 6 I 5 3 12 11
OS PE| FE] F/S( M S3 RET

0 = disable Rx and clear flag
1 = enable normal operations

0 strip sync character (sync)
1 sen sync character

0 stop bit Rx (async)
1 word being Rx

0 no character match (sync) no break (async)
1 word match break Rx

RSR = $FFFA2B

no frame error in word in Rx buffer (async)
frame error in Rx buffer word

0 no parity error in word in Rx buffer
1 parity error in Rx buffer word

0 Rx status register read
1 Word received and Rx buffer empty
Rx buffer read \ Read
Rx word transferred to Rx buffer / only

Interrupt
generated

11

11

12

11

Timer A uses register B ($FFFA19), timer B register 14 ($FFFA1B), timers C
and D both use register 15 ($FFFA1D). Timer C bits 4 to 6 and timer D bits 0 to 2,
both operate delay mode only.

7 16 15

1.26

0 0 0

0 0 0
Timer stop
Event #

0
0

0 1

1 1

1 1

0 - 4
0 - 10

1 - 16
0 - 50
1 - 64

0 - 100
1 - 200

0 delay mode
1 pulse width mode

delay



The Atari ST Hardware

MC6850 ASYNCHRONOUS COMMUNICATIONS

INTERFACE ADAPTOR

D0-D7

Tx clock
Tx

shift
register

IX IX

•H^^- data shift
^ [register [registei

Data
bus
buffed

Rx clock

Status^
register

Control
register

Rx

data
register

Rx
shift

register

Tx data

CTS
DCD

- RTS

Rx data

The MC6850 ACIA provides data formatting and control of a serial interface
to an 8-bit bidirectional data bus. At the bus interface, the four ACIA registers,
the status and receive data -read only and the control and transmit data-write
only registers, appear as two addressable memory locations.

The programmable ACIA control register, which sets the format of the serial
link, is located at $FFFC00 (16776192) for the intelligent keyboard serial
communications link, and at $FFFC04 (16776196) for the MIDI interface.

The ACIA supports peripheral/modem control through:

and

RTS request to send,
CTS clear to send
DCD data carrier detect.

Protocols for 8 and 9 bit transmission using an optional odd or even parity,
and one or two stop bits, are available through the programmable control
register.

The MIDI port may be configured as a second serial port (for networking) but
the intelligent keyboard interface is not accessible.

1.27



The Concise Atari ST Reference Guide

ACIA CONTROL/STATUS REGISTER

Interrupt request
Parity error

Rx overrun (character lost)
Framing error

CTS
DCD

Tx data register empty
Rx data register full

'READ'
RECEIVE STATUS
REGISTER

0
0
1
1

Rx
"Rx

1.28

5 4

0

0

1

1
0

0
1

1
RTS low
RTS low

1 $FFFC00-$FFFC04

0 0 \ normal \ Divide
0 1 Divby16 select
1 0 / Div by 64 / bits
1 1 Master reset
7 bits, even, 2 stop bits
7 bits, odd, 2 stop bits
7 bits, even, 1 stop bit
7 bits, odd, 1 stop bit
8 bits, 2 stop bits
8 bits, 1 stop bit
8 bits, even, 1 stop bit
8 bits, odd, 1 stop bit

0 RTS low, Tx interrupt disable
1 RTS low, Tx interrupt enable
0 RTS high, Tx interrupt disable
1 RTS low, Tx a break onto data output. Tx interrupt disable
interrupt disable
interrupt enable (Rx data register full overrun. DCD low to high transition)

'WRITE'
TRANSMIT CONTROL
REGISTER



The Atari ST Hardware

YAMAHA YM2149 PROGRAMMABLE SOUND

GENERATOR

Channel A [tone

Channel B Itone

Channel CItone

NOISEH

Mixer

ENVELOP

Generator

-Iaj^p-

JA^P-

D/A

D/A

D/A

Sounp
O/P

Port

CPU bus

CPU bus

I/O
Register

I/O
Register

8 bit I/O
port A

8 bit I/O
portB

The programmable sound generator control registers are located as follows:
RAM offset Function Bits used
reg addf BasP address SFF8800-16746596 | 7654 3 7.1 f)
0

1

2

3

4

5

6
7

0 Channel A fine tune

1 Channel A coarse tune
2 Channel B fine tune

3 Channel B coarse tune
4 Channel C fine tune
5 Channel C coarse tune
6 Noise period
7 Mixer cntrl-I/O enable

Fixed amplitude
8 Channel A amplitude
9 Channel B amplitude
A Channel C amplitude

Variable amplitude
B Envelope period fine
C Envelope period coarse
D Envelope shape
E I/O port A (output only)
F I/O port B (Centronics)

fixed/variable C=cycle A=alternate x-

xxxx xxxx

xxxx

xxxx xxxx

xxxx

xxxx xxxx

xxxx

x xxxx

I/O noise tone

M xxxx

M xxxx

M xxxx

xxxx

xxxx

xxxx

xxxx

CRAH

9

10

11

12
13
14

15

M=mode

data

bits used R=ramp H=hold

1.29



The Concise Atari ST Reference Guide

1.30

DIRECT MEMORY ACCESS CONTROLLER (DMA)
RAV 1 40

A1 2 39
FCS 3 38

DO 4 37
D1 5 36
D2 6 35
D3 7 34
D4 8 33
D5 9 32
D6 10 31
D7 11 30
D8 12 29
D9 13 28

D10 14 27
D11 15 26
D12 16 25
D13 17 24
D14 18 23
D15 19 22
Gnd 20 21

+5v

elk 8Mhz
RDY
ACK
CDO
CD1
CD2
CD3
CD4
CD5
CD6
CD7
Gnd
CA2
CA1
CRAV
HDCS
HDRQ
FDCS
FDRQ

MEMORY MANAGEMENT UNIT (MMU)

26 10

27 9

1
68

43 61

44 60

1 D4 18 RAS1 35 A15 52 DE
2 D5 19 4Mhz Out 36 A14 53 DTACK
3 D6 20 8Mhz Out 37 A13 54 MAD5
4 D7 21 CASH 38 A12 55 MAD4
5 16MhzlN 22 CAS1H 39 A11 56 MAD3
6 CAS0H 23 WE* 40 A10 57 MAD2
7 CAS0L 24 DMA 41 A9 58 MAD1
8 RAS0 25 WDAT* 42 A8 59 MAD0
9 LATCH 26 UDS* 43 A7 60 MAD6

10 VCCA 27 Gnd 44 +5v VCCB 61 Gnd
11 A16 28 CMPCS* 45 A6 62 MAD7
12 A17 29 DCYC* 46 A5 63 MAD8
13 A18 30 RDAT* 47 A4 64 MAD9
14 A19 31 DEV* 48 A3 65 DO
15 A20 32 AS* 49 A2 66 D1
16 A21 33 RAM* 50 A1 67 D2
17 LDS* 34 RAW* 51 VSYNC 68 D3



The Atari ST Hardware

VIDEO CONTROLLER (SHIFTER)

XTLO 1 1 40

32Mhz XTL1 2 39

DO 3 38

D1 4 37

D2 5 36

D3 6 35
D4 7 34

D5 8 33

D6 9 32

D7 10 31

load 11 30

D8 12 29

D9 13 28

D10 14 27

D11 15 26

D12 16 25

D13 17 24

D14 18 23

D15 19 22

Gnd 20 21

+5v
16Mhzclk
CS
DE
A1

A2

A3
A4

A5
RA/V
Mono
R0
R1
R2
GO

G1
G2
BO
B1

B2

GENERAL HOUSEKEEPING (GLUE)

+5v Vcc
A14
A15
A16
A17

6 A18
7 A19
8 A20
9 A21

10 A22
11 A23
12 AS*
13 FC2
14 FC1
15 FCO
16 VMA*
17 ROM4

26 10

27 9

1

68

43 61

44 60

18 ROM3
19 ROM2
20 ROM1
21 ROMO
22 RESET*
23 RAM*
24 DMA*
25 DEV*
26 FCS*
27 BGI*
28 RDY
29 VPA*
30 BERR*
31 DTACK*
32 IPL1*
33 IPL2*
34 8Mhz In

35 Gnd
36 BLANK*
37 HSYNC
38 VSYNC
39 DE
40 BR*
41 BGACK*
42 6850CS*
43 500Khz out 60
44 MFPINT* 61
45 BGO*
46 LDS*
47 UDS*
48 DO
49 D1
50 IACK*
51 MFPCS*

52

53
54

55
56
57

58
59

62
63
64
65
66
67

68

Gnd
SNDCS*
2Mhz out
RAW*
A1
A2
A3
A4
A5
A6
A7
A8

A9
A10
A11
A12

A13

1.31



The Concise Atari ST Reference Guide

1.32



Operating System Overview

Chapter 2

The operating system (TOS) overview

Operating system overview 2.3
Basic input/output system (BIOS) 2.4

GEM BIOS 2.4

XBIOS 2.4
Line-A routines 2.4

Basic disk operating system (BDOS) 2.4
Virtual device interface (VDI) 2.4
Application environment services (AES) 2.5
Application programs 2.5

Memory allocations 2.6
Memory map 2.6
System tables 2.7
Configuration registers 2.8

Resource mangement overview 2.9
CPU resources 2.9

Graphics concept overview 2.10
Overview of screens 2.12

High resolution screen 2.12
Medium resolution screen 2.12
Low resolution screen 2.12

Color palette table 2.13
Physical to logical screen transposition 2.13

High resolution screen 2.13
Medium resolution screen 2.14
Low resolution screen 2.14

Colour generation 2.15
Colour changing 2.15
Animation 2.15

2.1



The Concise Atari ST Reference Guide

2.2

Sound concept overview 2.16
Sound control register 2.16
Parallel data I/O 2.17
Sound configuration registers 2.18

Tone frequency calculations 2.18
Noise frequency calculations 2.18
Envelope calculations 2.19

Shape 2.19
Period/cycle 2.19

GEM disk operating system (GEMDOS) 2.20
Memory model 2.21
Base page 2.21
CP/M 68K format 2.22
File header format 2.22
Symbol table 2.23
Relocation table 2.23

ST file system 2.25
ST disk system 2.26
ST BIOS comparisons 2.27
Interrupt handler overview 2.27
System initialization 2.28

Cartridge software 2.31
Boot sectors 2.32
Boot loader 2.34
Boot ROM 2.35

Implemented functions 2.35
Peripheral device communications 2.36

Communications overview 2.36
RS232 interface 2.37
Parallel port interface 2.38
Midi interface 2.39

Control/status register functions 2.40
Intelligent keyboard interface 2.41

Keyboard 2.41
Mouse 2.41
Joystick 2.41
clock/program control 2.42

Floppy disk interface 2.43
Formatting a floppy disk 2.44
WD 1772A DMA channel interface 2.45

DMA interface 2.47
DMA bus boot code 2.48

Hard disk partitioning 2.50



Operating System Overview

Operating system overview
The Atari ST operating system is in many ways functionally similar to

MS-DOS, with extensions for handling a mouse, sound, the midi interface, an
intelligent keyboard and joysticks. The source is based on a CP/M 68K related
operating system referred to as the TOS (Tramiel Operating System). A graphics
environment manager (GEM) provides additional single-user support for
windows and communications via VDI and AES extensions, which support
graphics and an applications environment. Program transportability is
maintained by splitting the operating systems into machine independant (BDOS,
VDI and AES) and machine dependant basic input/output utilities (BIOS and
line-A routines).

The ST programmer is given access to the VDI primitives via the line-A
routines for much greater graphic application speed.

The disk operatingsystem (DOS) contains routines that provide access to the
disc drives and support existing single user programs, file locking to ensure safe
updating, unlock and read only facilities. Disk operation errors are trapped
(where possible) and corrected.

Machine/
dependant

input/outputl
routinesx

General/
operating!

systems\

BIOS

GEMDOS
Basic
disk
operating
system

LINE-A
routines

GEM VDI
Virtua
device
interface

GElVl
AESl

Programmable segments of TOS

The application environment (AES) multitasks using a timeslicing technique
and supports a database file management system, real time data aquisition,
communications and process control.

The virtual device interface (VDI) allows the use of peripheral independant
device drivers and provides a high degree of support for advanced user
interfaces.

2.3



The Concise Atari ST Reference Guide

BASIC INPUT/OUTPUT SYSTEM (BIOS)

The BIOS consists of all the machine dependent I/O routines of Digital
Research's GEM and additionally provides access to the line-A routines for fast
graphics. The I/O functions can be categorized as follows:

GEM BIOS:

System I/O:
Console I/O:
Disk I/O:

ST XBIOS:

Port I/O:
Screen I/O:
Disk I/O:
Keyboard I/O:

Line-A routines:

Pixel graphics
Line graphics
Sprite graphics
Bit block transfer
Mouse handler

Parameter block initialization
Data I/O &query
Memory/disk transfers

Configure RS232, mouse, midi & sound port
Get screen parameters
Memory/disk transfers
Keyboard communications

BASIC DISK OPERATING SYSTEM (GEMDOS)

The disk operating systems permits the machine independent routines to
access the disk drives and handle file management through the following
functions:

Set/get time and date
Tree directory management
File attribute management
Create/open/close files and disk transfers.

Current versions of GEMDOS impose a limit of 40 folders>

2.4



Operating System Overview

Virtual device interface (VDI)

The VDI provides a set of graphic function calls that allow portability across
physical hardware. Not all the standard VDI calls are implemented on all the
operating systems available for the ST, the VDI tables Chapter 3 are annotated to
show those that are missing from the various systems.

Control I/O: Initialize graphics & set defaults.
Graphics I/O: Primitives, lines, polygons, bars, arcs & pies.
Attribute I/O: Set colour and style.
Raster I/O: Bit block transfers, fill, font and cursor forms.
Input I/O: Keyboard/mouse interaction with console.
Inquire I/O: Get attributes, resolution, style etc.
Special I/O: Permits specialized functions to be performed.

Application Environment Services (AES)

The AES (application environment services) are a series of utilities that
handle graphic based inputs to the user application. For example, instead of
asking for INPUT - the screen displays graphically a menu of options which may
include a clock, a file and perhaps a disk, these items being given a pictorial
representation that is called generically an 'Icon'. To select one, the user simply
moves the cursor, which may look remarkably like an arrow, and places it on the
required icon by moving the mouse and pressing a trigger button on the mouse.

The AESroutines are put into groups called libraries as follows:

Application: Provide access to AES routines.
Event: React to user inputs
Menu: Translate defined text to menu format.
Object: Substitute graphic-icon for its label
Form: Handle text input automatically when needed.
Graphic: Primitive graphic functions.
Scrap: Management of cut and paste.
File Selector: Creation/display of user selected file.
Window: Handle windowing ofqueried input responses.
Resource: Interface device dependant drivers to applications.
Shell: Enable one program to call another.

Application programs

The desktop application is part of the operating system and is the base user
interface when other application programs are not running. It provides a
calculator, alarm and clock; and through manipulation of icons via the mouse,
disk directories, disk and file copy and deletions, disk formatting, as well as other
activities such as communications, data output and window control

2.5



The Concise Atari ST Reference Guide

MEMORY ALLOCATIONS

SFFFFFF

$FF8800

$FA0000

$400000

$100000

$080000

$000400

$000000

Memory
mapped
input/

output

ROM
Area

4M RAN
max

1024K
RAM

512K
RAM

OSBSS
user R
variables

Supervisor
RAM

variables

16777215

16746596

16384000

4194304

1048576

524288

2048 \

Supervisor
access

1024 on|y

$FFFFFF
$FFFC00
$FFFA00
$FFBA00
$FF8800
$FF8600
$FF8400
$FF8200
$FF8000

MC6850
MK68901
Blitter
SOUND
DMA/Disk
Reserved
Display
Memory

16777215

16776192

16775680
16747108

16746596
16746084
16745572
16745060
16744448

MEMORY MAPPED I/O
CONFIGURATION REGISTERS

$FF0000

$FC0000

$FA0000

192K
system

ROM

128K
cartridge

ROM

16711680

16515072

16384000

ROM CONFIGURATION
IN MEMORY

References to the bottom 2K of memory and the I/O space are classed as
supervisor references and attempted access from user mode will cause an error
exception trap.

2.6



$800

$400

$200

$100

$0BC
$0B8
$0B4
$0B0

$08C
$088
$084
$080
$07C
$078
$074
$070
$06C
$068
$064
$060

$03C

$02C
$028
$024
$020
$01C
$018
$014
$010
$00C
$008

$000

Operating System Overview

SYSTEM TABLES

Operating system block storage segment

Trap #15 vector
Trap #14 vector
Trap #13 vector
Trap #12 vector

Trap #3 vector
Trap #2 vector
Trap #1 vector
Trap #0 vector
Interrupt level 7
Interrupt level 6
Interrupt level 5
Interrupt level 4
Interrupt level 3
Interrupt level 2
Interrupt level 1
Spurious intrpt

Uninit int vector

Emulation 1111
Emulation 1010

Trace
Privilege violation

Trap instruction
CHK instruction
Divide by zero

Illegal instruction
Address error

Bus error
Initialise PC

Reset init SSP

1024

System parameters
and variables

512 Reserved for OEMs

Supervisor
space

256 MFP vectored interrupts

188

184

180

176
172

140
136
132

128
124

120

116

112
108
104

100

96

60

48
44

40

36

32

28
24

20

16
12

XBIOS (ST extended BIOS)
BIOS

BDOS
GEMDOS interface

Non maskable interrupt
68901 MFP

Vertical blank sync
Normal interrupt level
Horizontal blank sync

Unused vectors point to the
system critical error handler

Used by some AES functions
Line-A routines entry

The system variables are in
the supervisor space and can
be accessed only In supervisor
mode

2.7



The Concise Atari ST Reference Guide

$FFFC0(l

$FFFA0Cl

SFF8800

$FF8600

SFF8400

$FF8200

$FF8000.

2.8

CONFIGURATION REGISTERS

ACIA

MFP

Blitter

Sound

DMA/Disk

Reserved

Display

Memory

Functions controlled

.-.-,-.-,-.,. Keyboard and MIDI I/O

167761Q2 System checks, system interrupts

16747108

16746596

16746084

16745572

16745060

16744448

PSG 3 channel sound, noise, tone,
amplitude and envelope

Floppy/hard disk, DMA

Video address, field rate,
video made and palette

Memory size



Operating System Overview

Resource management overview

The pseudo multitasking kernal can support one primary application and
one of a number of desk accessory programs. The main application may be GEM
or DOS such as GEM desktop application or a word processing package etc.

Primary
application

A minimum space
allocation of 128K

Screen
environment

Desk
ace 1

A desk accessory is an application that does not take over the entire display
screen, running in a specially designed window. The calculator is a typical
accessory.

Onlyone desk accessory program maybe active at a time, and willonlyload
if at least128K ofRAM is leftfor the primary application.

CPU resources

The dispatcher divides CPU time between primary applications and
background processes. These jobs are put into lists; 'Ready for processing' and
'Not ready7, and are serviced on a round robin schedule with the current process
at the head of the list running. Not ready processes may be waiting for a key
press, mouse movement or trigger, time lapse etc.

2.9



The Concise Atari ST Reference Guide

Graphics Concept Overview
The Atari ST graphics is supported at a primitive level through the line-A

routines and at a higher level through a limited version of the Digital Research
graphic system extension (GSX), which is based on the ANSI virtual device
interface (VDI). VDI provides a set of graphic primitives (GDOS) and a library of
device drivers (GIOS) for the preparation of transportable software. The whole of
GDOS and GIOS are not included in the ROM based ST operating system and
there is no support for a small number of the VDI functions. These mainly cover
lack of support for multiple fonts, the driving of 'non-standard' output devices
and the use of 'normalised device coordinates.

The VDI interface provides output primitives of lines, arcs, polygons etc. and
input primitives to point symbolically, get co- ordinates of joystick/mouse or
keyboard input etc. It also supports the control of multiple output devices using
raster screens.

The line-A routines give very fast access to the primitive pixel, line, sprite
and bit block transfer graphic functions at the expense of portability

RASTER COORDINATES are based on screen pixels.

0,0

640,400
GEM programs are portable but must take into account two possible problem

areas:

Screen aspect ratio: Different hardware systems and displays (screen,
printer, plotter or another computer) may have different aspect ratios. Producing
similar screen designs requires the programmer to scale the data sent to the
display deviceusing the aspectratio returned from the open workstationcall.

Language implementations: Different language implementations of a
program will require different length text strings to be fitted into windows. The
inquire character cell width call in conjunction with the window sizereturned by
the wind_get call will enable the programmer to determine the number of
characters acceptable.

2.10



Operating System Overview

Alert and Dialog boxes have predetermined responses set up using the
resource construction set and therefore do not present a language problem.

The missing part of GDOS is available as part of the code supplied in Ct* ictin
Digital Research products and may at a later date become more generally
available for the ST (as 'AUTOXGDOS.PRG' file). On this premise, the details of
the missing parts are given coupled to a rider that they are not available on the
basic system.

GEM usually provides two graphic coordinate systems to the programmer,
raster and normalized.

Raster is based on the computers screen resolution, in the case of the Atari ST
600 x 400 pixels (monochrome).

NDC (not implemented) is based on a notional screen of 32767 x 32767 points,
the points beingtranslated to the actual screen of the targetsystem by one of the
GIOS device drivers. The idea behind this is to write software independant of
specific screen resolutions.

NORMALIZED DEVICE COORDINATES are based on a screen of
32767x32767 pixel dimensions.

32767,32767

0,0

Graphic Coordinate Computation

32767,32767

640,400

Full NDC mapped to
full RC space

2.11



The Concise Atari ST Reference Guide

Overview of screens

The Atari ST screen may be operated in three different resolution modes, the
colours may be chosen from a palette of 512 colours:

High: 640 x 400 pixel, black and white display
Medium: 640 x 200 pixel, 4 colour display
Low: 320 x 200 pixel, 16 colour display

High Resolution 640 x 400 pixels

Origin
SINGLE
PLANE

Black border

Medium Resolution 640 x 200 pixels
Origin

TWO
PLANES

Border is palette colour zero

Low Resolution 320 x 200 pixels
Origin

No colour but inverse video is
available determined by the
condition of bit zero of palette
colour zero

Only the first four lookup table
entries are available.

16 word lookup table of 9 bits/entry

3 red, 3 green and 3 blue on low
nibble boundaries, giving 8x8x8
possible colours (512).

Border is palette colour zero

It is not possible to change resolution while using GEM

2.12



Operating System Overview

Colour Palette Table

Palette colour

15 12 11

0
1
2
3
4

5
6
7
8
9
10
11
12
13

14
15

8 7 4 3

I

Not used Blue Green Red

Colour nibbles

Palette colour
/zero, bit colour

0 \
1
2

3 /

MSB

Medium
resolution
palette

LSB

Colour nibble

8 levels of colour
x = bit not used

Physical to logical screen transposition

High resolution mode 640 x 400

PHYSICAL SCREEN

1 314
641643 pixels

L16117

LOGICAL SCREEN
bit 15 bitO
MSB word 1 LSB
MSB word 41 LSB

MSB word 2 LSB

400 words

40 words -

MSB word 16000 LSB

Low memory
word 1

word 2
word 3

TjjgTi low

word 15991)
word 16000

Screen in
memory

Border always set black Bit zero of the colour
palette provides inverse
video

2.13



The Concise Atari ST Reference Guide

Medium resolution mode 640 x 200

PHYSICAL SCREEN plane
1 2 3 I 4 I 8 I 9 I

641 642 pixels

LOGICAL SCREEN
bit 15 bitO

MSB word 1 LSB I MSB word 3 LSB
Plane 1

Plane 2
MSB word 2 LSB MSB wo -d4 LSB

200 words

80 words •

Low memory
word 1

word 2

word 3

jTigh low

word 1599E
word 1600C

Screen in
memory

MSB word 16000 LSB

15 13

Border set by colour palette zero

2 1 0

Plane 1 word
Plane 2 word

Colours generated by interleaved bits of words

Low resolution mode 320 x 200

Plane
1 2

Palette

colour
0 0
0 1
1 0

1 1

0
1
2

3

PHYSICAL SCREEN Colours generated by
interleaved bits of the
fourplanes. Plane 1
provides the least
significant bit in the
palette table pointer

2.14

1

321 32:

8 I 9
pixels

LOGICAL SCREEN
bit 15 bitO Plane 1

" Plane 2
MSB word 1 LSB I MSB word 5 LSB

MSB word 2 LSB MSB word 6 LSB
Plane 3

Plane 4
MSB word 3 LSB I MSB word 7 LSB

MSB word 4 LSB I MSBTwd-d 8 LSB

200 words

0
80 words

MSB word 16000 LSB

Border set by colour palette zero



Operating System Overview

Color generation

A word from each plane is taken from the video display file and placed in rhe
video shift register from where the bits are collectively used to index into the
colour palette table. The colour code generated is supplied to a 3-bit digital to
analogue convertor to produce the RGB signals.

Logical bit-map
planes

1

Video display
memory

12 3 4

Video shift
register

.1.x

.2.x

.3.x

.4.x

Colour palette
and 3-bit DAC's

16x9
lookup
table

Inverter

- R

- G

^ B

Mono

In high resolution monochrome mode, the video shift register passes its data
to the inverter and not the palette lookup table.

Colour changing

To prevent jitter when changing colors using the Hblank ($068) and Hsync
($120) interrupt vectors, programmers should use the following procedure:

1) Revector keyboard/MIDI interrupt to a routine that lowers the IPL to 5
and then jumps through the original vector.

2) During the critical section of screen, revector the system 200Hz clock
interrupt vector to a routine that increments a counter and then RTEs.

3) After the critical section, blockinterrupts (at IPL 6) and calla system clock
handler that jumps through the interrupt vector with a fake SR and return
address on the stack,the number of timesindicatedby the counter.

Animation

Animation is most easily achieved by switching alternately between two
screens; one on display, the other being updated in the background. Initially
write two identical screens and display one while modifying the other, swap the
screens over and display the modified screen while updating the one previously
on display. The technique will produce a very stable display with quite slow
switching rates.

2.15



The Concise Atari ST Reference Guide

Sound concept overview

Sound is generated via a Yamaha YM2149 programmable sound generator.
The PSG contains three tone generators that produce the basic square wave tone
frequencies for the A, Band C channels and a noise generator, that produces a
frequency modulated pseudo random pulse width square wave, which may be
combined with the tone generator outputs using the channel mixer. The output
level can be fixed via the channel amplitude control using one ofthe three sixteen
level D/A converters or varied by using the output of the envelope generator,
which maybe used to amplitude modulate theoutputof each mixer.

Sound control registers
The frequency of each tone generator (30Hz to 125KHz) is obtained by

counting-down the 12-bit value of the tone registers (the coarse register sets the
upper 4 bits and the fine register sets the lower 8 bits, range 001H to FFFH (1 to
4095). The standard PSG format is to produce a lower note for a higher count
whenever a register count-down is performed.

The noise generator frequency is controlled by a 5-bit noise period register,
value01H to 1FH (1 to 31), producing a frequency rangeof 4Khz to 125Khz.

The mixer control register is a multi-function register that mixes the noise
channels (definedby bits 3 to 5) and the tone channels (defined by bits 0 to 2) in
all possiblecombinations to the input/output ports (bit 6 I/O, bit 7 port A or B).

The amplitude of a channel is controlled to one of sixteen fixed levels by the
channel D/A converter register (lower 4 bits of the register) and only by setting
the register to zero can the channel be turned off. The fifth bit of the amplitude
control register is set to select the variable level output defined by the envelope
generator.

The envelope generator comprises of three registers, two provide the
frequency variation and the third the format of the envelope. The frequency is
determined by counting down the 16-bit value of the coarse and fine envelope
registers range 0001H to FFFFH (1 to 65535). The shape and cyclic pattern of the
envelope is defined by the lower 4 bits of the shape register (the amplitude
register setting the level), the four bits provide for combinations of hold/cycle,
reverse cycle on/off, ramp up/down and cycle hold pattern/reset to zero.

2.16



Operating System Overview

Parallel data I/O

The I/O register in the PSG is not associated with sound production, it
provides a register to transfer 8-bit parallel data to and from the CPU bus to the
I/O port A, there is no affect on any of the PSG's other functions.

Port A is controlled through functions 'ONGBIT' and 'OFFGBIT' (See page
B.4 for bit functions and 3.12 for calls).

Port B read/write is controlled through BIOS functions BCONOUT and
BCONIN (See page 3.4 for calls)

Data is written to a peripheral device from the bus using the following steps:

Select enable register (mixer register)
Set bit 6 to T (set I/O port A to output)
Select I/O port A data store (I/O port A register)
Write data to PSG (write data to I/O port A register)

Once data has been loaded into the register, the data remains until further
data is loaded, the system is reset, or

the register is switched to input mode.

Data is read from a peripheral device to the bus with the following steps:

Select enable register (mixer register)
Set bit 6 to '0' (set I/O port A to input)
Select I/O port A data store (I/O port A register)
Read data from PSG (read data in I/O port A register)

The register follows signals applied to the port, only by reading will the data be
transferred to the bus.

2.17



The Concise Atari ST Reference Guide

Sound configuration registers

Access to the PSG should be in supervisor mode as the SR register is
modified. The PSG registers are located for write at address ($FF8800-16746596)
as follows:

offset

Channel A fine tune (8 bit)
Channel A coarse tune (4 bit)
Channel B fine tune (8 bit)
Channel B coarse tune (4 bit)
Channel C fine tune (8 bit)
Channel C coarse tune (4 bit)
Noise generator control (5 bit)
Mixer control, I/O enable (8 bit)
Channel A amplitude (5 bit)
Channel B amplitude (5 bit)
Channel C amplitude (5 bit)
Envelope period fine tune (8 bit)
Envelope period coarse tune (8 bit)
Envelope shape (4 bit)
I/O port A

Tone frequency calculations (registers 0 to 5)

The tone frequency is in the range 30.5Hz to 125Khz and may be calculated from
the formula:

(= 2JLID6
16*(256 * CT + FT)

where CT=coarse tone period
FT=fine tone period

Noise frequency calculations (register 6)

The noise frequency is in the range 4Khz to 125Khz and may be calculated
from the formula: .

f = 2*106
16*Np

where Np=noise period

0 $0
1 $1
2 $2
3 $3
4 S4
5 $5
6 $6
7 $7
8 $8
9 $9
10 $A
11 $B
12 $C
13 $D
14 $E

2.18



The mixer control I/O enable
(register 7) bit functions take
the following format:

0 1 2 3 4 5 6 7
Tone

channels
Noise

channel;
I/O

port
ABC A B C A B
If the bit is zero

the channel is on
If bit (i
port i/o

Envelope calculations

Operating System Overview

The channel amplitude
(registers 8-11) bits have
the following function:

I - I - I - I Mlx I x| x| x|

M = 0 Fixed amplitude level
0-lowto 15-high (xxxx)

M = 1 Amplitude determined
by envelope shape

Period

The envelope period (registers 11 & 12) of the shape is based on the 16-bit
register value:

fe = f clock

where Ep =envelope period
fclock =i/p clockfrequency

256 * Ep

Shape/cycle
The envelope shape/cycle control (register 13) bit settings produce the

following range of sound envelopes:

Bits

3 2 10 Function
Bits

3 2 10 Function

0 0 x x
0 1 x x
10 0 0
10 0 1
10 10

\ 10 11
110 0
110 1
1110
1111

7\\\\

A_

Bit 0 = Hold/_cycle
Bit 1 = Reverse on/_off

1 bit set

0 bit clear

x don't care

Bit 2 = Ramp up/_down
Bit 3 = Cycle hold/_reset zero

2.19



The Concise Atari ST Reference Guide

GEM disk operating system GEMDOS
Overview

For those systems supplied with the operating system on disk; the system
disk contains on the first two tracks, a cold start loader that loads the operating
system image file (TOS,IMG) into high memory and then block loads it down
into RAM memory at address $5000.

The TOS image file contains both the GEM and Atari ST extended operating
systems, including:

BDOS Basic disk operating system Access functions to the file system
BIOS Basic I/O system -Functions that interface peripheral device drivers

The operating system is always in memory above $400 and all modules
reside permanently in memory, even those of disk based systems (unless the
power is removed). After TOS is loaded, the remaining contiguous address space
is called the transient program area (TPA) where TOS loads executable
(command) files. The command files (programs) should not access absolute
addresses or default TOS variables but use the BIOS and GEMDOS function calls,
except those system variables documented in Appendix A (upto address $04xx).

Each transient program loaded into memory consists of the program
segments (Text, Data and BSS), a user stack and a Base Page. The 256 byte Base
Page contains the direct memory address (DMA) buffer, at base page offset $80;
the buffer contains the command tail, typically the input typed to an application
installed as a TOS Takes Parameters program. Before the loaded program takes
control, the address of the transient programs base page and a return address are
pushed onto the user stack, 4(A7) and (A7) respectively.

Although the OS can only load one program; the transient program itself can
load further programs using GEMDOS function $4B, but must specifically supply
the base page and return address if they are required.

A return from a transient program may be achieved by:

An RTS as the last statement, returning via the return pushed onto the stac
the load function.

Execute warm boot by calling extended BDOS function 0.

Type Control_C from the console during the execution of console
output, printing a string or reading from the console buffer (functions 2,9 and 10)

2.20



Operating System Overview

GEMDOS Memory model

Low memory 0 Exception
vectors

System

Base paqe \

/

Text
Data Loaded
BSS transient

GEMDOS
application

Free
memory

program

User stack
ST OS

BIOS System
High memory BDOS

Command file

The format of a command file is that of a header, two program segments (text
and initialized data segments) and optionally a symbol table and relocation
information. After the program is linked and loaded into memory, it contains
additionally a zeroed uninitialized data (BSS) program segment and starts
execution at the beginning of the text segment.

Not all assemblers provide for an uninitialised data section within the source
code, this results in executable GEM based program files on disk that are much
larger than necessary.

The operating system holds information on the data segments in a descriptor
block (256 byte base page data structure) at the bottom of the TPA. The base page
does not reside at a fixed address, its position is determined when it is created by
the load a process function (GEMDOS function #$4B) and held in register DO.L.

The base page contents are initialized by the GEMDOS load function:

Base page format initialized by GEMDOS

$00
$04
$08
$0C
$10
$14
$18
$1C

0 Base address of TPA
4 End address of TPA + 1
8 Base address of text (code)
12 Length of text (code)
16 Base address of initialised data
20 Length of data
24 Base address of BSS uninitialised data
28 Length of BSS uninitialised data

2.21



The Concise Atari ST Reference Guide

There are slight differences between small sections of the original CP/M 68K
and GEMDOS base page formats as follows:

CP/M 68K format

$20
$24
$25
$38
$5C
$80

GEMDOS format

$20
$24
$28
$2C
$80

32 Length of free memory after BSS
36 Drive from which program loaded
37 Reserved by BDOS
56 2nd parsed FCB from command line \ Set
92 1st parsed FCB from command line by
128 Command tail and default DMA buffer/ OS

32 DTA address pointer
36 Parent's base page pointer
40 Reserved
44 Pointer to environmental string
128 Command line image (typically the entry to a

dialog box for a TTP application)

File header format

GEMDOS file header and program segments take the format:

0 Data and BSS contiguous 601 AH
2 Number of bytes in text segment
6 Number of bytes in data segment
10 Number of bytes in BSS
14 Number of bytes in symbol table
18 Reserved
22 Reserved
26 Reserved
28 Beginning of text segment

NOTE that 601AH is a BRA.S instruction that bypasses the file header data
segment. The Atari OS does not support segmented files.

$00
$02
$06
$0A
$0E
$12
$16
$1A
$1Q

2.22



Operating System Overview

Symbol table

The symbol table consists of fourteen bytes that specify a null padded
character name, the type of symbol and the symbol value (address etc).

hex Symbol type

$100 BSS
$200 Text relocatable
$400 Data
$800 External reference
$1000 Equated register
$2000 Global
$4000 Equated
$8000 Defined

Relocation table

$00 ASCII

$07

name

null padded
$08
$09 Type.W
$0A

Value.L-
$0b

The linker optionally produces a relocatable executable file and places the
relocation information in the GEM file header.

GEMDOS header file

$1A Offset. L

$1E Offset 1
$1F Offset 2
$20

$00

26

30
31
32

Byte
sized
offset
data/

No more offsets

Longword
offset

Byte
offset 1

Byte
offset 2

Text
start

1st 2nd 3rd

Longword to relocate

2.23



The Concise Atari ST Reference Guide

If the offset byte is 1, then a multiple byte offset based on the following table
is used to determine the actual offset.

Offset Relocation data
byte value

$00 End of relocation data
$01 Add 254 from current location and decode next byte
$02....$FE Add byte value from current location

Other odd numbers are not used (reserved)

When the program is loaded into memory at a location other than where it
was linked, BDOS computes an offset and adds the offset to the address of the
relocation words in the text and or data segments.

GEMDOS function $4B (75 decimal) loads or executes a program.

2.24



Operating System Overview

Atari ST file system

GEM contains a fairly comprehensive sets of file manipulation facilities, they
enable the programmer to write software that provides multiple access file
sharing and file protection, periodic file updates and selective backups. The file
facilities are:

Code GEMDOS function
Dec Hex

60 3C Create file
61 3D Open file

Close file
Invoked by filling a

62 3E parameter block with the
63 3F Read a file number of the function,
64 40 Write a file the parameters and any
65 41 Delete file other relevant data.
66 42 Seek file pointer
67 43 Get/set attributes Returns are in DO.L

Zero indicates o'k
69 45 Duplicate file handle Where data is returned,
70 46 Force file handle DO contains the address

of the data return block
78 4E Search for first
79 4F Search for next

GEM uses the stack as
96 56 Rename file the parameter block.
97 57 Get/set date/timestamp

2.25



The Concise Atari ST Reference Guide

Atari ST disk system

The Atari ST3 1/2" disk uses soft sectored disks of the following format:

Bytes/sector 512
Sectors/track 9
Tracks/side 80

Sides/media 1 2

Unformatted 360K 720K Kbytes

The GEM BIOS interfaces (Basic input/output systems) make the hardware
dependent interface to the floppy disk drives. These communicate with the drives
as follows:

Select the drive, the side, the track and then the number ofsectors from the track that
will be read toa buffer orwritten from the buffer to the disk.

GEMDOS is fairly basic in terms of disk operations but has extensions to
handle tree type directories.

Code GEMDOS function
Dec Hex

14 0E Set default drive
25 19 Get default drive
54 36 Get drive free space
57

58

59

71

39

3A

3B

47

Create a subdirectory
Delete a subdirectory
Set current directory
Get current directory

A file does not use consecutive disk sectors as there is insufficient time to

identify, read and or write a record via software, and to locate a specific track via
hardware. The record spacing (skew) is usually 6 sectors between adjacent file
segments.

2.26



Operating System Overview

Atari ST BIOS comparisons

The ST contains device dependant input/output utilities that handle the
interface between the device independant routines and the hardware, the ST
BIOS and GEM BIOS utilities are supplemented by the line-A primitives which
provide rapid screen control.

The GEM type BIOS handles the input/output to the peripheral devices:
parallel port, RS232 port, console, midi interface and intelligent keyboard. There
is also a basic disk read/write to sector and a facility to check that the disk has
not been removed or replaced.

The ST extended BIOS also controls the input/output to the midi interface,
intelligent keyboard, console and disk read/write, but additionally includes the
control of a mouse, joysticks, sound and of the screen colours.

The line-A routines are the VDI graphic primitives which are not program
transportable and therefore included here, they enable control of the mouse and
pixel-line-sprite-screen graphics.

Interrupt handler overview

The operating system provides the machine code programmer with access to
the interrupt handler.

Every l/50th of a second control is transferred from the operating system to
a routine at the address designated in the system variables at $68 (104 decimal),
the system interrupt handler (vertical blank interrupts). The handler provides a
timing facility, sets the screen parameters and current device driver installation
and entry points.

2.27



The Concise Atari ST Reference Guide

System Initialisation

The ST in general follows a predefined initialization sequence on power-up,
with variations for the different operating systems, typically:

System reset

ssp~> $60xxxxxx
pc—> $00FC0020

move.w #$2700,SR
reset

cmpi.l #$FA52235F,$FA

bne cmpi nxt
lea $8(PC),A6
jmp $FA0004

cmpi.l #$31415926,$426

bne psgset
move.l $42A,D0
tst.b $42A
bne psgset
btst #$0,D0
bne psgset
movea.l D0,A0
lea $4(PC),A6
jmp (AO)
lea $FFFF8800,A0
move.b #$7,(A0)
move.b #$C0,$2(A0)
move.b #$E,(A0)
move.b #$7,$2(A0)
move.b #$0,$FFFF820A
lea $FFFF8240,A1
move.w #$F,D0
lea $28A(PC),A0
move.w (A0)+,(A1)+
dbf D0,loop

2.28

The supervisor stack pointer (SSP) and
program counter (PC) are set from $0
and $4 respectively, the SSP is
garbage until the system is sized. The
Interrupt priority level (IPL) is set
to seven and a hardware reset executed
A check is made for a diagnostic
cartridge, which if present will cause
a return address to be set in A6 and
execution of the diagnostic routines
commenced.

A check is made to see if memory has
previously been sized (warmstart). If
not jump past memory sizing routine.
If this is a soft reset, the bailout
vector may be valid. First check that
the MSBis zero, secondly that the
vector is to an even address, if not,
jump past the reset handler.
Set AO to point to the reset handler,
set A6 to the return address and
jump to reset handler.
Set AO to PSG configuration register
base and set port A & port B to output,
activate general purpose output and
through output port A deselect the
disks.
Set sync mode to external 50/60Hz and
Al to base of pallette table.
Set up a count in DO to shift the
default hardware palette colors to
AO which points to the default color
table.



move.l

move.l

move.l

lea

move.l

move.l
move.l
move.l

move.l

move.l
move.l

move.l

move.l

move.l

suba.l

suba.l

move.w

lsl.w
move.w

bsr
and.l

btst
beq
ddq.w
movea.l

suba.l
move.l

move.l

rts

move.l

subq
clr.b
dbf

#$752019F3,$420
#$237698AA,$43A

#$8900,$432(A5)
$D50,A7

rte,$14
#$FC0324,$70(A5)
rte,$68(A5)
rte,$88(A5)
#$FC03C0,$B4(A5)
#$FC03BA,$B8(A5)
rts, $400(A5)
#$FC03B6,$404(A5)
rts,$408(A5)
#$550,$4A2(A5)
A5,A5

A5,A5
$454(A5),D0
#2,D0
D0,D1
make_spc
#$FFFF,D0
#$0,D0
jumpl
#$1,D0
$436,A0
D0,A0
A0,$436
A0,D0

A0,$456(A5)
#$1,D1
(A0)+
Dl,clr_byte

Operating System Overview

Size both memory banks and perform a
memory test. Set 'memory sized' and
'memory tested' flags in the system
variables table. Set up screen, vblank
queue entries, BIOS entry point and
supervisor stack.
Run type '0' cartridge applications.
Point A3 and A4 at RTE and RTS resply
Test diagnostic cartridge.
Initialise exception vectors to
terminate process handler except for
divide by zero which is RTE'd.
Set vblank handler entry address.
Kill hblank handler entry address.
Initially empty trap#2 handler.
Set up trap#13 handler address.
Set up trap#14 handler address.
Default timer tick vector to RTS.

Set up the critical error handler
and default the terminate vector.
Set up BIOS register save area pntr
Zero page pointer.

Intialize vblank vector list.

8 nvbls into DO

multiply by four to
create queue length in Dl.
Routine to create a space of
8 longwords in high memory.
\make
Iaddress
/even
current memory top
'come on down'
reset memory top
and put in DO

vblqueue start address

I zero the queue
/

2.29



The Concise Atari ST Reference Guide

Initialize screen resolution,

move.w #$F8FF,SR

2.30

Enable all interrupts except Hblank
by setting IPL to 3.
Run type T cartridge applications
Initialize GEMDOS- set up a DOS
disk buffer chain &memory manager.
Run type '3' cartridge applications
Attempt to boot from floppy and
execute if successful, if not poll
devices on DMA bus for logical boot
sector zero, execute if successful,
(checksum $1234). Any 'returns'
continue pollingthe devices in sequence.
Turn on the cursor.

Execute file COMMAND.PRG? otherwise
construct a default environment and
execute AES.

Initiate a RESET on a return.



Operating System Overview

Cartridge Software

There are two types of cartridge which may be plugged into the ST;
diagnostic and program cartridges. The cartridge program header format is as
follows:

c_flag

$00 c_next

$04 c_init

$08 c_run

$0C cjime

$0E c_date

$10 c_bsiz

$14 c_name

4 Only the first header contains a flag which denotes the
presence of a cartridge.

Flag: #$FA52255F=diagnostics
#$ABCDEF42=program/data

0 Pointer to next application header, a null indicates no
additional applications

4 Pointer to application initialisation code, if zero there is no
initialisation code. The longword high byte is unused in the
24-bit address and starts applications as follows:

bit 0-set, run before interrupt vectors & memory initialised
bit 1-set, run before GEMDOS initialised
bit 2-unused
bit 3-set, run before disk boot
bit 4-unused
bit 5-set, application is a desk accessory
bit 6-set, not a GEM application (no AES calls)
bit 7-set, needs command line parameters before execution

8 Pointer to application entry point

12 Time

14 Date
DOS format time and date stamps

16 The size of the application BSS segment allocation. The OS
must allocate the BSS before invoking any run code. Set to
zero if not applicable.

20 The ASCII name (max 12 characters) terminated by a zero
nnnnnnnn.eee

Diagnostic cartridge: The ST hardware will not be initialised and a return
address is held in A6, the stack pointer is trashed. The cartridge software is
responsible for sizing memory and setting the hardware registers as required.

Cartridge software: Application headers are strung together in a linked list,
so there may be any number of applications on one cartridge.

2.31



The Concise Atari ST Reference Guide

Boot Sectors

To write software that will auto run from disk, the programmer must
produce a boot sector that contains a loader program which transfers the
program from disk to memorybeforebringingup GEM.

The boot sector follows IBM PC format and contains:

The volume serial number

24 bit number generated when the media is formatted

BIOS parameter block (BPB)
Sector size in bytes
Number of sectors/cluster
Cluster size in bytes
Length of root directory in sectors
Size of a File Allocation Table (FAT-in sectors)
Sector# of start of second FAT
Sector# of first data sector
Number of data clusters on disk
Flags

Optional boot code and boot parameters

During initialization the boot sector is loaded into a buffer and the executable
boot sector code tested for a word checksum of #$1234. If satisfactory a
subroutine jump is made to the beginning of the position- independent code in
the buffer.

When a 'get BIOS parameter block' call is made, the BIOS reads the boot
sector (normally created when the volume is formatted), and returns an error
indication if any critical parameter fields are zero.

The 24-bit volume serial number, written when the media is formatted, is
used to determine whether or not a disk has been changed.

The 'protobt' extended BIOS call (dec 18) is used to create the boot sector (pg
3.8), which is written to track_0 side_0 sector_l.

2.32



Operating System Overview

BIOS boot parameter block

Normally written when the volume is formatted.

$00

$02

$08

$0B

$0D

$0E

$10

$11

$13

$15

$16

$18

$1A

$1C

$1E

$1FE

$200

bra.s

oem_space

Vol serial*
#$000000

BPS

#$00 #$02
SPC
#$02
RES

#$01 #$00
NFATS
#$02

NDIRS
#$70 #$00

NSECTS
#$D0 #$02

MEDIA

#$F8
SPF

#$05 #$00
SPT

#$09 #$00
NSIDES

#$01 #$00
NHID

#$00 #$00

boot code

last word

0 Branch to boot code

2 Space reserved for OEMs use

8 24-bit volume serial number.
(used to determine disk changes)

11 Number of bytes/sector

13 Number of sectors/cluster

14 Number of reserved sectors
(at start of media including boot)

16 Number of file allocation tables on media

17 Number of directory entries

19 Number of sectors on media
(including reserved)

21 Media descriptor
(not used by ST)

22 Number of sectors/FAT

24 N1, imber of sectors/track

26 Number of sides on media

28 Number of hidden sectors
(not used)

30 Start of code, if any

510 Checksum

512

Note: Word storage is low byte at the low address (even) as per Intel 8088 format
and not the usual 68000 mode.

The BIOS parameter block is compatible with MS-DOS versions of the BPB, but
will only read and write sectors written by another WD1772A disk controller.

2.33



The Concise Atari ST Reference Guide

Boot loader

The boot loader resides in the boot sector and is used during system
initialization to load an image file or a contiguous set of sectors; it is also used to
load GEM from disk on early ST models. The format of the loader is:

$00
boot sector

$1E
execflq

$20
Idmode

$22
ssect

$24
sectcnt

$26
Idaddr

$2A
fatbuf

$2E
fname

$39
reserved

$3A
boot code

0 The standard BIOS parameter block

30 The word copied to 'cmdjoad' flag

32 If lmode=0 load file

34 If ImodeoO load from here

36 If ImodeoO load 'sectcnt' sectors

38 Load address of file or sectors

42 Address for FAT and DIR sectors

46 Filename: 8 Character name. 3 Character extension
(valid if 'Imode' is zero)

57 Reserved

58 The executable code

Some software tools require the six bytes reserved for OEMs at offset $2 to
contain the ASCII text 'loader'.

The loader can load any file from disk regardless of where it appears in the
directory or whether it has the form of contiguous sectors or not.

An image file contains no header or relocation information and is an exact
copy of the program to be executed.

2.34



Operating System Overview

Boot ROM

The initialization of the system from the boot ROM follows the predefined
pattern of a RESET with some system variables installed and pretty color screen
graphics to keep the operator from getting bored.

The boot directory and second FAT buffer are read into memory starting at
membot. TOS.IMG is loaded starting at $40000 and an error code produced if the
file is not found. The memory $10000 to $20000 is used for screen buffers and
should not be used initially for any code or data.

The first ST's sold contained a small 32K boot ROM that loaded the operating
system from disk. The boot ROM contains a small sub-set of the BIOS, just
sufficient to read an 80 track, BPB floppy disk boot sector from either drive into
memory and then execute it.

Trap 13 GEM BIOS functions implemented

code function

4 rwabs Read/write sectors (read only)
7 getbpb Get BIOSparameter block

Trap 14 extended functions implemented

code function

1 ssbrk Reserve x bytes from top of memory
8 floprd Read sectors from floppy disk

All other BIOSfacilities are not loaded into the system until a later stage. The
first 100 bytes of disk TOS relocate TOS.IMG at $5000 from where it takes control.

The first TOS implementation uses the following disk parameters:

80 track, single sided BIOS parameter block

Bytes/sector 512 #sides/media 1

Sectors/cluster 2 #hiddensectocrs 0

Reserved sectors 1 Load address $40000
# of FATs 2 FAT/directory buffer $8000
# of root dir entries 7 Volume serial number 0

# of sectors on media 720 Media descriptor byte F8H

# sectors/FAT 5 Filename TOS.IMG

# sectors/track 9

2.35



The Concise Atari ST Reference Guide

Atari ST peripheral device
communications

Communications overview

The ST supports serial and parallel communications through dedicated
RS232 and parallel ports, and permits two further communicaton channels to be
opened through the MIDI and DMA ports.

The serial RS232 communication port accomodates hardware data control
based on the PSG I/O port A, RTS and DTR outputs, and the MFP MK68901,
CTS, DCD and RI inputs, and Xon/Xoff software data protocol at transmit and
receive baud rates in the range 50 to 19200 baud. The port is generally used to
interface with a printer, modem or another computer. The MFP is located at
$FFFA00 (16775680) and the $PSG at $FF8814 (16746610).

The general purpose parallel port interface provides bi-directional 8 bit
communications for printer operation. The port is based on the MFP MK68901
(busy control), the PSG I/O port A bit 5 (strobe control) and the PSG I/O port B
(data transfer). The control is limited to a busy signal, acknowledge is not
supported and data transfer is at a typical rate of 4000 bytes/s.

The MIDI interface provides an asynchronous, current loop, serial data (one
start bit, eight data bits and one stop bit) communications channel at 31.25Kbaud.
The MC6850 port controller may be reconfigured for most forms of RS232
interface via the control/status register situated at address $FFFC04(16776196).

The intelligent keyboard interface is also controlled by an MC6850 ACIA, but
there is no external access provided to the port, which is of limited use other than
accessing the ikbd command set; for reading and or writing to the clock, joysticks,
mouse and perhaps reconfiguring the keyboard. The transfer rate is fixed at
7812.5 baud.

The floppy disk interface is based on the Western Digital WD1772A disk
controller and is limited to supporting two drives.

The DMA interface is provided by a ULA device, access is through the
control/status configuration registers at $FF8600 (16746084) et seq. The DMA or
Hard disk port uses an Atari version of the SCSI interface and can support a
maximum of 8 peripheral devices. Theoretically data may pass either way
through the interface so it should be possible to use it for high speed networking,
remembering that the DMA controller also supports the Floppy Disk Controller.

2.36



Operating System Overview

RS232 interface
General

Data is transmitted and received via an RS232 interface as a sequence of ones
and zeroes (bits) along a three wire link, one wire being ground, one for
transmitted data and the other for the received data. Information is sent as
'characters' and each character is prefixed by a start bit (a one) and terminated
with either one or two stop bits (zeroes). Providing the sending and receiving
devices are set to the same speed (baud), then the stop and start bits act as a
timing signal to each 'character' sent. Occassionally error detection is
incorporated in the form of a parity bit. If the count of ones in the character is
even, then the eighth bit is set to a one (even parity), an alternative process is odd
parity where if the one count is odd, the eighth bit is set to a one. Personal
computers work without parity which is used in general as a warning of data
errors in the transmission. Providing the transmitting and receiving station agree
on the protocol used, then communications will be reasonably straight forward !!!

The port is reconfigured using thesequence:

a) Save current MK68901 register contents
b) Disable Rx and Tx enable bits
c) Set flow control mode
d) Set baud rate
e) Set RS232 registers
f) Re-enable Rx and Tx enable bits

The extended BIOS call #$0F (15) enables selective reconfiguration of the
RS232 port according to a block of parameters pushed onto the stack:

move.w sync_char,-(SP) *Pushing \
move.w tx_status,-(SP) * -1 I (page
move.w rx_status,-(SP) * leaves I 3.10)
move.w usrt_cntl,-(SP) *parameter I
move.w flow_cntl,-(SP) * unchanged /
move.w baud_rate,-(SP) * Set timer D
move.w #15,-(SP) *push RS232 config
trap #14 *call function
add.w #14,SP * tidy stack, jump 7 words
tst.w DO * test for error
rts

Data is passed through the interface using the extended BDOS calls to the
auxiliary device (RS232 port). Only the 'New TOS' supports RTS/CTS
handshaking.

2.37



The Concise Atari ST Reference Guide

Parallel port interface
General

Data is transmitted and received via a parallel port interface in blocks of 8
(sometimes 7) data bits, set eitheras ones or zeroes to form a character byte. The
character is 'framed' by a strobe signal enabling the receiving device to read the
character transmitted, which may be printed immediately or saved in a buffer for
subsequent printing. At some stage the printer will not be able to accept further
input and will send a 'busy' signal to stop the transmitter from sending
additional data. The acknowledge signal is sometimes used to indicate that the
printeris no longer busy,occasionally this signal line is omitted and thebusyline
also provides the 'not busy' signal.

Datais passed to and from the interface using the following procedures:

Write data

a) Check the busy line for high
If line low, monitor until high
or time out set CPU DO register to 0

When high

b) Set PSG I/O B port to output, use IPL 7
c) Place data into the PSG's Boutput register 15
d) Switch strobe line on, Port A bit 5
e) Switchstrobe line off, set CPUDO register to -1

Read data

a) Set PSG I/O Bport to input
b) Switch strobe line off
c) Checkbusy linefor high loop till high
d) Switch strobe on
e) Get data from PSG's Boutput register

As the status register is affected, the above procedures should be performed
in supervisor mode.

2.38



Operating System Overview

MIDI interface
General

The MIDI (musical instument digital interface) sequential circuits provide for
integrated operation of music synthesizers, sequencers, drum boxes etc. which
have the MIDI interface. The ST operates as a data store for a large number of
notes/voices which may be sent to different instruments (channels), and played
together in sequence and time as music. The data may be 'recorded' from a tune
previously played, edited and/or synthesized by entering new data in step-
time-note format into the store for later retrieval.

The MIDI bus provides 16 channels in one of three networking modes.
OMNI, the default where all units are addressed together and transmit and
receive on all channels. POLY where all the units are individually addressed and
receive on one channel only, data assigned to non-existant channels is ignored.
MONO where the voice of each unit is addressed seperately, providing different
channels for individual voices within one synthesizer.

The information transmitted is priortised and sent as bytes, the most
significant bit signifying either status (1) or data (0). The priority order is:

System reset Set defaults
System exclusive Manufacturers unique data
Sequential circuits Roland, Yamaha etc.
System real time Synchronization
System common Broadcast
Channel Note selection, prog data etc.

The MIDI port supports the optional through port which merely provides the
MIDI in signals at the MIDI out port.

The MIDI interface operate in RS232 current loop mode at 31.25K baud. It
may be reconfigured by resetting the control/status registers.

The Atari ST's extended BIOS enables the programmer to reconfigure the
MIDI port.

2.39



The Concise Atari ST Reference Guide

MIDI control/status register functions

Controlregister functions (write only) $FFFC04

Divide
Bit selec
0 1

0 0 by 1
0 1 by 11
1 0 by "

Bit Data format Bit RTS format Bit Interrupt
2 3 4 #bit Parity Stop 5 6 Tx on/off 7 enable

000
00 1

1 0
0 1 1

00
1 0 1
1 1 0
1 1 1

640

7 even 2
7 odd 2
7 even 1
7 odd 1
8 - 2
8 - 1
8 even 1
8 odd 1

0 0 off RTS=
0 1 on low
1 0 off RTS:

high
1 1 off RTS=

low
Tx break level
on Tx data o/p

Interrupts
enabled by
bit 7 - 1.
Rx data
register full,
Overrun,
DCD low to
high step.

1 1 master!
reset

Status register functions (read only) $FFFC06

Bit Name and function

0

1

2

3

4

5

6

7

2.40

Rx data register full
Rx data in register ready for CPU read
Tx data register empty
Transmitted data sent, load with next character to transmit

Data carrier detect

Indicates modem state, carrier present

Clear to send
Indicates modem state, Master reset - no change.

Frame error

Character synchronisation error
Rx over-run

Characters have been lost from stream

Parity error
Only active if parity selected
Interrupt request
Read received data register or write to transmit data register.



Operating System Overview

Intelligent keyboard interface (IKBD)

The intelligent keyboard functions through a MC6850 ACIA device whose
control/status register is located at address $FFFC00 (16776192), and functions
like the MIDI interface. There is no external access to this port so there is little
point in reconfiguring, but it can be used to transmit and receive data or
commands from the keyboard, mouse, joystick and clock using the following
facilities:

Keyboard

Return keycodes

Mouse

Setmouse button action (keys, on press/on release)
Set mouse position relative (default)
Set threshold level per 'click'
Set mouse position absolute
Set scale ('clicks' per movement)
Read/write mouse position
Set mouse to simulate cursor motion codes
Set Y origin top/bottom
Disable/pause/resume mouse operation

Joystick

Enable joystick (default)
Disable, act on request only
Interrogate joystick
Set monitoring (serial line, joystick and clock)

(serial line, button 1 and clock)
Set keycode mode (variable 'click' rate)
Disable joystick

2.41



The Concise Atari ST Reference Guide

Clock

Set date and time
Read date and time

Program control

Load data into ikbd memory
Read data from ikbd memory
Execute ikbd program

A status inquiry command returns a null padded 8-byte packet detailing the
current mode and parameters of a specific function, the packet may be stored and
later used to restore the status of the keyboard by modifying the header byte and
returning the data as a command.

The keyboard scancodes do not maintain complete compatibility with IBM
PC key scancodes. Appendix D.6 provides the major differences due to the non
availability of certain keys on the ST keyboard. The additional ST keys are
mapped into unused CTL_ and ALT_ function scancodes.

To detect ALT_ and CTL_ function key combinations, execute a BDOS or
BIOS 'getchar' call followed by a BIOS 'kbshft' call (#$0B).

2.42



Operating System Overview

Floppy disk interface

The floppy disk interface is based on an on-board Western Digital WD1772A
disk controller and can support a maximum of two drives.

The floppy disk read/write sequence ofevents is:

a) select floppy drive 0 or 1 (PSG I/O port A)
b) select floppy side 0 or 1 (PSGI/O port A)
c) load DMAbase address and counter register
d) toggle read/write to clear status (DMA mode control reg)
e) select DMA read or write (DMA mode control register)
f) select DMA sector count register (DMAmode control reg)
g) selectFDCinternal command reg (DMA mode control reg)
h) issue FDCread or write command (Disk controller reg)
i) DMA active until sector count zero (DMAstatus reg)

do NOT poll during DMA active,
j) issue FDC interrupt command after sector data transfers,

except at track boundaries (Disk Ctrl reg)
k) CheckMFPbit 5 ($FFFA01) for interrupt
1) checkDMAerror status, non destructive (DMA stat reg)

The DMA configuration registers are at the base address $FF8600 (16746084)
and the following offsets:

Disk controller data access
DMA read_mode control, write_FIFO
DMA base high \ set last
DMA base medium I
DMA base low / set first

The PSG configuration registers are at base address $FF8800 (16746596) and
the following offset:

2 $2 PSG write port
Bit 0 floppy side
Bit 1 floppy drive 0
Bit 2 floppy drive 1

There is no hardware support for sensing disk removal, therefore this facility
must be performed in software.

4 $4
6 $6
9 $9
11 $B
13 $D

2.43



The Concise Atari ST Reference Guide

disk:

Formatting a floppy disk

The following procedure illustrates the technique used in formatting a floppy

flopfmt $A Sides: 1 or 2 Sectors/track: 9 Tracks: 80
No interleave and the first two tracks zeroed (to 0 FAT and

directory sectors), either sector bad and the media is unusable

Use disk type parameter 2 or 3
Drotobt $12 Serial number parameter, random or #$1000000
M f Execute flag usually zero, non zero if itcontains loader code

etc. that is to execute when the disk is booted.

flopwr $9 Write boot sector (prototyped in buffer to track 0, side 0,
sector 1 of disk

Do not use 'rwabs' call

XBIOS calls

The WD1772 'write track' codes used to format a track are:

Double density format: issue a write track command and load the following
values into the data register. There is a data request for every byte written.

^ ID field ^

#bytes
data #$4Fj#$0fl#$F3#$FE

60 12 ID Trek
#

Side
#

Sect
#

0-$4F
0-1

1-9

Len
#

#bytes 22J 12 3 ID 512
dataJ$4F#$00#$F5#$Frldatal

CRQCRG 40
1 2 |#$4E|

^- Data field —"^

* length = #512 bytes/sector (usually 2)

CRC's written $F7
Note that early versions of TOS do not report CRC errors in all cases causing

reduced reliability of the disk system.

2.44

CRQRCJ,

140
[#$4

End of
track



Operating System Overview

WD1772 DMA channel interface

The WD1772 is interfaced through the DMA channel via the following
procedure:

To initialize the WD1772:

move.w

move.w

move.b

move.b

move.b

#$190,$FF8606
#$90,$FF8606
#xx,dmalow
#xx,dmamid
#xx,dmahigh

Clear the fifo by toggling r/w
and leave in the write state.
Set up dma address pointer in
low to high order
$FF860D, $FF860B & $FF8609 resply

The following addresses are used by the WD1772

$80 128 command/status register
$82 130 track register
$84 132 sector register
$86 134 data register

To address the WD1772:

move.w

move.w

delay
rts

#$yy,$FF8606 The FDC rquires two writes to
#$zz,D7 access the registers, the first

write selects the FDC register
and the second write modifies
the register

To transfer from memory to floppy the values must be ORed with #$100 and
#$FF writtento $43E to prevent TOS from changing thevaluein address $FF8606.
When the operation is complete the byte in $43E, the floppy lock variable, must
immediately be zeroed.

To seek to a track:

move.w #$86,$FF8606 Select the data register
move.w #$4F,$FF8604 Write seek track ($4F last track)
move.w #$80,$FF8606 Selectcommand register
delay Wait for drives
move.w #$17,$FF8604 Seek with verify (pg 1.23 Type 1 command)

2.45



The Concise Atari ST Reference Guide

The FDCwill generate an interrupt when the seek is finished, it can be polled
at $FFFA01 where bit 5 is zeroed. Errors are read from $FF8604, the read clearing
the interrupt bit.

To transfer data:

move.b #$xx,dma set up dma address, clear fifo
move.w #$190,$FF8606
move.w #$1,$FF8604 512byte size limit of transfer write sector# (1..9)

write track* (#$00.#$27) use #$A6
write track# (#$28.#$4F) use #$A4
read track*, use #$84

Do not use read/write multiple sector commands as they require a force
interrupt command which is slower than re-executing a read or write.

To format a track

write track* (#$00,#$27) use #$F6
write track* (#$28,#$4F) use #$F4

Write data to the drive beginning and ending with the index pulse. It takes
about #$1A00 bytes to fill a drive running at 3%.

The existing format command produces 9 sectors per track.

Do not change the id-field, the fourth byte is used to count the number of
bytes to transfer, and to locate the CRC data field. It may produce
incompatibilities with TOS if changed.

To write an entire track:

The entire track can be written as one long sector and then read back, without
any error checking, using the read trackcommand if the following format is used:

Index pulse followed by

#$00 a minimum of 12 bytes for lock-on
#$F5 3 bytes for synchronization

2.46



Operating System Overview

DMA interface

There is only one direct memory access (DMA) channel which is shared by
both low and high speed 8 bit device controllers. The configuration registers hold
the 3 register MMU base address of the DMA operation which is performed
through a 32 bit FIFO programmed by the DMA mode control register.

The hard diskread/write sequence ofevents is:

a) load DMA base address
b) toggle read/write to clear status (DMA mode Ctrl reg)
c) select DMA read or write (DMA mode control register)
d) select DMA sector count register (DMA mode cntrol reg)
e) load DMA sector count register (DMA mode trigger)
f) select HDC internal command reg (DMA mode control reg)
g) issue HDC read or write command (Disk controller reg)

1st cmd AO set to 0, set to 1 for remaining commands
Each byte command is acknowledged with an interrupt
After last cmd byte set hard disk sector count bit 1

h) DMA active until sector count zero (DMA status reg)
do NOT poll during DMA active,

i) check DMA error status, non destructive (DMA stat reg)
j) check HDC status byte and if necessary perform an ECC

correction following a verify track or read sector command.

The DMA configuration registers are at the base address $FF8600 (16746084)
and the following offsets:

4 $4 Disk controller data access
6 $6 DMA read_mode control, write_FIFO
9 $9 DMA base high
11 $B DMA base medium
13 $D DMA base low

The DMA registers are used to perform the floppy disk data transfers but
may also be used for hard disk and other high speed data interfaces, bearing in
mind the restriction of one DMA operation at a time.

Any modification of the DMA base address or counter register requires that
they be set in low-mid-high order.

2.47



The Concise Atari ST Reference Guide

DMA bus boot code

The following code, which is typical of the ST's BIOS, attempts to load boot
sectors from devices on the DMA bus. The code shows typically how the DMA
bus is used and provides the timeout and the command characteristics expected
from bootable DMA bus devices.

gpip equ $FFFFFA01 *.B 68901 input register
dskctl equ $FFFF8604 * .W controller data access
fifo equ $FFFF8606 * .W DMA mode control
dmahigh equ $FFFF8609 *.B DMA basehigh
dmamid equ $FFFF860B * .B DMA base mid
dmalow equ $FFFF860D * .B DMA base low
flock equ $43E *.W DMA chiplock variable
dskbuf equ $4C6 *.L IK disk buffer
Hz_200 equ $4BA *.L 200 Hz counter
bootmg equ #$1234 * .W boot checksum

Try to boot from DMA device

dmaboot moveq #0,D7
dmb_l bsr dmaread

bne dmb_2
move.l dskbuf,A0
move.w #$00FF,D1
moveq #0,D0

dmb_3 add.w (A0)+,D0
dbra Dl,dmb_3
cmp.w #bootmg,D0
bne dmb_2
move.l dskbuf,A0
jsr (AO)

dmb_2 add.b #$20,D7
bne dmb_l
rts

Try to read DMA bus device boot sector

dmaread

2.48

lea

lea
st

move.l
move.b
move.b

move.b

fifo,A6
dskctl,A5
flock

dskbuf,-(SP)
3(SP),dmalow
2(SP),dmamid
l(SP),dmahigh

* # devices to try (eight)
* try to read boot sector
* failed —next device
*disk buffer pointer in AO
* checksum #$100 words
* initialize checksum
* add a word
* until #$100 counted
* Is it a boot sector
* No ~ next device
*disk buffer pointer in A0
* run the code.
* next device

* DMA control register
*DMA data register
*DMA lock against vblank

*set up DMA pointer



Operating System Overview

addq #4,sp *

move.w #$098,(A6) * toggle r/w, leave at read
move.w #$198,(A6) *

move.w #$098,(A6) *

move.w #1,(A5) * write sector count reg - 1
move.w #$088,(A6) * DMA bus select (not SCR ?)
move.b D7,D0 * D0.1 to device* + command

or.b #$08,D0 *

swap DO * D0.1=xxxxxxxxDDD01000

move.w #$088,D0 * xxxxxxxxOl0001010

bsr wcbyte * write cmd and wait for IRQ
bne dmr q * error exit on timeout

moveq
move.l

#3,D6 *write cmd $00
#$00008A,D0 * cntl $8A

dmr_lp bsr wcbyte * four times

bne dmr_q * error exit on timeout

dbra D6,dmr lp *

move.l #$00000A,(A5) * write final byte
move.w #400,D1 * 2s timeout limit
bsr wwait *

bne dmr q * error exit on timeout

move.w #$08A,(A6) * select status register
move.w (A5),D0 * get DMA return code
and.w #$00FF,D0 * mask for error code only
beq dmr r * return if o'k

dmr_q moveq #-l,D0 * set error return (-1)
dmr_r move.w #$080,(A6) *reset DMA chip for drivr

tst.b DO * test for error return

sf flock * unlock DMA chip
*

Write ASCII command byte and wait for IRQ

wcbyte move.l D0,(A5) * write disk controller data
moveq #10,D1 * wait 0.05s

wwait add.l Hz_200,Dl * set Dl to timeout

ww_l btst.b #5,gpip * disk finished

beq WW w * o'k return

cmp.l Hz_200,Dl * timeout yet?
bne WW 1 * no —try again
moveq #-l,Dl * set error return (-1)

WW w rts

2.49



The Concise Atari ST Reference Guide

Hard disk partitioning
Logical sector #0 contains information on the four possible hard disk

partitions:

hd_siz

p0_st.

p0_siz

PX-flg
px-id
px_st

X_S1Z

sl_st
bsl cnt

offset

$1C2
$1C6

$1C7

$1CE

Total size of the disk in sectors
Non zero to show partition exists,
bit_7set for BIOS boot partition
Partition start logical sector number

Sizeof partition in logical sectors
Three further optional partitions

$1D2 \ $1DE\ $1EA\
$1D3 l2nd$lDF 13rd $1EB 14th
$1D6 I $1E2 I $1EE I

$1DA/ $1E6 / $1F2 /
$1F6 Staringsector of the bad sector list
$1FA Number of bad sectors
$200 reserved

is a
An ST disk may contain up to four partitions, the first sector of each partition
bootsector and contains a BIOS parameter block.

Root
boot

Partition 0

Partition 1

Partition 2

Partition 3

Optional
bad sector

list

2.50

Thepartitionsare describedby
the 12 byte structure above.

Optional partitions

The bad sector list is usually held at the end of the device.
If the parameter 'bsl_cnt' is zero, there are no bad sectors.



The Atari Operating System

Chapter 3

The Atari Operating System

General 3.2

Register usage 3.2

Traps 3.3

Trap #13 access 3.3

BIOS calls (trap #13) 3.3

Critical interrupt handlers 3.6
Trap #14 access 3.7

XBIOS calls (trap #14) 3.7
Trap #1 access 3.15

GEMDOS calls (trap #1) 3.15

Supervisor/user toggle 3.23

Test for mode 3.23
User to supervisor mode 3.23

Supervisor to user mode
Extended BDOS calls (trap #2)

3.23

3.24

GEM VDI access 3.24

GEM AES access 3.24
Interrupt Handler (VBI) 3.26

System interrupt functions 3.26

3.1



The Concise Atari ST Reference Guide

GENERAL

The operating system (TOS) is a mixture of GEM and an Atari OS (GEMDOS,
BIOS and XBIOS as well as the line-A routines). Any of the OS's can completely
control the system and although calls to the various types of utilities can be
mixed without restriction, the programmer is advised to use a consistent set of
calls. There are many reasons for using a consistent set of calls, not the least being
that the programmer can write programs which are portable to other computers
that contain the same operating systems. Although the writers present intention
may not be to provide the program on an alternative computer system, it is wise
to adhere preferably to the basic OS or GEM calls if possible. Those who have
programs generated on older 8-bit machines, and now find that they cannot be
translated easily, will understand the need for portability.

The line-A routines provide access to the graphic primitives; they will not
produce portable code but will give very rapid execution of graphic functions.

Register usage

The BIOS, XBIOS and GEMDOS routines use and preserve registers in a
specific manner; dO, dl, d2, aO, al and a2 must always be considered trashed and
should never be used even though a particular version of TOS does not change
them, the next version probably will.

$13 BIOS calls
$14 XBIOS calls preserve d3 to d7 / a3 to a7
$1 GEMDOS calls

Replies are normally held in register DO on return.

A word of warning. GEM was developed for use on the IBM PC, and as such
was designed to run the Intel 8088 processor, which stores addresses in memory
low word first. 68000 GEM uses the same convention in some of the tables and
parameter blocks, it is a point programmers should be aware of, as a mixture of
conventions of this kind is likely to cause problems.

Note that Appendix E provides a list of all the functions and may be used as
an index to the calls in this and the following chapters.

3.2



The Atari Operating System

Traps

BIOS calls (trap #13)

Trap #13 access

To access the BIOS functions, push the parameters in the order given onto the
stackand then call trap#13. Reply or status is returned in register DO and the data
placed on the stack trashed.

Typical use might be:

move.w driveA,-(sp)
move.w record,-(sp)
move.w count, -(sp)
move.l addrss,-(sp)
move.w #0, -(sp)
move.w #4, -(sp)
trap #13

add.w #14,sp
tst.w DO

rts

*push device code
* push record to start
* push number of sectors
*push buffer address
*push read data
*push rwabs function call
* call the function
* tidy the stack
* test for error

It is the programmers responsibility to tidy the stackafter the call. The BIOS,
accessible from user mode, is re-entrant to three levels of calls, users are advised
that this non-standard feature should be used wisely where program portability
is required.

3.3



The Concise Atari ST Reference Guide

BIOS calls (Trap #13)

Param.Size Description of parameter to push

pmpb.L: Pointer to
empty memory
parameter block
to be filled
[SeeAppendix F.7]

(MD=memory descriptor)

MPB structure:

MemoryJreejist
Memory_alloc_list
Roving_pointer
MD structure:
NextJinkJAD
Start_addr_block
No._bytes__ block

->

->

->

->

->

->

->Owner^description —
getmpb 0 Get/fill a memory parameter block
(#$00) (Tidy #6) (No return)
Use this function BEFORE initialising GEMDOS and only with ROM based systems.

dev.W: device code
range

(No range error checking)

bconstat 1
(#$01)

0 printer parallel port
1 aux RS232port
2 console screen
3 midi

4 keyboard
Return character_device input status
(Tidy #4) (Return DO.L)

dev.W: device code 0 to 3 Ifdev2,also
return IBM-PC compatible code hijword lojbyte

bconin 2 Input character from device
(#$02) (Tidy #4) (Return Ascii DO.W)
Ifconterm.b ($484) bit 3 set, also returns the keyboard shift status (kbshiftJBlOS #11) in
highest byte (See Appendix A.5for meaning).

Notes

Initial values:
MD in BSS

0

MD in BSS

0

mbottom
mtop-mbot
0

Operations
0 and 4 are

illegal in
this mode.
Return DO.L

0 no character
-1 Char_ready

WAIT for a
character
DO.L reply.

char.W: character to be sent (Appendix C.4 for WAIT until
dev.W: device code 0 to 4 escape codes) character

bconout 3 Output character to device sent.
(#$03) (Tidy #6) (Return none)

dev.w may also use code 5 which outputs toa screen without control characters.

3.4



The Atari Operating System

BIOS calls (trap #13) cont.

Param.Size Description of parameter to push Notes

driv.W: device code 0 floppy drive A 0 return o'k
1 floppy drive B
2+ disKS, networks etc.

negative error

recn.W: logical sector number to start at read/write mode
secn.W: number of sectors to transfer 2 & 3 allow
buf.L: buffer address (very slow if odd) formatter
rwfl.W: read/write flag 0 read to read & write

1 write and allow
2 read \ do not affect BIOS to
3 write /media-change recognize

rwabs 4 Read/write logical sectors on a device formatted disk
(#$04) (Tidy #14) (Return DO.L) mediachange

vec.L: vector slot address (-1L no change) 0 to FF system
vecn.W: vectornumber to set/get

Set exception vector (see below)
to $1FF GEM

setexc 5 to $FFFF OEMs
(#$05) (Tidy #8) (Return DO.L) (not with GEM)

tickcal 6 Return system elapsed time mS
(#$06) (Tidy #2) (Return DO.L)

driv.W: device code (0 to 2+, as per rwabs) Boot on $446
getbpb 7
(#$07)

Get BIOS parameter block pointer D0.L=address
(Tidy #4) (Return DO.L) 0=not found

dev.W: device code_as per bconstat 0 to 4 0=not ready
bcostat 8 Return device char output status -l=ready to send
(#$08) (Tidy #4) (Return DO.L)

driv.W: device code (0 to 2+, as per rwabs) GEMDOS will
mediach 9 Get media status try to read
(#$09) 0_Media no change

l_Media maybe changed
media with a
status value of 1

2 Media has changed
(Tidy #4) (Return (DO.L)

BIOS level character output is much faster when implemented through the
'NEW TOS' ROM's.

3.5



The Concise Atari ST Reference Guide

BIOS calls (trap #13) cont.

Param.Size Description of parameter to push Notes

must be updatedby installabledisk drives Bits 0 - 31 ($4C2)
drvmap 10 Get bitmap of drives l=drive in

(#$0A) (Tidy #2) (Return DO.L) 0=drive out

mode.W: Mode bits 7 reserved (zero) If mode negative
get IBM-PC6 ALT - Insert

Note: Not 5 ALT - Clr/home state of

all GEMs will 4 CAPS-lock shift keys
read bits 5 & 6 3 ALT key as bit vector

2 CONTROL key in DO.L low

1 left shift key byte.
0 right shift key Critical

kbshift 11 Set keyboard shift bits code for
(#$0B) (Tidy #4) (Return old shift bits DO.L) portability

Critical interrupt handlers

The extended GEMDOS vectors (Appendix A.4) may be employed by user
programs but should take note of the following:

$100 etv_timer: Word value on stack is number of millisecs since last tick.
Save all registers

$101 etv_critic: Stack word value is error number, save registers used.
To ignore an error set D0.L=0
To retry an error set D0.L=$10000
To abort an error set D0.L=sign extend stack parameter.

$102 etv_term: Abort termination by a longword jump back to the top of the
calling application or terminate via an RTS

3.6



The Atari Operating System

XBIOS calls (Trap #14)
Trap #14 access

To access the extended BIOS functions, push the parameters in the order
given onto the stack and then call trap#14 from user or supervisor mode. Reply
or status is returned in register DO.

Typical use might be:

move.l vector,-(sp) *push vector address
move.l parblk,-(sp) *push parameter blockaddr
move.w type, -(sp) *push type of mouse action
move.w #0, -(sp) *push initmouse call
trap #14 * call the function
add.w #12,sp * tidy the stack
tst.w DO * test for error

rts

Param.Size Description of parameter to push Notes

vect.L:

para.L:
(Block
contains

4 bytes)
type.W:

initmous 0

(#$00)

vector address (mouse interrupt handler)
parameter l_y=0 top, 0_y=0 bottom
block Mouse button command (6.3_#7)
address x parameter thresh/scale/delta

y parameter thresh/scale/delta
mode 0 disable mouse

1 enable relative mouse

2 enable absolute mouse
3 unused

4 enable keycode mouse
Initialize mouse packet handler
(Tidy #12) (No return)

Ifmode = 2

then extra

word sized
parameters
required in
parameter block

xmax

ymax
xinitial
yinitial

See call #34

re vector address

numb.W: Bytes from memory top to be saved MUST call
ssbrk 1 Reserve block of memory at high RAM before OS
(#$01) (Tidy #4) (Return DO.L) initialized

_physbase 2 Get screen physical base address
(#$02) (Tidy #2) (Return DO.L)

At next

vblank

3.7



The Concise Atari ST Reference Guide

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter tc push Notes

logbase 3
(#$03)

Get screen logical base address i
(Tidy #2) (Return DO.L)

low Used by GSX
on screen

_getRez 4
(#$04)

Get screen resolution
(Tidy #2) (Return DO.W)

Ret 0 320x200

1 640x200
2 640x400

rez.W: Set screen resolution (0,1 or 2) Negative
clear screen, home cursor, reset VT52 parameters

ploc.L: Set screen physical location (next vblnk) areignored
lloc.L: Set screen logical location (now) so a single

_setScreen 5 Set screen parameters parameter
(#$05) (Tidy #12) (No return) can be set

palp.L: Set palette pointer (word boundary) At next
_setPalette 6 Set palette hardware register contents vblank, all
(#$06) (Tidy #6) (Noreturn) change.

colr.W: Set colour format -16 bit colour word If colour
coln.W: Set colour number (0 to 15) negative

_setColor 7 Set a colour in hardware palette ignore.
(#$07) (Tidy #6) Return old colour DO.W

(with $777 mask)

secn.W: number of sectors to be read
sidn.W: side number selected (0 or 1)
trkn.W: track number to seek to
stsc.W: sector to start reading from (1 to 9)
devn.W: floppy device number (0 or 1)
scrt.L: #0, not used at present.
buff.L: word aligned sized buffer address -

_floprd 8 Read sectors from a floppy drive
(#$08) (Tidy #20)

3.8

Return D0.W=0

for o'k

else failed
error number

must be big
enough



The Atari Operating System

XBIOS calls (Trap#14)cont.

Param.Size Descriptionof parameter to push

secn.W: number of sectors to write (<=sectors/track)
sidn.W: side number selected
trk.nW: track number to seek to
stsc.W: sector to start writing to (1 to 9)
devn.W: floppy device number (0 or 1)
scrt.L: #0, not used at present.
buff.L: word aligned buffer address

_flopwr 9 Write sectors to a floppy drive
(#$09) (Tidy #20) (Return DO.W)

fcod.W:
magc.L:
intl.W:
sidn.W:
trkn.W:
sptk.W:
devn.W:
scrt.L:

buff.L:
_flopfmt 10
(#$0A)

$E5E5 format code (not 0 or FxFx)
$87654321
Sector interleave factor (say 1)
side number to format (0 or 1)
track number to format (0 to 79)
number sectors/track to format (say9)
floppy device number (0 or 1)
#0, not used at present.
word aligned buffer address (8K-9track)
Format a floppy disk

The 'NEW TOS' formats afloppy disk with track skew (-1) and a longword pointer to a
one word per sector skew table in the previously unused scrt.L parameter

Notes

Return D0.W=0
for o'k

else failed

error number

Writing to
boot 1,0,0
sets 'maybe'
mediachange (1)

Return D0.W=0
for o'k

else failed
error number.
Buffer holds
Zero terminated
list of bad
sectors.

Formatting
sets

mediachange (2)

getdsb
(#$0B)

11 Get device status block pointer
(Tidy #2) (RTS call only)

Obsolete
function.

ptr.L: Pointer to character vector
cnt.W: number characters to write less one.

midiws 12 Write a string to midi port
(#$0C) (Tidy #8) (No return)

vect.L:

intn.W:
_mfpint 13
(#$0D)

Address of interrupt routine
Interrupt number (0 to 15)
Set MFP interrupt
(Tidy #8) (No return)

Old vector
is lost.

3.9



The Concise Atari ST Reference Guide

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter to push Notes

devn.W: Serial device 0: RS232 For RS232

1: Keyboard identical

2: Midi o/p buffer
follows i/pReturna pointer .L ( L.pntr to device buffer

to a serial device's (W.size of buffer
input buffer record (W.head index High & low
parameter block (brpb) (W.tail index water start

(W.low-water mark RS232 Xon/Xoff
(W.high-water mark if flow control

iorec 14 Get pointer to serial device i/p brpb enabled.

(#$0E) (Tidy #4) (Return DO.L)

scr.W: Sync character \ 68901 -1 parameters
tsr.W: Tx status 1 MFP register do not

rsr.W: Rx status 1 settings change
usr.W: Usart control / (page 1.25) registers
flow.W: 0 No flow control (default)

1 Xon/Xoff (AS/AQ)
2 RTS/CTS
3 Xon/Xoff & RTS/CTS

baud.W: 0=19200 5=2000 (1920) 10=200
1=9600 6=1800(1745) 11=150 Actual

2=4800 7=1200 12=134 baud in

3=3600 (3840) 8=600 13=110 brackets
4=2400 9=300 14=75 (120)

rsconf 15 Configure RS232 port 15=50 (801

(#$0F) (Tidy #14) (No return)

capl.L: Caps lock \ Set pointers to 128 byte
Shift 1 Keyboard translation

Return pointer
shft.L: to structure:

unsh.L: Unshifted / tables. Unshft tab
keytbl 16 Set/get keyboard translation table pointer Shiftjabl
(#$10) (Tidy #14) (Return DO.L) Capslk_tab

-1 not to c hange characters

Bit zero poor distribution
random 17 Get 24-bit pseudo random number Bits 24-31

(#$11) (Tidy #2) (Return DO.L) are zero

3.10



The Atari Operating System

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter to push Notes

exfl.W: 1 = boot sector executable -1 retains

0 = non-executable boot sector old values.
dskt.W: 0=40 track SS 2=80 track SS

1=40 track DS 3=80 track DS Image is
sern.L: random boot serial no. if=#$1000000 written

buf.L: pointer to any 512-byte buffer to volumes
protobt 18 Prototype a boot sector image boot sector

(#$12) (Tidy #14) (No return)

secn.W: number sectors to verify (<=sectors/ track) Return D0.W=0
sidn.W: side number selected for o'k
trkn.W: track number to seek to else failed
stsc.W: sector to start reading from (1 to 9) error number
devn.W: floppy device number (0 or 1)
scrt.L: #0, not used at present. Buffer holds
buff.L: word aligned 1024 byte buffer address 0 terminated

flopver 19 Verify sectors from a floppy drive list of bad
(#$13) (Tidy #20) sectors.W

scrdmp 20 Dump screen to printer At present
(#$14) (Tidy #2) (No return) mono only.

rate.W: Rate =1/2 cycle time -1 retains
60/50 Hz color 70 Hz monochrome old values.

attr.W: 0_Hide cursor 4J3et rate
1JShow cursor 5_Get rate Returns

2_Blink cursor 6_unused old rate High
3_Noblink cursor 7_unused old attribute low

cursconf 21 Set/get cursor blink rate & attribs word byte.
(#$15) (Tidy #6) (Return DO.W)

date.L: 32-bit DOS format date and time Date Hiword
settime 22 Set ikbd time and date Time Loword

(#$16) (Tidy #6) (No return) (See page 3.22
1 for the format.

These functions usegettime 23 Get ikbd 32-bit format date & time

(#$17) (Tidy #2) (Return DO.L) the real time clock

3.11



The Concise Atari ST Reference Guide

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter to push

bioskey 24 Restore power up keyboard setting
(#$18) (Tidy #2) (No return)

pntr.L: Pointer to character string vector
nch.W: Count of characters to send -1

ikbdws 25 Write a string to intelligent kybd
(#$19) (Tidy #8) (No return)

intn.W: MK68901 interrupt number
jdisint 26 Disable a MK68901 interrupt
(#$1A) (Tidy #4) (No return)

intn.W:

jenabint 27
(#$1B)

MK68901 interrupt number
Enable a MK68901 interrupt
(Tidy #4) (No return)

Notes

Reset translation

tabs

Send command

to ikbd

regn.W: PSG register number (00 to OFH) Register ORed
data.B: Byte to write to register #$00 read

giaccess 28 Read/writea sound chip register #$80 write
(#$1C) Atomic access only (Return D0.B)

bitn.W: Bit number to be set (Mask AND)
offgibit 29 Atomically set PORT A bit to zero
(#$1D) (Tidy #4) (No return)

bitn.W: Bit number to be set (Mask OR)
ongibit 30 Atomically set PORT A bit to one
(#$1E) (Tidy #4) (No return)

vec.L: Pointer to an interrupt handler
data.W: Byte placed in timer's data register
cntl.W: Timers control register setting
timr.W: Timer number allocations are:

0_A Reserved for end-users & applications
1_B Reserved for graphics primarily
2_C System timer (GEM, DESKTOP etc)
3_D RS232 baud rate and mere users

xbtimer 31 Provide control timing facility
(#$1F) (Tidy #12) (No return)

3.12



The Atari Operating System

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter to push Notes

ptr.L : Pointer to table of bytes (command-data)
cmd 0 to 15load register0 to 15with data Oxx

cmd 128 load tempreg with databyte 128 xx

cmd 129 reg # contents to load into tempreg (rr) 129 rr cc ee dd

two's c value to add to tempreg (cc)
time delay between steps (dd/50)
terminate on value (ee)

cmd 130-255 set delay data (ticks) [0=stop] 130 xx

dosound 32 Produce a sound (See Appendix
(#$20) (Tidy #6) L.22 et seq.)

conf.W: Bit 0 0=dot matrix, l=daisy wheel -1 returns

1 0=colour device l=monochrome configuration
2 0=1280.dots/line l=960.dots/line byte else
3 0=draft, 1=NLQ change and
4 0=parallel, l=RS232port
5 0=formfeed, l=single sheet

return the
old value.

6-14 reserved

15 must be zero
setprt 33 Get/set printer configuration byte
(#$21) (Tidy #4) (Return DO.W)

Structure MIDIJnput (BIOS buffer routine) -> DO.B character
longword keybrd_err \ Called when - \ 68901

format MIDI_err / overrun detected / or 6850's
ikbd_stat \ Pointer to packet
mous_pack 1 handlers (pointer to (mouse vector
clocl;_pack 1 packet received in used by
joyst_pack / AO & on stack.L) GEM & GSX)
MIDI vec \ Call when character
ikbd_vec / available on 6850 Handlers to

kbdvbase 34 Return pointer to structure base return by RTS
(#$22) (Tidy #2) (Return DO.L) within 1ms

rept W: Rate of key-repeats (System ticks) -1 parameters
init.W: Delay before key-repeat starts no change.

kbrate 35 Get/set keyboard repeat rate Delay high byte
(#$23) (Tidy #6) (Return DO.W) repeat low byte

3.13



The Concise Atari ST Reference Guide

XBIOS calls (Trap#14)cont.

Param.Size Description of parameter to push

prt.L:
_prtblk 36
(#$24)

Pointer to parameter block
Hard copy routine
(Tidy #6) (No return)

vsync
(#$25)

37 Wait till next vblank and return
(Tidy #2) (No return)

Notes

Graphics
synchronize

code.L: Pointer to code ending with RTS Must not
Hackers access tohardware &protected locations call BIOS

superx 38 Execute code in supervisor mode or GEMDOS
(#$26) (Tidy #6) functions

puntaes 39 Switch off AES, when not in ROM
(#$27) (Tidy #2) otherwise perform a RESET.

flag.W: Blitter status word
bit 0- set to enable blitter

1-14 reserved

15 0_clear
or -l_Get blitter status

blitmode 64 Get/set blitter status
(#$40) (Tidv #4) (Return DO.W)

The reserved fields are for future blitter capabilities
andwill be used infuture.

3.14

bit

Automatic
operation
through line-A
and VDI calls.
Return DO

0_set (blit on)
l_set (if blit there)
2-14 reserved
15 clear



The Atari Operating System

GEMDOS calls (Trap #1)

Trap #1 access

To access GEM BDOS functions, push the parameters in the order given onto
the current stack and then call trap#l. Any byte, word or longword reply or the
address of a parameter block will be returned in register DO.

*push drive number (2)
*push setdrv function call
* call the function
* tidy stack
* return with bitmap in DO

It is the programmers responsibility to maintain the stack integrity (tidy) after
the call.

Param.Size Description of parameter to push Notes

p_term_o 0 End process and return to parent. Return code
(#$00) (Tidy #2) (use $4c) zero.

c_conin 1 Read character from standard i/p & echo The console
(#$01) (Tidy #2) (Return DO.L) scan code

1 (Appendix
char.W: Character to be printed Page d.3)

c_conout 2 Write character to standard output is returned
(#$02) (Tidy #4) (No return) in the low

| byte of the
c_auxin 3 Read character from auxiliary port high word.
(#$03) (Tidy #2) (Return DO.L) (RS232) The upper

1 byte of the
char.W: Character to be printed word sent

c_auxout 4 Write character to standard aux device MUST be 0
(#$04) (Tidy #4) (No return) (RS232) for future

1 compatibility
char.W: Character to be printed

c_prnout 5 Write character to standard print device
(#$05) (Tidy #4) (Return-l_o'k, 0_after30ms time out)

move.W driveB,-(SP)
move.W #13,-(SP)
trap #1

add.W #4,SP
rts

3.15



The Concise Atari ST Reference Guide

GEMDOS calls (Trap#1) cont.

Param.Size Descriptionof parameter to push

parm.W: If parm.W=255 ($00FF) then read else
parmeter is character to be written
Raw I/O to standard input/output
(Tidy #4) (Return DO.L)

c_rawio

(#$06)

c_rawcin 7 Raw input from standard input
(#$07) (Tidy #2) (Return DO.L)

c_necm

(#$08)
8 Read a character from standard input

(Tidy #2) (No return)

addr.L: Address of null terminated string
c_conws 9 Write string to standard output
(#$09) (Tidy #6) (Return D0.L=# char sent)

addr.L: Address of input buffer
(Firstbyte data portion length)

Read edited string from standard input
(Tidy #6) (Buffer returns)

c_conrs

(#$0A)
10

c_conis 11 Check status of standard input
(#$0B) (Tidy #2) (Return DO.L)

driv.W: Drive number: 0=A, 1=B....15=P
d_setdrv 14 Set default drive
(#$0E) (Tidy #4) (Return DO.L)

c_conos 16 Check status of standard output
(#$10) (Tidy #2) (Return DO.L)

Notes

If no character
then D0.L=0
Character as
per c_conin

No echo to screen
Pass controls

No echo. AC
AQ & AS active

Character bytes
terminated

by a zero.

On return

2nd length read
3-n characters

n+1 zero
*C,AH,AI,*J,*M,AR,AU,andAXhave their normal 'edit' meaning.
Terminate edit using: RETURN, A/or AM

character ready
-l_yes,0_no

Return bitmap
of drives
present

-1 ready
0 not ready

c_prnos 17 Check status of standard print device -1 ready
(#$11) (Tidy #2) (Return DO.L) 0not ready

c_auxis

(#$12)

3.16

18 Check status of standard aux device i/p
(Tidy #2) (Return DO.L)

-1 char received

0 no characters



The Atari Operating System

GEMDOS calls (Trap#1) cont.

Param.Size Description of parameter to push Notes

c auxos 19

(#$13)
Check status of standard aux device o/p
(Tidy #2) (Return DO.L)

-1 ready
0 not ready

d_getdrv 25
(#$19)

Get current drive

(Tidy #2) (Return DO.L)
drive A=0

B=l...etc.

addr.L:
f setdta 26
(#$1A)

Disk transfer address
Set disk transfer address

(Tidy #6) (No return)

Address
used by
sfirst (#78)

t getdate 42
* (#$2A)

Get date
(Tidy #2)

(as per set date format)
(Return DO.L)

Date return

in low word

date.W:
t setdate 43
*(#$2B)

Date format
Set date
(Tidy #4)

date: bits 0-4,1 to 31
mnth bits 5-8,1 to 12
year: bits 9-15,1980 - 2100

Error return

if date not

valid

t gettime 44
* (#$2C)

Get time

(Tidy #2)
(as per set time format)
(Return DO.L)

Time return

in low word

time.W:

t settime 45
*(#$2D)

Time format
Set date

(Tidy #4)

sees: bits 0-4, step 2s
mins:bits 5-10
hour: bits 11-15

Error return

if date not
(DO.L) valid

f getdta 47
(#$2F)

Get disk transfer address
(Tidy #2) (Return DO.L)

s version 48
(#$30)

Get version no

(Tidy #2)
(1.00lo-hi byte)
(Return DO.W)

0001H for
first release

exit.W: Exit code (process return code)
keep.L: # bytes to keep in process description

p_termres 49 Terminate and stay resident
(#$31) (Tidy #8) (No return)

May cause
problems
for future

conversions

Updated from RTC on the termination of every process

3.17



The Concise Atari ST Reference Guide

GEMDOS calls (Trap#1) cont.

Param.Size Description of parameter to push Notes

driv.W: Drive number: 0=current, 1=A, 2=B.. Buffer pb.I,
info.L: Address of drive information buffer ttfree clusters

d free 54 Get drive free space (data in buffer ttclusters total
(#$36) 4 x longwords) #bytes/sector

(Tidy #8) (Return D0=0_o'k else error) #sectors/cluster

path.L: Address of string containing pathname Pathname is
d create 57 Create a subdirectory terminated
(#$39) (Tidy #6) (Return DO.L) in a null.

path.L:
__ _

Address of string containing pathname
d delete 58 Delete a subdirectory 0 ret o'k
(#$3A) (Tidy #6) (Return DO.L) negative error

path.L: Address of string containing pathname
d setpath 59 Set current directory
(#$3B) (Tidy #6) (Return DO.L)

attr.W: File attributes: 01H read only
02H hidden file

Return file
handle if o'k,

04H hidden system file negative error
08H File, vol label in first 11 bytes

path.L: Address of string containing pathname
f create 60 Create a file Pathname
(#$3C) (Tidy #8) (Return DO.L) ends in a zero

attr.W: File read-write mode Return file

0=file open for read only handle if o'k,
1=file open for write only negative if
2=file open read and write error.

path.L: Address of string containing pathname
f open 61 Open file Pathname
(#$3D) (Tidy #8) (Return DO.L) ends in a zero

hndl.W: File handle 0 ret o'k
f close 62 Close file -errors maycrash system negative error.
(#$3E) (Tidy #4) (Return DO.L)

3.18



The Atari Operating System

GEMDOS calls (Trap#1) cont.

Param.Size . Description of parameter to push Notes

buff.L: Address of buffer to store bytes DO contains the

byts.L: Number of bytes to read (never 0) number of bytes
hndl.W: File handle read.

f read 63 Read file Negative on
(#$3F) (Tidy #12) (Return DO.L) error.

buff.L: Address of buffer storing bytes DO contains the

byts.L: Number of bytes to write (never 0) number of bytes
hndl.W: File handle (errors may crash thesystem) written. Negative

f write 64 Write file on error, i.e

(#$40) (Tidy #12) (Return DO.L) disk full.

path.L: Address of string containing pathname 0 return o'k

f delete 65 Delete file negative on error.
(#$41) (Tidy #6) (Return DO.L)

fmod.W: 0: move n bytes from beginning Positive moves

1: move n bytes from current position to end of
2: move n bytes from end of file file, negative

hndl.W: File handle to beginning
nbyt.L: Signed number of bytes argument

f seek 66 Seek file pointer D0=Absolute file
(#$42) (Tidy #10) (Return DO.L) pointer location

attr.W: File attributes: #$01 read only Return file

#$02 hidden file #$04 hidden system file handle if o'k,
#$08 File, vol label in 1st 11 bytes negative if error
#$10 File is a subdirectory
#$20 File has been written & closed Pathname is

wrt.W: 0_get/l_set file attributes terminated

path.L: Address of string containing pathname in a null.

f attrib 67 Get/set file attributes

(#$43) (Tidy #10) (Return DO.L) Get in DO.L

shnd.W: Standard file handle to duplicate Error return

f dup 69 Duplicate file handle page 1.3
(#$45) (Tidy #4) (Return DO.L)

3.19



The Concise Atari ST Reference Guide

GEMDOS calls (Trap#1) cont.

Param.Size Descriptionof parameter to push Notes

shnd.W: Standard file handleto force 0 console i/p
nhnd.w: Non-standard file handle -1 console o/p

f_force 70 Force point file handle to non-standard -2 serial
(#$46) (Tidy #6) handle file or device -3parallel

driv.W: Drive number: 0=default, l=A...etc.
path.L: Address of 64byte buffer for pathname

d_getpath 71 Get current directory
(#$47) (Tidy #8) (Return DO.L)

Buffer minimum
64 bytes.

Return 0 o'k

nbyt.L:
m_alloc 72
* (#$48) or

frad.L:
m_free 73
* (#$49)

rmem.L:

mmem.L:

zero.W:

m_shrink 74
* (#$4A)

Allocated block may not be ona word boundary
Bytes to allocate or -1 return maximum available D0.L=0 if
Allocate memory (DO.L start pointer) allocation fails
Read free memory (DO.L bytes available) or pointer to
(Tidy #6) (Return DO.L) block.

Address of memory to free
Free allocated memory
(Tidy #6) (Return DO.L)

Length of retained memory
Start of memory space to modify
zero (reserved)
Shrink size of allocated memory
(Tidy #12) (No return)

0 return o'k

negative on error

Reallocates
unused memory
for GEMDOS.
0 return o'k
negative on error

penv.L: Pointer to environmental string, 0forparent
pcmd.L: Pointer to command tail including redirection
path.L: Address of string containing pathname
mode.W: 0=load & execute, return terminal child code

3=load only, return DO.L base page address
4=create basepage, 5=execute only

P_exec 75 Load or execute a process
(#$4B) (Tidy #16) (Return DO.L)

Insufficient memory error returned as $000000D9.

Mode 3 is
used for

overlays,

Return DO.L

error if
load fails.

These functions are unreliable in early versions of TOS.

3.20



The Atari Operating System

GEMDOS calls (Trap#1) cont.

Param.Size Description of parameter to push

stat.W:
p_term 76
(#$4C)

Interrogation code for parent
Terminate process, control to parent
(Tidy #4) (Return DO.L)

Notes

0 Return o'k
non-zero error

satt.W: Search attributes Filename
#$00 normal files: #$01 read only may include
#$02 hidden files: #$04 hidden system file '*' or'?'
#$08 volume label file #$10 subdirectory files wildcards.
#$20 File has been written & closed

path.L: Address of string containing pathname If file not
f_sfirst 78 Search for 1st occurence filespec found return
(#$4E) 44-byte DTA buffer created if found -33code

0-20 OS reserved: 21 file attributes in DO.L
22-23 Time stamp: 24-25 Date stamp (filenot found)
26-29 Filesize.L (Lo-Hi): 30-43 Name.extension

(Tidy #8) (Return DO.L)

f_snext 79 Search for next occurence filespec First 20bytes
(#$4F) (Uses first20 bytesof DTA buffer, DTA buffer

name.extension updated on success) must not be
(Tidy #2) (Return DO.L) altered.

pth2.L: Pointer to 'new' file string
pthl .L: Pointer to 'old' file string
zero.W: zero

f_rename 86 Rename a file
(#$56) (Tidy #12) (Return DO.L)

Rename a

file
Return DO
error number

or 0=o'k

3.21



The Concise Atari ST Reference Guide

GEMDOS calls (Trap#1) cont.

Param.Size Description of parameter to push

info.W: 0_set/l_get date and time
hndl.W: File handle
buff.L: Time and date buffer pointer

f_datime 87 Get/set file date and time stamp
(#$57) Buffer first word

Bit format days 0-4 1 to 31
mnth5-8 1 to 12

year 9-15, 1980 to 2100
Buffer second word

Bit format sees 0-4 in 2 sec steps
mins 5-10
hour 11-15

(Tidy #10) (No return)

Notes

$00

$15
$16
$18
$1A
$1E

21
22
24
26
30

OS reserved

File attributes
File time stamp
File date stamp
Longword file size
Name and ext. of file found

(7 words)

DTA buffer

Use function #$1A (dec 26) to set DTA buffer address and functions #$2F
(dec 47) to get DTA address.

3.22



The Atari Operating System

Supervisor/User toggle
Thisspecialfunction allows users to get in and out of supervisor mode»from

GEMDOS.

Param.Size ' Description of parameter to push Notes

stck.L: -l_get mode: Return 0_user
(DO.L) 1 supervisor

<>-l switch mode Return

a) User to supervisor mode value of
0_set supervisor stack equal old super

to user stack before call stack in
<>0_set supervisor stack equal

to stck.L
DO.L

b) Supervisor to user mode The old
set supervisor stack from value of
stck.L which must be the first super stack
SMODE function call or the MUST be
system will crash. restored on

smode 32 Set/get supervisor/user mode process
(#$20) (Tidy #6) (Return DO.L) termination

Test for mode

move.L #$l,-(sp) *Returns DO.L
move.W #32,-(sp) * $0= user mode
trap #1 * $FF=supervisor mode
addq #6,sp

User to supervisor mode

clr.L -(sp)
move.W #32,-(sp)
trap #1
addq #6,sp
move.L D0,save_stk

Supervisor to user mode

move.L save__stk,-(sp)
move.w #32,-(sp)
trap #1
addq #6,sp

Set supervisor stack equal to
user stack before this call,

Save old supervisor stack value

Recover old supervisor stack

and back into user mode.

3.23



The Concise Atari ST Reference Guide

Extended BDOS calls (Trap #2)

To access the extended BDOS functions, the DO.W register is loaded with the
function code, an address pointer is placed in DLL and trap #2 called. A return, if
any, is placed in DO.W.

GEM VDI and AES may be accessed by loading the relevant parameter block
address into Dl, the function number into dO and making an extended BDOS call:

GEM VDI access

move.l #contrl, pblock
move.l #pblock,dl *addressof VDI param block
move.w #$73,d0 * set dOequal to 115 and
trap #2 *execute an extended BDOScall

GEM AES access

move.l #control, c
move.l # c,dl
move.w #$c8,d0
trap #2

3.24

*address of AES param block
*set dO equal to 200 and
* execute an extended BDOS call



The Atari Operating System

Extended BDOS calls (Trap #2) cont.

Code# Hex Dec Function Notes

DO.W : #$00 0 Terminate current program and The function
return to CP level does not return

TraP #2 RESET tocalling program.

DLL: #pblock VDIparameter block pointer
DO.W : #$73 115 VDI function number
Trap #2: GEM VDI access

DLL: #control AES param blockpointer
DO.W : #$c8 200 AES function number
Trap #2: GEM AES access

DO.W:
Trap #2

DO.W:
Trap #2

#$c9 201

#$fe -2
Test for GDOS version

Return D0.W=-2
if GDOS not
installed.

The trap #2 RESET call simply calls the GEMDOS trap #1 process terminate
function #$4C.

* Test for GDOS, looks for Atari GDOS version 1.0 which does not contain all
the VDI functions.

3.25



The Concise Atari ST Reference Guide

Interrupt Handler
The standard system interrupt is level 2, vector $68 (104) and takes the

following sequence every interrupt:

Vertical blank interrupt (VBI)

Order Function System variable

1 Increment the frame counter FRCLOCK.L $466
2 Test for mutual exclusion VBSLEM.W $452

if = 0 return
3 Save all the registers on stack
4 Increment'Vblank counter' VBCLOCK.L $462
5 Testfor high resolutionmode SHFTMD.W $44C

if shftmd<2 then goto 6,
test for low resolution monitor attatched
if yes set mode to zero DEFSHFTMD.B $44A

6 Call cursor blink routine
7 Test for new colour pallette COLORPTR.L $45A

if colorptr=0 then goto 8
Load pallette with 16 words pointed to
by colorptr and then zero it.

8 Test for new screen SCREENPTR.L $45E
if screenptr=0 then goto 9
Set screen physical base to screen
pointer and then zero pointer.

9 Run deferred VBI vectors
# of deferred VBI vectors nvbls.W $454
Pointer to VBIvector array vblqueue.L $456

10 Return

There are eight VBI vectors available in the default array, the first is reserved
for GEM's VBI code. Pointers to new handlers are placed in the spare slots.
Handler code ends in RTS and may use any register except the user stack pointer.
Larger arrays can be allocated by redefining nvbls and vblqueue, copying the
current vectors to the new array. An application that returns, should tidy up the
VBI queue.

Do not make VDI or Line-A calls via an Interrupt as the results are
unpredictable if the SThas a blitter chip installed.

3.26



GEM VDI

Chapter 4

GEM VDI

GEM VDI function calls 4.2

VDI parameter blocks 4.3
Control table 4.3

Attribute table 4.4

Points table 4.4

Parameter block sizes 4.5
The GEM VDI calls 4.8

Workstation function calls 4.8

Output functions 4.10

General drawing primitives 4.11

Attribute functions 4.13
Raster operations 4.16

Input functions 4.18
implemented 4.18

not implemented 4.20

Inquire functions 4.22
VDI style patterns 4.26

VDI text alignment 4.46
Escape functions 4.27

implemented 4.27

not implemented 4.30
File formats 4.33

Bit image 4.33

File header 4.33
Data encoding i 4.33

Meta file Sub Op codes 4.35

Output page 4.35
GEM draw 4.36

4.1



The Concise Atari ST Reference Guide

GEM VDI function calls

Digital Research's GEM VDI (Virtual Device Interface) provides graphic
capabilities and a device independent operating environment for the
development of programs that are transportable to other operating systems. It is
therefore a pity that the initial ROM implementations of the Atari ST did not
include that portion of code which provided the transportability.

The VDI comprises GDOS, the Graphics Device Operating System and GIOS,
the Graphics Input/Output System.

GDOS consists of the basic and device independent graphic functions that are
called by applications and functions without reference to any specific hardware
in a manner similar to the disk operating system. The GIOS consists of the device
specific code that is needed to interface to each specific graphic device (device
drivers). The OS needs a device driver for every different graphics device
attatched to the system, unfortunately only one is supplied - for the screen. This
limitation, the drivers restriction of only two fonts per screen resolution and the
absence of support for the normalised device coordinate system means that the
ST does not have a device independent capability.

Appendix E lists all the GEM VDI functions. As a general rule, only those
functions associated with the screen are implemented (virtually all are), those
associated with either a printer, plotter or meta-file are not implemented.

It may be possible to obtain the file GDOS.PRG which when placed in an
AUTO folder, provides the ST with the missing facilities of GDOS. Atari have
made the file available to registered software developers for a nominal sum but
the code (and that means small parts of it as well) is subject to a single fixed
licence fee if used in commercial programs.

4.2



GEM VDI

GEM VDI function calls

The VDI functions are accessed through an extended BDOS call and the VDI
parameter block (five longword pointers to the word tables; cntrl, input attribute
and points, output attribute and points). The parameter and array blocks, which are
usually initialized by an AES call to APPLJNIT, have the following formats:

$00

$04

$08

$0C

$10

$00
$02

$04

$06

$08

$0A

$0C
$0E

Control
pointer table

Input attribute
table pointer

Input points
table pointer

Output attribute
table pointer

Output points
table pointer

Opcode

Length of input
coordinate table

Length of output
coordinate table

Length of input
attribute table

Length of output
attribute table

Subfunction
ident number

Device handle

Opcode depend
information

control

intin

ptsin

intout

ptsout

VDI parameter
block

Control table

\

/

Length in
word pairs

Length in
words

Zero if can not be opened

It is the programmers responsibility to define the correct number of arguments
to be passed and the array size (1 to n) required by the function on return.

4.3



The Concise Atari ST Reference Guide

Attribute table

intin
intout

$00
$02
$04
$06
$08
$0A

Points table

ptsin
ptsout

$00
$02
$04
$06
$08
$0A

Typical usage

device ID (handle)
line type
line colour
mark type
mark colour
font

Typical usage

x coordinate
y coordinate

word
pair

width
height

word
pair

Note: These parameters

are held in word sized tables.

Assembler and BASIC use the

actual offset whereas 'C, Pascal

and GFA Basic etc. use word

sized offsets, i.e half the actual

value I have used in this book.

A minimum application stack space of 128 bytes is required, plus space for
theGEM arrays. The VDI function calls havebeendetailed in groups as follows:

Workstation control functions:
Define the workstation parameters and defaults; these govern the font and

the window size to be used and the generation of virtual screens.

Output functions:
Thesefunctions draw the graphic primitive on the specifiedoutput device.

General drawing primitive functions:
Contain the basic graphic primitives of line, arc, filled and unfilled ellipse

and rectangle, and of justified text.

Attribute functions:

Define the output style of the graphic primitives; the line, marker, text cell
and polygon for colour, size and fill.

4.4



GEM VDI

Raster operations:
Provide the ability to transpose a source block of pixels to a destination

location on the basis of a logical operation between the bits comprising the source
and destination.

Input functions:
Enable the programmer to provide the user with both a 'request and wait on

event' and a 'request, sample and return' mode of inquiry.

Inquire functions:
Return the status or attributes of a specific device

Escape functions:
Enable the application to access special features applicable to certain graphic

devices.

VDI Parameter block sizes

The numbers of parameters required by the various functions are detailed in
the tabular format:

Control table

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

The table contains details of the parameter input and output word sizes; note
that the points value is half the table size (a point is defined by a pair of x and y
word-sized coordinates - a longword). All data is assumed to be 2 byte integer
including string characters.

Open workstation function v_opnwk

The major VDI function in terms of size is the 'open workstation function',
which sets up a named screen, (device handle) the desktop window, identified as
device name zero. The new screen is initialized to graphics mode, cleared and the
parameter table outputs initialized. The v_opnwk (op_l) function is not available
on the Atari ST (only with GDOS.PRG), programmers should use the virtual
workstation function v_opnvwk (op_100).

4.5



The Concise Atari ST Reference Guide

The control table

Control
offset

Data
entered

Array
size.B Function

$0 0 1

$2 2 0 0

$4 4 6 24

$6 6 11 22

$8 8 45 90

$A 10

$C 12 X

Opcode for 'open workstation'
# ofi/p pointpairs ptsin
#of o/ppoint pairs ptsout
Length ofi/p attribute table intin
Length ofo/p attribute table intout
Not used

Handle for this device (out)

Attribute input table (intin)

Intin Initialdefaults (style, colour etc.) VDI Op
Offset code

$0 0 Device driver (screen = 1)
$2 2 Linetype (solid = 1) 15

$4 4 Polyline colour index -

$6 6 Marker type (dot = 1)
Polymarker colour index

18
$8 8 20

$A 10 Text face 21

$C 12 Text colour index
$E 14 Fill interior style 23

$10 16 Fill style index 24

$12 18 Fill colour index
$14 20 NDC to RDC transform flag (2 only)

0 map full NDC to full RC
1 reserved

2 Raster coordinates

The input ranges required to open a workstation with a specific attribute can
be found, in the table box for that attribute, later in this chapter.

The procedure names are limited to the maximum of eight unique characters
supported by the most C compilers. Note that C external names are prefixed by a
'_' which reduces the uniqueness to seven characters.

4.6



GEM VDI

Attribute output table (intout)

Intout

Offset
Default output parameters Typical b&w

values

$0 0 Maximum pixel width $27f 639

$2 2 Maximum pixel height $18f 399

$4 4 Device coordinate flag (0=fine, l=coarse) always 0
$6 6 Pixel height, microns mm /1000

Pixel width, microns mm/1000
372

$8 8 372

$A 10 # character heights (0=continuous) 3

$C 12 # linetypes 7

$E 14 # line widths (0=continuous) 0

$10 16 # marker types 6

$12 18 # marker sizes (0=continuous) 8

$14 20 # faces supported (fonts) 1

$16 22 # patterns
# hatch styles

$18 24

$18 24 $c 12

$1A 26 # simultaneous colours (2=mono) 2

$1C 28 # generalized drawing primitives
Listof thefirst 10 GDP's (-1 ends list)

$a 10

$lE-$30 l=Bar 6=Elliptical arc
2=Arc 7=Elliptical pie 1 to 10

30-48 3=Pie slice 8=Rounded rectangle
4=Circle 9=Filled rounded rectangle 303
5=Ellipse 10=Justified graphic text 330

Attribute listfor GDP's 303

$32-$44 0=Polyline l=Polymarker 2

50-68 2=Text 3=Fill araea 4=None
$46 70 Colour \ 0=no, l=yes 0

$48 72 Text rotation 1Capability 1

$4A 74 Fill area 1 flags 1

$4C 76 Cell array operation / 0

$4E 78 # colours (2=mono, 4,16) 2

$50 80 # locatordevices l=keyboard only
2=keyboard +i/p (

2

mouse)
$52 82 # valuator devices l=keyboard 1

$54 84 # choice devices l=function keys
2=button device

1

$56 86 # string devices l=keyboard 1

$58 88 # Workstation type 0=output only
l=i/p only, 2=input/output
3=reserved, 4=metafile output

2

4.7



The Concise Atari ST Reference Guide

Output points table (ptsout)

Ptsout Output points table Typical
Offset values

$0 0 Minimum character width 5
$2 2 Minimum character height 4
$4 4 Maximum character width 7

$6 6 Maximum character height $d 13
$8 8 Minimum line width 1 '

$A 10 Zero 0
$C 12 Maximum line width $28 40
$E 14 Zero 0
$10 16 Minimum marker width $f 15
$12 18 Minimum marker height $b 11
$14 20 Maximum marker width $78 120
$16 22 Maximum marker height $58 88

The GEM VDI calls

Workstation control functions

The following functions set the workstation parameters and defaults for use
by the application:

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

Open 1 0 6 11 45 zero Set up desktop window
workstation (device zero) to graphics
*v_opnwk Call only with GDOS.PRG installed mode & initialise tables

* Not implemented on the Atari ST

4.8



GEM VDI

Workstation control functions cont.

Function Op
$0

Pointpair
in out

$2 $4

Integers
in out GDP

$6 $8 $A

Device

name

$C
Comments

Close 2
workstation
* v_clswk

0 0

Call only

0 0

with GDOS.PRG installed

Return to alpha mode
Close device and
flush buffers.

Open 100
virtual

screen

vjopnvwk

0 6 11 45

parameters
as opcode 1
(pg 4.6 Intin)

i/p screen

o/p new
window

Permits multiple
windows based on
one screen with

different attributes

Close 101
virtual screen

v_clsvwk

0 0 0 0 Close virtual screens

first to stop further
output to screen.

Clear 3

workstation

v_clrwk

0 0 0 0 Clear the screen.

New page if possible.
Delete buffer data

Update 4 0 0 0 0 - Execute graphic
workstation commands waiting.

No effect on screen.

v_updwk Use to print data

Load 119 0 0 1 1 - Load additional
font intin (0)=0, reserved fonts.

intout(0)=# fonts loaded intin(O) reserved
*vstjoadjonts for future use.

Unload 120 0 0 1 0 - Unload font from
font intin (0)=0, reserved memory if no other

live users.

*vstjunloadjonts intin(O) reserved

Set 129 2 0 1 0 - Disable/enable
clipping a,b —— intin(0)=0_off (default) clipping of
rectangle j <>0_on output primitive.
vs_clip L—Cd ptsin a,b,c,d

* Not implemented on the Atari ST

4.9



The Concise Atari ST Reference Guide

Output Functions

The following functions draw the graphic primitives (lines, arc etc.) on the
current device using the current attributes.

Function
Pointpair Integers Device

Op in out in out GDP name
$0 $2 $4 $6 $8 $A $C

Comments

Polyline
vjpline

6 n 0 0 0

min of 2 coord pairs xl,yl x2,y2 etc .
Draw line between

n pairs of points

Poly
marker

vjpmarker

7 n 0 0 0

xl,yl x2,y2 etc.

Draw marker at

each of n pairs
of points.

Text

v_gtext

1 0 n 0
intin (0)=text string (n=string length)
ptsin (0)=lower left corner
ptsin (2)=upper right corner

Filled 9 n 0 0 0
area n* x,ypoints asper polyline
vjillarea Uses Op #25 vsf_color for fill colour

Write character string
to device. 0-255
Intin word LSByte
contains character.

Outline if device

can not fill. Close
area if open.

Fill 114 2
rectangle a,b

0 0 0 Rectangular area fill
ptsin (0)=a ptsin (4)=c ptsin a,b,c,d
ptsin (2)=b ptsin (6)=d
Uses Op #25 vsf_color for fill colourvrjecfl

------

array

CD,I c,d

4.10

10 2

I—
a,b

Row length'Xc Cntrl
#Words/row Cntrl
# Rows Xc Cntrl

Writing mode Cntrl
v_cellarray

Contour~~103~T"
fill intin

ptsin
v_contour ptsin

Rect

array

0 n 0

-C,d n=length ofcolour index

Colour Xc
$E index
$10 array i yc
$12 (Intin 0 .. .n)
$14
Not implemented in all systems
.. _. .„ .

(0)=colour index
(0)=xcoordinate "1 Starting
(2)=y coordinate J point

<c ,

CD,

Draw rectangular
cell array,
ptsin a,b,c,d
based on colour
cells Xc * Yc

Writing mode see
Op #32

Flood fill area bound

by edge or colour.
There must not be

a gap



GEM VDI

General drawing primitive functions (GDP's)

The GDP's provide the basic graphic primitives of line, arc, ellipse etc.

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

GDP 11 n - - - x -

(General format)

Bar 11 2 0 0 0 1- Area attributes
ptsin (0)=comer x coordinate
ptsin (2)=corner y coordinate Uses Op #25
ptsir (4)=diagonally opposite x coordinate vsf color attributes

vjoar ptsir (6)=diagonally opposite y coordinate
Arc 11 4 0 2 0 2- Line attributes

ptsin (0)=centrex coordinate ptsin (C) =radius
ptsin (2)=centre y coordinate ptsin (E):=0
ptsin (4)=0 ptsin (8)=0 intin (0)==start angle"] 0 to

v_arc ptsin (6)=0 ptsin (A)=0 intin (2)==endangleJ 3600
'New TOS' clears reliability problems ofsmall angles.

Pie 11 4 0 2 0 3- Area attributes
vjpieslice Parameters as per arc above

Circle 11 3 0 0 0 4- Area attributes
ptsin (0)=centre x coordinate ptsin (6)=0
ptsin (2)=centre y coordinate ptsi n (8)=radius

v_circle ptsin (4)=0 ptsin (A)=0
Ellipse 11 2 0 0 0 5-

ptsin (0)=centre x coordinate
ptsin (2)=centre y coordinate
ptsin (4)=radius x axis

Area attributes

vjzllipse ptsin (6)=radius y axis
Elliptic 11 2 0 2 0 6- Line attributes
arc ptsin (0)=centre x coor intin (0)==start angle-i 0 to

=end angle J 3600ptsin (2)=centre y coor intin (2)=
ptsin (4)=radius x axis

vjzllarc ptsin (6)=radius y axis

4.11



The Concise Atari ST Reference Guide

GDP's cont.

Pointpair Integers Device
Function Op in out in out GDP name

$0 $2 $4 $6 $8 $A $C
Comments

GDP 11 n
(General format)

- X

Elliptic pie 11 2 0 2
v_ellpie Parameters as

0 7

per elliptic arc above
Area attributes

Rounded 11 2 0 0 0 8 - Line attributes
rectangle ptsin (0)=corner x coordinate

ptsin (2)=corner y coordinate
ptsin (4)=diagonally opposite x coordinate

vjrbox ptsin (6)=diagonally opposite y coordinate

Filled

rounded

rectangle
vjfbox

11

Justified 11
graphics
text

vJustified

0 0 0 Area attributes

Parameters as per rounded rectangle

"i" ' 0 2+n~0" 10 - Text attributes
intin (0)=interword spaceflag "| zero to
intin (2)=intercharacter space flagj keep as is
intin (4)=first character "i Null terminated
intin (4+n)=last characterj string
ptsin (0)= x alignment
ptsin (2)= y alignment
ptsin (4)= string length
ptsin (6)= zero

Intin uses least significant byte of word for character

900

Notation used for
angular specification

1800

270CF

4.12



GEM VDI

Attribute functions

The attribute functions determine the output style of all the graphic
primitives; that is colour, line style, character size etc.

Function Op
$0

Pointpair
in out

$2 $4

Integers
in out

$6 $8

Device

GDP name

$A $C
Comments

Set
writing
mode

vswr mode

Seta
colour

vs color

32 0 0 11*

intin(0)=1,replace
=2,transparent (mask l's)
=3,XOR
=4,reverse transparent (mask 0's)

Out of range uses
replace mode
Modes 2,3 and 4
based on line or
fill pattern mask

14 0 0 4 0 - Redefine a colour.
v_opnvwk (intout $1A)gives # colours No action if lookup
intin (0)=colour index In mono table is not available
intin (2)=red \ Colour any colour or 'out of range'
intin (4)=green I intensity is set to Thenumberof colours
intin (6)=blue / 0 to 1000 white is device dependent.

Set 15 0 0 1 1*
polyline v_opnvwk (intout $C) gives # linetypes
line type intin (0)=line style

l=solid 2=longdash 3=dot 4=dash-dot
vsljype 5=dash 6=dash-dot-dot 7=user defined.

Most devices support
at least six line styles

Set user
defined

polyline
vsljudsty

113 0 0 1 0
Sets linetype #7

intin (0)=line pattern (16bits)

User defined pattern
for line,
MSB is first pixel.

Set

polyline
width

vsl width

16 1 1 0 0

ptsin (0)=line width
ptsin (2)=zero

On error width is set
to the nearest below

ptsout(0)=width Use odd numbers
ptsout(2)=zero >= three.

Set polylinel7
colour

vsl color

0 0 11*

intin (0)=colour index

Set

polyline
end style
vsl ends

108 0 0 2 0

intin (0)=start intin (2)=end

* denotes intoutQ is actual value of intin() used.

Set colour for polyline
operations

0=square (default)
l=arrow

2=rounded

4.13



The Concise Atari ST Reference Guide

Attribute functions cont.

Function Op
$0

Pointpair
in out

$2 $4

Integers
in out

$6 $8

Device

GDP name
$A $C

Comments

0 0 1Set 18

polymarker
type

vsmjype

intin (0)=marker type
l=dot 2=plus
4=square 5=cross

Set 19 1
polymarker
height ptsin (0)=zero
vsmjieight ptsin (2)=y-axis height

Set poly- 20 0
marker colour
vsmjzolor intin (0)=colour index

1

0

0 0

1"

Set 12 1 2 0 0
character height ptsin (0)=zero pfsout(O):

ptsin (2)=height ptsout(2>
ptsout(4)

vstjieight ptsout(6)

Set 107 0 2 1 1*

character cell intin (0)=cellht ptsout(O):
height in point size ptsout(2):

(1 point= 172 inch) ptsout(4>
vstjpoint ptsout(6)

All devices support
at least six markers
Defaults on error

^asterisk to asterisk.
=diamond

Height set is nearest
below on error.

ptsout(0)=x-axis width
ptsout(2)=y-axis height

Set colour for

polymarker
operations.

Size of character

character width
^character height
=cell width

=cell height All i/p's in raster units

V character

.. ""STze'of cell
^character width
character height
=cell width
=cell height Ptsout in raster units

V cell

13 0 0 1 1*

v_opnvwk (intout $48)gives capability
intin (0)=angle requested

Set char

baseline

vector

vst rotation

Angular range
0 to 3600

Not supported by
all devices.

Set text

face

vstjont

21

Set graph 22
text colour

vst color

0 0 11*

intin (0)=face selection

0 0

intin (0)=text colour index

* denotes intoutO is actual value of intinO used.

4.14

Face 1 is built-in
(System face)

Set colour for
next text,

default 1



GEM VDI

Attribute functions cont.

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

Set text
special
effect
vst_effects

106 0 0 1 r Default to standard
text

intin (0):bits 0 to 5 set effects Effect 'on' if bit = 1
Thick, light, skew, underline, outline, shadow respectively

Set 39 0 0 2 2*
graphic text intin (0)=0,left 1,centre 2,right
position intin (2)=3,4,0,1,2,5 respectively
vst_alignment bottom, descent, base, half, ascent, top

Set fill 23 0 0 1 1*
interior style intin (0)=0 to 4 respectively
vsfjnterior Hollow, solid,pattern, hatch, user-defined

Set fill 24 0 0 1 1*
style intin (0)=0 solid colour
index 2,1 to 24 patterns
vsfjstyle 3,1 to 12 hatch

\

Seepg 4.26

Set fill 25
colour index
vsfjcolor

Set fill 104
peri visible
vsf_perimeter

Set user 112 6
-defined
fill pattern
vsfjudpat

0 0 11*

intin (0)=colour index

0 0 11*

intin (0)=0_invisible, <>0_visible

0 16*n 0

intin (0-15)=lst plane
intin (16-31)=2nd plane etc.

900

Left/right/centre
justify. Vertical position
defaults to base (zero)
Seepg 4.26

Set future polygon
fill style

Set pattern or hatch
type. No effect if
interior hollow, solid
or user defined.

Set future polygon
fill colour

Set on/off
fill outline

Pattern 16 words/plane
Bit 15 of word_l upper
left bit, Bit 0 last_word
lower right bit

Notation used for 1800_
angular specification

270(7
♦0

* denotes intoutQ is actual value of intin() used.

4.15



The Concise Atari ST Reference Guide

Raster operations
Raster operations are the manipuation of rectangular blocks of bits in

memory or pixels on screen, the area is defined in memory form definition blocks
(MFDB) that consists of:

$00
$04
$06
$08
$0A
$0C
$0E

Memory pointer
Width in pixels
Height in pixels
Word width
Format flag
Memory planes
Reserved

32-bit address of pixel 0,0
Raster area dimensions

Pixel width/word size
1=standard, 0=device specific
#planes in raster area
3 reserved words

The raster planes word-bit-pixel relationship follows the format shown in the
TOS overview 2.13, the top left hand corner pixel address being 0,0
Colour index table

Pixel Index Colour Pixel Index Colour

0000 0 white 1000 9 grey
0001 2 red 1001 10 light red
0010

0011

3

6

green
yellow
blue

1010

1011

11

14

tight green
light yellow
light blue0100 4 1100 12

0101

0110

0111

7

5

8

magenta
cyan
low white

1101

1110

1111

15

13

1

light magenta
light cyan
black

Raster operations perform logical translations of the source to the destination
over the original destination pixel area. The required logic operation is passed as
an argument in intin(O) as follows:

Mode Function Mode Function

0 D'=0 (all white) 8 D'=NOT [S OR D]
1 D'=S AND D 9 D'=NOT [S XOR D]
2 D'=S AND [NOT D] 10 D'=D INVERT

3 D'=S 11 D'=NOT D
4 D'=[NOT S] AND D 12 D'=S OR [NOT D]
5 D'=D 13 D'=[NOT S] OR D
6 D'=S XOR D 14 D'=NOT [S AND D]
7 D'=S OR D 15 D'=l (all black)

S=Source Mode 3=replace
D=Destination Mode 4=erase

D'=Destination pixel final state Mode 6=XOR

4.16



Raster operations

Function Op
$0

Pointpair
in out

$2 $4

Integers
in out

$6 $8

Device

GDP name

$A $C

Copy 109 4 0 1 0
raster ptsin ()=a,b,c,d,e,f,g,h order
opaque intin (0)=logic operation

cntrl $E=Address.L of source MFDB

cntrl $12=Address.L of destination MFDB
vrojzpyfm

Copy
raster

transparent

vrt

Transform

form

121 4 0 3 0

ptsin ()=a,b,c,d,e,f,g,h order
intin (0)=write mode
intin (2)=colour for l's
intin (4)=colour for 0's

cntrl $E=Address.L of source MFDB
cntrl $12=Address.L of destination MFDB
write_mode a replace

b transparent (mask l's)
c XOR mode

cpyfm d reverse transparent (mask 0's) e,f

110 0 0 0 0

V
a,b-

r
e,f'

r
a,b-

r

vrjrnfm

cntrl $E=Address.L of source MFDB
cntrl $12=Address.L of destination MFDB

The destination block must be verified

GEM VDI

Comments

Copy rectangular
block from source to
destination.
If source <> dest
then source size used

—c,d
Source

•g,h
Destination

Copy mono block
from source to
destination

If source <> dest

then source size used
—c,d

Source

-g,h
Destination

Toggle raster area
from standard to
device-specific form.

Get

pixel
105 1 0 0 I - Return pixel value

and colour index

ptsin (0)=x coordinate intout(0)=pixel value (0 or 1)
v_get_pixel ptsin (2)=y coordinate intout(2)=colour index

Background colouris accessible on only somedevices.

4.17



The Concise Atari ST Reference Guide

Input functions

There are two types of input function generally provided by GEM:

'Request and wait' for reply
and 'Request and sample' current status.

Pointpair Integers Device
Function Jp in out in out GDP name Comments

W $2 $4 $6 $8 $A $C

Set 111 0 0 37 0 Redefine cursor pattern
mouse mtin (0)=x coordinate Bit 15 of word 1 upper
form ntin (2)=y coordinate left bit of pattern.

ntin (4)=1, reserved
ntin (6)=mask colour
ntin (8)=data colour (usually 1)
ntin ($A-$28)=16 word mask bits pixel. Data under mask is

vscjorm ntin ($2A-$48)=16 word data bits saved.

Exchange 118 0 0 0 1 Goto user-written
timer interr upt cntrl $E=Address.L of new routine interrupt routine
vector re•turn cntrl $12=Address.L of old routine on timer tick.

vexjimv intout(0)=milliseconds per tick Disable interrupts

Show 122 0 0 10 Show cursor if
cursor intin (0)=0, show cursor 'show'='hide' or

<> 0, show if # of intin(0)=zero
v_show_c show calls = # hide calls

Hide cursor 123 0 0 0 0 Hide cursor (default)
v_hide_c Operates as per 'show cursor'

Sample 124 0 10 1 Return button state
mouse ptsout(0)=x coor \ cursor 0==none l=left key
button state ptsout(2)=y coor / 2-bright key 3=both keys
vqjnouse intout(0)=return button state

Exchange 125 0 0 0 0 Go to routine on

button cntrl $E=Address.L user routine button state change
change retu rn cntrl $12=Address.L old routine Uses DO.W for button

vector keys as above.
vex_butv (Save and restore registers) Disable interrupts

4.18



Function Op
$0

Input functions cont.

Pointpair Integers
in ' out in out
$2 $4 $6 $8

Device

GDP name

$A $C

Exchange 126 0 0 0 0
mouse cntrl $E=Addr.L user routine
movement return $12=Addr.L old routine
vector x an y coords maybechanged
vexjnotv after being stored in hardware register

Exchange 127 0 0 0 0
cursor cntrl $E=Addr.L user routine
change return $12=Addr.L old routine
vector routine can be used to draw
vexjzurv specialcursor.

Sample 128
keyboard
state

information
vq_key_s

0 0 0

intout(O), bit
1

0, right shift
1, left shift
2, Control
3, Alternate

GEM VDI

Comments

Goto routine on
mouse movement.

Uses DO.W &D1.W

to store x & y.
Disable interrupts

Goto routine on

cursor state change
Uses DO.W &D1.W

to store x & y.
Disable interrupts

Return current state

of Keyboard shift-alt
- control keys.
Zero bit key up
One bit key down.

Functions callinguser written code should not enable interrupts
Registers may need to be restored.

4.19



The Concise Atari ST Reference Guide

Thefollowing GEM VDI functions are not implemented in the AtariST ROM,
but are included for completeness:

Input functions (Not implemented)

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

Set 33 0 0 2 1 Set i/p mode for device
input intin (0)=Logical input device to request or sample.
mode l=locator, 2=valuator (locator is mouse or

3=choice, 4=string cursor keys) Intout
vsinjnode intin (2)=input mode (l=req, 2=sample) shows mode selected.
Input 28 110 1 Return position of
locator, ptsin (0)=initial x coor intout(0)= locator device.
request ptsin (2)=initial y coor terminate Screen tracks cursor
mode ptsout(0)=final x coor character till terminated by
vrqjocator ptsout(2)=final y coor (LSByte) key/button press

Input 28 1 1/0 0 0/1 Return position (NDC)
locator, ptsin (0)=init x coor intout(0)= of locator device
sample
mode

ptsin (2)=init y coor terminate
ptsout(0)=new x coor character

If set o/p's
new coor 1 0

(cursor ptsout(2)=new y coor (LSByte) key press
no i/p

0 1

change/ (A tablet or a mouse terminate 0 0

event) characters begin at 20H, 32dec) key press &
vsmjocator If 2 locators, either may input new coor 1 1

Input 29 0 0 12 Return value of

valuator, intin (0)=initial value valuator device.

request mode intout(0)=output value arrow keys, range
vrqjvaluator intout(2)=terminator 1 to 100.

Input
valuator,

29 0 0 10/2 Return value of
intin (0)=initial value valuator device.

sample
mode

intout(0)=new valuator value
intout(2)=keypress, if event

cntrl $8 event
0 nothing

occured 1 valchange
vsm_valuator 2 key press

4.20



GEM VDI

Input functions (Not implemented) cont.

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

Input 30 0 0 11 Return choice status

choice, intin (0)=lnitial choice number of device chosen.
request mode (range 1 to device - Atrari ST 10 - If invalid return

dependent maximum) choice number
vrq_choice intout(0)=terminator key (1-10) or ASCII code

Input 30 0 0 0 1 Return choice status
choice, intout(0)=0, choice number (1 to 10) of device chosen.
sample mode cntrl $8=0, nothing occured

=1, sampled o'k
intout(0)=0 if

vsmjkoice unsuccessful.

Input 31 1 0 2 L Return a string from
string, ptsin (0)=screen x coor L=array specified device.
request ptsin (2)=screen y coor length Terminate on CR
mode intin (0)=maximum string length or intout full. If

intin (2)=0, no echo intin(O) is negative
vrq_string 1, echo at ptsin pg D4 defines keyboard

Input 31 10 2 0/0 Return a string from
string ptsin (0)=screen x coordinate specified device.
sample
mode

ptsin (2)=screen y coordinate Terminate on CR,
intin (0)=max string length (absolute) intout full or
intin (2)=0, no echo no more data. If

1, echo at ptsin intin(O) is negative
vsm_string cntil(8)=0, no characters returned pg D.4 defines keyboard

4.21



The Concise Atari ST Reference Guide

Inquire functions

The inquire functions return the current attribute settings of a specific device.

Function Op
$0

Pointpair
in out

$2 $4

Integers
in out

$6 $8

Device

GDP name
$A $C

Comments

Extended

inquire
function

vqjzxtnd

4.22

102 0 6 1 45
intin (0) =0 open workstation values

=1 extended inquire
intout(O) =0 not screen

=1 separate screen \ Alpha &
=2 common screen / graphics
=3 separate image mem \Common alpha &
=4 common image mem /graphic controller
=# pallette background colours (may not be same
=Text effects supported (op 106) as $4E(78)
=Scaling 0=no 1= yes v_opnwk
=Number ofplanes
=Support looxup table 0=no l=yes

intout(2)
intout(4)
intout(6)
intout(8)
intout($A)
intout($C) =# 16x16 pixel raster operations/sec (Speedfactor)
intout($E) =Contour fill capability 0=nol=yes
intout($10) ^Character rotate 0=no, 1=90' steps only, 2=cont.
intout($12) =# writing modes available
intout($14) =Input mode 0=none, l=request, 2=sample
intout($16) =Text alignment 0=no, l=yes
intout($18) =Inking ability 0=no, l=yes (Plotter - colour pen)
intout($lA) =Rubberbanding 0=no, l=lines,

2=lines & rectangles (Printer - colour ribbon)
intout($lC)=Maximum ptsin -l=no max
intout($lE) =Maximum intin -l=no max
intout($20) =Number of keys on mouse
intout($22) =Styles for wide lines 0=no, l=yes
intout($24) =Writing modes for wide lines
intout($26-$58) reserved, contains zero words
ptsout(0-$16) reserved, contains zero words

Return extra device

information not in the
open workstation call or
return open workstation

values.



Function Op
$0

Inquire 26
colour
representation

vqjzolor

Inquire 35
current

polyline
attributes

vql_attributes

Inquire 36
current

polymarker
attributes

vqm_attributes

GEM VDI

Inquire function cont.

Pointpair
in out

$2 $4

Integers
in out

$6 $8

Device

GDP name

$A $C
Comments

0 0 2 4

intin (0)=request colour index
intin (2)=0_return colour value request

l_return colour values available
intout(0)=colour index
intout(2)=red intensity (0-1000)
intout(4)=green intensity (0-1000)
intout(6)=blue intensity (0-1000)

Return value of colour
index in RGB units

Intout(0)=-1 'out
of range'

0 1

ptsout(O):
ptsout(2)=
intout(0)=
intout(2)=
intout(4)=

0 5

dine width

=zero

line type
line colour
write mode

Return all attributes

that affect polylines

intout(6)=Start end style
intout(8)=Finish end style

0 10 3

ptsout(0)=width
ptsout(2)=height
intout(0)=marker type
intout(2)=marker colour
intout(4)=writing mode

Return all attributes
that affect polymarkers

Inquire 37 0 0 0 5
current intout(0)=interior style (Op #23)
fill area intout(2)=colour
attributes intout(4)=fill style (Op #24)

intout(6)=writing mode (Pg 4.13)
vqfjxttributes intout(8)=fill perimeter status

Return all attributes
that affect fill areas

4.23



The Concise Atari ST Reference Guide

Function Op
$0

Inquire function cont.

Pointpair
in out
$2 $4

Integers
in out

$6 $8

Device
GDP name

$A $C

Inquire 38 0 2 0 6
current ptsout(0)=character width
graphic ptsout(2)=character height
text ptsout(4)=cell width
attributes ptsout(6)=cell height

intout(0)=current graphic text face
intout(2)=current graphic text colour
intout(4)=baseline angular rotation (0-3600)
intout(6)=horizontal alignment
intout(8)=vertical alignment
intout($A)=writing mode (op #32 Pg 4.13)

Comments

Return all attributes
that affect
graphic text.

vqt_attributes

Inquire 116
text

extent

0 4

intinQ =
n 0

# words in text (low bytes)
ptsout(0)=x coordinate \ bottom
ptsout(2)=y coordinate / left
ptsout(4)=x coordinate \ bottom
ptsout(6)=y coordinate / right
ptsout(8)=x coordinate \ top
ptsout($A)=y coordinate / right
ptsout($C)=x coordinate \ top
ptsout($E)=y coordinate / left

Return a rectangle
that encloses the
specified string.
Yaxis

vqt_extent

Inquire 117 0 3 1 1
character intin (0)=character value in ADE form
cell ptsout(0)=cell width ptsout(2)=0
width ptsout(4)=left char delta ptsout(6)=0

ptsout(8)=right char delta ptsout($A)=0
vqtjvidth intout(0)=ADE of inquire value

-1 if invalid character

Inquire 130 6 6 1 33 Return 32 character face
face name intin (0)=elementnumber descriptor (text),
and index intout(0)=ID number First 16 characters face
vqtjxame intout(2-$40) 32 ADE code Second 16 style and weight

(lowbytes)

4.24

TEXT

Xaxis

Return the character cell
width for specified
character in current

text face.
Rotation and special
affects ignored/.



Function Op
$0

Inquire function cont.

Pointpair
in out

$2_ $4

Integers
in out

$6 $8

Device

GDP name

$A $C

Inquire 27 2 0 0 n
cell cntrl $E=row length \colour index
array cntrl $10=# rows /array

return cntrl $12=# elements/row \used in colour
return cntrl $14=# rows /index array
return cntrl $16=errors, 0=no errors, l=pixel colour indeterminate

ptsin (0)=x coor ptsin (2)=y coor (lower left)
ptsin (4)=x coor ptsin (6)=y coor (upper right)
intout colour index array (1 row at a time)

-1 indicates indeterminate pixel colourvqjzellarray

Inquire 115
input
mode

vqinjnode

0 0 11

intin (0)=logical device
l=locator 2=valuator 3=choice, 4=string
intout(0)=i/p mode l=request, 2=sample

GEM VDI

Comments

Return cell array
definition of pixels

Return current i/p
mode for device.

Inquire 131 0 5 0 2 - Return current face
current ptsout(0)=maximum normal cell width size information.
face ptsout(2)=baseline to bottom
information ptsout(4)=maximum extra skew width

ptsout(6)=baseline to descent line
ptsout(8)=left skew extra seepg 4.26
ptsout($A)=baseline to half distance
ptsout($C)=right skew extra
ptsout($E)=baseline to ascent ADE= ASCII
ptsout($10)=zero decimal
ptsout($12)=baseline to top distance equivalent
intout(0)=first character \ in face

vqtjontinfo intout(2)=last character / ADE

4.25



The Concise Atari ST Reference Guide

VDI Style Index patterns

0,n

VDI Text alignment

CHARACTER

WIDTH

TOP

ASCENT

HALF

BASE

DESCENT.

BOTTOM-

'•'•'•TTTT

Cr^C05±[
5SS

2.9
vyyyyv

:jr

•SKkkkKR
'!•;•:•:•"•:•'

2,16 2,24

igtonp^Bj
TOP

A3CENT

4.26

CELL

WIDTH

3,8

3J0

3,11

3,12

3,5

3,6

V////A
3,7

3,8

CHARACTER

POSITION

LEFT

OFFSEw, V / RIGHT
LEADING

OFFSET



GEM VDI

Escape functions

The escape functions allow the programmer to access special device
functions.

Pointpair Integers Device
Function Op in out in out GDP name

$0 $2 $4 $6 $8 $A $C

Escape 5
(General format)

id

Inquire 5
addressable
alpha
character cells
vq_chcells

0 0 0 2 1-

intout(0)=# rows
intout(2)=# columns

-1 no cursor addressing

Comments

Get number of vertical
rows and horizontal

columns for alpha
cursor.

Exit 5

alpha mode
v_exit_cur

0 0 0 0 2- Enter graphics mode
and exit alphanumeric
mode.

Enter 5

alpha mode
v_enter_cur

0 0 0 0 3-

cursor set to upper leftof character cell
Exit graphics mode
and enter

alphanumeric mode.

Alpha 5
cursor up
vjcurup

0 0 0 0 4-
Do nothing ifat top

Move alpha cursor
up one row.

Alpha 5
cursor down

vjzurdown

0 0 0 0 5-
Do nothing if at bottom

Move alpha cursor
down one row

Alpha 5
cursor right
v_curright

0 0 0 0 6-
Do nothing ifat right edge

Move alpha cursor
right one column.

Alpha 5
cursor left
v_curleft

0 0 0 0 7-

Do nothing ifat left edge
Move alpha cursor
left one column.

Home 5
alpha cursor
v_curhome

0 0 0 0 8
Homeusually top left

Move cursor to

home position.

4.27



The Concise Atari ST Reference Guide

Escape functions cont.

Pointpair Integers Device
Function Op in out in out GDP name

$0 $2 $4 $6 $8 $A $C
Comments

Erase from current
cursor position
to end of screen.

Erase to 5

end of

alpha screen
v eeos

Erase to 5
end of

alpha text line
v eeol

Direct 5

alpha cursor
address
vs curaddress

Output 5
cursor

addressable
alpha text
v curtext

0 0 0 0 9

No cursor position change

0 0 0 0 10

No cursor position change

0 0 2 0 11

intin (0)=row (1 to n)
intin (2)=column (1 to n)

0 0 n 0 12 -
n=number of characters in string

intin ()=text string in ADE

Erase from current
cursor position to
end of line.

Place cursor at the

specified row and
column.

Displaya string of
alpha text from
current cursor

position.

Reverse 5
video on

v_rvon

0 0 0 0 13 - Display following
text in reverse video.

Reverse 5

video off
vjrvoff

0 0 0 0 14 - Display following
text in normal video.

Inquire 5
current

alpha cursor
address
vq_curaddress

4.28

0 0 0 2 15 - Return current

intout(0)=row# (minimum one) alpha cursor
intout(2)=column# (minimum one) position.



GEM VDI

Escape functions cont

Function Op
$0

Pointpair Integers
in out in out GDP
$2 " $4 $6 $8 $A

Device

name

$c
Comments

Inquire 5
tablet
status

vq_tabstatus

0 0 0 1 16
intout(0)=0, not available

-1, available

Return availability
status of tablet,
mouse, joystick etc.

Hard 5

copy
vjiardcopy

0 0 0 0 17 Copy screen to
specific printer.

Place 5
graphic
cursor at

location
vjispcursor

2 0 0 0 18
ptsin (0)=x coordinate
ptsin (2)=y coordinate

The positioning function

Place crosshair
on screen.

is not accurate

Remove 5
last graphic
cursor

vjrmcursor

0 0 0 0 19

4.29



The Concise Atari ST Reference Guide

Escape functions (Not implemented)

The following Escape functions are available when loaded via the expanded
GDOS file, they are included for completeness; as is a discussion on VDI bit
image file format.

Pointpair Integers Device
Function Op in out in out GDP name Comments

$0 $2 $4 $6 $8 $A $C

Form 5 0 0 0 0 20 - Pages printer but
advance keeps screen display
vjormjidv

Output 5 2 0 0 0 21 - Copies specified
window ptsin (0)=x coordinate Window window to printer

ptsin (2)=y coordinate / corner Adjacent pictures
ptsin (4)=x coordinate \opposite may not join.

vjjutputjvindow ptsin (6)=y coordinate / corner

Clear 5 0 0 0 0 22 - Empty the VDI
display list
v_clear_disp_lis

printer buffer

Output 5 0-2 0 L+2 0 23 - Enables printer
bit cntrl (2) =0, get coordinates from file to process bit
image =1, upper left specified image file.
file =2, user specified coords Page placement

ptsin (0)=x upper left \ coordinates by specifying
ptsin (2)=y upper left 1if or by default
ptsin (4)=x lower right 1specified
ptsin (6)=y lower right /
intin (0)=Aspect ratio flag

Pixel ratio
provides for

0_ignore, l_pixel ratio, 2_
intin (2)=Scaling 0_uniform, l_x and
intin (4)=First character of file name

page ratio printing
y circles
(length L)

vjbitjmage intin (2n+2)=Last (nth) character file name

Select 5 0 0 1 1 60 - Allows IBM

palette intin (0)=0_use red, green, brown compatable
=1, use cyan, magenta, white palette

vsjpalette intout(0)=palette selected selection.

4.30



GEM VDI

Escape functions (Not implemented)

Function

Pointpair Integers Device
Op in • out in out GDP name Comments
$0 $2 $4 $6 $8 $A $C

Inquire
palette
film types
vqpjilms

5 0 0 0 125 91 - Return film driver

intout 5 sets of 25 ADE byte descriptor strings

Inquire
palette
driver
state

vqpjstate

Set

palette
driver

state

0 0 0 20 92 - Return film driver
intout(0)=port # 0=first comms port status block.
intout(2)=film number (0 to s)
intout(4)=lightness control(-3 +3) 1/3 f_stop steps
intout(6)=0_noninterlace, l_interlace
intout(8)=planes(l to 4) (ADE format)
intout($0A-$28)=colour codes for 16 colours.

0 0 0 20 93 - Set film driver
intout(0)=port # 0=first comms port status block.
intout(2)=film number (0 to 4)
intout(4)=lightness control(-3 +3) 1/3 f stop steps
intout(6)=0_noninterlace, l_interlace

vspjstate intc)Ut($ 3-$26)=color codes for 16 colon

Save 5
palette
driver state
vspjsave

0 0 0 0 94 - Save current

driver state to

disk

Supress 5
palette
messages
vspjnessage

0 0 0 0 95 - Supress user
prompts and error
messages

4.31



The Concise Atari ST Reference Guide

Function Op
$0

Palette

error

inquire

vqp_error

Update "jf"
metafile
extents

vjnetajzxtents

Write

metafile
item

v write meta

Change 5
GEM VDI
filename
vmjilename

Pointpair Integers
in out in out
$2 $4 $6 $8

Device
GDP name
$A $C

0 0 0 1 96 -
intout(O) =0, no error

=1, open dark slide for print film
=2, no port at specified location
=3, palette not found at port specified
=4, video cable disconnected
=5, OS does not allow memory allocation
=6, not enough memory for buffer
=7, memory not deallocated
=8, driver file not found
=9, driver file incorrect type
=10, prompt user to process print film

2 0 0 0
ptsin (0)=min x value
ptsin (2)=min y value
ptsin (4)=max x value
ptsin (6)=max y value

98 -
\

I bounding
I rectangle

n 0 1 0 99 -
ptsin user defined data
intin user defined data

intin(O)=sub-opcode
Sub opcodes 0 to 100 reserved

0 0 1 0 100 -

intin ()=path/filename
upto 74 characters

Notation used for
angular specification

1800
•4-

900

270CF

4.32

Comments

Return error code

Update file
header enabling
application to
get indication of
a minimum window.

Intin and ptsin
data written to
metafile with a

sub opcode >100
see pages 4.35 to 4.36

Rename metafile

from GEMFILE.GEM
to ,GEM



$00
$02
$04
$06
$08
$0A
$0C
$0E
$10
$12
to

$20

GEM VDI

Bit image file format

There are two parts to the bit image
Header file, a 16 word header, and a block of
raw pixel data codified raw data.

0
2
4
6
8
10
12
14
16
18
to

32

File header

upper left x
upper left y
lower right x
lower right y _
page width
page height
pixel width ~|
pixel height J
bits per pixel

Bit
image

in microns

Zero, reserved

Raw data formats

Source
device

The four methods of data coding may be mixed in any desired combination
within a file.

$00
$01

$00
$01
$02

<128bvtes
<256

-1

<128bvtes
<256

Run length encoding (default)

Run length
colour index data

Use a two byte subheader to define
the data, which must be less than 128.
The pixels may line wrap.

Extended run length encoding

Opcode ^° cater f°r pixel runs >127, the
extended run length extended run includes a count of 128
colour index data providing a range of 128 to 255 pixels.

The pixel line may wrap.

4.33



The Concise Atari ST Reference Guide

Raster encoding

$00 -2

$01
$02

1 2

Op code
# pixels in stream

packed colour indices

6

00 0I10 1I00Q1 01 1 001 OH 0
0 11 I

Use either:

Raster encoding
packs color indices into
bytes in the following
format:

Pixels

Bits
Bytes

1 (black and white)
3 (four colour)

or 4 (sixteen colour)

bits per pixels format (offset $10 in the header).

Raster run encoding

$00
$01
$02
$03

4.34

<256
Op code
repeat count
# pixels in stream

packed colour indices

Raster run encoding permits
the efficient coding of repeated
pixel patterns. It is in the same
form as raster encoding but
includes a repeat count in the
header.



GEM VDI

Metafile Sub opcodes

The Metafile functions are not implemented on the Atari ST,but are included
for completeness of the GEM operating environment. Installation of the file
Meta.sys will provide the functions, if you can get it?

Output page (Not implemented)

There are two reserved GEM output codes for configuring the output page:

Physical page size, which defines the output area and Coordinate window,
specifying the coordinate system used in the metafile.

Function Op
$0

Pointpair Integers
in out in out

$2 $4 $6 $8

Device

GDP name

$A $C

Physical 5 0 0 3 0 99 -
page intin (0)=sub opcode 0
size intin (2)=page width \ tenths of

intin (4)=page height / millimeters

Coordinates 6" 6 5 0 99 - Sub opcode T
window intin (0)=sub opcode 1

intin (2)=x coordinate \ lower left corner
intin (4)=y coordinate / of window
intin (6)=x coordinate \ upper right corner
intin (8)=y coordinate / of window

Comments

Sub opcode 0

4.35



The Concise Atari ST Reference Guide

Metafile sub opcodes (Not implemented) cont.
GEM Draw

There are a number ofreserved GEM output codes used byGEM draw:

Group:Start and end enclosea set of primitives.

Draw area type primitive: Start and end indicate that enclosed functions are
subject to the area type primitive block that follows the start function.

Attribute shadow: On and off indicate enclosedprimitives are ignored as they
are used to draw a drop shadowfor the firstprimitive following'off.

Set no line style: Subsequent area type primitives are not outlined.

Function Op
$0

Pointpair Integers Device
in out in out GDP name
$2 $4 $6 $8 $A $C

Comments

Start 5
group

0 0 1 0 99 -
intin (0)=sub opcode 10

Bracket a set of
primitives as a
group for a

End 5
group

0 0 1 0 99 -
intin (0)=subopcode 11

GEM DRAW
application

Start draw 5
area type
primitive

0 0 1 0 99 -
intin (0)=sub opcode 80

Use the vertices
of the first
primitive (except text)

End draw 5
area type
primitive

0 0 1 0 99 -
intin (0)=subopcode 81

to define a
GEM DRAW area
type primitive.

Set 5
attribute
shadow on

0 0 1 0 99 -
intin (0)=sub opcode 50

Only draw a drop
shadow on the first
primitive, ignore

Set 5
attribute
shadow off

0 0 1 0 99 -
intin (0)=sub opcode 51

remaining shadow
primitives until next
off sub-opcode.

Set no 5
line style

0 0 1 0 99 -
intin (0)=sub opcode 49

Subsequent area
type primitives
not to be outlined

4.36



GEM AES

Chapter 5

GEM AES

GEM AES function calls 5.2

General 5.2

AES parameter block 5.3

Control table 5.3

Global array 5.3

Typical AES application call 5.4

Handles and coordinates 5.4

AES parameter block sizes 5.5
GEM AES components 5.5

The GEM AES Libraries 5.6

Application library 5.6

Event library 5.8

Keystroke selection 5.11

Icon selection 5.11
Menu library 5.12

Menu bar control 5.13
Object library 5.14

Object tree 5.14

Object library tables 5.15

Font types 5.16

Colour fields 5.16

Form library 5.20
Edit keys 5.21

Alerts 5.22
Graphic library 5.24

Scrap library 5.27

File selector library 5.28

Window library 5.29
Window parts bit representation 5.30

Resource library 5.35

Data structure types 5.36
Shell library 5.37

5.1



The Concise Atari ST Reference Guide

GEM AES function calls

A set of application environment services (AES) function calls are available to
the programmer, they consist of routines that make extensive use of the VDI
function calls, and a dispatcher that provides a limited multitasking capability.
The GEM VDI calls generally manage graphic outputs to peripheral devices,
screen, printer etc. whereas GEM AES calls usually handle graphics input. The
calls are grouped into eleven libraries that provide a variety of facilities:

Application library: controls the access to the other AES libraries.
Event library: responds to user inputs from mouse, keyboard or elapsed time.
Menu library: text options.
Object library: data collections that describes a displayed object, eg a box, an
icon.

Form library: a means of obtaining information by the use of a list of questions.
Graphics library: a set of routines for manipulating the outline of a rectangular
box.

Scrap library: routines that allow the interchange of data between applications.
File selector library: user selection of a file from a displayed directory or a file
via a filename and path.
Window library: manages up toeight GEM AES windows.
Resource library: provides the interface between the application and its data and
files.
Shell library: enables an application to invoke another application and to keep
track of the calling command and tail.

Within GEM AES there is a limited multitasking environment created by the
dispatcher; a routine that activates processes sequentially simulating a
multitasking environment. The dispatcher maintains two process queues, the
'ready' for processing list and the 'not ready' list, where processes are typically
waiting for a user input, an input from another process or a specified time delay.
Each 'ready' process is allowed a predefined period of CPU time before being
returned to the end of the 'ready' queue, the environment is saved, the queues
updated and control passed to the next item in the 'ready' queue.

Access to the AES functions is through an extended BDOS call and the AES
parameter block (six longword pointers to the tables; cntrl, global array, input
and output attributes and input and output addresses). The AES parameter
block, control table and global array have the following formats:

5.2



AES parameter block

$00 Control

table pointer

$04 Global
array

$08 I/P attribute

table pointer

$0C O/P attribute

table pointer

$10 I/P addlress

table pointer

$14 O/P address

table pointer
$18

control

global

int in

int out

addr_in

addr_out$08

$0A

Control table

$00
$02

$04

$06

Op code
Length of i/p

coordinate table

Length of o/p
coordinate table

Length of i/p
address table

Length of o/p
address table

GEM AES

Table
length
in
words

Table
length
in
longwords

Global array
0 GEM AES version identification word
2 Max # concurrent applications supported
4 Unique application identifier
6 Longword user data as required

10 Pointer to resource load address tree, initially zero
14 Zero, address of memory allocations
18 Zero, memory length, screen colours
22 Zero
26 Zero
30

The minimum size of an input table is one word, which must contain zero if
no parameters are being passed.

$00 version
$02 count
$04 id
$06 private

$0A ptree
$0E reserved

$12 reserved

$16 reserved

$1A reserved

$1E

5.3



The Concise Atari ST Reference Guide

Typical AES application call

A typical sequence of calls for an application might be:

a) Initialize and free unused memory, set up GEM parameter blocks and
tables APPLJNIT [10] must be called first).

b) Open (virtual) workstation and get the screen resolution,.
c) Load a resource file, applicable to the current screen resolution and

number of colours available, into memory.
d) Gettheaddress ofspecific resource objects and storethem in memory.
e) Get the address of the resourcemenu bar and call 'display menu'.
f) Find the size and location of window WINDGET, identify window as a

desktop (handle=0), get the windows width/height (get_field=4) and draw icons.
g) Wait for a user action, a keystroke, mouse button click or movement, GEM

AES message or a specified time delay as either individual occurences or
combined events.

h) Select from the menu, normally by moving the mouse to the menu bar.
The message buffer is updated automatically and the process waiting for the
input is moved to the 'ready list' and progressed to the next stage.

i) Reserve and then box a space to hold the dialog which is tested for an exit.
On exit, any highlighting should be deselected.

j) Further user selections, could entail keyboard entries, icon selection etc.

...program...

One of the first operations of an application is to create an active window,
which may be sized, redrawn, updated and finally closed.

Handles and coordinates

Note that VDI calls use 'device' handles and AES 'window' handles - further

confusion may arise in the use of 'file' handles - they are all different, beware !!!!

The coordinate systems differ also !

x,y width x1,y1

height AES VDI

x2,y2

5.4



GEM AES

AES Parameter block sizes

The numbers of parameters required by the various functions are detailed in
the tabular format:

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

The table contains details of the parameter inputs and outputs; note that a
zero indicates a block filled with a zero.

GEM AES components

Library
Subroutines

Limited multitasking
kernal and dispatcher

Desk accessory
buffer

Menu alert
buffer

Monitor mouse

movement and

display error and
system messages.

Draw objects

Resident in

memory at

all times

Up to six
desk accessories
Desk accessories run in a

specially designed window
on top of the GEM desktop
or any other application

Dispatcher

PRIMARY •

APPLICATION

word processor

spreadsheet
database etc.

Contains the .ACC

files for the desk

accessories.

Up to 6, the files
remain in memory

until the user

exits from AES.

Screen manager

Monitor mouse action

when outside the

work area.

The screen manager

handles all events in the

border area of the top

window, the menu bar

and the drop down menus.

Update 'ready' and 'not-ready'
lists of the processes on each
AES call. Use EVNTTIME tc

ensure a sequencing if there

are no AES calls.

Drop down menus

and alert boxes always

appear on top of a
window, Icon or dialog.

AES redraws these

from this buffer when

the menu is erased.

Up to 1/4 screen

capability and faster
than an application

redraw.

Shell

Runs on top of the limited
multitasking kernal.

Handles the passing of control
from and to applications as
they are called and terminated
The shell also provides a
graphic or text window as
required by the application
through a VDI open

workstation call.

5.5



The Concise Atari ST Reference Guide

The GEM AES libraries

Application library

The application library functions initialize memory and data structures,
terminate processes, communicate with other processes and record/replay user
actions.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

APPLJNIT 10 0 1 0 0 Initializeapplication and
int_out(0)=application_ID generate data structures

-1 failure, >=0 o'k prior to other AES
placed in global array function calls.

MUST call before any other AES function call

APPL READ

APPL WRITE

APPL FIND

11 2 1 1 0 Read n bytes from message
int_in(0)=the'from'pipe ID pipe-
int_in(2)=number of bytes to read (n)
int_out(0)=0_error, >0_o'k
addr_in(0)=buffer address of the data to be read

12 2 1 1 0 Write n bytes to message
int_in(0)=the 'to' pipe ID pipe.
int_in(2)=number of bytes to write (n)
int_out(0)=0_error, >0_o'k
addr_in(0)=buffer address of the data to be written

13 0 1 1 0
int_out(0)=application ID

=-1, not found
addr_in(0)=address of a null

terminated filename

Find the ID of another
application in the system.

The filename must be 8
characters long, blank fill.

Handles SCRENMGR, CONTROL and EMULATOR may exist

5.6



GEM AES

Application library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8

APPL_TPLAY 14 2 1 1 0
* int_in(0)=number of actions

int_in(2)=speed(l-10000)
int_out(0)=one (always)
addr_in(0)=address of memory

holding recording

aFpL^rec6rdT5""i T I o
*

(6 byte record int_in(0)=number of actions
word-longword) int_out(0)=number recorded

addr_in(0)=address in memory
to store records

Comments

Replay a series of user
actions.

speed 50=half
100=full

200=twice

Record a series of actions
First word I low longword high
0=timer

l=button

2=mouse

3=keyboard

elapsed time ms
O=up,l=down/#clicks
x pixels / y pixels
char / keyboard_s ta tus

APPL EXIT 19

int

0

put(0)=
1 0

0_error
>0 o'k

0 Let application library
cleanup environmentwhen
the appliction has finshed
making calls

It is possible to terminate an application with an illegal call

* Note that functions APPL_TPLAY and APPL_TRECORD do not work on
early ST operating systems (pre 'NEW TOS')

5.7



The Concise Atari ST Reference Guide

Event library

The event library routines monitor multiple and individual user inputs
providing efficient polling of the clock, keyboard, mouse and message pipes.

Integers Addresses
Function (

*

Dp in out in out
£0 $2 $4 $6 $8

Comments

EVNT_KEY >0 0 1 0 0 Return standard keyboard
: nt_out(0)=keycode press code (Appendix D)

EVNT BUTTON 21 3 5 0 0 Return mouse status on
* int_in(0)=wait a #clicks button event

: nt_in(2)=buttmask
nt_in(4)=button state

Mask buttmask Keystate

bitO button left right_shift
nt_out(0)=number clicks >=1 bitl 2nd button left_shift
nt_out(2)=x coor \ on bit 2 3rd button Ctrl

mt_out(4)=y coor / event bit 3 up to 16 Alt

int_out(6)=button state Button state bits 0=up,l=down
mt_out(8)=keystate

EVNT_MOUSE 22 5 5 0 0 Return mouse status on
int_in(0)=return flag leaving specified area.
mt_in(2)=x coor \ area Return flag =1, on area exit
mt_in(4)=y coor 1position =0, on area entry
mt_in(6)=width 1pixel
mt_in(8)=height /coordinate

Mask Buttmask Keystate

bitO button left right_shift
mt_out(0)=Reserved (=1) bitl 2nd button left shift

mt_out(2)=x coor \ on bit 2 3rd button Ctrl

mt_out(4)=y coor / event bit 3 up to 16 Alt

mt_out(6)=button state Button state bits 0=up,l=down
nt_out(8)=keystate

5.8



GEM AES

Event library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

EVNT_MESAG 23 0 1 1
int_out(0)=Reserved (=

16 \ addr_in(0)=message type ID—•
byte I addr_in(2)=ID of sender
buffer/ addr_in(4)=0 or length of

message over 16 bytes
addr_in(6-14)=extra words

0 Rag message, up to eight
=1) words, in message pipe.

extra

words

Message
functionID

TTj GH Selected menu

20 ABCDE Redraw window

21 A Move work area to top
22 A Close window
23 A Toggle full size window
24 AF Scroll/page window
25 AJ Move window horizontally
26 AJ Move window vertically
27 ABCDE Re-size window
28 ABCDE Move window

29 A Set new top window
40 I Desk_accessory open mess
41 I Desk_accessory close mess
50 ct_update
51 ct_move
52 ctjnewtop

Addr_in() extra word entries
A=windw_

B=x coor
C=y coor
D=width

E=height
F=Page

Row

. Column

hand! u=UDject index title
\ H=Object index item
Iactive I=menu item ID
Iarea

/
0_up
4_left
2

6
_up
left

(op#35 call return)
J=top/left 0-1000
l_down \ Mouse
5_right Iarrow
3_down Iclick
7 right /message

Messages entered FIFO, where message
length >16 byte use APPL_READ.

Reading kills a message.

EVNT TIMER 24 2 1 0 0
int_in(0)=low \ longword
int_in(2)=high / time ms
int_out(0)=Reserved (=1)

Flag application that a
specified length of time
has past.

5.9



The Concise Atari ST Reference Guide

Event library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8

EVNTJvlULTI 25 16 7 1 0
* int_in(0)=Standard keycode

int_in(2)=number of clicks
int_in(4)=buttmask
int_in(6)=button state
int_in(8)=flags \Mouse
int_in($A)=x coor I 1
int_in($C)=y coor I area
int_in($E)=width I event
int_in($10)=height /
int_in($12)=flags \Mouse
int_in($14)=x coor I 2
int_in($16)=y coor I area
int_in($18)=width I event
int_in($lA)=height /
int_in($lC)=low \ longword
int_in($lE)=high/ timems
int_out(0)=flag
int_out(2)=x coordinate
int_out(4)=y coordinate
int_out(6)=button state
int_out(8)=keystate
int_out($A)=keycode press
int_out($C)=number clicks >=1
addr_in(0)=16 byte buffer (see

EVNT_DCLICK 26 2 1 0 0
int_in(0)=slow 0 to 4 fast
int_in(2)=0_get, l_set
int_out(0)=speed l_new 0_old

Comments

Application waiting on one or
more events.

Button state 0_up, l_down

Mask buttmask flags
bitO button left Keyboard
bitl 2nd button Button

bit 2 3rd button Mouse 1

bit 3 Mouse 2

bit 4 Message
bit 5 Time

Flags show the type of
event the application is
waiting for or occurred

Keystate
bit 0 right shift
bit 1 left shift
bit 2 Ctrl

bit 3 Alt
Retn standard keyboard code
# of button events/time

EVNT_MESAG op 23)

Get/set double click
speed

' The 'NEW TOS' processes requests for single clicks correctly

5.10



GEM AES

Event Library cont.

Most applications will wait for a combination of events using the
EVNT_MULTI call. When a required event occurs, the application will be moved
from the 'not ready' list to the 'ready' list by the dispatcher, respond to the event
and then return to the 'not ready' list to wait for the next event in the
EVNT_MULTI sequence.

Be careful in using the right hand Atari mouse button if writing portable
code, not all versions of GEM have two buttons.

Keystroke selection

Some menu items support keystoke selection through the EVNT_MULTIcall.
On receipt of the specified key selection, the application should call
MENUJTNORMAL to highlight the title to enable the user to see the selection
actually made; deselect highlighting when the application has finished with the
menu. The 16-bit keyboard event codes are given in Appendix D; use
GRAF_MKSTATE to decode Control, Alternate and left and right Shift keys.

Icon selection

The bits for the required icon selection sequence are set by the application in
the EVNT_MULTI call, button up or down state and a predefined number of
clicks within a given space of time. On the event taking place, a bit value for the
mouse and keyboard state is returned; the application needs to also call
GRAFJMKSTATE to obtain the mouse's x and y coordinates and then make an
OBJC_FIND call passing the x and y coordinates and the address of the window,
desktop or application object tree containing it's icons.

If OBJC_FIND reports the mouse covering an icon, its state should be
changed to selected.

If the mouse does not cover an icon, the application should assume the user
will select a group of icons by drawing an expanding rectangle around them. Call
GRAF_MKSTATE to ensure the button is still depressed and then call
GRAF_RUBBERBOX to provide the extent of the box when the button is released.
The application should look for icons within the rectangle and change each icon
from normal to selected via OBJC_CHANGE calls.

5.11



The Concise Atari ST Reference Guide

Menu library

The menu library routines provide the user with a textural menu choice from
within an application, placing the mouse cursor over an enabled item and
clicking the mouse button to make the selection.

Integers Addresses
Function Op in out in out Comments

$0 $2 $4 $6 $8

MENUJ3AR ""30 ~~i l" ~~1 0™ "Display/erasemenubar"'
int_in(0)=menu bar 0_erase, l_draw
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address that forms this menu

MENUJCHECK~~3T~T T 1 0 "b~G^y/exs^metxii^m
int_in(0)=menu item ID check mark.
int_in(2)=0_clear, ldisplay (check mark)
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address that forms this menu

MENUJENABLE 32 2 110 Disable/enable menu item
int_in(0)=menu item ID
int_in(2)=0_disabled, l_enabled (light/dark text)
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address that forms this menu

MENU"tNORMAL33 2" 1 1 0 Displaymeriu title in
int_in(0)=menu item ID reverse video.
int_in(2)=0_reverse, l_normal video
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address that forms this menu

MT3NU~TEXf "34 " 1 T~~ ~~2~ ~"o" "Change"text olmenu item."
int_in(0)=menu item ID reverse video.
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Address of new text string for this item
addr_in(4)=Object tree address that forms this menu

M^NtJMgIsTER 35~I T i 0 mce~desk^cces¥o^mem
int_in(0)=Desk accessory item string on desk menu

process ID and return ace's menu ID
int_out(0)=menu item ID (0-5)
addr_in(0)=address of desk accessory menu text string.

5.12



GEM AES

Menu library cont.

To display a menu bar, call the resource function RSRC_GADDR with the
menu bar's (object) details to obtain the long address of the object tree root, call
MENU_BAR with the address and set the routine to draw.

Menu bar control

The AES screen manager controls all user interaction with the menu bar in
the following manner:

The user touches an item in the menu bar using the mouse cursor

The screen manager receives a message that the cursor has entered the menu
bar and enters the 'ready list'. It determines which item in the title bar the cursor
touched, saves the screen under and displays the 'titles' menu; highlighting menu
items as the cursor passes over them.

The application is held in the 'not ready' list while the screen manager has
initiated open menus. When the user clicks the mouse on a menu item, the screen
manager sends details of the object tree of the menu selected to the primary
application's message buffer.

The dispatcher checks the 'not ready' list for the application process waiting
for the message and moves it to the 'ready' list.

The EVNT_MULTI call returns a flag of the events that occurred, which may
be read by the application and any action deemed appropriate by the application
taken.

When the action is complete, the menu title is de-highlighted by the
application making a MENU_TNORMALcall.

5.13



The Concise Atari ST Reference Guide

Object library

An object, described by a collection of data in a linked list (object tree), can be
created, deleted, edited, drawn on the screen, and the object's position on the
screen found, using the object library routines.

Object tree

An object comprises of a parent and perhaps a number of different levels of
children, who always reside within the parents display space. The tree is created
by making seperate calls to the OBJC_ADDroutine for each child or loaded from
disk using RSRC_LOAD.

. child

Each child points to a
brother in a chain, if it
has one? The last one
points back to its parent

Different objects may
be created by only
using parts of the tree.

. Child Level n+1

Text

L_ 1

5.14

Parent

Child d Boxtext type object

Child c2 Box type object

Child c3 Box type object
d

Parent

c2 c3



GEM AES

The object library uses a number of additional tables, as well as the parameter
block, control table and global arrays, to describe objects. The tables are accessed
via the resource library routines and are as follows:

Additional object library word tables
(bracketed items are longwords)

offset
Object Iconblk

Tedinfo Bitblk
Applblk

Parmblk

(0) Nextchild \Text \Mask \Image \Code \Tree

(2) Firstchild /string /string /pointer /pointer /pointer
(4) Lastchild \Template \Data W_<irray \Loparm Objindex
(6) Otype /string /string H_pixel /Hiparm Oldst

(8) Oflag Wchar \Text x_source - Newst
($A) OState /pointer /string y_source - x_coor

($C) \OSpec Font Icon_c fg colour - y_coor
($D) / Reserved x_cpos 0 - W_pixel
($10) x_coor Justify y_cpos - - H_pixel
($12) y coor Colour x_ipos - - x_cpos
($14) Width Reserved y_ipos - - y_cpos
($16) Height Borderthk i_wide - - W cpxl
($18) textlength i_height

tmplength x_tpos
H_cpxl

($1A) Prefixes Loparm
($1C) (x&y y_tpos 0=object Hiparm
($1E) relative to t_wide c=character 0
($20) parent t height i=icon -
($22) or screen) 0 t=text -

The tables, filled by the object library routines, are used in performing
various functions:

Object: Provides data that describes each object,its tree relationship to other
objects and its location relative to parent (screen if the root).The predefined
object values on next page.
Tedinfo> Allows object types Text (21), Boxtext (22), Ftext (29) and Fboxtext (30)
to be edited, using the object tablespec pointer to point to the Tedinfo table. The
'NEW TOS' allows the underscore to be used in the text string.
Iconblk: Is used to hold icon (31) data definitions. Object type Icon points here
with its spec pointer.
Bitblk: Object type Image (23) uses this to draw bit images like cursors and icons.
Applblk: Is usedto locate and call an application defined routine that draws and
or changes an object. The object type Progdef (24) spec pointer points here.
Parmblk: Storage of data used by the application defined routine above
(applblk) and pointed to by the code pointer.

5.15



The Concise Atari ST Reference Guide

Object libraries cont.

Routines which edit, create and draw data describing objects that appear on
the screen: boxes, characters, icons etc.

There are some predefined values for the table entries:

Graphic types
of objects
(Otype)

Ospec
points
to

Object flags
(Oflag)

Object colours
(color)

20=Box - Ox0000=none 0=white
21=Text Tedinfo 0x0001 =selectable l=black
22=Boxtext Tedinfo 0x0002=default 2=red
23=Image Bitblk 0x0004=exit 3=green
24=Progdef Applblk 0x0008=editable 4=blue
25=Invisbox 0x0010=rbutton 5=cyan
26=Button Nstrg 0x0020=lastobj 6=yellow
27=Boxchar 0x0040=touchexit 7=magenta
28=String Nstrg 0x0080=hidetree 8=white
29=Ftext Tedinfo 0x0100=indirect 9=black
30=Fboxtext Tedinfo 10=lred
31=Icon Iconblk ll=lgreen
32=Title Nstrg 12=lblue

13=lcyan
14=lyellow

Font types Colour fields 15=lmagenta

3=system font
5=small font

15 1211 8 4 3

border
colour

Object states
(Ostate)

0x0000=

0x0001=

0x0002=

0x0004=

0x0008=

0x0010=

0x0020=

5.16

normal

selected

crossed
checked

disabled

outlined

shadowed

text

colour
0_trans
1_replaos type colour

Ospec 32-bit word /byte values
Loword Highword

Lobyte hibyte

Box

Invisbox

Boxchar

colour

colour
colour

0

borderthk
0

0

0

character



GEM AES

Editable text

field definitions justification
0=edstart
l=edinit

2=edchar
3=edend

(Justfy)
0=left justified
l=right justified
2=centered

Borderthk

0

1 to 128

-1 to -127

9 only digits 0 to 9
A only uppercase A to Z and space
a upper and lowercase A to Z and space
N 0 to 9, uppercase A to Z and space
n 0 to 9, upper and lowercase and space
F all valid DOS filename characters, plus ? * :
P all valid DOS pathname characters, plus \ :
p all valid DOS pathname characters, plus \ :
X anything

none

inside

outside
(in pixels)

Allowable valid

characters
(Vchar pointer)

5.17



The Concise Atari ST Reference Guide

Object library cont.

Function
Integers Addresses

Op in out in out
$0 $2 $4 $6 $8

Comments

OBJC_ADD 40 2 1 1 0
int in(0)=Parent ID
int_in(2)=Child ID (item to add)

Add an object to an object
tree.

OBJC_DELETE 41 1 1 1 0 Delete an object from an
int_in(0)=Object to delete object tree.
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address with object in it

OBJC_DRAW

OBJC_FIND

42 6 1 1 0 Draw an object in an
int_in(0)=start object object tree.
int_in(2)=draw 0_object only, nth_level
int_in(4)=x coordinate \
int_in(6)=y coordinate I Clip
int_in(8)=width I rectangle
int_in($A)=height /
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address with object in it

43 4 1 1 0
int_in(0)=search start object
int_in(2)=levels of search
int_in(4)=x coordinate \ mouse
int_in(6)=y coordinate / location
int_out(0)=-l_no object, 0 to n # of object in tree
addr_in(0)=Object tree address of search start object

Find an object under the
mouse form.

OBJC_OFFSET 44 1 3 1 0
int_in(0)=object to locate
int_out(0)=error 0_yes, +ve_no
int_out(2)=x coordinate \ relative
int_out(4)=y coordinate / to screen
addr_in(0)=Object tree address with int_in(0) in it

Find objects screen relative
x and y coordinates

5.18



Object library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

GEM AES

OBJC_ORDER 45 2 1 1 0 Reorder an object within a list
int_in(0)=Object to be moved
int_in(2)=new position (0_bottom level, l_next etc. to -1 top)
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address with int_in(0) in it

6BJC"_~EDi¥ 46 4 2 1 0 ¥dit"objecTText7""
int_in(0)=text object to be edited
int_in(2)=user input character
int_in(4)=next character index in text string
int_in(6)=0_reserved

=l_format string using text and template strings
=2_validate against Tedinfo valid_char,

update and display.
=3_turn off text cursor

int_out(0)=error 0_yes, +ve_no
int_out(2)=next character index after operation
addr_in(0)=Object tree address of object with text in it

Changes an objects state
value.

OBJC_CHANGE 47 8 1 1 0
int_in(0)=object to be changed
int_in(2)=zero, reserved
int_in(4)=x coordinate \
int_in(6)=y coordinate I Clip
int_in(8)=width I rectangle
int_in($A)=height /
int_in($C)=object state new value
int_in($E)=redraw 0_no, l_yes
int_out(0)=error 0_yes, +ve_no
addr_in(0)=Object tree address

To display an icon, calculate the desktop windows work area using a
WIND_GET call and use OBJC_DRAW to draw the icon in the work area. The
icons position within the window is held by the 'Iconblk' structure.

5.19



The Concise Atari ST Reference Guide

Form library

A set of routines that enable the user to reply to a list of questions, either by
checking off boxes or entering text.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

FORM DO 50 1 1 1 0 Monitor users interaction
int_in(0)=object number with a form.
int_out(0)=object number that caused the exit
addr_in(0)=object tree address

FORM DIAL 51 9 1

int_in(0)=flag
int_in(2)=x coordinate \
int_in(4)=y coordinate I small
int_in(6)=width i box
int_in(8)=height /
int_in($A)=x coordinate \
int_in($C)=y coordinate I large
int_in($E)=width I box
int_in($10)=height /
int_out(0)=error 0_yes, l_no

0 0 Reserve or free dialog box
screen area.

Hag:
0=reserve screen space

for dialog box
l=draw expanding box
2=draw shrinking box
3=free screen space

FORM_ALERT 52 1 1 1 0 Display an alert.
int_in(0)=exit button 0=no default exit
int_out(0)=chosen exit l=first exit button
addr_in(0)=address of alert string 2=2nd exit button etc.

FOmlE"RROR""53 1 r~~0" 0 Dispia^anCTror box
int_in(0)=DOS error code
int_out(0)=exit button code (as above)

FORM_CENTER 54 0 5 1 0
int_out(0)=one, reserved
int_out(2)=x coordinate
int_out(4)=y coordinate
int_out(6)=width
int_out(8)=height

Centre a dialog box on the
screen

\Of
I centered
I object
/ tree

addr_in(0)=dialog object tree address

5.20



GEM AES

The forms library routines enable the user to respond to a typical printed
style of form on the screen in a question and answer mode without tying up the
applications resources. The forms library also provides a consistent
application/user response format. The forms have three optional types of user
response, they are:

Check a single box,
Check a combination of boxes,
Provide a typed response;

These may be used any number of times in any combination. Finally the user
exits typically via an "o'k" or "cancel"button.

Taking a dialog as an example:

To display a dialog, which will appear in the centre of the screen, call
resource function RSRC_GADDR to get the address of the dialogs object tree. Call
FORM_DIAL to reserve screen space and then call OBJC_DRAW to draw the
dialog.

The application should call FORM_DO to monitor user interaction with the
dialog box. Where user changes have been made, the application may use
OBJC_CHANGE to reset initial values, in particular dehighlight selected buttons.
It may also be necessary to save some changes made to dialogs.

To exit from the dialog, call FORM_DIAL to release the screen space, the
application which should be in an EVNT_MULTI wait state can redraw the
screen using an OBJC_DRAW call.

A nicer display may be achieved if FORMDIAL is used to draw expanding
and shrinking boxes on start up and finish of the dialog sequence.

Edit keys

Keys have certain specified meanings for editting the text fields of forms and
dialog boxes:

Left and right arrow: Move left or right within the field.
Down arrow and tab: Move to first free space of the next field.
Up arrow: Move to first free space of previous field.
Delete: Delete character following cursor without moving cursor.
Backspace: Delete character to the left of the cursor, move cursor and

following text one space left.
Return: End edit and terminate if either "o'k" or "cancel" type buttons are

default objects, otherwise ignore.
Escape: Clear all characters from the field.

5.21



The Concise Atari ST Reference Guide

Form library cont.

Alerts

Alerts, which are used by GEM AES to handle error conditions, contain one
of three pictorial designs; note icon, wait icon and the stop icon, and up to a
maximum of 5 lines of 30 character width text (each line being seperated by the
" I" bar symbol) and up to 3 exit buttons, each containing up to 20 characters of
text.

A special case alert is the error box which reports errors in TOS terminology
(appendix I).

A typical set of object structures for an alert box with some textural
information and "o'k" and "cancel" buttons might be:

More than 30 characters/line could crash early TOS systems. 'NEW TOS'
truncates the line and remains solid.

Object Comments
structure "help" "o'k" "cancel"
element Box Text Boxtext Boxtext Pntr to next obj.

0 nextchild -1 2 3 0 < - - -1 root

2 firstchild 1 -1 -1 -1 \ -1 lowest
4 lastchild 3 -1 -1 -1 / level

6 Otype
Oflag

20 21 22 22
8 0 0 5 27 Seepage 5.16

for details$A Ostate 0 0 0 0

$C Ospec 00020007L 0L 0L 0L

$10 x-coor 90 Relative 86 374 374

$12 y coor 150 to 16 18 50
$14 width 454.screen 272 64 54

$16 height 98 64 16 16

[ Relative to parent (Box)]

The o'k button takes Oflag attributes selectable and exit.
The cancel button takes Oflag attributes selectable, default, exit and lastobj.

5.22



GEM AES

Tedinfo "help" "o'k" "cancel"
Offset structure

element Box Text Boxtext Boxtext

0 Text string help o'k cancel
4 Tmplate string - 0 0 0
8 Vchar pointer 0 0 0

$C Font 3 3 3
$D Reserved 0 0 0
$10 Justify 0 left 2_center 2 center
$12 Colour 00020000L 00020000L 00020000L
$14 Reserved 0 0 0
$16 Borderthk 0 -2 -2
$18 textlength 0 0 0
$1A tmplength 0 0 0

Theform libraryfollows the tree from root to childrenin displaying the form
objects.

5.23



The Concise Atari ST Reference Guide

Graphics library

The graphics library routines enable the programmer to manipulate the
rectangular outline of a box.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

GRAF_RUBBERBOX 70 4
int_in(0)=
int_in(2)=
int_in(4)=
int in(6)=

3 0 0

x coordinate \ of
•y coordinate / box
minimum pixel width
minimum pixel height

Draw a box that expands
and contracts from a fixed
point as the mouse moves.

GRAF

int_out(0)=error 0_yes, +ve_no
int_out(2)=width \ when button
int_out(4)=height / last released

DRAGBOX 71 8 3 0 0

int_in(0)=width \ Of
int_in(2)=height I box
int_in(4)=x coordinate I being
int_in(6)=y coordinate / dragged
int_in(8)=x coordinate \

Move a box and keep the
mouse pointer at the same
position inside the box.

Height and width
in pixels

int_in($A)=y coordinate I
int_in($C)=width I
int_in($E)=height /
int_out(0)=error 0_yes, +ve_
int_out(2)=x coordinate
int_out(4)=y coordinate

Boundary
rectangle

no

\ When button

/ released

GRAF_MOVEBOX 72 6 1 0 0
int_in(0)=width
int_in(2)=height
int_in(4)=x coordinate \ Initial
int_in(6)=y coordinate / position
int_in(8)=x coordinate \ Final
int_in($A)=y coordinate / position
int_out(0)=error 0_yes, +ve_no

5.24

Draw a moving box

Height and width
in pixels



GEM AES

Graphics library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

GRAF_GROWBOX 73 8 1 0 0
int_in(0)=x coordinate \
int_in(2)=y coordinate I Initial
int_in(4)=width I position
int_in(6)=height /
int_in(8)=x coordinate \
int_in($A)=y coordinate I Final
int_in($C)=width I position
int_in($E)=height /
int_out(0)=error 0_yes, +ve_no

Draw an expanding box
outline

GRAF_SHRINKBOX 74 8 1 0 0
int_in(0)=x coordinate \
int_in(2)=y coordinate I
int_in(4)=width I
int_in(6)=height /
int_in(8)=x coordinate \
int_in($A)=y coordinate I
int_in($C)=width I
int_in($E)=height /
int_out(0)=error 0_yes, +ve_

Height and width
in pixels

Draw a shrinking box
outline

Final
position

Initial

position

no

Height and width
in pixels

GRAF_WATCHBOX 75 4 1 1 0
int_in(0) =reserved
int_in(2)=object tree index
int_in(4)=in the box \ object
int_in(6)=out of box / state
int_out(0)=0_outside, linside the box
addr_in(0)=address object tree containing box

Track the mouse pointer
and button inside and
outside the box.

GRAF_SLIDEBOX 76 3 1 1 0
int_in(0)=parent index
int_in(2)=object index (slider)
int_in(4)=motion 0_horizontal, l_vertical
int_out(0)=0_left/top to 1000_right/bottom
addr_in(0)=Address of object tree containing slider & parent

Keep sliding box inside
parent box.

5.25



The Concise Atari ST Reference Guide

Graphics library cont.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

GRAF_HANDLE 77 0 5 0 0 Return GEM VDI handle for
int_out(0)=VDI handle open screen workstation.
int_out(2)=width \ character cell
int_out(4)=height / system font
int_out(6)=width \ box for
int_out(8)=height / system font

GRAF MOUSE 78

int

1

.in(0)
110 Permit application to
=0_arrow change predefined mouse.
=l_text cursor (vertical bar)
=2_bee (hourglass-IBM GEM)
=3_hand with pointing finger
=4_flat hand, extended fingers
=5_thin cross hair
=6_thick cross hair
=7__outline cross hair
=255_mouse form stored in addr_in(0)
=256_hide mouse form
=257_show mouse form

int_out(0)=error 0_yes, +ve_no (VDI op 111)
addr_in(0)=35 word buffer for mouse form definition block

0 0GRAF MKSTATE 79 0
int_out(0)=l, reserved
int_out(2)=x coor \mouse
int_out(4)=y coor /location
int_out(6)=Butonstate \ 0_up
int_out(8)=keystate /l_down

Return current mouse location
button and keyboard state.
Mask Buttonstate keystate

bitl butt left right_shift
bit 2 2nd button left_shift

bit 3 3rd button Ctrl

bit 4 Alt

GEM AES provides the graphic routines to manipulate the rectangular
outline of a box which are based on GEM VDI routines. Graphics applications
should use GEM VDI directly for graphic output to avoid any loss in
performance through the AES overhead.

5.26



GEM AES

Scrap library

The scrap library consists of routines that manage the interchange of
information between applications. Data is either deleted or copied from the
source to the clipboard (disk file named scrap), which only holds one document;
and then pasted (copied) from the clipboard(disk) to the target application.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8

SCRP_READ 80 0 1 1 0
int_out(0)=error 0_yes

+ve_no

addr_in(0)=buffer address into which
scrap directory is copied.

SCRP_WRITE 81 0 1 1 0
int_out(0)=error 0_yes

+ve_no

addr_in(0)=buffer address from which
scrap directory is copied to clipboard.

Comments

Read the current scrap
directory on the clipboard

Writenew scrap directory
to clipboard. (Cut & Copy)

The scrap data is held on disk in a file named scrap, the extension identifies
the type of data:

.txt ASCII text string

.dif Spreadsheet data

.gem Metafile- GEM VDI type graphic images
img Bit image - GEM VDI standard form

Applications access the data via GEM BDOS file system calls to:
Search

Create a file

Open a file
Read a file

Write a file
Close a file

Delete a file and

Get file size.

5.27



The Concise Atari ST Reference Guide

File selector library

The file selector library routine enables the programmer to select file from a
displayed directory or to type in a filename and path.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8

FSELJNPUT 90 0 2 2 0
int_out(0)=error 0_yes

+ve_no

int_out(2)=exit button 0_cancel
l_o'k

addr_in(0)=buffer address of initial directory specification
(If not updated holds last dir spec user selected)

addr_in(4)=buffer address of initial selection displayed
in file selector dialog box.

(If not updated holds last selection)

Comments

Display file selector
box and monitor user
interaction with it.

This routine displays a file directory dialog box, the user either selects a
filename directly from the directory list using a mouse or types in a filename to
create a new file.

The file directory dialog box displays the name of the current directory path,
a selection field, a scrollable directory listing and two buttons to terminate the
routine. The user interacts with the dialog box in the standard manner, changing
the directory being displayed, selecting an item from the directory list or typing
in a user selection and then exiting via the "o'k" or "cancel" button.

The file selector library returns the filename selected or entered, in the buffer
at addr_in(4), the directory path of the file in the buffer at addr_in(0) and whether
the selection is o'k or to be cancelled. The application acts upon the information
as required.

Entering the underscore into the directory string may cause older versions of
the TOS to crash the ST.

5.28



GEM AES

Window Library

The window library routines permit the creation, opening, closing and
deletion of windows to a maximum of eight active windows. The window
parameters can be recovered or set, the window under the mouse cursor found, a
flag set to indicate that a window is being updated and the size of a window
determined.

Function
Integers Addresses

Op in out in out
$0 $2 $4 $6 $8

WIND_CREATE 100 5 10 0
int_in(0)=window parts
int_in(2)=x coordinate \ Of
int_in(4)=y coordinate I full
int_in(6)=width sizeallocated.
int_in(8)=height/window
int_out(0)=window handle (-ve, no windows available)

Comments

Allocate window size
including border & return
window handle. Window open
must set size < = to that

WIND_OPEN 101 5 1 0 0 Open a window at it's
int_in(0)=window handle initial size and location,
int_in(2)=x coor \ - not necessarily it's
int in(4)=ycoor 1Window full size.
int in(6)=width 1 initial
int_in(8)=height / size
int_out(0)=error 0_yes,+ve_no

WIND_CLOSE 102 1 1 0 0 Close window, does not
int_in(0)=window handle deallocate the window or
int_out(0)=error 0_yes, +ve_no handle.

WIND_DELETE 103 1 1 0 0 Free space occupied by
int in(0)=window handle window and handle.
int_out(0)=error 0_yes, +ve_no

5.29



The Concise Atari ST Reference Guide

Window parts (bit representation)

bit 0 Name (name and title bar)
bit 1 Close (close box)
bit 2 Full (full box)
bit 3 Move (move box)
bit 4 Info (information line)
bit 5 Size (size box)
bit 6 Uparrow (up arrow)
bit 7 Dnarrow (down arrow)
bit 8 Vslide (vertical slider)
bit 9 Lfarrow (left arrow)
bit 10 Rtarrow (right arrow)
bit 11 Hslide (horizontal slider)

Window library cont.

Function

wTnd"get~"

Integers Addresses
Op in out in out
$0 $2 $4 $6 $8

104 2 5 0 0
int_in(0)=window handle
int_in(2)=getjield
int_out(0)=error 0_yes, +ve_no
int_out(2)= \ Data
int_out(4)= I specified
int_out(6)= I by Get
int_out(8)= / field

WIND_SET 105 6 1 0 0
int_in(0)=window handle
int_in(2)=set_field
int_in(4)= \ Data
int_in(6)= I specified
int_in(8)= I by Set
int_in($A)= / field
int_out(0)=error 0_yes, +ve_no

5.30

Comments

Get window data specified
field

Set displayed window
parameters



Get
field (2)

4

5
6

7

8

9

10

11

12

13
15

16

17

xcoor

xcoor

x coor

xcoor

1-1000

1-1000

handle
xcoor

xcoor

reserved
1-1000

1-1000

Set
field (4)

int_out()
(4) (6) (8)

GEM AES

Associated function

ycoor width height Window work area
y coor width height current \ size including
y coor width height previous / border title
y coor _ width height maximum poss window size

relative horiz slider position
relative vertical slider position
top window handle

ycoor width height first rectangle in window list
ycoor width height next rectangle in window list

relative horizontal slider size
relative vertical slider size
screen

Heft, 1000 right
1 top, 1000 bottom

(-1 default minimum sq box)
(-1 default minimum sq box)

(6)
int_in()

(8) ($A)
Associated function

1

2

3

5

8

9

10

14

15

16

17

Parts

Name pointer
Info pointer

see pg 5.30

y coor width
1 left, 1000 right
1 top, 1000 bottom

height

window components
address of name strng
address info line string
current window size
relative horiz slider position
relative vertical slider pos
top window handle
GEM desktop to draw
relative horiz slider size

relative vert slider size
screen

xcoor

1-1000

1-1000

handle
lo-word
1-1000

1-1000

hi-word strtobj
(-1 default minimum sq box)
(-1 default minimum sq box)

5.31



The Concise Atari ST Reference Guide

Window library cont.

Function
Integers Addresses

Op in out in out
$0 $2 $4 $6 $8

Comments

WIND_FIND 106 2 1 0 0

int_in(0)=x coordinate \ mouse
int_in(2)=y coordinate / position
int_out(0)=window handle

Find window under mouse

WINDJJPDATE 107 110 0 Flag about to update window
int_in(0)=update 0_end, l_begin (window locking)

2_end, 3_begin (usual mouse control)
int_out(0)=error 0_yes, +ve_no

Do notalter size while update proceeding

WIND"CALC " 108~~6 5~~ ~0~ "o" " RTt"wriidow¥OTdr7work area
int_in(0)=area 0_work->-border, l_border->-work
int_in(2)=parts (see pg 5.30 -same aswindow create)
int_in(4)=x coordinate \
int_in(6)=y coordinate Iborder/work
int_in(8)=width Iarea values
int_in($A)=height /
int_out(0)=error 0_yes, +ve_no
int_out(2)=x coor \
int_out(4)=y coor Iwork/border
int_out(6)=width I area values
int_out(8)=height /

To calculate work

area,input border
area values.

To calculate border
area input work
area values.

Note that AES windows do not use the same coordinates as VDI

AES x, y, width, height
VDI xl,yl,x2,y2

5.32



GEM AES

The desktop window is always present in the AES environment and supports
a maximum of eight windows at a time. The AES screen manager handles all the
user interaction outside the border area and the sizing, dragging and scrolling
actions requested from within the border. The contents of the border area
determine which of these functions are available.

Each user action sends a message through the message pipe to the
applications 'EVNT_MESAG' buffer where it is stacked on a first in-first out
basis. In order to perform the requested function, the message must first be read
and then the window management action may be either programmed to be
performed or ignored. The assembler GEM program (Appendix L) demonstrates
the effect of creating a window with the facilities, but not incorporating any code
to handle the screen managers requests. The example also shows the parts
handled by the screen manager, moving sliders, rubber boxing windows etc.

The application handles all activities within the window work area.

To create a window, the application calls WIND_CREATE defining the type
(only those facilities that the application supports) and position of the window
required, returning the window handle to be used in all subsequent actions on
the window. An application call to WIND_CALC may be used to return the size
of the window work area. A call to WINDOPEN will get AES to draw the
window's border area on the screen and send a message to the application to
draw the windows work area.

WIND_SET calls are used to set the size and location of the vertical and
horizontal sliders. If the window is resized, the application must decide if the
preview rubber box size is valid. If not, the application may resize to the nearest
valid size or display a warning dialog message. If valid, the application must
issue a WIND_SET call to change the window size. A reduced window size does
not require the work area to be redrawn, but if larger, GEM AES will send a
message to the application to redraw the windows work area (EVNT_MESAG
ID=20).

The application is responsible for redrawing and updating the visible parts of
its windows, which it divides into the smallest number of non-overlapping
rectangles, found by a series of WIND_GET calls. Initially to the 'first' rectangle
in the window list and subsequently to the 'next' rectangle until the returned
width and height are both zero. Note that if the window is not covered, say by
the control panel, that there will be only one rectangle.

5.33



The Concise Atari ST Reference Guide

Before updating the window, the application makes a WINDJJPDATE call
to freeze all other rectangle lists and to prevent menus and alerts from being
displayed during the update. On completion of the update, another
WINDJJPDATE call permits further change to the display and rectangle lists.

To redraw the window work area, each rectangle in the rectangle list is
compared with the update rectangle in turn, and any common portionredrawn.

To make a window active, the application (which must include an
EVNTJMULTI call that includes a mouse button event) will receive a 'button
pressed' message from the screen manager - the event occurred outside the active
window and is therefore detected by the screen manager. The application calls
WIND_FIND using the mouse x and y coordinates to obtain the handle of the
window under the mouse. If it is the desktop, handle 0, a rubber box is drawn in
expectation of the user selecting desktop icons. If the handle is that of an inactive
window, the screen manager sends a message (EVNT_MESAG ID=29) to request
the window be brought to the top. The application calls WIND_SET to comply.

To close a window via the windows border or menu command, the screen
manager sends a message to the application which should make a WIND_CLOSE
call; a WIND_DELETE call will then free the handle.

5.34



GEM AES

Resource library

The resource library provides the interface between the application and its
file resources, trees, objects, icons and pictures etc. providing the means to port
an application to a different environment by simply changing the resource file
data.

Integers Addresses
Function Op in out in out

$0 $2 , $4 $6 $8
Comments

RSRC LOAD 110 0 1 1 0 Allocate memory and load a
resource file into memory.

int_out(0)=error 0_yes, +ve_no
addr_in(0)=ASCII filename string address

RSRC_FREE 111 0 1 0 0

int_out(0)=error 0_yes, +ve_no

RSRC_GADDR 112 2 1 0 1
int_in(0)=type
int_in(2)=structure index
int_out(0)=error 0_yes, +ve_no
addr_out(0)=address of specified structure

Onlyfunctions with object types R_TREE and R_FRSTR

Free the memory space
allocated by rsrc_load.

Get address of data

structure (object)
loaded in memory.

RSRC SADDR 113 2 1 1 0 Store the address of a
int_in(0)=type data structure in memory.
int_in(2)=structure location index
int_out(0)=error 0_yes, +ve_no
addr_in(0)=address of the data structure

RSRCJDBFIX 114 1 1 1 0
int_in(0)=object index
int_out(0)=l, reserved to pixels.
addr_in(0)=object tree address

Convert objects location
and size from character
coordinates

5.35



The Concise Atari ST Reference Guide

Type (of data structure)

0 tree 8 text string (tedinfo)
1 object 9 template string (tedinfo)
2 tedinfo 10 valid chars (tedinfo)
3 icon blk 11 mask string (iconblk)
4 bitblk 12 data string (iconblk)
5 string 13 text string (iconblk)
6 imagedata 14 image pointer (bitblk)
7 obspec 15 pointer address of free string

16 pointer address of free image

To isolate an application from device, user and country specific data and
provide program portability; GEM AES supports resource files that contain the
variable parts of the application code.

To use a resource file, the application makes a RSRC_LOAD call to find the
total file size in bytes, allocate the memory space for the resource file and update
the file for screen resolution. The pointers to the object and the tree structures are
also updated and the address of the tree array stored in the applications 'Global
array'.

Access to the object library table pointers may be through RSRC_GADDR
and RSRC_SADDR calls. The tree index may be accessed via FORM_DO and
MENU_BAR calls among others.

RSRC_FREE deallocates the resource file memory and zeroes the tree array
address in the Global array.

Resource files are generated using the Atari ST icon edit and resource utility
program.

5.36



GEM AES

Shell library
The shell library routines enable one application to call another and keep

track of command and command tails.

Integers Addresses
Function Op in out in out

$0 $2 $4 $6 $8
Comments

SHEL READ

SHEL WRITE

120 0 1 2 0 Let application identify
int_out(0)=error 0_yes, command that called it in

+ve_no format of GEM BDOS func 75
addr_in(0)=buffer address of command string
addr_in(4)=buffer address of command tail

"521™3 T" ~~2~ ~0"~ "inform GEM ~wfu~ch7~iFany~
int_in(0)=0_exit, ljrun application to run or exit
int_in(2)=graphic 0_no, l_yes GEM AES.
int_in(4)=GEM application 0_no, l_yes
int_out(0)=error 0_yes, +ve_no
addr_in(0)=new executable command file address
addr_in(4)=command tail address of next program

SHEL_GET 122 1 1 1 0
int_in(0)=length
int_out(0)=error code
addr_in(0)=buffer address

SHELJPUT 123 1 1 1 0
int_in(0)=length
int_out(0)=error code
addr_in(0)=buffer address

SHEL_FIND 124 0 1 1 0
int_out(0)=error 0_yes,

+ve_no

addr_in(0)=address 80 character buffer minimum
i/p search filename
o/p full DOS filename

Read data from the
GEMDOS environmental

string buffer

Write data to the
GEMDOS environmental
string buffer

Search for filename and
return full DOS specification

SHEL ENVRN 125 0 1 2 0

int_out(0)=l, reserved
Search for environment

parameter and store
address of following byte

addr_in(0)=pointer to byte storage address
addr_in(4)=search parameter string

5.37



The Concise Atari ST Reference Guide

The shell library routines use a single buffer containing the command and
command tail that invoked the current application. A typical sequence to call and
run another application might be:

Call SHEL_WRITE with a command, command tail and the home directory
addresses; also define graphic/character or GEM/Not GEM application. On
completion of the current application, the shell library will start the requested
application.

Exit from GEM AES by making a SHEL_WRITE call with the int_in(0)
parameter set to zero.

5.38



The IKBD commands

Chapter 6

Intelligent keyboard commands

General 6.2
Keycodes 6.2
Data packets 6.2
Commands 6.3

Reset 6.3
Set mouse button action 6.3
Set mouse relative position reporting 6.3
Set mouse absolute positioning 6.3
Set mouse keycode mode 6.3
Set mouse threshold 6.3
Set mouse scale 6.3
Interrogate mouse position 6.3
Load mouse position 6.4
Sey y base position 6.4
Set y base position at top 6.4
Resume 6.4
Disable mouse 6.4
Pauseoutput 6.4
Set joystick event reporting 6.4
Set joystick interrogation mode 6.4
Joystick interrogation 6.4
Set joystickmonitoring 6.4
Set fire button 6.4
Set joystick keycode mode 6.5
Disable joysticks 6.5
Set time of day clock 6.5
Interrogate time of day clock 6.5
Memory load 6.5
Memory read 6.6
Controller execute 6.6
Status inquiries 6.6

Data packet functions 6.7

6.1



The Concise Atari ST Reference Guide

Intelligent keyboard commands

General

The Atari ST keyboard unit contains a 1MHz HD 6301 8-bit microprocessor
with some on-board memory storage to maintain the time of day clock etc. The
keyboard and its peripheral items, joystick and mouse may be initialized,
monitored for position or status and the time of day clock read or set.

The intelligent keyboard (ikbd) communicates with the main processor over
a 7.8Kbit/s bidirectional serial link, sending individual keycodes or receiving
instructions and returning status codes in packets of data through a pair of
addresses, one for transmit and one for receive.

Characters can be read from the keyboard input queue in main system RAM,
it is filled by an interrupt routine that transfers data from the ikbd to memory
automatically. Characters are written to the keyboard by placing the character
code in the keyboard data register after bit 1 of the keyboard command/status
register is set.

Keycodes

The keyboard transmits make and break keycodes for each key press and
release. Appendix D provides the codes for the individual keys, bit 7 being set for
break and cleared for make.

Data packets

To differentiate the keyboard codes from the data packets transmitted to and
from the ikbd to the main processor; the codes #$F6 to #$FF precede status
information packets. The packets provide reports of mouse position and status,
time of day and joystick status. The packets may be stored and used later, with
the header byte removed, to restore the condition of the ikbd.

6.2



The IKBD commands

Ikbd commands

Input
op code
string

Output
databyte
string

Function

#$80
#$01

Reset. Return keyboard to power-up status without
affecting clock. A break 200ms also causes a reset

#$07 Set mouse button action.
OOOOOaaa default %00000000

bit 0 l_press \ Mouseposition report on
bit 1 l_release / (only relevant in absolute mode)
bit 2 0_button, l_key type operation.

#$08 Set mouse relative position reporting (default). Position
packet generated asynchronously
when threshold exceeded

#$09 Set mouse absolute positioning.
X msb \ X maximum Resets ikbd x and y coordinates.
X lsb / The x and y values in
Y msb \ Y maximum scaled mouse 'clicks' do
Y lsb / not wrap, ignore <0 & >max

#$0A Set mouse keycode mode. Return mouse motion in cursor
X step keycodes instead of relative or
Y step absolute motion records.

#$0B Set mouse threshold. Before move event is generated
X level Default value 1
Y level (Relative motion only)

#$0C Set mouse scale. Set X and Y scale factors for
X absolute mousepositioning -
Y 'clicks' per coordinate change.

#$0D #$F7 Interrogate mouse position
OOOOxxxx

bit 0 right button down since last interrogation
bit 1 right button up \
bit 2 left button down I since last
bit 3 left button up / report

X msb \ X coor
X lsb / Only valid in absolute
Y msb \ Y coor mode, regardless of mouse
Y lsb / button action setting.

6.3



The Concise Atari ST Reference Guide

Ikbd commands cont.

Input Output
op code databyte Function
string string

#$0E Load mouse position.
#$00 filler (null) Enables the user
Xmsb\ X coor \ in scaled to preset the
Xlsb / 1 coordinate internal absolute
Ymsb\ Y coor / system mouse position
Ylsb /

#$0F

#$10

#$iT
#$12"

#$13"

#$14

#$15'

#$16

#$17
rate OOOOOOab

aaaabbbb

Set Y = 0 at bottom

SetY =0attop'WefauTtf
Set for relative and

absolute mouse motions.
I

Resume sending data back.Resume.

Disable mouse. Stop mouse event reports. Resume
on any mouse mode command.

Pause output. Stop sending further reports,
queue them in a (short) buffer.

Set joystick event reporting (default)

Set joystick interrogation mode. Disable joystick event
reporting, use interrogate to
sense joystick state.

Joystick interrogation.

Set joystick monitoring.
[packets of two bytes]
bit 0 Joystick 1 \ Fire
bit 1 Joystick 0 / button

bits 0-3

bits 4-7

Return a record of current
joystick state.

(sample rate of .01s)

Set ikbd to monitor

serial command line
and joystick, update

Joystick 1 \ Position time of day clock
Joystick 0 / only

#$18 cccccccc Set fire button monitoring Set ikbd to monitor serial
packed8- command line and firebutton of
bits/byte joystick 1, update time of day clock.

6.4



The IKBD commands

Ikbd commands cont.

Input Output
op code databyte Function
string string

#$19 Set joystick keycode mode (Joystick 0)
Rx (provides a velocity autorepeat facility)
Ry initial rate final rate
Tx Tn Tn Tn Vn Vn If Rn zero
Ty I-— | | |-— | | |- onlyVn
Vx I < Rn > I times in .Is matters.
Vy length of time Directions x & y set individually.

#$1A Disable joysticks. Disable any joystick event generation.
Valid joystick commands resumes generation

#$1B Set time of day clock
YY year \ " (86,87,88 etc) Aninvalid
MM month I BCD digit
DD day I Data sent in packed does not
hh hour I BCD format. alter the
mm minute I existing
ss second / value.

#$1C #$FC Interrogate time of day clock
YY year \
MM month I
DD day I Data in returned in
hh hour I packed BCD format.
mm minute I

ss second /

#$20 Memory load
Addr msb \ ikbd controller address
Addr lsb / to be loaded.
Numb Number of data bytes (0-128)
(data)

6.5



The Concise Atari ST Reference Guide

Input
op code
string

Output
databyte
string

#$21 #$F6
Addr msb #$20
Addr lsb data

data
data

data
data

data

#$22
Addr msb

Addr lsb

OR80""
with the #$F6
set mode
command param 1

param 2
param 3
param 4
param 5
param 6

6.6

#$F6
mode

param 1
param 2
param 3
param 4
param 5
param 6

Not valid if in joystick or fire button monitoring mode.

Ikbd commands cont.

Function

Memory read
\ ikbd controller
/ address to be read. \

I 6 bytes of
I data starting
I at address
I (addr)
/

Status header

memory access

Controller execute
\ ikbd controller

/ subroutine address

Allows main system
to call an ikbd

subroutine.

Status inquiries.

#$7 #$8 #$9
Code 0 Xmaxh

0 Xmaxl

0 Ymaxh

0 Ymaxl

0 0

0 0

Packet header
#$0F #$10 #$12
\ / \
Inquiry
returns

correct

mode

Get 8 byte data packet. Strip
packet header and return to

#$A #$0B #$0C recover
Xstep Xthresh Xtick status
Ystep YthreshYrick
0 0 0

0 0 0 ONLY one

0 0 0 inquiry
0 0 0 at a

time.

#$14 #$15
/

on

<—

#$00 off

#$19 #$1A
Rx on

Ry «Tx #$00
Ty off
Vx
Vy



The IKBD commands

Data packet function

When preceding a data packet returned from the keyboard, the special
keycodes #$F6 to #$FF give the following meanings to the data packets:

. Code Data packet function
Dec Hex

Status report

Absolute mouse position record

\ Relative mouse positionrecord
I 11111Oxx (xx=left-right button state)
I delta x, 2's complement
/ delta y, 2's complement

Time of day (resolution of 1 second)

Joystick report header (both sticks)

254 FE xOOOyyyy \ x=trigger Joystick 0 event
255 FF xOOOyyyy / y=stick position Joystick 1 event

246 F6

247 F7

248 F8

to

FB

252 FC

253 FD

6.7



The Concise Atari ST Reference Guide

6.8



The Line-A routines

Chapter 7

The Line-A routines

General 7.2

Line-A access 7.2

Initialization pointers 7.2

The Line-A routines 7.3
Put pixel 7.3

Get pixel 7.3
Line 7.3
Horizontal line 7.3
Filled rectangle 7.4

Line-by-line filled polygon 7.4

Bitblt 7.5

Textblt 7.5
Show mouse 7.5
Hide mouse 7.5
Transform mouse 7.6
Undraw sprite 7.6
Draw sprite 7.6
Copy raster 7.6
Contour fill 7.6

Logic table 7.6
Line-A parameter blocks 7.7
Sprite definition block 7.7
Format flag 7.7
Memory definition block 7.7
Line-A parameter table
Bitblt table

7.8

7.10

7.1



The Concise Atari ST Reference Guide

The Line-A routines

Atari ST programmers have access to the VDI primitives via the line-A
exception routines; they provide a faster performance than the VDI routines,
additional facilities and use less code to implement. The line-A routines may be
mixed with VDI calls or used entirely on their own, but program portability to
other systems will not be possible.

Line-A access

The line-A routines operate from a set of variables contained in a data table
(Page7.8 - 7.9). The table is initialized by activating the line-Aexception vectorin
passing the word #$A000. The programmer may then alter or insert variables into
the data table and call the required function by passing the appropriate function
call word.

dew #$A000 ; initialize data table
move.w #n,d(A0) ; set function at offset d

; to value n

dew #$A00m ; call function

Initialization pointers

Initialization creates the following pointers:

dO=base address of line-A variables
aO=base address of line-A variables
al=array of pointers to the 3 system font headers
a2=array of pointers to the 15 line-A routines

(a2 is not returned correctly on disk based versions of TOS)

If VDI and AES are not used, the variables should be fairly static. If they are
used, the variables may be changed, registers d0-d2 and a0-a2 will be trashed.

7.2



The Line-A routines

Line-A routines

Function

Pointpair Integers
Op in out in out
$0 $2 $4 $6 $8

Comments

Put

pixel
#$A001 10 10

ptsin (0)=X_msbyte, Y_lsbyte
intin (0)=pixel value

Plot a pixel at x,y

Get

pixel
#$A002 10 0 0

ptsin (0)=X_msbyte, Y_lsbyte
Get the pixel at x,y
Return d0=pixel value

Function Parameters Comments

Line #$A003
offset

output

Horizontal #$A004
Line offset

output

$26 XI coordinate
$28 Yl coordinate
$2A X2 coordinate
$2C Y2 coordinate
$18 plane 0 \
$1A plane 1 I
$1C plane 2 I
$lEplane3 /
$22 line style mask <•
$24 writing mode
$20 -1 for XOR mode

else ignore

$22 line style mask

Bit

value

$26 XI coordinate
$28 Yl coordinate
$2A X2 coordinate
$18 plane 0 \
$1A plane 1 I Bit
$1C plane 2 I value
$lEplane3 /
$24 writing mode
$2E Fill pattern pointer
$32 Fill pattern mask
$34 Multi-plane fill flag
none

Draw a line between

X1,Y1 and X2,Y2
The line is ALWAYS drawn
from left to right and the
mask applied left to right
also- so watch the phase.

/ Mask is word aligned
I pattern for horizontal

• I lines, i.e. any bit of
I mask may be used at the
\ left-most endpoint.

Mask is rotated to align
with rightmost endpoint.

Draw a line between

X1,Y1 and X2,Y1
The line is ALWAYS drawn
from left to right

7.3



The Concise Atari ST Reference Guide

Line-A routines cont.

Function

Filled"
rectangle

Parameters Comments

#$A005
offset

output

$26 XI coordinate
$28 Yl coordinate
$2A X2 coordinate
$2C Y2 coordinate
$18 plane 0 \
$1A plane 1 I Bit
$1C plane 2 I value
$1E plane 3 /
$24 writing mode
$2E Fill pattern pointer
$32Fillpattern mask
$34 Multi-plane fill flag
$36 Clipping flag
$38 minimum X clipping value
$3A maximum X clipping value
$3C minimum Y clipping value
$3E maximum Y clipping value

none

Line-by #$A006 n - - -
-line ptsin (0)=X,Y array of
filled polygon vertices
polygon offset $28 Yl coordinate

$18 plane 0 \
$1A plane 1 I Bit
$1C plane 2 I value
$1E plane 3 /
$24 writing mode
$2E Fill pattern pointer
$32 Fillpattern mask
$34 Multi-plane fill flag
$36 Clipping flag
$38 minimum X clipping value
$3A maximum X clipping value
$3C minimum Y clipping value
$3E maximum Y clipping value

Draw a filled rectangle
with upper lefthand corner
X1,Y1 and lower righthand
corner X2,Y2.

Draw one scan-line of a
filled polygon.

Polygon
Xl,Yl...Xn,Yn...Xl,Yl
Start point must be
repeated at the end
of the list.

Yl is the Y coordinate
of the line to fill.

output
none XI and X2 trashed on return

7.4



The Line-A routines

Line-A routines cont.

Function Parameters Comments

Bitblt #$A007 Bit block transfer
input a6=i/p parameter table pointer See page 7.10
output none for table entries

Textblt #$A008
offset

Perform a Text block
transfer of one character.

\Text
/ colour

$24=writing mode
$6A=Foreground
$72=Background
$54=Pointer
$58=Width
$48=X coor
$4A=Y coor
$4C=X coor
$4E=Y coor
$50=width
$52=height
$5A=Style flag
$5C=Lighten text mask
$5E=Skew text mask
$60=Thickening text width
$62=above \ Character offset
$64=below / from baseline
$66=Scaling flag (0=none)
$40=Accumulator for x dda
$42=Textblt scale factor
$44=Scale direction (down 0)
$68=Character rotation vector
$46=Font status
$6C=Special effects buffer pointer
$70=Scaling buffer offset in above pointer

\
I

I

/
\ Character
/ on screen
\ Character

/

Font

form

Writing mode
0-3 VDI modes
4-19 Bitblt modes

output none

Show

mouse

#$A009
input
output

none

none

Show the mouse, if # of
'show' calls >= # of
'hide' calls.

Hide

mouse

#$A00A
input
output

none

none

Hide the mouse, if # of
'hide' calls exceeds #
of 'show' calls.

7.5



The Concise Atari ST Reference Guide

Line-A routines cont.

Function Parameters Comments

Trans

-form
mouse

#$A00B

output

Transform mouse form
cntrl $E=Addr.L source MFDB
cntrl $12=Addr.L destination MFDB
none

Undraw
sprite

#$A00C
input a2=

output

sprite slave block

none

Undraw previously drawn
pointer sprite

The sprite save block saves the
screen underneath the sprite and is
(lObytes + 648 # planes)bytes in size.

*** a6 smashed ***

Draw

sprite
#$A00D
input

output

Draw a sprite
dO=X hot spot (Function not available
dl=Y hot spot on disk based versions
a0=pointer to sprite definition block of TOS)
a2=pointer to sprite save block
none *** a6 smashed ***

Copy
raster

form

#$A00E

output

Copy a raster from source
cntrl $E=Addr.L source MFDB to destination,
cntrl $12=Addr.L destination MFDB
none

Contour

fill

#$A00F

output

Contour fill
intin (0)=colour index input may be +ve or -ve.
none

Logic table

% bg

10

11

12

13

$0A
$0B
$0C
$0D

Op 0 0
Op 1 0
Op 2 1
Op 3 1

0

1

0

1

The logic operation bytes specify the effect of the foreground and
background colour bits on the current plane.

7.6



The Line-A routines

Line-A parameter blocks

Sprite definition block

0 $00 X offset of hot-spot
2 $02 Y offset of hot-spot
4 $04 Format flag
6 $06 Background \ Colour
8 $08 Foreground / table index

Interleaved \ Background line 010 $0A
12 $0C background/ 1 Foreground line 0

foreground 1 ...
74 $4A image (32 words) / Foreground line If
76 $4C

Format flag

+ve -ve colour
Fg Bg Fg Bg plotted

0

0

1

0

1

1

0
0

1

0

1

1

Transparent
Background
Foreground

1 0

1 0

Foreground
XOR screen

Memory form definition block (MFDB)

0 $00
4 $04
8 $08
12 $0C
16 $10
20 $14
24 $18
28 $1C
32 $20
36 $24

Memory pointer to 32-bit address of pixel 0,0
Width \ Raster area
Height / dimensions
Word width Pixel width/word size
Format flag 1=standard, 0=device specific
Memory planes # planes in raster area

\ Three
I reserved
/ words

7.7



The Concise Atari ST Reference Guide

Line-A parameter table

offset Function

$00 0 Number ofvideo planes \ Canproduce special
Number ofbytes/video line / effects.$02 2

$04 4 Pointer to cntrl array
$08 8 Pointer to intin array
$0C 12 Pointer to ptsin array
$10 16 Pointer to intout array
$14 20 Pointer to ptsout array
$18 24 Bit plane_0 \ current
$1A 26 Bitplane_l 1colour
$1C 28 Bit plane 2 1value
$1E 30 Bit plane 3 /
$20 32 -1

$22 34 VDI line style equivalent
$24 36 Writing mode 0_replace l_transparent

2_XOR mode 3_inverse transparent
$26 38 XI coordinate
$28 40 Yl coordinate
$2A 42 X2 coordinate

$2C 44 Y2 coordinate
$2E 46 Pointer to current fill pattern
$32 50 Fill pattern mask (length of pattern)

Multi-plane fill pattern$34 52
0_current fill pattern is single plane
l_current fill pattern is multi-plane

$36 54 Clipping flag 0_no clipping
Minimum x clipping value$38 56

$3A 58 Minimum y clipping value
$3C 60 Maximum x clipping value
$3E 62 Maximum y clipping value
$40 64 Accumulator for textblt x dda

initialize to 8000H before each call
$42 66 Textblt scale factor
$44 68 Scale direction 0_down

7.8



The Line-A routines

Line-A parameter table cont.

offset Function

$46 70 Font status
l_solid
0_proportional or variable

X coordinate of character in font form
Y coordinate of character in font form (typically 0)
X coordinate of character on screen
Y coordinate of character on screen
Character width

Character height
Pointer to start of font data (font form)
Width of font form

Style bit 0_Thicken, bit ljighten, bit 2_skew
bit 3_underline (ignored), bit 4_outline

Lighten text mask
Skew text mask
Text thickening additional width
Offset above character baseline for skew
Offset below character baseline for skew
Scaling flag 0_no scaling
Character rotation vector 0_horizontal 900_vertically down etc.
Text foreground colour
Special effects buffer pointer
Scaling buffer offset in above buffer
Text background colour (RAM VDIonly)
Copy raster form type flag (RAMVDI only)

0_opaque type
n-plane source to n-plane destination bitblt write mode
<>0_transparent type
1-plane source to n-plane destination VDI write mode

$76 118 Abort fill routine pointer (Function not available on disk based
versions of TOS)

$48 72

$4A 74

$4C 76

$4E 78

$50 80

$52 82

$54 84

$58 88

$5A 90

$5C 92

$5E 94

$60 96

$62 98

$64 100

$66 102

$68 104

$6A 106

$6C 108

$70 112

$72 114

$74 116

7.9



The Concise Atari ST Reference Guide

BITBLT table used in block transfers (routine $A008)

Parameter block length must be 76 bytes, the first 52 bytes being set by the
user and the remainder by the bit. Address register a6 is used as a pointer to the
table, a point C programmers should note.

width \ of block in
height / pixels
# of cosecutive planes to bit
foreground colour - high bit \ logic operation
background colour - low bit / index
logic operation— Table of 4 raster operation code

bytes, each containing one of sixteen
logical operations. They are indexed
by fg*2 + bg for each plane (see pg7.6).

minimum source x

minimum source y
source form base address (word boundary)
# word in line \ next offset (2hi-4med-81ow rez)
# lines in plane /in bytes (90hi-160med/lowrez)
next plane offset from current (always 2)
minimum destination x

minimum destination y
destination form base address (word boundary)
# word in line \ next offset (2hi-4med-81ow rez)
# lines in plane / in bytes (90hi-160med/low rez)
next plane offset from current (always 2)
address of pattern buffer (0=no pattern)

Aword size repetative, word aligned pattern
that is ANDed with the source before being
logically combined with the destination,

next line in pattern \ offset (2,4,6 etc)
next plane in pattern / in bytes (0=1 plane)
pattern index mask length

*may be altered during bitblt execution

The sourcebit defined by s_xmin, s_ymin, b_width,b_height is transfered to
destination d_xmin, d_ymin by the number of planes iterations (#planes). There
is no clipping or check that bit blocks are within the encompassing memory
forms.

0 $00 b_width
2 $02 b_height
4 $04 #planes
6 $06 fg_col
8 $08 bg_col
10 $0A op_table
11 $0B
12 $0C
13 $0D
14 $0E s_xmin
16 $10 s_ymin
18 $12 s_form
22 $16 s_nxwd
24 $18 s_nxln
26 $1A s_nxpl
28 $1C d_xmin
30 $1E d_ymin
32 $20 d_form
36 $24 d_nxwd
38 $26 d_nxln
40 $28 d_nxpl
42 $2A p_addr

46 $2D pnxln
48 $30 p_nxpl
50 $32 pjmask

7.10



The Blitter

Chapter 8

The Blitter

General 8.2
Blitter operation 8.2

Clipping 8.2
Skew 8.2
Endmasks 8.2

Overlap 8.2
Blitter control/status 8.3

HOG bit 8.3

BUSY bit 8.3
Blitter access 8.3
Blitter flow diagram 8.4
Blitter parameter table 8.6

8.1



The Concise Atari ST Reference Guide

The Blitter
General

The New TOS versions of the Atari ST contain a hardware bit block transfer

processor (blitter) which operates automatically on certain line-A and VDI
functions, providing a considerable increase in the speed at which blocks of
memory can be manipulated. The blitter can be switched off, or tested for
presence, through the XBIOS $40 blitmode function. An attempt to 'turn on' the
blit mode in a system which does not contain a blitter is ignored by the OS. The
blitter should not be used from within an interrupt context where multiple blitter
operations may conflict and cause unpredictable results.

The blitter device moves bit aligned data in memory using one of sixteen
logic operations. It can be used to provide rapid implementation of the following
functions:

Area seed fill
Rotation and magnification
Brush line drawing
Text transformations eg. Bold, italic, outline
Textscrolling
Window updating
Pattern filling
Memory to memory block copying

Blitter operation

The blitter operates as follows,: Initially the transfer parameters are
calculated before the data is moved, the parameters involved are:

Clipping, sets the source and destination blocks to a predefined clipping
rectangle size, the transfer is omitted if the block size is set to zero. Although the
blocks are the same 'size', they may have different increments.

Skew, the source to destination horizontal bit offset.
Endmasks, provide start, intermediate and finish word masks to define the

portion of the word in each line to be operated on.
Overlap, a check that source data will not be overwritten before the transfer

is complete, overlap reverses the default left to right transfer mode if necessary.

The transfer is effected after the parameters have been calculated:

8.2



The Blitter

Blitter Control/Status

Two bits in the blitter configuration registers are used to provide the
programmer with control and the status of the blitter.

The HOG bit when clear gives equal processor/blitter bus access (64 bus
cycle segments), when set the processor is stopped until the blitter transfer is
complete although other DMA processes can always interrupt the blitter.

The BUSY bit is set after the other registers are initialised and is only cleared
when the transfer is complete. Bus arbitration can still be used to initiate
processor instructions, which means that the next instruction after the transfer is
not necessarily that which set the BUSYbit.

The blitter is usually operated with the HOG flag cleared. In this mode the
blitter and the ST's CPU share the bus equally, each taking 64 bus cycles while the
other is halted. This mode allows interrupts.

Blitter access

Use of the blitter generally entails access to hardware registers and so blitter
routines are normally executed in supervisor mode. The following short
assembly language routine ensures that the blitter is switched on and saves the
original system state on the stack for later recovery. Note that if a blitter is not
present, then this code will have no affect other than to waste a small amount of
processor time.

move.w #-l,-(sp) ; push get blitter status flag
move.w #$40,-(sp) ; push get/set blitter function call
trap #14 ; call function
addq #4,sp ; tidystack
move.w dO,-(sp) ; push blitter status for later use
or.w #l,dO ; set blitter on bit, do not touch other bits
move.w dO,-(sp) ; push blitter on word
move.w #$40,-(sp) ; push function call
trap #14 ; call function
addq #4,sp ; tidy stack

Do something, remembering that the stack contains the original system state
which must not be destroyed if we wish to return to that state via something like:

move.w

trap
addq

#$40,-(sp)
#14

#4,sp

; push function call
; call function
; tidy stack

8.3



The Concise Atari ST Reference Guide

Blitter flow diagram

Source
X incr

(FF8A201

Y incr

(FF8A22)

Y incr

One word
at a time

The X incr and Y incr are
15-bit 2's complement
values (in bytes) of the
offset to the next word
or line respectively.

The SOURCE ADDRESS is
a 23-bit word containing
the address of the next
word to be used. Updated
by sign-extended X incr
or Y incr as appropriate
immediately after the
source word fetch.

- Left to right, +ve incr's
Right to left, -ve incr's

SOURCE BUFFER
Primarily used where
the blocks are not
aligned and two
words need to be
read. ,

32-tyit source buffer
31 16 15

FXSR
register
FF8A3D

bit 7

The FXSR bit primes the source
buffer with a dummy read so
that the data may be 'skewed'
within the buffer and a valid
word passed.

Smudge
register
FF8A3C

bit 5

SMUDGE uses the least
significant nibble of the
skewed data as the
halftone offset address

8.4

NFSR
register
FF8A3D

bit 6

(SET BY OVERLAP TO PROTECT SOURCE,
BUFFER TRANSFERS REVERSED HI-LO).

The SKEW is the bit shift in
the buffer of the source

Source before being combined with
Skew ^destination data and

Req'd destination \ halftone masks.
Skew register

FF8A3D
bits 0-3

The NFSR bit cancels the
last read when the skew and
endmask invalidate the last
word in the line, although
the buffer transfer still occurs

(FXSR and NFSR require Yincr and the Source Address registers to be amended)

LINE NUMBER defines which
word is to be used for the
current halftone line.
Increasing or decreasing
following the sign of the
destination Y incr register.

Line number
register
FF8A3C

bits0-3

Halftone
patterns
register
FF8A00

Line number wraps through zero.

HALFTONE is a set of
sixteen word patterns in RAM
that may be used with the
source or simply on its own
as a mask. The mask is
repeated every 16 lines.



The Blitter

Blitter flow diagram cont.

Original
destination

16-bit destination
write masks

Endmask 1
000 111
FF8A28

Endmask 2
010 101
FF8A2A

Endmask 3
111 000
FF8A2C

NEW
DESTINATION

(d)

X incr

Y incr

Y| count
lines)

Source

HOP
register
FF8A3A

bits 0-1

(s)

LogicOP
register
FF8A3B

bits 0-3

X count

(words)

Halftone

HOP defines the source/halftone
combination to be used as source
in the logical operation.

0 All 1's
1 halftone
2 source
3 source AND halftone

Logic Operations
All 0's
sANDd
s AND NOT d
s

NOTsANDd
d

sXORd
sORd

8 NOT s AND NOT d
9 NOTsXORd
A NOTd
B s OR NOT d
C NOTs
D NOTsORd
E NOTsORNOTd
F AIM'S

Line first write and single word line
mask only

Line
intermediate
word

Only the bits
corresponding to
a '1' in the
endmask will be
updated.

Line
last
write

Y incr

X count (words) and
Y count (lines) define the
size of the block and are
counted down, reading
the number still to be
written.
X count wraps on zero
to its original value.
A Y count of zero shows
transfer complete.

X incr and Y incr are
15-bit 2's complement
values (bytes) of the
offset to the next word
or line respectively.

The destination address is a 23-bit word containing the address of the next word to
be used. Itis automatically updated by sign-extending X incror Y incras appropriate
(Y incr if X count is one) immediately after the destination write.

8.5



The Concise Atari ST Reference Guide

Blitter parameter table

The blitter configuration registers are located at address $FF8A00

Blitter offsets

0 $00 halftone 16 x 16 word pattern masks
32 $20 src_xinc 15-bit 2's complement increment of next word in source
34 $22 src_yinc 15-bit 2's complement increment of next line in source
36 $24 src_addr 23-bit address of next word to be used in source
40 $26 endmaskl destination write mask for first and single word lines
42 $28 endmask2 destination mask for intermediate words on a line
44 $2A endmask3 destination mask for the last word on a line
46 $2C dst_xinc 15-bit 2's complement incr of next word in destination
48 $30 dst_yinc 15-bit 2's complement incr of next line in destination
50 $32 dst_addr 23-bit address of next word to be used in destination
54 $36 x_count number of words in line yet to be written, wraps on zero.
56 $38 y_count number of lines yet to be written
58 $3A HOP Halftone operation options

0 All l's
1 halftone

2 source

3 source AND halftone
59 $3B OP Logic operations

0 All 0's 8 NOTs AND NOTd
1 sANDd 9 NOTs XORd
2 s AND NOTd A NOTd
3 s B s OR NOTd

4 NOTsANDd C NOTs
5 d D NOTs ORd

6 sXORd E NOTs OR NOTd
7 sORd F All l's

60 $3C line_num Halftone mask line number
bit 0-3 line number (0 to 15) - halftone index
bit 5 Smudge - skew data nibble used as halftone index
bit 6 HOG - l_halt processor while transfer. 0_share bus
bit 7 BUSY - l_when registers initialised. 0_transfer over

61 $3D skew Source buffer bit shift
bit 0-3 bit shift (0 to 15) - source skew
bit 6 NFSR - l_no final source read. 0_normal
bit 7 FXSR -1 force initial extra source read. 0_normal

8.6



Appendices

System Variables A
Configuration Registers B
Printer and terminal escape codes C
Keycode definitions D
Callable functions E
Parameter blocks F

MC68000 instruction summary G
MC68000 instruction codes H

Error codes I
BASIC GEM J
Program development tools K
Example programs L
Glossary M

Appendix



The Concise Atari ST Reference Guide



System Variables

Appendix A

System variables

Exception vectors A.2
Hardware bound interrupts A.3
Application interrupts A.3
Error processing state dump A.3
System variables A.4
Bomb error codes A.6

A.1



The Concise Atari ST Reference Guide

Thefollowing tables present the system variables in low supervisor space $0
to $7FF (0 to 2047):

Exception vectors

o

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

$000
$004
$008
$00C
$010
$014
$018
$01C
$020
$024
$028
$02C
$030
$034
$038
$03C
$040

82 $05C
96 $060
100 $064
104 $068
108 $06C
112 $070
116 $074
120 $078
124 $07C
128 $080
132 $084
136 $088
140 $08C

176 $0B0
180 $0B4
184 $0B8
188 $0BC
192 $0C0

Reset initial SSP value (ROM)
Reset initial PC address (ROM)
Bus error \ Dump state
Address error I and terminate
Illegal instruction / routine pointer
Divide by zero (Pointer to an RTE)
Chk instruction \ Dump state
Trapv instruction I and terminate
Privilege violation I routine pointer
Trace mode /
Line 1010 line-A routine pointer
Line 1111 Used by AES
Unassigned
Coprocessor protocol violation (MC68020)
Format error (MC68020)
Uninitialized interrupt vector
Unassigned \

I Reserved
Unassigned /
Spurious interrupt (Hacked to level 3)
Int level 1
Int level 2
Int level 3
Int level 4
Int level 5
Int level 6
Int level 7

Trap #0
Trap #1
Trap #2
Trap #3

Trap #12
Trap #13
Trap #14
Trap #15
Unassigned

(Used if user wants Hblanks)
Horizontal blank sync (Hblank)
Normal processor interruptlevel
Vertical blank sync (Vblank)

MK68901 MFP interrupts
Non maskable interrupt

GEMDOS interface calls
Extended DOS calls (AES, VDI)

252 $0FC Unassigned

GEM BIOS calls
Atari extended BIOS calls (XBIOS)

\
I Reserved

/

A.2



System Variables

MFP hardware bound interrupt vectors

* 256 $100 Parallel port interrupts (Centronics busy)
* 260 $104 RS232 carrier detect (dcd) interrupt_l
* 264 $108 RS232 clear to send (cts) interrupt_2
* 268 $10C Graphics bit done interrupt_3
* 272 $110 RS232 baud rate generator (Timer D)

276 $114 200Hz system clock (Timer C)
280 $118 Keyboard/MIDI (6850) interrupt^

* 284 $11C Polled fdc/_hdc interrupts
* 288 $120 Horizontal blank counter (Timer B)

292 $124 RS232 transmit error interrupt
296 $128 RS232 transmit buffer empty interrupt
300 $12C RS232 receive error interrupt
304 $130 RS232receive buffer full interrupt

* 308 $134 User/application (Timer A)
* 312 $138 RS232 ring indicator interrupt_6
* 316 $13C Polled monochrome monitor detect interrupt_7

320 $140

508 $1FF Priority levels (7 high)

* Initially disabled
The polled fdc/_hdc interrupt must be disabled on return.

Application interrupts

512 $200 \
I Reserved for OEMs

892 $37C /

After an uncaught trap, the processor state is dumped as follows:

Processor state

896 $380 proc_lives Processor state saved if system
variable set to $12345678

900 $384 proc_regs D0-D7/A0-A6, A7_ssp
964 $3C4 proc_pc First byte exception number
968 $3C8 proc_usp USP
972 $3CC proc_stk sixteen words of superstack

The above values are not overwritten by a system reset, but are by a further
crash.

A.3



The Concise Atari ST Reference Guide

System variables

Address Size Function

1024 $400
1028 $404
1032 $408
1036 $40C

L

L

L

5xL

etv_timer
etvcritic

etv_term
etv_xtra

1056 $420
1060 $424

L

B

memvalid

memcntlr

1062 $426
1066 $42A

L

L
resvalid
resvector

1070 $42E
1074 $432
1078 $436
1082 $43A

L

L

L

L

phystop
_membot
_memtop
memval2

1086 $43E
1088 $440
1090 $442
1092 $444
1094 $446

W

W

w

w

w

flock

seekrate

_timr_ms
_fverify
_bootdev

1096 $448
1098 $44A
1100 $44C

w

B

B

palmode
defshftmd

sshiftmd

1102 $44E L _v_bas_ad

1106 $452 W vblsem

1108 $454
1110 $456
1114 $45A

w

L

L

nvbls

_vblqueue
colorptr

1118 $45E
1122 $462
1126 $466

L

L

L

screenpt
_vbclock

frclock

A.4

Timer handoff (logical vector $100)
Critical error handoff vector ($101)
Process terminate handoff vector ($102)
Space for reserved logical

vectors ($103-$107)
#$752019F3 (cold start o'k)
memory controller low nibble
0=128K, 4=512K, (0=256K, 5=1MB 2 banks)
#$31415926 to jump through resvector
System reset bailout vector

Physical RAMtop (points to first unusable byte
Available memory bottom (getmpb uses)
Available memory top (getmpb uses)
#$237698AA for legal memory configuration.

Floppy FIFO lock variable
0=6ms, l=12ms, 2=2ms, 3=3ms default
20 (#$14) system timer calibration
0=no write-verify else verify (default)
System boot device number

0=NTSC, 60Hz else PAL, 50Hz
Default video resolution if monitor changed
Shadow shiftmd hardware register

0=320x200x4 1=640x200x2 2=640x400x1

Screen memory base pointer (32Kcontiguous)
on a 512 byte boundary

Vert blank mutual exclusion semaphore
l_vblank enabled

8 (No. longwords vblqueue points to)
Vblank handler pointer to pointers
0 null else pointer to 16 word vector

for hardware palette next vblank

Pntr to screen base next vblank or 0

Vertical blank interrupt count
Count vblank interrupts not vblsem'd



System Variables

Address

System variables cont.
Size Function

1130 $46A
1134 $46E
1138 $472
1142 $476
1146 $47A
1150 $47E

1154 $482

1156 $484

1157 $485
1158 $486
1162 $48A

1166 $48E

L

L

L

L

L

L

W

B

L

L

1182 $49E W

1186 $4A2
1190 $4A6
1192 $4A8
1196 $4AC
1198 $4AE

L

W

L

W

L

1202 $4B2 L

hdv_init Hard disk initialize vector else zero
swv_vec 'Monitor changed' vector to follow
hdv_bpb Hard disk vector to return bpb else 0
hdv_rw Hard disk rd/wr routine vector else 0
hdv_boot Hard disk boot routine vector else 0
hdv_mediach Disk media change routine vector else 0

_cmdload <>0 load & exe COMMAND.PRG (boot device)

conterm Attribute bits for console system, bit:
0_bell on (AG) l_keyrepeat
2_keyclick 3_bios conin() function
kbshft in bits 24 to 31 of DO.L

trpl4ret
criticret

themd

md

reserved

Saved trap 14 return address
Saved return address for etv_critic

GEMDOS memory descriptors (don't change)
Structure MD

m_link Next MD/null
m_start Start of TPA
m_length Byte size of TPA
m_own MD's owner/null

? reserved

sayptr BIOS register save area pointer
_nflops # floppies attached 0,1 or 2
con_state State of conoutO parser (VT52emulation)
save_row Save row# for x-y addressing
sav_contxt Pointer to saved processor context

bufl GEMDOS two buffer-list pointers
1st buffers data sectors
2nd buffers FAT and DIR sectors

Structure BCB

b link Next BCB

b bufdrv Drive#/-1
b_buftyp Buffer type
b bufrec Record# cached
b__dirty Dirty flag
b dm Drive media descriptor
b_bufr Buffer pointer

A.5



The Concise Atari ST Reference Guide

Address

1210 $4BA
1214 $4BE
1218 $4C2
1222 $4C6

1226 $4CA
1230 $4CE

1262 $4EE

1264 $4F0
1266 $4F2
1270 $4F6
1274 $4FA
1278 $4FE

2048 $800

System variables cont.

Size

L

L

L

L

L

8xL

_hz_200
the_env
_drvbits
_dskbufp

autopath
vbl list

W _prt_cnt

W

L

L

L

L

prtabt
_sysbase
_shell_p
end_os
exec os

Function

Raw 200Hz timer tick
Default environment string $00000000
32 bit vector of live block devices
Pointer to common disk buffer,

1 Kbyte in systems BSS.
(Do notuseby an interrupt routine)

Pointer to autoexec path (or null)
Initial vblqueue

Initially set -1, ALT_HELP increments
screen-dump flag (0 abort)

Printer abort flag
Base of OS pointer (RAM or ROM)
Global shell information pointer
Pointer to end of OS memory usage
Pointer to shell address to execute on startup

(normally1st byte of AES text seg).

Start of user RAM

Bomb error codes

# bombs

2

3
4

5

6

7

8

9

A.6

meaning

Bus error

Address error (odd address)
Illegal instruction
Division by zero
CHK exception
TRAPV exception
Privilege violation
Trace exception



Configuration Registers

Appendix B

Configuration registers

Memory configuration registers B.2
Displayconfiguration registers B.2
Reserved configuration register space B.3
DMA/Disk configuration registers B.3
Sound configuration registers B.4
Blitter configuration registers B.5
MK68901 configuration registers B.6
MC6850 configuration registers B.6

B.1



The Concise Atari ST Reference Guide

Configuration Registers (one/_zero)

MEMORY

16744452 FF8004 r/w ....XXXX 1

0

1

2

3

4

5

6

7

8
9

10

11

12+

Memory configurations
Bank 0 Bank 1 (not used)
128Kbyte 128Kbyte
128Kbyte 512Kbyte
128Kbyte 2Mbyte
reserved

512Kbyte 128Kbyte
512Kbyte 512Kbyte
512Kbyte 2Mbyte
reserved

2Mbyte 128Kbyte
2Mbyte 512Kbyte
2Mbyte 2Mbyte
reserved

reserved

DISPLAY

16745061 FF8201 r/w XXXXXXXX1 Video base high
16745063 FF8203 r/w xxxxxxxx1 Video base low
16745065 FF8205 r XXXXXXXX1 Video address counter high
16745067 FF8207 r XXXXXXXX1 Video address counter mid
16745069 FF8209 r XXXXXXXX1 Video address counter low
16745071 FF820A r/w XX 1

bitO
bitl

Sync mode
External/ Internal sync
50Hz/_60Hz field rate

16745124 FF8240 r/w XXX.XXX.XXX

bitO

Palette colour 0/0 (border)
Invert/ normal mono

bit 0-2 Blue

bit 4-6 Green
bit 8-10 Red

16745126 FF8242 r/w XXX.XXX.XXX Palette colour 1/1
16745128 FF8244 r/w XXX.XXX.XXX Palette colour 2/2
16745130 FF8246 r/w XXX.XXX.XXX Palette colour 3/3
16745132 FF8248 r/w XXX.XXX.XXX Palette colour 4
16745134 FF824A r/w XXX.XXX.XXX Palette colour 5
16745136 FF824C r/w XXX.XXX.XXX Palette colour 6
16745138 FF824E r/w XXX.XXX.XXX Palette colour 7
16745140 FF8250 r/w XXX.XXX.XXX Palette colour 8

B.2



Configuration Registers

Configuration Registers ( Dne/_zero) cont.
16745142 FF8252 r/w 1 ....XXX.XXX.XXX 1 Palette colour 9

16745144 FF8254 r/w 1 ....XXX.XXX.XXX 1 Palette colour 10
16745146 FF8256 r/w 1 ....XXX.XXX.XXX 1 Palette colour 11

16745148 FF8258 r/w 1 ....XXX.XXX.XXX 1 Palette colour 12

16745150 FF825A r/w 1 ....XXX.XXX.XXX 1 Palette colour 13

16745152 FF825C r/w 1 ....XXX.XXX.XXX 1 Palette colour 14

16745154 FF825E r/w 1 ....XXX.XXX.XXX 1 Palette colour 15

16745156 FF8260 r/w 1 XX 1 Shift mode
0 320x200, 4 plane
1 640x200, 2 plane
2 640x400, 1 plane
3 Reserved

Reserved

16745572 FF8400

sk

1 1

DMA/Di

16746084 FF8600
FF8602

FF8604 r/w

1 |

16746086 1 1

16746088 1 XXXXXXXX 1
16746090 FF8606 r 1 XXX 1

bitO
bitl
bit 2

FF8606 w 1 XXXXXXXX. 1

bitl

bit 2
bit 3
bit 4
bit 5

bit 6
bit 7
bit 8

16746093 FF8609 r/w 1XXXXXXXX1
16746095 FF860B r/w 1XXXXXXXX1

16746097 FF860D r/w 1XXXXXXXX1

reserved

reserved

reserved
Disk controller data access

DMA status (mode control)
_Error
_Sector count zero
_Data request inactive

DMA mode control

A0) WD1772
Al) registers
HDC/FDC register select
Sector count register select
0 reserved

Disable/_enable DMA
FDC/_HDC
Write/jread

DMA base and counter high
DMA base and counter mid

DMA base and counter low

B.3



The Concise Atari ST Reference Guide

Configuration Registers (one/_zero) cont.

SOUND

PSG read data
16746596 FF8800 r 1XXXXXXXX1 I/O port B, Parallel i/f data

w 1XXXXXXXX1 PSG register select
reg#

8 bit 0 Channel A fine tune
4 bit 1 Channel A coarse tune
8 bit 2 Channel B fine tune
4 bit 3 Channel B coarse tune
8 bit 4 Channel C fine tune
4 bit 5 Channel C coarse tune
5 bit 6 Noise generator control
8 bit 7 Mixer control-I/O enable
5 bit 8 Channel A amplitude
5 bit 9 Channel B amplitude
5 bit 10 Channel C amplitude
8 bit 11 Envelope period fine tune
8 bit 12 Envel period coarse tune
4 bit 13 Envelope shape

14 I/O port A (output only)
15 I/O port B (Centronics O/P)

16746598 FF8802 w 1XXXXXXXX1 PSG write data, I/O port A
bitO Floppy side 0/_side 1 select
bitl Floppy _drive 0 select
bit 2 Floppy drive 1 select
bit 3 RS232 RTS

bit 4 RS232 DTR
bit 5 Centronics STROBE

bit 6 Generalpurpose output
Reservedbit 7

r/w 1XXXXXXXX1 I/O port B, Par i/f data

B.4



Configuration Registers

Configuration Registers (one/zero) cont.

Blitter

16747108 FF8A00
16747110 FF8A02

16747112 FF8A04

16747138 FF8A1E

16747140 FF8A20
16747142 FF8A22
16747144 FF8A24

16747146 FF8A26
16747148 FF8A28

16747150 FF8A2A

16747152 FF8A2C
16747154 FF8A2E

16747156 FF8A30
16747158 FF8A32
16747160 FF8A34

16747162 FF8A36
16747164 FF8A38

16747166 FF8A3A
16747167 FF8A3B

16747168 FF8A3C

16747169 FF8A3D

IxxxxxxxxxxxxxxxxI

IxxxxxxxxxxxxxxxxI

IxxxxxxxxxxxxxxxxI

Halftone RAM

16 x 16 pattern
mask

1xxxxxxxxxxxxxxxx1
1xxxxxxxxxxxxxxx. 1
1xxxxxxxxxxxxxxx. 1
1 XXXXXXXX 1

Source increment X

Source increment Y

\ Source address
1xxxxxxxxxxxxxxx. 1
1xxxxxxxxxxxxxxxx1
1xxxxxxxxxxxxxxxx1
1xxxxxxxxxxxxxxxx1
1xxxxxxxxxxxxxxx. 1
1xxxxxxxxxxxxxxx. 1
1 XXXXXXXX 1

/
Endmask 1
Endmask 2
Endmask 3
Destination increment X

Destination increment Y

\ Destination address
1XXXXXXXXXXXXXXX. 1
1XXXXXXXXXXXXXXXX1
1XXXXXXXXXXXXXXXX1

/
count x (words across)
count y (lines down)

1 XX 1
1 xxxxl

HOP halftone operation
OP logic operation

1XXX.XXXX 1
bit 0-3

bit 5
bit 6
bit 7

Halftone mask line
line number of halftone

pattern RAM
Smudge
HOG
Busy

1xx...xxxxl
bit 0-3

bit 6
bit 7

Source buffer skew

source skew shift
NFSR toggle
FXSR toggle

B.5



The Concise Atari ST Reference Guide

Configuration Registers (one/_zero) cont.

MK68901

16775681 FFFA01

16775683 FFFA03

16775685 FFFA05
16775687 FFFA07

16775689 FFFA09

16775691 FFFA0B

16775693 FFFA0D

16775695 FFFA0F
16775697 FFFA11

16775699 FFFA13

16775701 FFFA15
16775703 FFFA17

16775705 FFFA19

16775707 FFFA1B

16775709 FFFA1D
16775711 FFFA1F

16775713 FFFA21

16775715 FFFA23

16775717 FFFA25

16775719 FFFA27

16775721 FFFA29

16775723 FFFA2B

16775725 FFFA2D
16775727 FFFA2F

MC6850

16776192 FFFC00
16776194 FFFC02

16776196 FFFC04

16776198 FFFC06

All unused bits read zero.

B.6

IXXXXXXXXI

bitO

bit 4

bit 5
bit 7

IXXXXXXXXI

IXXXXXXXXI
IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI
IXXXXXXXXI

IXXXXXXXX I

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXX I

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI
IXXXXXXXX I

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

IXXXXXXXXI

MFP general purpose I/O
Parallel port status
WD1772 active

Interrupt
Mono monitor

MFP active edge
MFP data direction
MFP interrupt enable A
MFP interrupt enable B
MFP interrupt pending A
MFP interrupt pending B
MFP intrpt in-service A
MFP intrpt in-service B
MFP interrupt mask A
MFP interrupt mask B
MFP vector base
MFP timer A control
MFP timer B control
MFP timers C & D control
MFP timer A data
MFP timer B data

MFP timer C data
MFP timer D data
MFP sync character
MFP USART control register
MFP receiver status

MFP transmitter status

MFP USART data

Keyboard ACIA control
Keyboard data
Midi ACIA control
Midi data



Escape Codes

Appendix C

Printer and terminal escape codes

Typical Epson printer codes C.2
VT52 terminal escape codes C.4
Printers C.5

C.1



The Concise Atari ST Reference Guide

Typical Epson Printer Codes
Code Ascii Function ***** ESC code functions *****
Dec Hex Mnemo Dec Hex Ch

0 00 NUL 32 20
1 01 SOH 33 21 I Combine print modes
2 02 STX * for one 34 22

it

3 03 ETX line only 35 23 #
4 04 EOT 36 24 $
5 05 ENQ 37 25 % Select ROM/user charset
6 06 ACK 38 26 & Define user characters
7 07 BEL Bell 39 27 '

8 08 BS Backspace 40 28 (
9 09 HT Tab horizontal 41 29 )
10 0A LF Line feed 42 2A * Select graphics mode
11 OB VT Tab vertical 43 2B +

12 0C FF Form feed 44 2C
13 0D CR Carriage Return 45 2D - Underline on/off
14 0E SO *Enlarged on 46 2E
15 OF SI Condensed on 47 2F / Select vert Tab channel
16 10 DLE 48 30 0 Set 1/8 inch LF
17 11 DC1 On-line printer 49 31 1 Set 7/72 inch LF
18 12 DC2 Condensed off 50 32 2 Set 1/6 inch LF
19 13 DC3 Off-line printer 51 33 3 Set n/216 inch LF
20 14 DC4 *Enlarged off 52 34 4 Italic on
21 15 NAK 53 35 5 Italic off
22 16 SYN 54 36 6
23 17 ETB 55 37 7
24 18 CAN Clear print buffer 56 38 8 Detect paper-out on
25 19 EM Cut sheet feeder 57 39 9 Detect paper-out off
26 1A SUB 58 3A Copy ROM char to RAM
27 IB ESC 59 3B /

28 1C FS 60 3C < *Unidirection print
29 ID GS 61 3D =

30 IE RS 62 3E >

31 IF US 63

• 64

65

3F

40

41

?

@

A

Redefine graphic mode
Initialize printer
Set n/72 inch LF32 20

Printab 66 42 B Set vertical Tabs
127 7F 67

68
69

43

44

45

C

D

E

n Set form length
Set horizontal Tabs
Bold on

70 46 F Bold off

C.2



Escape Codes

Typical Epson Printer Codes cont.

***** ESC code functions ***** ***** ESC code functions *****
Dec Hex Ch Dec Hex Ch

71 47 G Double strike on 110 6E n

72 48 H Double strike off 111 6F 0

73 49 I 112 70 P Proportional on/off
74 4A J LF n/216inch 113 71 q
75 4B K 60 dpi bitimage

120 dpi bitimage
114 72 r

76 4C L 115 73 s Half speed on/off
77 4D M Elite on 116 74 t

78 4E N Skip perforation on 117 75 u

79 4F O Skip perforation off 118 76 V

80 50 P Pica on/Elite off 119 77 w

81 51 Q Set right column 120 78 X select draft/NLQ mode
82 52 R Select character set 121 79 y
83 53 S Super/subscript on 122 7A z

84 54 T Super/subscript off 123 7B {
85 55 U Unidirection on/off 124 7C 1
86 56 V 125 7D }
87 57 w Enlarged on/off 126 7E
88 58 X 127 7F del Cancel last character
89 59 Y 120 dpi bitimage-fast
90 5A z 240 dpi bitimage
91 5B [
92 5C \
93 5D ]
94 5E A Set 9 pin bit image
95 5F
96 60

/

97 61 a Set NLQ justify
98 62 b Set vertical tabs channels
99 63 c

100 64 d
101 65 e Set hor/ver Tab increment
102 66 f Paperfeed/Tab execute
103 67 g

104 68 h

105 69 i

106 6A j
107 6B k

108 6C 1 Set left margin
109 6D m Special character generator

C.3



The Concise Atari ST Reference Guide

VT52 terminal escape codes

The following BIOS bconoutO functions simulate a VT52 terminal, with
extensions for colour, screen wrap etc.

Esc Function

A

B

C

D

Cursor up
Cursor down

Cursor right
Cursor left

E

H

I

Clear screen

Home cursor

Cursor up

J
K

L

Erase to eop
Clear to eol
Insert line

M Delete line

Y,r,c Cursor r,c

b,f
Cb

fgd colour f
bgd colour b

d

e

f

j
k

Erase to start

of page
Show cursor
Hide cursor

Save cursor

Restore cursor

1

0

P
q

Erase line

Erase to start

of line

Reverse video

Normal video

V

w

Wrap at end
of line

Discard end

of line

C.4

Comments

Up one line, no affect if at top
Down one line, no affect if at bottom
Right one position, no affect if at edge
Left one position, no affect if at edge

Clear screen and home cursor to column 0, row 0
Home cursor to column 0, row 0
Up one line, if at top scroll

Erase to end of page from and including cursor position
Clear to end of line from cursor position
Insert blank line with cursor at start of line.

Move current line down

Delete cursor line and move remaining lines up one,
put blank at bottom.

Position cursor at row r column c

Colour is the 4 lsb of colour byte
Colour is the 4 lsb of colour byte

Erase to start of page including the current cursor position

Show cursor
Hide cursor

Save thecursorposition
Restore cursor, home if no saved posn

Erase line and move cursor left edge
Erase to start of line from and including the cursor

Enter reverse video mode
Exit reverse video mode

Wrap at end of line and scroll up if necessary

Overprint line end character with the next character



Escape Codes

Printers

In general an Atari printer that is designed to work with the ST will provide
the most suitable path to trouble free computer/printer interfacing and the
production of hard copy printout and screen dumps. Where a printer from
another manufacturer is to be used, the following may be of use:

If screen dumps are required, the code IB 4C (27 76 dec) should be
recognized as 'double density bit image mode' for printing 960 dots/line at 120
dots/inch on 8" wide paper (the dump is virtually the same size as the monitor
screen display) or code IB 59 (2789 dec) for the wider paper screen dumps.

It may reasonably be assumed that whatever word processor you employ, it
will provide the necessary print configuration file to make available the printers
facilities. Double clicking a non-executable file icon to print it's contents should
not cause problems as control codes are not sent within the text. The ST does
however precede the file with the code to selectdraft or NLQ(near letter quality)
print, i.e ESC,"x",n.

Some serial printers are restricted to 2400 and 600 baud operation, the ST
supports neither rate without recource to C or assembly language programming.

C.5



The Concise Atari ST Reference Guide

C.6



Keycode Definitions

Appendix D

Keycode definitions

Ascii codes D.3
GSX compatible keyscan codes D.4
VDI standard keyboard codes D.5

Note that the keycodes returned do differ for the different international
keyboards.

D.1



The Concise Atari ST Reference Guide

ASCII codes 0 to 127

Dec Ascii Dec Ascii Dec Ascii Dec Ascii

0 NUL 32 SPACE 64 @ 96 >

1 SOH 33 j 65 A 97 a

2 STX 34 " 66 B 98 b

3 ETX 35 # 67 C 99 c

4 EOT 36 $ 68 D 100 d

5 ENQ 37 % 69 E 101 e

6 ACK 38 & 70 F 102 f
7 BEL 39 ' 71 G 103 g
8 BS 40 ( 72 H 104 h

9 HT 41 ) 73 I 105 i

10 LF 42 * 74 J 106 i
11 VT 43 + 75 K 107 k

12 FF 44 / 76 L 108 1

13 CR 45 - 77 M 109 m

14 SO 46 78 N 110 n

15 SI 47 / 79 O 111 0

16 DLE 48 0 80 P 112 P
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 V

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 X

25 EM 57 9 89 Y 121 y
26 SUB 58 90 Z 122 z

27 ESC 59 / 91 [ 123 {
28 FS 60 < 92 \ 124 1

29 GS 61 = 93 ] 125 }
30 RS 62 > 94 A 126 ~

31 US 63 1 95
-

127 DEL

D.2



Keycode Definitions

GSX compatible keyscan codes

. Code Keytop . Code Keytop . Code Keytop
Dec Hex Dec Hex Dec Hex

1 01 ESC 38 26 L 75 4B left arrow

2 02 1 39 27
/ 76 4C n.u

3 03 2 40 28 ' 77 4D right arrow
4 04 3 41 29 ' 78 4E kpd +
5 05 4 42 2A left shift 79 4F n.u

6 06 5 43 2B \ 80 50 down arrow
7 07 6 44 2C Z 81 51 n.u

8 08 7 45 2D X 82 52 INSERT

9 09 8 46 2E c 83 53 DEL

10 0A 9 47 2F V 84 54 n.u to

11 0B 0 48 30 B 95 5F n.u

12 oc - 49 31 N 96 60 ISO key
13 0D CR 50 32 M 97 61 UNDO
14 0E BS 51 33 / 98 62 HELP

15 OF TAB 52 34 99 63 kpd(
16 10 Q 53 35 / 100 64 kpd)
17 11 W 54 36 right shift 101 65 kpd/
18 12 E 55 37 n.u 102 66 kpd*
19 13 R 56 38 ALT 103 67 kpd 7
20 14 T 57 39 space bar 104 68 kpd 8
21 15 Y 58 3A caps lock 105 69 kpd 9
22 16 U 59 3B Fl 106 6A kpd 4
23 17 I 60 3C F2 107 6B kpd 5
24 18 O 61 3D F3 108 6C kpd 6
25 19 P 62 3E F4 109 6D kpdl
26 1A [ 63 3F F5 110 6E kpd 2
27 IB ] 64 40 F6 111 6F kpd 3
28 1C RET 65 41 F7 112 70 kpdO
29 ID CNTL 66 42 F8 113 71 kpd.
30 IE A 67 43 F9 114 72 kpd ENTER
31 IF S 68 44 F10 115 73 n.u

32 20 D 69 45 n.u 116 74 left_m/jstk_0
33 21 F 70 46 n.u 117 75 rt m/jstk_l
34

35

22

23

G

H

71

72

47

48

HOME

up arrow
UK Keyboard

36 24 j 73 49 n.u 43 2B il

37 25 k 74 4A kpd- 96 60 \

Returned highword lowbyte from the BDOS c_conin function
n.u = not used xx_m/jstk_l=mouse/joystick button

D.3



The Concise Atari ST Reference Guide

GEM VDI standard keyboard codes

High Low Character High Low Character High Low Character
bvte bvte bvte bvte bvte bvte
03 00 Ctl 2 39 20 space 03 40 @
IE 01 Ctl A 02 21 ! IE 41 A
30 02 Ctl B 28 22 " 30 42 B

2E 03 Ctl C 2B/04 23 # 2E 43 C
20 04 Ctl D 05 24 $ 20 44 D

12 05 Ctl E 06 25 % 12 45 E
21 06 Ctl F 08 26 & 21 46 F

22 07 Ctl G 28 27 ' 22 47 G
23 08 Ctl H OA 28 ( 23 48 H
17 09 Ctl I OB 29 ) 17 49 I
24 OA CtlJ 09 2A * 24 4A J
25 0B Ctl K OD 2B + 25 4B K

26 0C Ctl L 33 2C , 26 4C L

32 0D Ctl M OC 2D - 32 4D M

31 OE Ctl N 34 2E . 31 4E N

18 OF Ctl O 35 2F / 18 4F O
19 10 Ctl P OB 30 0 19 50 P

10 11 Ctl Q 02 31 1 10 51 Q
13 12 Ctl R 03 32 2 13 52 R

IF 13 Ctl S 04 33 3 IF 53 S

14 14 Ctl T 05 34 4 14 54 T

16 15 Ctl U 06 35 5 16 55 U

2F 16 Ctl V 07 36 6 2F 56 V

11 17 Ctl W 08 37 7 11 57 W

2D 18 Ctl X 09 38 8 2D 58 X

15 19 Ctl Y OA 39 9 15 59 Y

2C 1A Ctl Z 27 3A : 2C 5A Z

1A IB Ctl [ 27 3B ; 1A 5B [
2B 1C Ctl \ 33 3C < 2B 5C \

IB ID Ctl ] OD 3D = IB 5D ]
07 IE Ctl 6 34 3E > 07 5E A

OC IF Ctl - 35 3F ? OC 5F underscore

D.4



p e
n

H ro n n o a ro 3 o o i-
j

ro a a
-

31 ro > 3 e
n

H o
d O

O
tO

i—
'O

iM
M

M
h

J
i-

i(
O

i—
ii

-
i|

—
1

1
-
1

1
-
1

1
—

1
|—

i0
J
0

J
tO

tO
|N

J
i-

it
O

tO
K

)
i-

it
O

K
)
0

J
i-

'f
O

M
N

O
a
J
O

|>
n

u
iU

>
->

^
a
N

,^
'T

iw
o

N
O

O
o

i-
iM

O
N

<
jn

i^
v

q
w

,S
J
'-

J
,0

o
ff

lO
t-

rf
^

v
jv

jv
q

W
v

jv
jv

q
v

jv
av

g
v

j^
jv

g
^

jv
av

ao
N

aN
O

N
O

N
O

N
O

-N
O

N
O

N
O

N
O

N
aN

aN
O

N
O

N
aN

O
N

|-
d

M
rj

^
W

>
^

0
°
^

^
C

jn
tl

^
0

J
to

^
o

iT
ll

T
ir

jn
c
d

>
^

0
0

0
V

i0
N

C
n

4
^

0
J
to

^
o-

j<

'—
—

N
v
;

X
^

<
f!

"
[
»

i
^
^

o
3

B
""

JC
"-

"
"—

y
o

q
^
(D

J
L

"
tf

tt
-

a
'

w r

n
O

'<
p

!

e
r
r

o

K
J
M

i
-
i
i
-
i
i
-
i
M

M
i
-
i
W

W
K

)
t
O

t
O

i
-
'[

.
J
K

)
W

H
[
x

J
h

J
W

M
a
)
N

]
N

j
N

j
N

]
N

j
\
i
N

]
N

]
o

o
r
r
i
f

,T
]0

M
^

»
fl

W
O

V
D

<
»

i-
iM

0
N

U
l*

iN
g

u
tN

)M
t0

O
tr

1
O

|T
lO

h
l(

tl
]r

jn
ff

l>
v

0
0

!>
*"

""
<

•
ro

5*
e
r
r o

ro
S n 3

"

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

0
'
<

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

i
i

i
i

i
i

i
i

i
i
i

i
r

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
<

C
^H

C
T

3
?3

0
^0

Z
g

rH
^^

^^
O

tT
ir

rl
O

r)
C

i3
>

^D
O

o
N

|C
T

N
ai

^O
Jt

o
^o

U
I

i
t
^
O
J
t
o

O
N

O
N

O
N

O
^

O
^

O
N

(
J
lU

ia
iC

jn
O

lC
jl

U
lO

lO
lO

n
C

n
(
_

n
i*

^
4

^
i^

.i
^

.*
.O

J
O

J
O

J
O

J
O

J
K

J
i—

if
O

'°
h

[<
M

rj
n

ro
>

V
O

C
O

V
|O

N
(i

i*
'i

ti
W

M
M

O
'T

iM
o

n
w

n
ij

iD
5

ff
i

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
0

'<
t
f
r o

*
*

*
*

*
*

*
i
f
^

y
i
y

i
t
n

^
y

i
U

i
y

i
y

i
V

l
i
f
l
i
T

l
i
f
l
i
j
l
H

n
i
x

l
h

f
l
h

i
j
h

r
j
h

r
l
^

v
v

v
^

^
•
i1

>
T

lf
l'

T
l>

T
l,

T
|5

J
3

4
5

'5
'5

J
5

'5
'S

'5
'y

^
N

O
0

O
N

j^
U

i*
.W

M
M

!
l>

l!
l-

l
tO

tO
tO

IO
tO

tO
tO

tO
,'-

h|
'^

lH
^|

,^
|M

^|
,^

>
|l^

N
|h

T
>

|'^
|H

f>
o

oo
ni

on
oi

4-
oj

to
h-

%
V

tI
V

>
fl

V
*f

lV
nV

nV
dV

fl
M

V
O

t
B

N
O

N
O

l
i
^

U
M

M
o

I
I

I
I

N
^

X
^

o m < g <
/)

0
)

Q
.

0
)

7
T

C
D

>
< e
x

o 0
)

-
t

Q
.

o o a C
D

C
O

o o 1
3

ro ^
< n o a r
o a ro o 3



The Concise Atari ST Reference Guide

GEM VDI standard keyboard codes cont.

High Low Character High Low Character

bvte bvte bvte bvte
66 00 *F29 53 2E Shift delete

67 00 *F30 72 00 *Ctl_ print screen
68 00 *F31 37 2A * Print screen

69 00 *F32 01 IB Escape
6A 00 *F33 0E 08 Backspace
6B 00 *F34 82 00 Alt -

6C 00 *F35 83 00 Alt =
6D 00 *F36 1C 0D CR
6E 00 *F37 1C 0A Ctl_ cr
6F 00 *F38 4C 35 Shift number pad 5
70 00 *F39 4A 2B Number pad -
71 00 *F40 4E 2B Number pad +
73 00 Ctl_ left arrow OF 09 Tab

4D 00 Right arrow OF 00 * Backtab
4D 36 Shft right arrow 4B 00 Left arrow

74 00 Ctl_ right arrow 4B 34 Shift left arrow

50 00 Down arrow 4F 00 *End

50 32 Shift down arrow 4F 31 * Shift end

48 00 up arrow
Shift up arrow

75 00 * Ctl end
48 38

51 00 * Page down
51 33 *Shift page down
76 00 *Ctl_ page down
49 00 * Page up
49 39 *Shift page up
84 00 *Ctl_ page up
77 00 Ctl_ home
47 00 Home

47 37 Shift home
52 00 Insert

52 30 Shift insert
53 00 Delete

' These scan codes are not supported by the Atari ST BIOS

D.6



/ 54 / 55 / 567 57/ 58/ 597 5A/ SB/5C7 5D~
3B /3C /3D /3E /3F /40 /41 /42 /43 /44 /

01 02 33 04 05 06 07 08 09 OA OB OC OD 29 OE

OF 10 11 12 13 14 15 16 17 18 19 1A 1E
C

52

2Bro 1E= 1F'- 2() 2" 22i 2:S 2<-I 21 i 2(5 2"7 2 3

24 60 2C 2D 2E 2F 30 31 32 33 34 35 36

38 39 3A

Keycode Definitions

62 61

52 48 47

4B 50 4D

63 64 65 66

67 68 69 4A

6A 6B 6C 4E

6D 6E 6F
72

70 71

D.7



The Concise Atari ST Reference Guide

D.8



Callable Functions

Appendix E

List of callable functions

BIOS (Trap #13) E.2
XBIOS (Trap #14) E.2
GEMDOS (Trap #1) E.4
Extended BDOS (Trap #2) E.5
GEM VDI E.6
GEM AES E.9
ikbd command set E.12
Line-A routines E.13

E.1



The Concise Atari ST Reference Guide

List of callable functions

BIOS calls (Trap #13)

. Code Function Pg. #
Dec Hex

0 00 getmpb Get and fill memory parameter block 3.4
1 01 bconstat Return character-device input status 3.4
2 02 bconin Input character to device, return when done 3.4
3 03 bconout Output character to device, return when done3.4
4 04 rwabs Read/write logical sectors from/to device 3.5

5 05 setexc Get or set vector number 3.5
6 06 tickcal Return system timer value (ms) 3.5
7 07 getbpb Return pointer to BIOS parameter block 3.5
8 08 bcostat Return character output device status 3.5
9 09 mediach Check for media change 3.5

10 0A drvmap Get/set bit map and logical drives 3.6
11 0B kbshft Set keyboard shift bits 3.6

Callable from user mode, re-entrant to three levels

Device = 0_Printer, parallel port
l_Aux, RS232 port
2_Con, screen
3_Midi
4_Keyboard

XBIOS calls (Trap #14)

. Code Function Pg. #
Dec Hex

0 00 inimous Initialize mouse packet handler 3.7
1 01 ssbrk Reserve X bytes from top memory 3.7
2 02 _physbase Get screensphysical base address 3.7
3 03 Jogbase Get screens logicalbase 3.8
4 04 getRez Get screens current resolution 3.8

5 05 _setScreen Set screen logical location 3.8
6 06 _setPalette Set hardware palette registers 3.8
7 07 _setcolor Set the palette number 3.8
8 08 _floprd Read sectors from floppy disk 3.8
9 09 _flopwr Write sectors to floppy disk 3.9

E.2



Callable Functions

XBIOS calls (Trap #14) cont.

. Code
Dec Hex

Function Pg.#

10 OA _flopfmt Format floppy disk 3.9
11 OB getdsb Get device status block pointer 3.9
12 OC midiws Write string to MIDI port 3.9
13 OD _mfpint Set MFP interrupt number 3.9
14 OE iorec Return pointer to serial device buffer record 3.10

15 OF rsconf "Configure"RS232"port" ~3T0
16 10 keytbl Set/get pointer to keyboard translation table 3.10
17 11 _random Return 24 bit pseudo random number 3.10
18 12 protobt Prototype image boot sector 3.11
19 13 Jflopver Verify sectors from floppy 3.11

20 14 scrdmp Dumpscreen toprinter
21 15 cursconf Get/set cursor blink/attributes
22 16 settime Set keyboard time and date
23 17 gettime Get time and date from keyboard
24 18 bioskeys Restore keyboard translation tables

25 19 ikbdws Write string to interrupt keyboard
26 1A jdisint Disable interrupt # on MK68901
27 IB jenabint Enable interrupt # on MK68901
28 1C giaccess Read/write sound chip register
29 ID offgibit Set port A bit to 0 atomically

3.11

3.11
3.11

3.11

3.12

3.12

3.12

3.12

3.12

3.12

30 IE ongibit Set port A bit to 1 atomically 3.12
31 IF xbtimer Set MFP timers and control registers 3.12
32 20 dosound Set pointer to sound command bytes 3.13
33 21 setprt Set/get printer configuration byte 3.13
34 22 kbdvbase Return pointer to keyboard structure 3.13

35 23 kbrate Get/set keyboard repeat rate
36 24 _prtblk Hard copy routine
37 25 vsync Wait for next vblank
38 26 supexec Execute in super mode
39 27 puntaes Throw awayAES
64 40 blitmode Get/set blitter status

Callable from user mode.

3.13

3.14
3.14

3.14

3.14
3.14

E.3



The Concise Atari ST Reference Guide

GEMDOS calls (Trap #1)

.Code
Dec Hex

0 00 p_term_o
1 01 c_conin
2 02 c_conout
3 03 c_auxin
4 04 c_auxout
5 05 c_prnout
6 06 c_rawio
7 07 c_rawcin
8 08 c_necin
9 09 c_conws

10 0A c_conrs

11 0B c_conis
14 0E d_setdrv
16 10 c_conos

17

18

11

12

c_prnos
c_auxis

19 13 c_auxos

25
26

19

1A

d_getdrv
f_setdta

42

43

2A

2B

t_getdate
t_setdate

44

45

2C
2D

t_gettime
t_settime

47

48

2F

30

f_getdta
s_version

49 31 p_termres
54 36 d_free
57 39 d_create
58 3A d_delete
59

60

3B

3C
d_setpath
f_create

61

62

3D

3E

f_open
f_close

63 3F f_read
64 40 f_write
65 41 f_delete
66 42 f seek
67 43 f_attrib
69 45 f_dup

E.4

Function Pg.#

Terminate process (use $4c) 3.15
Read character from standard input 3.15
Write character to standard output 3.15
Read character from aux device 3.15
Write character to aux device 3.15
Write character to standard print device 3.15
Raw input to standardinput 3.16
Raw input from standard input 3.16
Read character from standard input -no echo 3.16
Write null terminated string to standard o/p 3.16
Read editted string from standard input 3.16
Check status of standard input 3.16
Set default drive 3.16
Check status ofstandard output 3.16
Check status standard print device 3.16
Check status standard aux device input 3.16
Check status standard aux device output 3.17
Get current drive 3.17
Set disk transfer address 3.17
Get date 3.17
Set date 3.17
Get time 3.17
Set time 3.17

Get disk transfer address 3.17
Get version number 3.17
Terminate and stay resident 3.17
Get drive free space 3.18
Create a subdirectory 3.18
Delete a subdirectory 3.18
Set current directory 3.18
Create a file 3.18
Open file 3.18
Close file 3.18
Read file 3.19
Write file 3.19
Delete file 3.19
Seekfilepointer 3.19
Get/Set file attribute 3.19
Duplicate file handle 3.19



Callable Functions

GEMDOS calls (Trap #1) cont.

. Code
Dec Hex

Function Pg.#

70 46 f force Force file handle 3.20

71 47 d_getpath Get current directory 3.20

72 48 m alloc Allocate memory 3.20

73 49 m free Free allocated memory 3.20

74 4A m shrink Shrink size of allocated memory 3.20

75 4B p_exec Load or execute a process 3.20

76 4C p_term
f sfirst

Terminate process
Search for first occurrence of filespec

3.21

78 4E 3.21

79 4F f snext Search for next occurrence of filespec 3.21

86 56 f rename Rename a file 3.21
87 57 f_datime Get/set file date and time stamp 3.22

32 20 smode Set/get supervisor/user mode 3.23

Extended BDOS call (Trap #2)

. Cotie Function Pg.i
Dec Hex

0 00 System reset System/program control 3.25
lib 73 VDI access 3.25

200 c8 AES access 3.25

201 c9
-2 fe GDOS version test 3.25

E.5



The Concise Atari ST Reference Guide

GEM VDI functions

Op Definition
code

*1 Openworkstation
* 2 Close workstation
3 Clear workstation
4 Update workstation
5 Escape code

1 Inquire address of character cells
2 Exit alpha mode
3 Enter alpha mode
4 Cursor up
5 Cursor down

6 Cursor right
7 Cursor left
8 Home cursor

9 Erase to screen end
10 Erase to line end

11 Direct cursor address
12 Output cursor addressable text
13 Reverse video on
14 Reverse video off

15 Inquire current alpha cursor address
16 Inquire tablet status
17 Hard copy
18 Place graphic cursor
19 Remove last graphic cursor
* 20 Form advance
*21 Output window
*22 Clear display list
*23 Output bit image file
*60 Select palette
*91 Inquire palette film types
*92 Inquire palette driver state
*93 Set palette driver state
*94 Save palette driver state
*95 Suppress palettemessages
*96 Palette error inquire
*98 Update metafile extents
* 99 Write metafile item
*100 Change GEM VDI filename

*Not implemented on the Atari ST

E.6

) Use virtual
) workstation

Printer Metafile
Screen Plotter Pg. #

X X X X 4.5
X X X X 4.9
X X X X 4.9
X X X X 4.9

X X X X 4.27
X X 4.27
X X 4.27
X 4.27

X 4.27

X 4.27
X 4.27

X 4.27

X 4.28
X 4.28
X 4.28

X 4.28
X 4.28

X 4.28

X 4.28

X 4.29
X 4.29

X 4.29

X 4.29

X X 4.30

X X 4.30

X X 4.30

X X 4.30

X 4.30

vx 4.31

X 4.31

X 4.31

X 4.31
X 4.31

X 4.32

X 4.32

X 4.32
X 4.32



Callable Functions

GEM VDI functions cont.

Op Definition Printer Metafile

code Screen Plotter Pg.#

6 Polyline X X X X 4.10

7 Polymarker X X X X

8 Text X X X X

9 Filled area X X X X

10 Cell array X X X X

11 Escape code Generalized drawing primitives (GDP)
1 Bar X X X X 4.11

2 Arc X X X X

3 Pie X X X X

4 Circle X X X X

5 Ellipse X X X X

6 Elliptical arc X X X X

7 Elliptical pie X X X X 4.12

8 Rounded rectangle X X X X

9 Filled rounded rectangle X X X X

10 Justified graphics text
Set character height absolute mode

X X X X

12 X X X X 4.14

13 Set character baseline vector X X

14 Setcolourrepresentation
Set polyline linetype

X X 4.13

15 X X X X

16 Set polyline line width X X

17 Set polyline colour index X X X X

18 Set polymaker type X X X X 4.14

19 Set polymarker height X X

20 Set polymarker colour index X X X X

21 Set text face X X X X

22 Set text colour index X X X X

23 Set fill interior style X X X X 4.15

24 Set fill style index X X X X 4.15

25 Set fill colour index X X X X 4.15

26 Inquire colour representation X X X 4.23

27 Inquire cell array X X 4.25

*28 Input locator X X 4.20

*29 Input valuator, request/sample X X 4.20

*30 Input choice, request/sample X X 4.21

*31 Input string X X 4.21

32 Set writing mode X X X 4.13

*33 Set input mode X X 4.20

' Not implemented on the Atari ST

E.7



The Concise Atari ST Reference Guide

GEM VDI functions cont.
Op Definition . Printer Metafile
code Screen Plotter Pg. #
35 Inquire current polyline attributes
36 Inquire current polymarker attributes
37 Inquire current fill area attributes
38 Inquire current graphic text attributes
39 Set graphic text alignment
100 Openvirtualscreen workstation
101 Close virtual screen workstation
102 Extended inquire function
103 Contour fill
104 Set fill perimeter visibility
105 Inquire pixel
106 Set grapn text special effects
107 Set character cell height, points mode
108 Set polyline and styles
109 Copy raster, opaque
110 Transform form
111 Set mouse form
112 Set user-defined fill pattern
113 Set user-defined linestyle
114 Fill rectangle
115 Inquire input mode
116 Inquire text extent
117 Inquire character cell width
118 Exchange timer interrupt vector
119 Load fonts
120 Unload fonts
121 Copy raster, transparent
122 Show cursor
123 Hide cursor
124 Sample mouse button state
125 Exchange button change vector
126 Exchange mouse movement vector
127 Exchange cursor change vector
128 Sample keyboard state information
129 Set dipping rectangle
130 Inquire facename and index
131 Inquire current face information

The standard range of VDI function output devices include a camera and a
tablet as well as the screen, printer, plotter and metafile; Only the screen is
implemented in the Atari ST.

E.8

X X X X 4.23
X X X X 4.23

X X X X 4.23
X X X X 4.24

X X X X 4.15
X 4.9
X 4.9
X X X X

X

4.22

4.10
X X X X 4.15

4.17
X X X 4.15
X X X X 4.14

X X X X 4.13
X 4.17

X 4.17

X 4.18
X X X 4.15

X X 4.13
X X 4.10

X 4.25

X X X 4.24

X X X X 4.24

X 4.18

X 4.9
X 4.9
X 4.17

X 4.18

X 4.18

X X 4.18

X 4.18

X 4.19

X 4.19

X 4.19

X X X 4.9
X X X 4.24

X X X X 4.25



Callable Functions

GEM AES function calls

Op# Description Pg*

Application library routines

10 Initialise application APPL INIT 5.6
11 Read message from pipe APPL READ 5.6
12 Write message to pipe APPL WRITE 5.6

13
14

Find another application
Playback GEM recording

APPL FIND
APPL TPLAY

5.6
5.7

15 Record GEM session APPL TRECORD 5.7
19 Cleanup and exit APPL EXIT 5.7

Timer event routines

20 Waiting for keyboard input EVNT KEY 5.8
21 Waiting for button input EVNT BUTTON 5.8
22 Waiting for mouse input EVNT MOUSE 5.8
23 Waiting for message input EVNT MESAG 5.9
24 Waiting period

Waiting for multi-events
EVNT TIMER 5.9

25 EVNT MULTI 5.10
26 Get/set mouse clickrate EVNT DCLICK 5.10

Menu library routines

30 Toggle applicatn menu bar MENU BAR 5.12
31 Toggle menu check mark MENU ICHECK 5.12
32 Toggle menu item able MENU IENABLE 5.12
33 Toggle display video MENU TNORMAL 5.12
34 Change item menu text MENU TEXT 5.12
35 Put accessry's menu in desk MENU REGISTER 5.12

Object library routines

40 Add object to tree OBJC ADD 5.18
41 Delete object from tree OBJC DELETE 5.18
42 Draw an object or tree OBJC DRAW 5.18
43 Find object under mouse OBJC FIND 5.18
44 Compute object offset OBJC OFFSET 5.18
45 Change object tree order

Edit objects text
OBJC ORDER 5.19

46 OBJC EDIT 5.19
47 Change objects state OBJC CHANGE 5.19

E.9



The Concise Atari ST Reference Guide

GEM AES function calls cont.

Op# Description

Form library routines

Pg#

50 Monitor user/form FORM DO 5.20
51 Toggle dialog boxes FORM DIAL 5.20
52 Display alert box FORM ALERT 5.20
53 Display error box FORM ERROR 5.20
54 Centre dialog box FORM CENTER 5.20

Graphics library routines

70 Draw a rubber box GRAF RUBBERBOX 5.24
71 Drag a box around GRAF DRAGBOX 5.24
72 Draw movingbox

Draw expanding outline
GRAF MOVEBOX 5.24

73 GRAF GROWBOX 5.25
74 Draw shrinking outline GRAF SHRINKBOX 5.25
75 Test for mouse inside GRAF WATCHBOX 5.25
76 Slide box in parent GRAF SLIDEBOX 5.25
77 Return screen handle GRAF HANDLE 5.26
78 Redefine mouse form GRAF MOUSE 5.26
79 Return mouse attributes GRAF MKSTATE 5.26

Scrap library routines

80 Read clipboard directory SCRP READ 5.27
81 Write directory to clipboard SCRP_WRITE 5.27

File selector routines

90 Display file selector box

Window library routines

100 Allocate full window

101 Open window to size
102 Close window
103 Deallocate window
104 Get window data
105 Set window data

106 Find mouse window

107 Update window
108 Calculate window data

E.10

FSEL INPUT 5.28

WIND CREATE 5.29

WIND OPEN 5.29
WIND CLOSE 5.29

WIND DELETE 5.29
WIND GET 5.30
WIND SET 5.30
WIND FIND 5.32

WIND UPDATE 5.32
WIND CALC 5.32



Callable Functions

GEM AES function calls cont.

Op# Description Pg #

Resource library routines

no Load resource file RSRC LOAD 5.35
in Deallocate resource file RSRC FREE 5.35
112 Get structure address RSRC GADDR 5.35

113 Save structure index RSRC SADDR 5.35
114 Convert charaters to pixels RSRC OBFIX 5.35

Shell library routines

120 Find how created SHEL READ 5.37
121 Exit AES or run other SHEL WRITE 5.37
122 Get data SHEL GET 5.37
123 Put data SHEL PUT 5.37
124 Find filename path SHEL FIND 5.37
125 Find parameter address SHEL ENVRN 5.37

E.11



The Concise Atari ST Reference Guide

Intelligent keyboard (ikbd) command set

Code Command Function

Dec Hex
Pg.#

128 80 Reset Return keyboard to power-up status 6.3
1 01 without affecting the clock.

A break of 200ms also causes a reset
7 07 Set mouse button action 6.3
8 08 Set mouse relative position reporting 6.3
9 09 Set mouse absolute positioning 6.3
10 0A Set mouse keycode mode 6.3
11 0B Set mouse threshold 6.3
12 OC Set mouse scale 6.3
13 0D Interrogate mouse position 6.3
14 0E Load mouse position 6.4
15 OF Set Y = 0 at bottom 6.4
16 10 Set Y = 0 at top 6.4
17 11 Resume 6.4
18 12 Disable mouse 6.4

19 13 Pauseoutput
Set joystick event reporting

6.4
20 14 6.4
21 15 Set joystick interrogation mode 6.4

22 16 Joystick interrogation 6.4
23 17 Set joystick monitoring 6.4
24 18 Set fire button monitoring 6.4

25 19 Set joystick keycode mode 6.5

26 1A Disable joysticks 6.5
27 IB Set time of day clock 6.5
28 1C Interrogate time of day clock 6.5

32 20 Memory load 6.5

33 21 Memory read 6.6

34 22 Controller execute 6.6

OR 80 Status inquiries (OR 80H with command) 6.6

The status of the keyboard can be determined by interrogating the status
register in the configuration tables.

E.12



Callable Functions

Line-A routines

Dec Hex Line-A function Pg.#

20480 A000 Initialization 7.3

20481 A001 Put pixel 7.3

20482 A002 Get pixel 7.3

20483 A003 Line 7.3

20484 A004 Horizontal line 7.3

20485 A005 Filled rectangle 7.4

20486

20487
A006
A007

Line_by_line filled polygon
BitBlt (including half tone source patterns)

7.4

7.5

20488 A008 TextBlt (all 16 BitBlt logic operations) 7.5
20489 A009 Show mouse 7.5

20490 A00A Hide mouse 7.5
20491 A00B Transform mouse 7.6
20492 AOOC Undraw sprite 7.6
20493 AOOD Draw sprite 7.6
20494 AOOE Copy raster form 7.6
20495 AOOF Contour fill 7.6

E.13



The Concise Atari ST Reference Guide

E.14



Parameter Blocks

Appendix F

Parameter blocks

System
System start-up block
Boot sector parameter block

Device drivers

F.2

F.2

Device driver F.3
Device state block F.3

Floppy parameter block
Sector buffer block

F.4

F.4

Program parameter blocks
Transient program area block F.5

Load parameter block
Base page format

F.5

F.5

File header F.6
Memory parameter block

GEM parameter blocks
VDI

F.6

Parameter block F.7

Cntrl table F.7

AES
Parameter block F.8

Cntrl table F.8
Global array block

Line-A variables

F.8

Line-A tables F.9
Undocumented line-A variables F.ll

Sprite definition block F.12

Memory form definition block
Header blocks

F.12

Cartridge header block
Application header block

Run flag bits

F.13

F.13

F.13

F.1



The Concise Atari ST Reference Guide

System start-up block

0 $00 Reseth
2 $02 Vers
4 $04 Reseth
8 $08 Ostext
12 $0C Endos
16 $10 Reseth
20 $14 Magic
24 $18 Date

System

Branch to reset handler
OS version number
System reset handler
Base of Operating system
End of OS memory used
Default shell
Verification number or zero
System build date

Pointers

Boot sector parameter block

0 $00 BRA.S
2 $02 OEM's space
8 $08 Vol ser #
11 $0B BPS
13 $0D SPCs
14 $0E RES
16 $10 NFATS
17 $11 NDIRS
19 $13 NSECTS
21 $15 MEDIA

22 $16 SPF
24 $18 SPT
26 $1A NSIDES
28 $1C NHID

30 $1E boot code
511 $1FE last word
512 $200

F.2

Branch to boot code
Reserved for OEMs use
24 bit volume serial number
Number of bytes/sector
Number of sectors/cluster
Number of reserved sectors
Number of file alocation tables
Number of directory entries
Number of sectors on media
Media descriptor - not used
Number of sectors/FAT
Number of sectors/track
Number of sides on media
Number of hidden sectors-not used
Start of code, if any ?
Used for checksum



Parameter Blocks

Device drivers

Each device has one driver (Device control block-DCB) that contains entry
points to routines and constants used by the systems to initialize the device's
state during a warm-start. The routines and constants are defined as follows:

Device d river

0 $00 BREAD Read sector
4 $04 B WRITE Write sector
8 $08 BINIT Initialize drive (warm start)
12 $0C BFORMAT Format drive

16 $10 BINTR Vblank call (time-out homing)
20 $14 BRDTRK Read track
24 $18 BWRTRK Write track

28 $1C BXLATE Logical to physical translate
CSV size allocation32 $20 BCVSIZ

34 $22 BALVSIZ ALV size allocation
38 $26 BDEFINFO Default information block

42 $2A

Device drivers are stored in RAM in a device state block (DSB), the DSB
contains TOS specific data structures (the DPB and DPH) and device specific
information, such as the number of tracks, head seek rate. The DSB is allocated
during a warm-start.

Device state block

0 $00 DDPH

26 $1A DDPB
42 $2A DINFOSIZ
44 $2C DPHYSDEV

46 $2E DNTRACKS
48 $30 DSPT
50 $32 DNSIDES

52 $34 DSEEKRT
54 $36

Device parameter header
Disk parameter block
DSB size (not incl DDPH)
Device physical number
Number of tracks on device
Number of sectors/track
Number of sides /device
Floppy seek rate

F.3



The Concise Atari ST Reference Guide

Floppy parameter block

0 $00 Flock Floppylockreturn address
Callers return address4 $04 Cret

8 $08 Dmapn DMA pointer
12 $0C Obsolete
16 $10 Devno Device number
18 $12 Secno Sector number

20 $14 Trkno Track number
22 $16 Sidno Side number
24 $18 Secnt Sector count
26 $la

Sector buffer block

0 $00 BNEXT

4 $04 BBUF

8 $08 BLRU
12 $0C BFLAGS
14 $0E BDEV

16 $10 BTRACK
18 $12 BSIDE
20 $14 BSSECT
22 $16 BESECT
24 $18 BPSECT
26 $1A BSIZE

F.4

Next buffer or null

Size of buffer (512 bytes)
LRU replacement value
Valid/dirty flags
Device number

Track number
Side number

Start sector number
End sector number

Physical sector number



Parameter Blocks

Program parameter blocks

Transient program area block

Low TPA

Basepage
Text

Data

BSS

To maintain maximum
GEM DOS compatibility,
free unused memory and
lower top of stack (4A).
Determine memory
available and allocate it.

Application
user area

Load block

0

4

8

12

16

20

$00
$04
$08
$0C
$10
$14

22 $16

High TPA

Opened program fileaddress
Base address to load program
Program end address +1
Address of Base Page
Default user stack pointer
Loader control flags

0_load at bottom
l_load at top

Base page format block

0 $00 Low TPA
4 $04 Hi TPA

8 $08 Tbase
12 $0C Tien
16 $10 Dbase
20 $14 Dlen
24 $18 Bbase
28 $1C Blen

Base address of TPA
End of TPA + 1
Base address of text

Length of text
Base address of initialized data
Length of data
Base address of BSS uninitialized data
Length of BSS uninitialized data

F.5



The Concise Atari ST Reference Guide

Atari OS specific base page

32 $20 Length free memory after BSS
36 $24 Drive from which program loaded

Reserved by BDOS37 $25
56 $38 Second parsed FCB \ Command \Set
92 $5C First parsed FCB / line 1by
128 $80 Command tail and default

DMA buffer
/OS

$FF end

GEMDOS specific base page

32 $20 DTA address pointer
36 $24 Parents Base Page pointer
40 $28 Reserved
44 $2C Environ Environment string pointer
128 $80 Cmdline Command line image

File header
/ 601AH data & BSS contiguous

0 $00 BRA.Sflag \ else 601BH
2 $02 Bytes in text segment
6 $06 Bytes in data segment
10 $0A Bytes in BSS
14 $0E Bytes in symbol table
18 $12 Zero (reserved)
22 $16 Start of text segment & program execution
26 $1A Zero if no relocation bits

File header extension

(If BSS and data not contiguous:- Not supported by Atari OS)

28 $1C Start address of data segment
32 $20 Start address of BSS
36 $24

Memory parameter block

0 $00 Owner description \
# bytes in block I Memory
Start address of block I descriptor
Next link MD /
Roving pointer
Memory allocation list
Memory free list

F.6



Parameter Blocks

GEM parameter blocks

VDI parameter block

0

4

8

12

16

20

$00 contrl
$04 intin
$08 ptsin
$0C intout
$10 ptsout
$14

VDI control table

0 $00 Op code
2 $02 L ptsin
4 $04 Ljptsout
6 $06 W intin
8 $08 W intout
10 $0A
12 $0C
14 $0E

Longword addresses

Control table pointer
I/P attribute table pointer
I/P points table pointer
O/P attribute table pointer
O/P points table pointer

Function op code
I/P coordinate \ Size in \
O/P coordinate / longwords I
I/P attribute \ Size in I
O/P attribute / words /
Subfunction identification number
Device handle

Op code dependent information

Table
sizes

F.7



The Concise Atari ST Reference Guide

AES parameter block

0 $00 cntrl
4 $04 global
8 $08 int in
12 $0C int out

16 $10 addr in
20 $14 addr out
24 $18

AES control table

Longword addresses

Control table pointer
Global array pointer
I/P attribute table pointer
I/P points table pointer
O/P attribute table pointer
O/P points table pointer

$00
$02
$04
$06

10 $0A

Opcode Function op code
WJntJn I/P coordinate \ Size in \
Wjntjjut O/P coordinate / words I Table
L_addrjn I/P attribute \ Size in I sizes
Ljzddrjsut O/P attribute / longwords /

AES global array

0 $00 version

2 $02 count

4 $04 id
6 $06 private
10 $0A ptree
14 $0E reserved
18 $12 reserved
22 $16 reserved
26 $1A reserved
30 $1E

F.8

GEM AES version identification word
Maximum #concurrent applications allowed
Unique application identifier
Longword user data
Resource address tree pointer
\

I Zero



Parameter Blocks

Line-A variables

Line-A parameter table

Function

0 $00
2 $02
4 $04
8 $08
12 $0C
16 $10
20 $14
24 $18
26 $1A
28 $1C
30 $1E
32 $20
34 $22
36 $24

38 $26
40 $28
42 $2A
44 $2C
46 $2E
50 $32
52 $34

$36 54

$38 56

$3A 58

$3C 60

$3E 62

$40 64

$42 66

$44 68

Number ofvideo planes \ Canproduce special
Number ofbytes/video line / effects.
Pointer to Cntrl array
Pointer to Intin array
Pointer to Ptsin array
Pointer to Intout array
Pointer to Ptsout array
Bit planeJD \ current
Bit plane_l I colour
Bit planeJZ I value
Bit plane_3 /
-1

VDI line style equivalent
Writing mode 0_replace l_transparent

2_XOR mode 3_inverse transparent
XI coordinate
Yl coordinate

X2 coordinate
Y2 coordinate
Pointer to current fill pattern
Fill pattern mask
Multi-plane fill pattern

0_current fill pattern is single plane
l_current fill pattern is multi-plane

Clipping flag 0_no clipping
Minimum x clipping value
Minimum y clipping value
Maximum x clipping value
Maximum y clipping value
Accumulator for textblt x dda, initialize to 8000H before each call
Textblt scale factor
Scale direction 0 down

F.9



The Concise Atari ST Reference Guide

Line-A parameter table cont.

Function

70 $46 Font status
l_solid, 0_proportional or variable

X coordinate of character in font form
Y coordinate of character in font form (typically 0)
X coordinate of character on screen
Y coordinate of character on screen
Character width

Character height
Pointer to start of font data (font form)
Width of font form

Style bit 0_Thicken, bit l_lighten, bit 2_skew
bit 3_underline (ignored), bit 4_outline

Lighten text mask
Skew text mask

Text thickening additional width
Offset above character baseline for skew
Offset below character baseline for skew
Scaling flag 0_no scaling
Character rotation vector. 0_horizontal 900_vertically down etc.
.Text foregroundcolour
.Special effects buffer pointer
.Scaling buffer offset in above buffer
.Text background colour (RAM VDI only)
Copy raster form type flag (RAM VDI only)

0_opaque type, n-plane source to n-plane destination bitblt
write mode

<>0_transparent type single plane source to n-plane dest
VDI write mode

118 $76 Abort fill routine pointer (Function not available on disk based
versions of TOS)

72 $48
74 $4A
76 $4C
78 $4E
80 $50
82 $52
84 $54
88 $58
90 $5A

92 $5C
94 $5E
96 $60
98 $62
100 $64
102 $66
104 $68
106 $6A
108 $6C
112 $70
114 $72
116 $74

F.10



Parameter Blocks

Undocumented Line-A variables

The Line-A variables table contains other parameters that may be of use to
the programmer. I refer to these variables as 'undocumented' although Atari do
in fact list the variables in their reference material. These variables may change
although it is unlikely.

Function

-46 $D2 Pixel cell height. (Same as font form's height)
-44 $D4 Maximum number of cells across -1 (X)
-42 $D6 Maximum number of cells high -1 (Y)
-40 $D8 Byte offset next vertical cell. Screen width (byte)*Pixel cell height
-38 $DA Physical colour index of background color.
-36 $DC Physical colour index of foreground color.
-34 $DE Current cursor address
-30 $E2 Byte offset from screen base to top of first cell
-28 $E4 Cursor position: cell x
-26 $E6 Cursor position: cell y
-24 $E8 Cursor flash interval (in frames)
-23 $E9 Cursor countdown timer
-22 $EA Address of monospace font data. Each cell is 8 pixels wide and

byte aligned. The data format is defined in the VDI chapter.
The cells may be arbitrarily high.

-18 $EE Last ascii code in font
-16 $F0 First ascii code in font
-14 $F2 Width of font form in bytes
-12 $F4 Maximum x pixel value
-10 $F6 Address of font offset table (per VDI spec)
-6 $FA Alpha text status byte

bit 0 cursor flash 0:disabled Lenabled
bit 1 flash state 0:off l:on
bit 2 cursor visibility Odnvisible Lvisible
bit 3 end of line 0:overwrite l:wrap
bit 4 reverse video 0:on l:off
bit 5 cursor position saved 0:false l:true

-04 $FC Maximum y pixel value of the screen

F.11



The Concise Atari ST Reference Guide

Sprite definition block

0 $00
2 $02
4 $04
6 $06
8 $08
10 $0A
12 $0C

74 $4A
76 $4C

Format flag

X offset of hot-spot
Y offset of hot-spot
Format flag
Background \ Colour
Foreground / table index
Interleaved \ Background line 0
background/foreground I Foreground line 0

image of 32 words I
/ Foreground line 16

+ve -ve Colour
plottedFg Bg Fg Bg

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

Transparent
Background
Foreground
Foreground
XOR screen

Memory form definition block (MFDB)

0 $00 Memory pointer 32-bit address of pixel 0,0
4 $04 Width \ Raster area

8 $08 Height / dimensions
12 $0C Word width Pixel width/word size
16 $10 Format flag l=standard, 0=device specific
20 $14 Memory planes Number of planes in raster area
24 $18 \ Three

28 $1C 1 reserved

32 $20 / words
36 $24

F.12



Parameter Blocks

Header blocks

Cartridge header block

Prefix to application header

252 $FC Flag #$ABCDEF42 program/data
or #$FA52255Fdiagnostic

Application header block

0 $00 Next Link to next application
4 $04 Flog/ Pointer to initialize code

init or run flag (MSB)
8 $08 Run Pointer to run code
12 $0C Time DOS-format \ Time/date
14 $0E Date DOS-format / application created
16 $10 Size Application size
20 $14 Name Application name (NNNNNNNN.EEE)

Run flag bit set:

0, Run before interrupt vectors and memory initialized
1, Run before GEMDOS initialized
2, unused
3, Run before disk boot
4, unused
5, Application is a desk accessory
6, Not a GEM application. No AES calls
7, Requires command line parameters before execution

F.13



The Concise Atari ST Reference Guide

F.14



MC 68000 Instruction Summary

Appendix G

MC68000 instruction summary

Instruction summary G.2

ABCD to ADD G.2

ADDA to ANDX G.3

AND to ANDI to SR G.4

ASL to Bcc G.5
BCHG to BTST G.6

CHK to CMPI G.7

CMPM to DBcc G.8
DBT to DIVU G.9
EOR to ILLEGAL G.10

JMP to LINK G.ll
LSL to MOVE to CCR G.12

MOVE to SR to MOVEM G.13

MOVEP to NEG G.14
NEGX to ORI to SR G.15

PEA to SR to ROXL G.16

ROXR to SBCD G.17
Sec to SUBQ G.18

SUBX to TRAPV G.19
TST to UNLK G.20

Address Mode BASIC equivalents G.21
Allowable address mode types G.22

Data storage G.23
Data types G.24

Byte, word and longword G.24

BCD and BIT data types G.24

Internal registers G.25

Data registers G.25
Address registers G.25

Stack pointer G.26

Program counter G.26

Status register G.26

User byte G.26

System byte G.27

Organization of addresses in memory G.27

G.1



The Concise Atari ST Reference Guide

INSTRUCTION SUMMARY

Each Motorola MC68000 instruction is presented, many in terms of
equivalent BASIC Instructions or assembler routines. The similes are for
clarification of the use of each instruction; there is no access to the data or address
registers (Dn or An respectively) or the condition codes from BASIC and
therefore the examples which make use of these registers, and most of the
effective address modes (ea), cannot be takenliterally.

Instructions

ABCD: Add Binary Coded Decimal with Extend. Add two byte-sized binary
coded decimal numbers and the Extend bit; a dollar sign is used to indicate a
BCD number. Clear the extend bit and set the zero bit before performing this
instruction which is limited to byte-size data register operations; multibyte
additions are performed more easily in memory.

BCD addition DATA Register Memory
Addition MultibyteAddition
Byteonly MOVE #4,CCR

$7 $27 ABCD -(A0),-(A1)
ABCD $_6 ABCD $16 ABCD D0,D1 ABCD -(A0),-(A1)

$13 $43 ABCD-(A0),-(A1)

Note that the z-flag is cleared if the result is non-zero, otherwise it is
unchanged and that in memory additions the data must be stored with the most
significant digit lower in memory and the address pointers initially set to the byte
above the low order BCD digit in memory, as the only available addressing mode
is predecrement.

ADD: Add two integers, one of the integers must be the contents of a data
register.

LET Dn = Dn + ea ADD ea,Dn
LET ea = ea + Dn ADD Dn,ea

Use ADD ea,Dn where the destination is a data register.
Use ADDA where the destination is an address register.
Use ADDI or ADDQ where the source is immediate data.

G.2



MC 68000 Instruction Summary

ADDA: Add the contents of the effective address to the contents of the
destination address register.

LET An = An + ea ADDA ea,An

ADDI: Add a constant value to the contents of the destination effective
address. Use ADDQ for speed and small integers.

LET ea = ea + 999 ADDI #999,ea

ADDQ: Add a constant in the range of 1 to 8 to the contents of the effective
address. Faster addition than ADDI.

LET ea = ea + 8 ADDQ #8,ea

ADDX: Add either register to register, or predecremented memory to
memory, with extend. Use of the extend bit enables multiprecision arithmetic to
be performed, the extend bit acting as a carry between successive operations.

Dataregister addition
Memory additions Add two 64 bit integers
ADDX -(Ay),-(Ax) DOjDl andD2_D3 Lo-Hi resply

Wliere X infers the Extend bit ADD.L D0,D2 Low bits
LET Ay = Ay - 4 ADDX.L D1,D3 High bits
LET Ax = Ax - 4

POKE(Ax), PEEK(Ax) + Memory addition
PEEK(Ay) + X MOVE #4,CCR

ADDX.L -(A0),-(A1)
ADDX.L -(A0),-(A1) etc.

Note that the z-flag is cleared if the result is non-zero, otherwise it is
unchanged. For memory additions first clear the Extend bit and set the Zero flag.
The data must be stored with the most significant digit lower in memory and the
address pointers initially set the operand size above the low order digit in as the
only addressing mode is predecrement.

G.3



The Concise Atari ST Reference Guide

AND: AND the source operand to the destination operand. The source AND
data is normally used either (a) as a mask enabling a portion of the destination
operand to be examined (bits are masked by l's in the source); or (b) to clear bits
by setting the corresponding bit in the source to a zero.

LET ea = Dn && ea AND Dn,ea
LET Dn = src && Dn AND ea,Dn

If src = 3, then AND src keeps bits 0 and 1 in Dn only, the others are set to
zero.

Use AND ea,Dn where the destination is a data register.
Use ANDA where the destination is an address register.
Use ANDI where the source is immediate data.

ANDI: ANDI the immediate data to the destination effective address.

LET ea = data && ea ANDI.W #512,D0
Keep bit9 ofword only

ANDI to CCR: ANDI the data to the condition code register.

LET CCR = 26 && CCR ANDI #26,CCR

Normally bits can be tested via the condition codes without using the AND
function as a mask. Here it is used to zero a bit position where there is a zero in
the AND data; that is zero and carry (bits 0 and 2 in the CCR) are cleared.

ANDI to SR: ANDI the data to the status register is a privileged instruction
and attempted access while in user mode will trap to the privilege violation
exception vector.

LET SR = 63743 &&SR ANDI #63743,SR

Set the interrupt mask level to zero and leave unchanged the condition code
and system flags.

G.4



MC 68000 Instruction Summary

ASL: Arithmetically Shift Left the bits of the operand. The last MSB shifted
sets the carry and extend bits; the LSB is set to zero each shift. The overflow bit is
set if the sign is changed during the shift and is used to flag a change of sign. The
instruction is used for fast multiplication of *2 and *4; other values should use

MULS MSB LSB
- 0xra

LET ea = ea * 2

LET Dy = Dy *(2ADx)
LET Dy = Dy * (2A5)

The carry bit is cleared if the shift count is zero.

ASL ea (shift 1)
ASL Dx,Dy (reg modulo 64)
ASL #5,Dy (shift 1 to 8)

ASR: Arithmetically Shift Right the bits of the operand. The MSB sign bit is
retained; the last LSB shifted is used to set the carry and extend bits. This
instruction can be used for rapid integer division by 2, 4, 8 of signed numbers;
use DIVS for other divisions. . . _ _ . _ _

MSB LSBSign
bit

t
LET ea = INT(ea/2)
LET Dy = INT(Dy/(2ADx)
LET Dy = INT(Dy/(2A5)

The carry bit is cleared if the shift count is zero.

Bcc: Branch on condition a two's complement displacement from the current
program counter position (Instruction address + 2) +126 to -128 for a short branch
or +32766 to -32768 for a word branch operation, the condition cc may be:

XTO

ASR ea (shift 1)
ASR Dx,Dy (reg modulo 64)
ASR #5,Dy (shift 1 to 8)

Conditions Two's complement
arithmetic

EQ Equal To CS Carry Set GT Greater Than
NE Not Equal CC Carry Clear LT Less Than
MI Minus VS Overflow GE Greater Than
PL Plus VC No Overflow or Equal to
HI Higher Than LE Less Than or
LS Lower Than or same Equal to

IF Dn = 0 THEN GOTO yy BEQ #14
IF Dn 0 THEN GOTO label BGT label

G.5



The Concise Atari ST Reference Guide

BCHG: A bit is tested and its state reversed. If the bit was zero before the test;
that is clear, then the Zero flag is set, otherwise it is cleared.

IF BITn = 0 THEN set_Zflag:
ELSE clear_Zflag BCHG #6,ea (data modulo 8)

LET BITn = 1 - BITn BCHG Dn,ea (reg modulo 32)

BCLR: A bit is tested and then cleared. If the bit was zero before the test; that
is clear, then the Zero flag is set, otherwise it is cleared.

IF BITn = 0 THEN set_Zflag:
ELSE clear_Zflag BCLR #6,ea (data modulo 8)

LET BITn = 0 BCLR Dn,ea (reg modulo 32)

BRA: BRanch Always, a two's complement displacement branch either of
+126 to -128 bytes by a single word instruction or of +32766 to -32768 bytes by a
two-word instruction from the current program counter position (instruction
address + 2).

GOTO label BRA label
GOTO 1275 BRA #8

BSET: A bit is tested and then set. If the bit was zero before the test; that is
clear, then the Zero flag is set, otherwise it is cleared.

IF BITn = 0 THEN set_Zflag:
ELSE clear_Zflag BSET #6,ea (data modulo 8)

LETBITn = 1 BSET Dn,ea (reg modulo 32)

BSR: Branch to SubRoutine, either a two's complement displacement of +126
to -128 bytes by a single-word instruction, or of +32766 to -32768 bytes by a
two-word instruction, from the current program counter position (instruction
address +2). Return to the next instruction via an RTS from the subroutine.

GOSUB label BSR label
GOSUB 1275 BSR #8

BTST: A bit is tested. If the bit was zero; that is clear, then the Zero flag is set,
otherwise the Zero flag is cleared.

IF BITn = 0 THEN set_Zflag: BTST #6,ea (data modulo 8)
ELSE clear_Zflag BTST Dn,ea (reg modulo 32)

G.6



MC 68000 Instruction Summary

CHK: Check a data register low-order word against the two's complement
upper bound of the source operand. If the register value is less than zero or
greater than the test value, then jump to the CHK Trap exception vector.

IFDn> eaOR CHK ea,Dn
Dn < 0 THEN GOSUB chk_trap

CLR: Clear an operand sets all or part of a specified address or register to
zero.

LET ea = 0 CLR ea

MOVEQ #0,Dn is quicker than CLR.L Dn
SUBA.L An,An is quicker for memory applications

CMP: The compare instructions are used exclusively to set the condition code
registers for a subsequent conditional operation. The comparison is made by
subtracting the source operand from the destination operand and setting the
conditioncodesaccordingly; neitheroperand is altered by the instruction.

CMP ea,Dn
IF ea = Dn THEN GOTO loop BEQ loop

UseCMPA when the destinationis an address register.
Use CMPI when the source is immediate data.
Use CMPMfor memory to memory comparisons.

CMPA: Subtract the source operand from the address register and set the
condition code flags accordingly. The comparison is based on a sign-extended
source if it is a word operand. The address register is not altered.

CMPA ea,Dn

CMPI: Subtract the immediate operand from the effective address operand
and set the condition code flags accordingly; neither operand is altered. Use TST
for comparingwith zero as it is much quicker.

CMPI #999,ea

G.7



The Concise Atari ST Reference Guide

CMPM: Subtract the contents of the memory address pointed to by the
source address register from the contents of the memory address pointed to by
the destination register and set the condition code flags accordingly. Increase the
value of both address registers by the size of the operand (1,2 or 4 byte word and
longword respectively).

The main use for this instruction is comparing strings

LET Dn = length_string -1
loop loop
IF PEEK (Ay) <> PEEK (Ax) THEN

Ay = Ay + s : Ax = Ax + s
GOTO not_same same

ELSE

Ay = Ay + s : Ax = Ax + s
LET Dn = Dn -1

IF Dn = -1 THEN GOTO loop

same not same

CMPM (Ay)+,(Ax)+
BNE not_same
DBRA Dn,loop

not same Dn is the character count, s=operand size

DBcc: Test the condition and exit loop to the next instruction if the condition
is met. If the condition is not met, then decrement the low order 16 bits of the
count data register. If the count becomes -1, then exit loop and carry on with the
next instruction, otherwise branch the two's complement displacement of the
following word -32766 to +32768 from the current program counter position
(instruction address +2). The test may be one of the following:

Conditions Two's complement
arithmetic

EQ Equal To CS Carry Set GT Greater Than

NE Not Equal CC Carry Clear LT Less Than

MI Minus VS Overflow GE Greater Than

PL Plus VC No Overflow or Equal to
HI Higher Than LE Less Than or

LS Lower Than or same Equal to

G.8

DBEQ D0,loop

(Equivalent)

BEQ pass
SUB #1,D0
BPL loop

pass



MC 68000 Instruction Summary

DBT: Always branches and is of little use.

DBRA: Sometimes written DBF, it makes the branch based on the data
register count only and branches when the count reaches -1. Therefore the count
should be initialised to the required count -1. If the loop is entered via a jump or
branch at the DBcc instruction, then the count is the required count and usefully
an initial zero count will cause an immediate exit from the loop.

DIVS: Sign Divide a 32-bit data register destination operand by a 16 bit
source operand and store the integer result in the lower 16 bits of the destination
register, the remainder is stored in the upper 16 bits of the destination and keeps
the dividend sign. Division by zero causes a jump to the Divide-by-Zero Trap
exception vector. On overflow, the result is larger than 16 bits, the V-flag is set
and the operation terminated without affecting either operand.

LET Dn = Dn / ea DIVS ea,Dn

ASR ea is a fast signed divide by two

MOVEQ #2,D2
ASR D2,Dx is a quicker divide by four

Generally use DIVS and DIVU for division by a prime number, otherwise
think of an alternative as the division instruction, because of its general nature, is
not quick.

DIVU: Unsigned arithmetic divide of a 32-bit data register destination
operand by a 16-bit source operand. The integer result is stored in the lower 16
bits of the destination register and the remainder in the upper 16 bits. Division by
zero causes a jump to the Divide-By-Zero exception vector. On overflow the
result is larger than 16 bits, the V-flag is set and the operation terminated without
affecting either operand.

LET Dn = Dn / ea DIVU ea,Dn

G.9



The Concise Atari ST Reference Guide

EOR: EOR the data register source operand to the contents of the destination
operand. The source EORdata is normally used to invert the state of a bit or bits.

LET ea = Dn AA ea EOR Dn,ea

If Dn=3, then bits 0 and 1 in the effective address are inverted.

Use EORI where the source is immediate data.
There is no memory to data register operation.

EORI: EORI the immediate data to the destination effective address.

LET ea = data AA ea EORI.B #16,D0
Invert bit4 of DO

EORI to CCR:EORI the immediate data to the condition code register.

LET CCR = 4 AA CCR EORI #4,CCR
Toggle the Zerojlag

EORI to SR: EORI the immediate data to the status register. This is a
privileged instruction and attempted access while in user mode will cause a trap
to the privilege violation exception vector.

LET SR = 8192 AA SR EORI #8192,SR
Toggle thesupervisorbit

EXG: Exchange the longword contents of two registers. Referred to in many
BASICS as SWAP, which has a different meaning in the MC68000 instruction
code.

LET tmp=D0 : D0=D1 : Dl=tmp EXG D0,D1
LET tmp=A0 : A0=A1 : Al=tmp EXG A0,A1
LET tmp=D0 : D0=A0 :A0=tmp EXG D0,A0

EXT: Sign-extend a data register contents, a byte to a word or a word to a
longword, to permit operations involving mixed size data to take place.

EXTDn

ILLEGAL: The illegal instruction causes the processor to jump to the illegal
instruction trap exception process subroutine.

GOSUB Ill_Trap ILLEGAL

G.10



MC 68000 Instruction Summary

]MPJSR: JMP and JSR are long forms of BRA and BSR, the main difference
being the jump instruction's ability to access any part of memory whereas the
branch instructions are limited to a relative +/-32K bytes jump.

JMP: Jump to a routine in memory specified by the effective address, either
absolute or relative to the current program counter position.

GOTO ea JMP ea

JSR: Jump to a subroutine in memory specified by the effective address,
either absolute or relative to the current program counter position

GOSUB ea JSR ea

LEA: Load Effective Address loads a calculated effective address into an

address register. The calculated address can be the sum of two registers, one
must be an address register, and a displacement which provides the addition of
two registers and a displacement without affecting either register, in a single
instruction.

LET An = Start_of_text_address LEA text,An
LET An = Start_of_table LEA tabl,An

LET AO = Al + D2 +64 LEA 64(Al .D2),A0

LINK: LINK enables a block of memory, part of the stack, to be temporarily
reserved for a specific purpose; that is an index table, a text string, an array etc.
and the space recovered when the requirement has passed.

DIM A(64) LINK An,#-64

Saves a block of 64 bytes in memory. The original value of An is preserved on
the stack and will be recovered on UNLK. The current value of An is the start of

the data space which may be most easily accessed via indirect with displacement
or indirect with index addressing modes.

G.11



The Concise Atari ST Reference Guide

LSL: Logically Shift Left the bits of the operand. The MSB sets the carry and
extend bits, the LSB is set to zero.

The carry bit is cleared if MSB LSB
theshift count is zero. IX/CI'

LET ea = ea * 2 LSL ea (shift 1)
LET Dy = Dy *(2ADx) LSL Dx,Dy(reg modulo 64)
LETDy = Dy *(2A5) LSL #5,Dy (shift 1 to 8)

LSR: LogicallyShift Right the bits of the operand. The MSB is set to zero and
the LSB sets the carry and extend bits. iv/iod I OD

The carry bit is cleared if MOD LOP
the shift count is zero 0 X70

LET ea = INT(ea/2) LSR ea (shift 1)
LETDy = INT(Dy/(2ADx) LSR Dx,Dy (reg modulo 64)
LETDy = INT(Dy/(2A5) LSR #5,Dy (shift 1 to 8)

MOVE: Move the byte, word or longword contents of the source effective
address to the destination effective address.

MOVE ea,ea
LET Dl = DO MOVE D0,D1
LET SP = SP-4 : POKE(SP),D7 MOVE D7,-(SP)
POKE(SP),D7 : LET SP = SP+4 MOVE (SP)+,D7

Use MOVEA where the destination is an address register.

MOVE from SR: Save the word contents of the status register in the effective
address register or memory location. ** Be careful as this instruction is privileged
in the MC68010 and MC68020 instruction sets, programers should try not to use it
in user state.

MOVE SR,ea
LET DO = PEEK_W(SR) MOVE.W SR,D0

MOVE to CCR: Move the contents of the source operand WORD into the
condition code register. Only the low-order byte is used; the upper byte is
ignored.

MOVE ea,CCR
POKE_W(CCR),4 MOVE #4,CCR

Set the Zero flagandclear all others.

G.12



MC 68000 Instruction Summary

MOVE to SR: Move the contents of the source operand into the status
register. This is a privileged instruction and attempted access while in user mode
will cause a trap to the privilege violation exception vector.

MOVE ea,SR
POKE_W(SR),1792 MOVE #1792,SR

Clear all flags, set userstate,andset interrupt mask to levelseven.

MOVE USP: Move the contents of the user stack pointer to or from the
specified address register. This is a privileged instruction and attempted access
while in user mode will cause a trap to the privilege violation exception vector.

LET A3 = USP MOVE USP,A3
LET USP = A3 MOVE A3,USP

MOVEA: Move the contents of the source effective address to the destination

address register. Byte-sized operations are not permitted.

LET A3 = PEEK_W(192) MOVEA.W 192,A3
LET AO = PEEK_L(4) MOVEA.L 4,A0

MOVEM: Move multiple registers to or from memory which permits the
transfer of a blockof specified registers to and from memory in a predetermined
sequence by one instruction.

LET A7=A7-4 : POKE_L(A7),D0 MOVEM.L #57344,-(A7)
LET A7=A7-4 : POKE_L(A7),Dl
LET A7=A7-4 : POKE_L(A7),D2

MOVEM.L (A7)+,#1860

Either of these instructions save registers DO, Dl and D2

MOVEM.L # 7,24(A7)
or MOVEM.L #57344,-(A7)

and to recover the registers DO, Dl and D2 either
MOVEM.L 24(A7),#7

or MOVEM.L (A7)+,#7

** The predecrement mode of addressing values the registers in reverse order
for the register list mask (DO - bit 15, A7 - bit 0), permitting push-on, pull-off on a
last in-first out basis.

G.13



The Concise Atari ST Reference Guide

MOVEP: Move data to or from a data register and alternate bytes in memory,
enabling the MC68000 to interface with 8-bit peripheral devices. The data is
transferred on either the high half of the data bus D8-D15, even addresses, or the
low half D0-D7, odd addresses, to memory occupying alternate bytes in the
processor's memory map. The data is transferred in high-low order.

POKE_W(7+65536),Dn MOVEP Dn,d(Ay)
LET Dn = PEEK_W(7+65536) MOVEP 7(Ay),Dn

This is the ONLY instruction that provides word and longword access at odd
addresses.

MOVEQ: Move sign-extended 32-bit immediate data in the range of +127 to
-128 to a data register. A fast means of loading small positive and negative
integers into a data register.

LET DO = 0 MOVEQ #0,D0

MULS: Multiply two signed 16-bit operands. Only the low-order 16-bits are
used from both operands for the multiplication, the result being the 32-bit
product in the destination data register.

MULS ea,Dn

ASL ea is a fast signed multiply by two.

MULU: Multiply two unsigned 16-bit operands. Only the low- order 16-bits
are used from both operands for the multiplication, the result being the 32-bit
product in the destination data register.

MULU ea,Dn

NBCD: Negate Decimal with Extend subtracts the destination byte-sized
operand and the extend bit from zero using decimal arithmetic.

NBCD ea

Extend bit clear, the ten's complement is produced.
Extend bit set, the one's complement is produced.

NEG: Negate subtracts the destination operand from zero, producing the
two's complement of a byte, word or longword operand.

NEGea

G.14



MC 68000 Instruction Summary

NEGX: Negate with extend subtracts the destination operand and the extend
bit from zero, producing the two's complement of a byte, word or longword
operand.

NEGX ea

NOP: No OPeration has no effect other than to increment the program
counter by 2. Its use is generally either for creating a space in code which may be
used later on for adding a subroutine call, for writing text etc. or for deleting
parts of code, especially test routines, without the need for recompiling.

NOP

NOT: Logically complement, producing the one's complement of the
operand.

NOTea

OR: Or the source to the contents of the destination data register. The source
OR data is normally used to set specific bits of an operand.

LET Dn = src I I Dn OR ea,Dn

If src = 3, then OR src sets bits 0 and 1 in Dn; the other bits are left unchanged.

Use OR ea,Dn where the destination is a data register.
Use ORI where the source is immediate data.

ORI: ORI the immediate data to the destination effective address.

ORI.W #512,D0
LET ea = data I I ea Set bit9 ofword, others unchanged

ORI to CCR: ORI the data to the condition code register.

LET CCR = 511 CCR ORI #5,CCR

OR is used to set bit positions; that is Zero and Carry (Bits 0 and 2 in the
CCR) are set, the others are unchanged.

ORI to SR: ORI the data to the status register

LET SR = 1792 I I SR ORI #1792,SR

Set the status register interrupt mask to level seven, all other conditions
unchanged. This is a privileged instruction and attempted access from user mode
will cause a trap to the privilege violation exception process routine.

G.15



The Concise Atari ST Reference Guide

PEA: Push effective address pushes a longword-computed address onto the
current stack. It is useful for passing parameters to a subroutine which are
accessed via an address register indirect with displacement instruction, the
parameter may be removedfrom the stackprior to return if necessary.

Access parameter
Tidy stack

sprog

PEA param
JSR sprog

MOVEA.L 4(SP),A0
MOVE.L (SP)+,(SP)

RTS

RESET: Reset external devices by asserting the reset line. There is no affect on
the processor other than an increase of two in the value of the program counter.
This is a privileged instruction and attempted access while in user mode will
cause a trap to the privilege violation exception vector.

RESET

ROL: ROtate without extend Left. The MSB is rotated to the LSB and the
carry; the other bits are shifted up one. The carry bit is set to the extend bit for a

shift count of zero

ROL ea (shift 1)
ROL Dx,Dy (reg modulo 64)

»4g ROL #5,Dy (shift 1to 8)
ROR: ROtate without extend Right. The LSB is rotated to the MSB and the

carry; the other bits are shifted down one. The carry bit is set to the extend bit for
a shift count of zero.

CJ ,
•1—•

. :

MSB

c

F
LSB

ROR ea (shift 1)
ROR Dx,Dy (reg modulo 64)
ROR #5,Dy (shift 1 to 8)

ROXL: ROtate with eXtend Left. The MSB is rotated to the extend bit and the

carry, the extend bit is rotated to the LSB and the other bits are shifted up one.
The carry bit is set to the extend

bit for a shift count of zero.
ROXL ea (shift 1)
ROXL Dx,Dy (reg modulo 64)

MSB LSB ROXL #5,Dy (shift 1 to 8)

x/c

G.16



MC 68000 Instruction Summary

ROXR: ROtate with eXtend Right. The LSB is rotated to the extend bit and
the carry, the extend bit is rotated to the MSB and the other bits are shifted down
one. The carry bit is set to the extend bit for a shift count of zero.

x/c
ROXR ea (shift 1)
ROXR Dx,Dy (reg modulo 64)

MSB LSB ROXR #5'°y (shift l to 8>
RTE: Return from Exception. The status register and the program counter are

pulled from the current (supervisor) stack. This instruction is privileged and
attempted access while in user mode will cause a trap, to the privilege violation
exception vector.

(SP)+,SR RTE
(SP)+,PC

RTR: Return and Restore. The condition code and then the program counter
are pulled from the current stack.

(SP)+,CCR RTR
(SP)+,PC

RTS: Return from Subroutine. The program counter is pulled from the
current stack.

(SP)+,PC RTS

SBCD: Subtract Decimal with Extend. Subtrract a byte-sized binary coded
decimal number and the extend bit from the destination operand byte using
decimal arithmetic and store the result in the destination location.

BCD subtraction Memory
Multibyte Subtraction

SBCD $ 7 SBCD $27
$_6 $16 MOVE #4,CCR
$ 1 $11 SBCD D0,D1

Note that the z-flag is cleared if the result is non-zero, otherwise it is
unchanged. For memory additions the data must be stored with the most
significant digit lower in memory and the address register pointers initially set to
the byte above the low-order BCD digit. The only memory addressing mode is
predecrement.

G.17



The Concise Atari ST Reference Guide

Sec: Set according to condition. The specified condition is tested and the byte
specified set to all ones if true or all zeros if false. The condition may be:

Conditions Two's complement
arithmetic

EQ
NE

MI

PL

HI
LS

Equal To
Not Equal
Minus

Plus

Higher Than
Lower Than

or same

CS

CC

VS

VC
T

F

Carry Set
Carry Clear
Overflow

No Overflow

True

False

GT Greater Than

LT Less Than
GE Greater Than

or Equal to
LE Less Than or

Equal to

Sec ea

STOP: Load the status register and Stop. The immediate operand is put into
the status register and the program counter advanced to the next instruction and
then stopped. Execution only resumes when a trace, interrupt or reset exception
occurs.

STOP #7

SUB: Subtract the source from the destination. One of the integers must be
the contents of a data register.

LET Dn = Dn - ea

LET ea = ea - Dn

SUB ea,Dn
SUB Dn,ea

Use SUB ea,Dn where the destination is a data register.
Use SUBA where the destination is an address register.
Use SUBI or SUBQ where the source is immediate data.

SUBA: Subtract the contents of the effective address from the contents of the

destination address register.

LET An = An - ea SUBA ea,An

SUBI: Subtract a constant value from the contents of the destination effective

address. Use SUBQ for speed and small integers.

LET ea = ea - 999 SUBI #999,ea

SUBQ: Subtract a constant of from 1 to 8 from the contents of the effective
address. Faster subtraction than SUBI.

LET ea = ea SUBQ #8,ea

G.18



MC 68000 Instruction Summary

SUBX: Subtract either register to register, or predecremented memory from
memory, with extend. The extend bit enables multiprecision arithmetic to be
performed, acting as a borrow between successive operations.

Dataregister subtractions
Memory subtractions Subtract two 64 bit integers
SUBX-(Ay),-(Ax) D0_D1 andD2JD3 Lo-Hi resply

where X infers Extend bit SUB.L D0,D2 Low bits
LET Ay = Ay - 4 SUBX.L D1,D3 High bits
LET Ax = Ax - 4

POKE(Ax),PEEK(Ax) - Memory subtractions
PEEK(Ay) - X MOVE #4,CCR

SUBX.L -(A0),-(A1)
SUBX.L -(A0),-(A1)

Note that the z-flag is cleared if the result is non-zero, otherwise it is
unchanged. For memory additions first clear the Extend bit and set the Zero flag.
The data must be stored with the most significant digit lower in memory and the
address pointers initially set the operand size above the low order digit.
Predecrement is the only memory addressing mode.

SWAP: Swap register halves exchanges the high-order word of a data
register with the low-order word. This instruction provides access to the
low-order byte of the high word.

Dn0-15<—>Dn 16-31

TAS: Test and set an operand, compares the operand byte with zero and sets
the condition codes accordingly. If the byte is zero, the Z_flag is set; if the MSB is
non-zero, then the N_flag is set. The MSB of the operand is then set.

TASea

TRAP: Trap. The processor commences execution at the relevant trap
exception vector address.

TRAP#n

TRAPV: Trap on Overflow. The processor commences execution at the trap
on overflow exception vector address.

TRAPV

G.19



The Concise Atari ST Reference Guide

TST: Test an operand. The operand is compared with zero and the condition
codes set accordingly.

TSTea

Use in preference to CMPI #0,ea

UNLK: Unlink. The stack pointer is loaded from the specified address
register; the address register is then loaded with the longword pulled from the
top of the stack and the linked space deallocated.

UNLK An

Key

&& bitwise AND
AA bitwise EOR
I I bitwise OR

G.20



MC 68000 Instruction Summary

Address mode
Assembler language and BASIC equivalents

Address Mode Source

Data register
direct

Dn MOVE.L D2,D0
LET DO = D2

Address register An
direct
Address register (An)
indirect

Address register (An)+
indirect with

postincrement

MOVE.L A0,D0
LET DO = AO

MOVE.L (A0),D0
LET D0,PEEK_L(A0)
MOVE.L (AO)+,D0
LET D0,PEEK_L(A0)
LET AO = AO + 4

Address register
indirect with
predecrement

^An) MOVE.L -(AO),D0
LET AO = AO - 4

LET D0,PEEK_L(A0)
MOVE.L 9(A0),D0
LET DO = PEEK L(9 + AO)

Destination

MOVE.L #999,D0
LET DO = 999

MOVEA.L #999,A0
LET AO = 999

MOVE.L #999,(A0)
POKE_L (A0),999
MOVE.L #999,(A0)+
POKE_L (A0),999
LET AO = AO + 4

MOVE.L #999,-(A0)
LET AO = AO - 4

POKE_L (A0),999
MOVE.L #999,9(A0)
POKE_L(A0+9),999

Address register d(An)
indirect with displacement
Address register d(An.Ri)
indirect with index

MOVE.L 9(A0.D2),D0 MOVE.L #999,9(A0.D0)
LET D0=PEEK_L(9+A0+D2) POKE_L(A0+9+D0),999

Absolute short $xxxx
ABS.S

Absolute long $xxxxxx
ABS.L

Program counter d(PC)
with
displacement
Program counter d(PC.Ri)
with

index

Immediate #$xxx
Imm

Notes

MOVE.L 1024,D0
LET DO = PEEK_L(1024)
MOVE.L 163840,D0
LET DO=PEEK_L(163840)

MOVE.L #999,1024
POKE_L(1024),999
MOVE.L #999,163840
POKE_L(163840),999

MOVE.L 9(PC),D0
LET D0=9 + Contents of

Program Counter
Not legal

MOVE.L 9(PC.D2),D0
LET D0=9+D2+Contents of

Program Counter
MOVE.L #65536,D0
LET DO = 65536

Register DO is used
for the destination
as an example; any
other valid effective
address may be used.

Not legal

Not legal

The source is defined
as immediate data
value 999; any other
valid effective
address may be used.

All equivalents have been defined as having longword operands, byte and
word-sized operands may also be used.

G.21



The Concise Atari ST Reference Guide

Allowable address mode types
Alt Dat Alt Dat Dat Con Con Con

All Mem Alt Add Add Add Add Alt Add
Add Add Mod Mdl Md2 Mdl Add Md2

Srce Dest Dest Dest Srce Dest Dest Srce

Dn X X X X X X

An X X

(An) X X X X X X X X X X

(An)+ X X X X X X X X

-(An) X X X X X X X X

d(An) X X X X X X X X X X

d(An.Ri) X X X X X X X X X X

ABS shrt X X X X X X X X X X

ABS long X X X X X X X X X X

d(PC) X X X X X.

d(PC.Ri) X X X X X

Imm X X

ADD ADD ADDI NBCE ADDC )AND BTST JMP MOVI:m

ADDA AND ANDI NEG SUBQ CHK JSR reg MOVEM

CMP OR BCHG NEGX DIVS LEA to mem

CMPA SUB BCLR NOT DIVU PEA mem to

MOVI BSET ORI reg

h iOVEA ASL CLR MOVI

SUB ASR CMPI Sec toCCI I

SUBA ROXL EOR MOVI

ROXK EORI SUBI toSR

ROL MOVI iTAS

ROR TST MULS

LSL MOVI MULt J

LSR frSR OR

Alt = Alterable Mod = Mode Mdl = Model
Mem = Memory Dat = Data Md2 = Mode2
Add = Address Con = Control

G.22

\ Types of addressing mode
I definitions used by Motorola
/ to describe allowable modes.



MC 68000 Instruction Summary

Data storage

The MC68000 accesses two internal locations for storage:

Internal registers, of which there are 17, store the data inside the
microprocessor itself. They are very limited in the amount of data they can store,
but provide extremely fast access.

ST RAM/ROM, where data access is still quick, but not as fast as the internal
register data access.

EXTERNAL
DATA

REGISTERS
PROCESSOR
MEMORY

RAM ADDRESS

REGISTERS(Random
access memory)

PC
ROM

(READ ONLY
MEMORY) SR

External data
storage
(Hard/floppy disk)

Atari ST

Internal memory MC68000 processor
devices internal register layout

G.23



The Concise Atari ST Reference Guide

Data types

The MC68000 microprocessor supports five different data types; some
instructions are limited to a specific data type, but mostly there is an allowable
range with the default of a word. Where choice is not implicit, it is defined in the
instruction word extension as either byte, word or longword.

Byte, Word and Longword data types

Word

|MSB LSB]
HIGH ORDER BYTE

LOW ORDER BYTE

31 23 15 7 0

Byte

l

DRDERI

Longword-

HI MID ORDER BYTE LOW BYTE

HIGH BYTE LO MID ORDER BYTE

^ Lonoword lsbJ

BCD and BIT data types

G.24

Bit data
MSB LSB

Byte |7| 61 5I4I 31 21 1 I 0

BCDO BCD 1
MOST SIGNIFICANT LEAST SIGNIFICANT

BCD DIGIT BCD DIGIT



MC 68000 Instruction Summary

Internal registers

The Motorola 68000 has seventeen 32-bit registers, a 24-bit program counter
and a 16-bit status register. Eight of the 32-bit registers (DO to D7) are used as
data registers for operations involving single bit, BCD (4-bit), byte (8-bit), word
(16-bit) and longword (32-bit) data. The remaining nine registers are split into
two: seven of them (A0 to A6) act as address registers, and two act as stack
pointers. Only one stack pointer may be accessed at a time, hence the convention
of calling both of them A7. The address register operations are based on words
and longwords only.

Data registers

Data storage of byte, word and longword is always performed in the part of
the data registers shown; unused parts of the register are not altered.

31 16 15 8 7 0

Bvte

Word

I
Lonaword

DO
D1
D2
D3
D4
D5
D6
D7

Eight data
registers

Address registers

The address registers are used as pointers to user stacks, as base address
registers and temporary storage for computed addresses that are not to affect the
Status Register. Address storage is always performed in the part of the address
register shown. When used as a destination operand, the entire address is
changed regardless of the operation size. Address registers do not support
byte-sized operations as either source or destination. Words are sign- extended to
longwords before an operation is performed.

Word

Lonqwon

A0
A1
A2
A3
A4
A5
A6

Seven
address
registers

G.25



The Concise Atari ST Reference Guide

Stack pointer

The user stack pointer typically saves subroutine returns when in user mode.
The supervisor stack pointer points to a stack that saves the status register
contents during trap and interrupt routines as well as the supervisor subroutine
returns. Only one of the stack pointers is addressable at a time, so they are both
called A7. Bytes pushed onto a stack are stored in the high order half of the word.

31

User stack pointer
Supervisor stack pointer

A7
A7

Two Stack
Pointers

Program counter

The program counter provides the MC68000 with an address range of 16
Megabytes. As instructions are based on word-sized operands, the counter must
always hold an even address. Attempts to address odd-numbered locations will
cause an error-trap.

31 23

oooooood

Status register

15 8 7

The status register is split into user and system bytes. The user byte is
evaluated for the condition codes used in the branching instructions. The codes
are affected by all instructions that alter the contents of the data registers or
memory, but not by changes to the address registers.

G.26

User byte
Condition codes

|x|x|x|4|312 1110

Not used

Bit 0 - Carry
Bit 1 - Overflow
Bit 2 - Zero
Bit 3 - Negative
Bit 4 - Extend



MC 68000 Instruction Summary

The unused bits in the status register are read as zero. They are reserved for
the MC68020 instruction set.

System byte

-^—r—,—,—, , , | - | Bits 8-10 Interrupt mask (0-7)
15|x 113| x Ix [10| 9 I8 | Bit13. Supervisor state

Bit 15 - Trace mode

x = not used

Interrupt
mask

Organization of addresses in memory

Byte

Longword

\

Byte

Low byte_

High byte"

Memory top

Any address

+3

+2

+1
-— Even address

7-0
15-8
23-16
31-24

For word and longword
memory operations, the high
byte is on a word boundary
(even address), the following
bytes are in order higher in memory.

By convention, system stacks
grow downwards in memory.

Word Low byte
High bvte

+1

Even address Stack

Memory bottom

G.27



The Concise Atari ST Reference Guide

G.28



MC 68000 Instruction Codes

Appendix H

MC68000 instruction codes

General H.2
Instruction word parsing analysis H.2
Instruction codes H.4

Bit manipulation, move peripheral and immediate
instructions H.4

Move byte instruction H.5
Move longword instruction H.5
Move word instruction H.5

Miscellaneous instructions H.6
Add Quick, subtract quick, set conditionally and

decrement instructions H.7

Branch conditionally instructions H.8
Conditional tests H.8
Move quick instructions H.9
OR, divide and subtract decimal instructions H.9
Subtract and subtract extended instructions H.9
Emulation instruction, type 1010 H.10
Compare, exclusive OR instructions H.10
AND, multiply, add decimal, exchange instructions H.ll
Add and add extended instructions H.ll
Shift and rotate instructions H.12
Emulation instructions, type 1111 H.13

Address modes

Encoding H.14

H.1



The Concise Atari ST Reference Guide

Motorola MC68000 Coding
The Motorola MC68000 series of microprocessors rationalize instruction code

allocation by segmenting the 16-bit Operation Word into five smaller blocks, each
of which has a fairly consistent meaning.

Operation word instruction

1514131211 109 8 7 6 5 4 3 2 10

type dmod dreg smod sreg

Instruction Word Parsing Analysis

Type

15| 14| 13 13

The types 0 to 15 instruction codes (16 classes) are allocated as follows:

Type Instructions Range

0 Bit manipulation, Move Peripheral and Immediate instructions
1 Move byte Instructions
2 Move longword instructions
3 Move word instructions
4 Miscellaneous instructions

5 Add Quick, Subtract Quick, Set conditionally and Decrement instrs.
6 Branch conditionally instructions
7 Move Quick instructions
8 OR, Divide and Subtract decimal instructions.
9 Subtract, Subtract extended instructions.
10 Unassigned
11 Compare, Exclusive OR instructions
12 AND, Multiply, Add decimal and Exchange instructions
13 Add, Add extended instructions
14 Shift and Rotate instructions
15 Unassigned

H.2



MC 68000 Instruction Codes

Dreg

11 10 9

Dreg has three main uses, normally holding the destination address in the
general move instruction, one of the two register numbers for use in the specified
instruction or embedded data for use in the add and subtract quick instructions.

Dreg only refers to a register in those instances where the instruction has two
register operands.

Dmod

8 7 6

Dmod has two main uses, specifying the effective address mode of the
destination operand in the general move instruction or, in most other cases it
defines the size of the operation to be performed.

Smod

5 4 3

Smod usually defines the effective address mode of the instruction, the
source operand for the move instruction.

Sreg

2 1 0

Sreg defines the effective address register, usually the source.

H.3



The Concise Atari ST Reference Guide

Instruction codes

Bit Manipulation,Move Peripheral and Immediate
Instructions - Type 0

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

BCHGDn,ea"~ "~Dn~" '"T" ""ea- "ZaTaTtaTd "-""-"" A~-"~-"
BCHG data,ea 4 1 -ea- dataltadd - - A - -
BCLRDn,ea Dn 6 -ea- dataltadd - - A - -
BCLRdata,ea 4 2 -ea- dataltadd - - A - -
BSET Dn,ea Dn 7 -ea- dataltadd - - A - -
BSET data,ea 4 3 -ea- dataltadd - - A - -
BTST Dn,ea Dn 4 -ea- dataddmd2 - - A - -
BTST data,ea 4 0 -ea- dataddmd2 - - A - -

MOVEP Dx,d(Ay) Dx
MOVEP d(Ay),Dx Dx

1 lx

1 Ox

1

1

Ay
Ay

-

ORI data,ea
ORI data,CCR
ORI data,SR

0

0

0

Oss

0

1

7

7

-ea-

4

4

dataltadd - A

A A

A A

A 0 0

AAA

AAA

ANDI data,ea
ANDI data,CCR
ANDI data,SR

1

1

1

Oss

0

1

7

7

-ea-

4

4

dataltadd
A

A

A

A

A

A 0 0

AAA

AAA

SUBI data,ea 2 Oss -ea- dataltadd A A AAA

ADDI data,ea 3 Oss -ea- dataltadd A A AAA

EORI data,ea
EORI data,CCR
EORI data,SR

5

5

5

Oss

0

1

7

7

-ea-

4

4

dataltadd
A

A

A

A

A

A 0 0

AAA

AAA

CMPI data,ea 6 Oss -ea- dataltadd - A AAA

H.4



MC 68000 Instruction Codes

Move byte instruction - Type 1

Instruction

Syntax
Dreg Dmod Smod Sreg
11-9 8-6 5-3 2-0

Address

Mode

Condition Coc

X N Z V C

MOVE.B ea,ea
source

destination
-ea-

-ea-

ALL*

dataltadd

- A A 0 0

*Address register direct mode is not permitted

Move longword instruction - Type 2

Instruction

Syntax
Dreg
11-9

Dmod

8-6
Smod Sreg
5-3 2-0

Address
Mode

Condition Codes
X N Z V C

MOVE.L ea,ea
source

destination -ea-

-ea- ALL

dataltadd

- A A 0 0

Instruction
Syntax

MOVE.W ea,ea
source

destination

Move word instruction - Type 3

Dreg Dmod Smod Sreg Address Condition Codes
11-9 8-6 5-3 2-0 Mode X N Z V C

-ea-

-ea-

ALL

dataltadd

A A 0 0

. x Size s s Size Condition Codes

. 0 = Word 0 0 = Byte u = Undefined
1 = Longword 01= Word A = Affected

10= Longword - = Unaffected
. ea = Effective address 0 = Cleared
CCR = Condition code register 1 =Set
. SR = Status register

H.5



The Concise Atari ST Reference Guide

Miscellaneous instructions - Type 4

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

NEGXea" 0™ ""6'sT" ""ea-"" ""dataltadd "a A A A A
CLRea 1 Oss -ea- dataltadd - 0 1 0 0
NEGea 2 Oss -ea- dataltadd A A A A A

NOT ea 3 Oss -ea- dataltadd - A A 0 0

Dn

Dn

Dn

4

v

LINKAn,data 7 1 2 An
UNLK An 7 1 3 An
MOVEAn,USP 7 1 4 An
MOVEUSP,An 7 1 5 An

MOVE SR,ea
MOVE ea,CCR
MOVE ea,SR

0

2

3

3

3

3

-ea-

-ea-

-ea-

dataltadd -----

dataddmdl A A A A A
dataddmdl A A A A A

SWAP Dn

EXT.W Dn

EXT.L Dn

4

4

4

1

2

3

0

0

0

Dn

Dn

Dn

- A A 0 0

- A A 0 0

- A A 0 0

NBCD.B ea

PEAea

4

4

0

1

-ea-

-ea-

dataltadd A u A u A
conaddmdl -----

MOVEM list,ea
MOVEM ea,list

4

6

Olx

Olx

-ea-

-ea-

conaltadd -----

conaddmd2 -----

TSTea

TASea

5 '

5

Oss

3

-ea-

-ea-

dataltadd - A A 0 0
dataltadd - A A 0 0

ILLEGAL 5 3 7 ' 4 -----

TRAP data 7 1 00 WW -----

H.6



MC 68000 Instruction Codes

Miscellaneous instructions - Type 4 cont.

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

RESET 7 1 6 0
NOP 7 1 6 1

STOP data 7 1 6 2
RTE 7 1 6 3

RTS 7 1 6 5
TRAPV 7 1 6 6
RTR 7 1 6 7

JSRea 7 2 -ea-

JMPea 7 3 -ea-

CHK.W ea,Dn
LEA.L ea,An

Dn

An
-ea-

-ea-

A A A A A

A A A A A

A A A A A

conaddmdl
conaddmdl

dataddmdl - A u u u
conaddmdl -----

Add Quick,Subtract Quick, Set conditionally, Decrement
instructions -Type 5

Instruction
Syntax

Dreg
11-9

Dmod
8-6

Smod
5-3

Sreg
2-0

Address Condition Coc
Mode X N Z V C

AddQ data,ea
SUBQ data,ea

data

data
Oss
1 s s

-ea-

-ea-

altaddmod A A A A A
altaddmod A A A A A

Sccea c c cc 11 -ea- dataltadd -----

DBcc Dn,data c c c c 11 1 Dn -----

. x Size s s Size Condition Codes

. 0 = Word 0 0 = Byte u = Undefined
1 = Longword 0 1= Word A = Affected

10= Longword - = Unaffected
. ea = Effective address 0 = Cleared
CCR = Condition code register 1 =Set
. SR = Status register
cccc = 4-bit Condition code
vvvv = 4-bit Vector address

H.7



The Concise Atari ST Reference Guide

Branch conditionally instruction - Type 6

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

Bcc data c c c c displacement (bits 0-7) -----

BSRdata 0 1 displacement (bits 0-7) -----
BRA data 0 0 displacement (bits 0-7)

Conditional tests for branch instructions

cc Mnemonic Condition

0 T TRUE

1 F FALSE

2 HI HIGH

3 LS LOW or SAME
4 CC CARRY CLEAR
5 CS CARRY SET

6 NE NOT EQUAL
7 EQ EQUAL
8 VC OVERFLOW CLEAR

9 VS OVERFLOW SET

10 PL PLUS

11 MI MINUS

12 GE GREATER or EQUAL
13 LT LESS THAN

14 GT GREATER THAN

15 LE LESS or EQUAL

There is no Branch TRUE BT or Branch FALSE BF, the codes are used by the
BSR and BRA instructions

x Size s s Size Condition Codes
. 0 =Word 00 = Byte u = Undefined

1 = Longword 01= Word A = Affected

10 = Longword - = Unaffected

. ea = Effective address 0 = Cleared

CCR = Condition code register 1 =Set

. SR = Status register
cccc = 4-bit Condition code

H.8



MC 68000 Instruction Codes

Move Quick instruction - Type 7

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

MOVEQ"data"Dn"Dn 0 data"(bits"7-0) ™Ta"6"~6"

2's complement data value

Or, Divide, Subtract Decimal instructions - Type 8

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

ORea,Dn Dn Oss "Tea""' "daTaddmdr-""A"A~"6""6"
OR Dn,ea Dn 1 s s -ea- altmemadd - A A 0 0

DIVU ea,Dn Dn 3 -ea- dataddmdl - A A A 0
DIVS ea,Dn Dn 7 -ea- dataddmdl - A A A 0

SBCD Dy,Dx Dx 4 0 Dy - AuAuA
SBCD -(Ay),-(Ax) Ax 4 1 Ay - A u A u A

Subtract, Subtract Extended instructions - Type 9

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C
SUBA"w"ea,An""An 3 "ea" ALL -----------------
SUBA.L ea,An An 7 -ea- ALL

SUB ea,Dn Dn Oss -ea- ALL A A A A A
SUB Dn,ea Dn 1 s s -ea- altmemadd A A A A A

SUBX Dy,Dx Dx 1 s s 0 Dy - A A A A A
SUBX -(Ay),-(Ax) Ax 1 s s 1 Ay - A A A A A

H.9



The Concise Atari ST Reference Guide

Emulation Instruction - Type 10 (#$A)

Line-A

Normally available for the implementation of user-written routines and
entered by ensuring four MSB of the op word or defined word constant are 1010
(10 dec), which will cause a trap to a user routine; other bits of op word may be
used for parameter passing. The ST uses this instruction for initializing and
operating the line-A functions on which GEM VDI and subsequently GEM AES
are based - so use with care.

Compare, Exclusive Or instructions - Type 11 (#$B)

Instruction
Syntax

Dreg
11-9

Dmod
8-6

Smod Sreg
5-3 2-0

Address
Mode

Condition Codes
X N Z V C

CMPA ea,An An xll -ea- ALL - A A A A

CMP ea,Dn Dn Oss -ea- ALL - A A A A

CMPM -(Ay),-(Ax) Ax 1 ss 1 Ay - - A A A A

EOR Dn,ea Dn 1 ss -ea- dataltadd - A A 0 0

x Size s s Size Condition Codes
. 0 = Word 0 0= Byte u = Undefined

1 = Longword 01= Word A = Affected

10 = Longword - = Unaffected

. ea = Effective address 0 = Cleared
CCR = Condition code register 1 =Set

. SR = Status register

H.10



MC 68000 Instruction Codes

And, Multiply, Add Decimal, and Exchange instructions -
Type 12 (#$C)

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C

ANDea,Dn Dn Oss -ea- ~~dalklLdmdl-~A~A~6"b"
AND Dn,ea Dn 1 s s -ea- altmemadd - A A 0 0

MULU ea,Dn Dn 3 -ea- dataddmdl - A A 0 0
MULS ea,Dn Dn 7 -ea- dataddmdl - A A 0 0

ABCD Dy,Dx Dx 4 0 Dy - A u A u A
ABCD -(Ay),-(Ax) Ax 4 1 Ay - A u A u A

EXGDDx,Dy Dx 5 0 Dy -
EXGAAxAy Ax 5 1 Ay - - - - - -
EXGMDx,Ay Dx 6 1 Ay - -----

Add, and Add Extended instructions - Type 13 (#$D)

Instruction Dreg Dmod Smod Sreg Address Condition Codes
Syntax 11-9 8-6 5-3 2-0 Mode X N Z V C
ADDA.Wea,An An"" T~ '"-ea.-"" ALL ------------------
ADDA.Lea,An An 7 -ea- ALL -----

ADD ea,Dn Dn Oss -ea- ALL A A A A A
ADD Dn,ea Dn 1 s s -ea- altmemadd A A A A A

ADDX Dy,Dx Dx 1 s s 0 Dy - A A A A A
ADDX-(Ay),-(Ax)Ax 1 s s 1 Ay - A A A A A

H.11



The Concise Atari ST Reference Guide

Shift / Rotate instructions - Type 14 (#$E)

Instruction

Syntax
Dreg
11-9

Dmod

8-6
Smod
5-3

Sreg
2-0

Address Condition Codes
Mode X N Z V C

ASL Dx,Dy
ASL data,Dy
ASLea

Dx

count

0

1 ss
1 ss

7

4

0

-ea-

Dy
Dy

A A A A A

A A A A A

altmemadd A A A A A

ASR Dx,Dy
ASR data,Dy
ASRea

Dx

count

0

Oss

Oss

3

4

0

-ea-

Dy
Dy

A A A A A

A A A A A

altmemadd A A A A A

LSL Dx,Dy
LSL data,Dy
LSLea

Dx

count

1

1 ss
1 s s
7

5
1

-ea-

Dy
Dy

A A A 0
A A A 0

altmemadd A A A 0

A
A

A

LSR Dx,Dy
LSR data,Dy
LSRea

Dx

count

1

Oss

Oss

7

5
1

-ea-

Dy
Dy

A A A 0
A A A 0

altmemadd A A A 0

A

A

A

ROL Dx,Dy
ROL data,Dy
ROLea

Dx

count

3

1 s s

1 s s
7

7

3

-ea-

Dy
Dy

- A A 0

- A A 0

altmemadd - A A 0

A

A

A

RORDx,Dy
ROR data,Dy
RORea

Dx

count

3

Oss
Oss

3

7

3

-ea-

Dy
Dy

- A A 0
- A A 0

altmemadd - A A 0

A
A

A

ROXL Dx,Dy
ROXL data,Dy
ROXL ea

Dx

count

2

1 s s

1 ss
7

6

2

-ea-

Dy
Dy

A A A 0

A A A 0

altmemadd A A A 0

A

A

A

ROXR Dx,Dy
ROXR data,Dy
ROXR ea

Dx
count

2

1 ss

1 s s

7

6

2

-ea-

Dy
Dy

A A A 0
A A A 0

altmemadd A A A 0

A

A

A

H.12



MC 68000 Instruction Codes

Emulation instruction - Type 15 (#$F)

Line-F

Normally available for the implementation of user-written routines, and
entered by ensuring four MSB of the op word or defined word constant are 1111
(15 dec), directing the trap service to a user routine. Other bits of op word may be
used for parameter passing.

This service trap is used by the MC68020 processor for passing co-processor
instructions. The ST uses it in processing the application environment services
(AES), so be careful.

x Size s s Size Condition Codes
. 0 = Word 0 0= Byte u = Undefined

1 = Longword 01= Word A = Affected

10= Longword - = Unaffected

. ea = Effective address 0 = Cleared
CCR = Condition code register 1 =Set

. SR = Status register

H.13



The Concise Atari ST Reference Guide

Address modes
Encoding

The range of addressing modes are coded consistently throughout the
MC68000 instruction set and may be summarized as follows:

Addressing mode Syntax Mode Register Extension
# # words

Data register direct Dn 0 n 0
Address register direct An In 0

Address register indirect (An) 2 n 0

Address register indirect (An)+ 3 n 0
with postincrement
Address register indirect -(An) 4 n 0
with predecrement

Address register indirect d(An) 5 n 1
with displacement
Address register indirect d(An.Ri) 6 n 1
with index

Absolute sh

Absolute lo

Program co
displacemei
Program co

Immediate

n = Register number 0 to 7

Extension Word = Number of extension words following the op word due to this
address mode (source and destination ext. words are cumulative)

Mode # ==Dmod and Smod in instruction code tables

Register # ==Dreg and Sreg in instruction code tables

Absolute short ABS.S
Absolute long ABS.L

$xxxx 7
$xxxxxx 7

0

1

1

2

Program counter with
displacement
Program counter with index

d(PC) 7

d(PC.Ri) 7

2

3

1

1

Immediate Imm #$xxx 7 4 lor2

H.14



Error Codes

Appendix I

Error codes

BIOS error codes 1.2

GEMDOS error codes 1.3

Miscellaneous error codes 1.4

1.1



The Concise Atari ST Reference Guide

BIOS error codes

Error
code

0

-1

-2

Function

O'K
Error
Drive not ready

Comments

Successful operation

Not ready, not attached or busy

-3 Unknown command Command not understoodby device
-4 CRC error Soft error whilereadingsector
-5 Badrequest Bad parameter, Cannotdo request

-6 Seek error
-7 Unknown media
-8 Sector not found

-9

-10
-11

-12

-13
-14

No paper
Write fault
Read fault

General error
Write protect
Media change

-15 Unknown device
-16 Bad sectors
-17 Insert disk

Drive could not seek
Foriegn media. Bad zero boot sector

Reserved
Read only or protected media
Media changed since last write or
the rd/wr op not done (file error)

BIOSdoesn't recognize device
Format yielded bad sectors
Disk not in drive (shell error)



Error Codes

GEMDOS error codes

Error PC DOS
code equivalent

Function

Supported

-32 1 Invalid function number
-33 2 File not found
-34 3 Path not found
-35 4 No handles left

(too many open files)

Not supported

-36
-37

-38

-39

5
6

7

8

Access denied

Insufficient memory

Invalid handle

-40

-41

-42

-43

9

10

11

12

** Insufficient memory
** Insufficient memory

Invalid memory block add

44 13

45 14

46 15
47 16

-48

-49

17

18

Invalid drive specified
** Invalid operation

No more files

The list of PC-DOS equivalent error codes supported may be found by
rurming the GEM demonstration program (Appendix L)-

1.3



The Concise Atari ST Reference Guide

1.4

Miscellaneous error codes

Error Function

code

-64 Range error
-65 Internal error
-66 Invalid program load format
-67 Setblock failure due to growth restrictions



BASIC GEM

Appendix J

BASIC GEM

GEMSYS J.2
VDISYS J.2
SYSTAB J.3
BASIC example J.4
BASIC assembler J.6
Hand coding J.7
Coding chart J.10

J.1



The Concise Atari ST Reference Guide

ST BASIC provides the programmer with direct access to parts of the
operating system AES and VDI interface.

GEMSYS

The AES control arrays are accessed through the AES parameter block (GB
pointer), the block provides pointers to the other supplementary AES parameter
blocks:

control table
global array
int_in table
int_out table
addr_in table
addr out table

+$0 \
+$4 I Data input and output
+$8 I as specified in the AES
+$C I traps and utility tables.
+$10 I Chapter 5
+$14 /

The tables are used by the programmer to input data, call the appropriate
GEM AES function, GEMSYS(n), and read any reply from the data placed in the
output tables by the function.

VDISYS

The VDI parameter blocks are directly accessible from BASIC:

\
I

I tables
I

/

The appropriate tables are loaded with data and the function called via
VDISYS(l), the (1) being a dummy argument. Any reply is read from the output
tables.

J.2

contrl input
ptsin input
ptsout output
intin input
intout output

GEMSYS
I

v

GB —> control
global
int_in
int_out
addr_in
addr out

\

I
I Indirect
I access
I

/

VDISYS
I

v

contrl

intin

intout

ptsin
ptsout



BASIC GEM

SYSTAB

STBASIC also provides access to a BASIC system table of the following read
only pointers and parameters:

Graphics resolution +$0 l=high resolution
2=medium resolution
4=low resolution

Editor ghost line style +$2 0=thickened
(Read/write) l=intensity

2=skewed
3=underlined

4=outline
5=shadow

Edit AES handle +$4 1 \
List AES handle +$6 2 1 default
Output AES handle +$8 3 1
Command AES handle +$A 4 /
Edit open flag +$C \
List open flag +$E 1 0=closed
Output open flag +$10 1 l=open
Command openflag
Graphics buffer

+$12 /
+$14 Longword 32K buffer pointer

GEM flag +$18 0_normal, l_off

The GEM flag is used to turn BASIC I/O off and increase the processing
speed of GEM based operations. With BASIC partially off, the I/O functions
involving the screen, mouse and keyboard are disabled,although disk I/O is still
enabled.

The BASIC functions canbe re-enabled after the burst of speed for user input

Not all GEM and VDI functions are available through BASIC, some of the
BASIC housekeeping activities negate the effectof the functions.

J.3



The Concise Atari ST Reference Guide

Cautionary notes:

Ensure that evaluations of the graphic primitives take into account color.
Many experiments may appear not to work simply because the writing color is
the same as the screen backgound.

Characters are written to the screenstarting from the left-hand edge and will
probably be obscured by the command screen border unless the programmer
moves it out of the way.

BASIC example

Use the mouse and the right button to draw a primitive, use the left button to
change the primitive. Note the effect on a primitive of crossing the left hand
screen edge.

10 start: CLEAR: a#=gb:int_out=PEEK(a#+12)
20 FULLW 2GLEARW 2

30 INPUT "GDP (1 to 9) ";gdp
40 IF gdp or gdp9 THEN GOTO start
50 POKE systab+24,1: REM BASIC I/O off
60 POKE contrl,122:POKE contrl+2,0:POKE contrl+6,1
70 GOSUB curson

80 attribs: GEMSYS(79)
90 x=PEEK(int_out+2) : REM x mouse
100 y=PEEK(int_out+4) : REM y mouse
110 key=PEEK(inf_out+6): REM button state nil_left_right
120 ON key+1 GOSUB showcurs, done, drawprim
130 GOTO attribs
140 done: POKE systab+24,0:GOTO start: REM nasty return
150 drawprim: REM
160 COLOR 1,(RND*15)+1,1,RND*25,2 : REM random color
170 IF mouse=0 THEN GOTO 210
180 mouse=0

190 POKE contrl,!23:POKE contrl+2,0:POKE contrl+6,0

J.4



200 VDISYS(l): REM hide cursor
210 POKE contrl,ll:in=0:xop=x+50:yop=y+50:rc=0
220 ptin=2:IF gdp=4 THEN ptin=3:xop=0:yop=0:rc=50
230 IF gdp=2 OR gdp=3 THEN ptin=4:xop=0:yop=0:in=2
240 POKE contrl+2,ptin
250 IF gdp=6 OR gdp=7 THEN xop=50:yop=20:in=2
260 IF gdp=5 THEN xop=60:yop=40
270 IF inO THEN POKE contrl+6,in
280 POKE contrl+10,gdp
290 POKE ptsin,x
300 POKE ptsin+2,y
310 POKE ptsin+4,xop
320 POKE ptsin+6,yop
330 REM IF ptin=2 THEN GOTO nxtin
340 POKE ptsin+8,rc
350 POKE ptsin+10,0
360 REM IF ptin=3 THEN GOTO nxtin
370 POKE ptsin+12,50
380 POKE ptsin+14,0
390 REM nxtin: IF in=0 THEN GOTO draw
400 POKE intin,(rnd*3600)
410 POKE intin+2,(rnd*3600)
420 draw: VDISYS(l)
430 RETURN

440 showcurs: IF mouse=l THEN RETURN
450 POKE contrl,122:POKE contrl+2,0:POKE contrl+6,0
460 curson: POKE intin,0: VDISYS(l)
470 mouse=l: RETURN

BASIC GEM

Look at the spelling of the variables, particularly contrl, if the program
crashes. Although BASIC access to the processor is normally in user mode, PEEK
and POKE instructions are performed in supervisor mode to provide access to all
parts of memory.

J.5



The Concise Atari ST Reference Guide

BASIC ASSEMBLER

There are many ways of producing a combined BASIC/assembler program
on the Atari STcomputer, the following demonstrates one of them:

First create the assembler subroutine of relocatable 68000 machine code that
canbe saved using a BASIC programsimilar to the following.

10 RESTORE

20 ZA$="12345678901234567890": REM \Use either method to
30 ZB$=STRING$(100,"*"): REM /create space for code
40 y=VARPTR(ZA$): REM Somewhere to put code
50 DEF SEG=y: REM Set up loop offset
60 FOR a=0 TO n

70 READ x:POKE a,x: REM Put code into memory
80 NEXT a

90 BSAVE "progl .asm",y,n: REM Save code to disk
100 STOP

200 DATA REM Byte sized data

The machine code will probably be loaded into a space created within the
main BASIC program by a dummy variable. Obviously, any number of different
machine code utilities can be loaded into the same space dependant upon
program state, or they may be stored in individual program spaces.

Parameters are passed to the machine code routine on the user stack which
contains an integer count of the number of parameters passed on top. The next
item on the stack is a longword pointer to the 8-byte per parameter array. String
variables use the array parameter as a pointer to the string.

J.6



BASIC GEM

Output can be placed in predefined variables and if correctly formatted, read
back by the BASIC program.

10 ZB$=STRING$(100,"*"):
20 ZR$="12345678":
30 y=VARPTR(ZB$):
40 ans=VARPTR(ZR$):
50 BLOAD"progl.asm",y:

100 CALLprogl(x,y,ans):

REM Space to load code
REM Space for reply
REM Position for code

REM Position of reply
REM Load code from disk

REM Call program code, passing parameters
REM x and y, returning data in the
REM variable ans

An alternative might be to compile the code within the BASIC program
proper if the machine code program length is quite short.

Hand coding

Many programmers had their first contact with assembly language
programming through hand coded 8-bit microprocessor routines embedded in
short BASIC programs. MC68000 code is slightly more complicated to assemble
than 8-bit code, but is still perfectly manageable.

Use tables of instruction types 0 to 15 (Appendix H), to generate the basic
code i.e:

4096 *type + 512 * dreg + 64 * dmod + 8 *smod + sreg

and the address mode encoding table (Pg H.14) to determine the effective
address (-ea-) values if required.

J.7



The Concise Atari ST Reference Guide

Example of a hand coded program

Project:
Version #:

Label

00
2
4

6

8

TO"
2
4

6

8
20

2

4

6
8

30"
2

4
6
8

J.8

MONITOR
2

Syntax

MOVE.W

MOVE.W

MOVE.W

TRAP
ADDA.W

EORI.W

MOVE.W
MOVE.W

MOVE.W

TRAP
ADDA.W

RTS

SCREEN INVERSION Author:

Src
Mnm

14
N

N_

DO
N

14

N

Dest
Mnm

•(SP'
-1

•(SP
0

•I$E\

SP
6

_D0_
1

•(SP
•(SP
0

SP
6

type

4

13

4

13

dmod |sreg
dreg smod

14
4

14

4

Dec
value

16188
-1

1618$
0

7
20046
5708'
6
2624
1

16125;
1618?;
0
1618$
7
2004$
57084
6
2008$

Date: DEC/85

Notes

GET OLD COLOUR

_SETCOLOR (Pg 3.8)

TIDY STACK

TOGGLE COLOUR BIT C

SET NEW COLOUR

TIDY STACK

RETURN TO BASIC



BASIC GEM

Use this type of program to load the code into a file on disk:

10 restore:n=70
20 zb$=string$(100,"*")
30 y=varptr(zb$)
40 def seg = y
50 for a=0 to n step 2
60 read x:poke a,int(x/256):poke a+l,x mod 256
70 next a

80 bsave "b/w.asm",y,n+2
100 stop
210 data 16188,-1,16188,0,16188,7
220 data 20046,57084,6,2624,1
230 data 16128,16188,0,16188,7
240 data 20046,57084,6
250 data 20085

300 data 0,0,0,0,0,0,0,0,0,0,0,0,0
310 data 0,0,0,0,0,0,0,0,0,0,0,0,0
320 data 0,0,0,0,0,0,0,0,0,0,0,0,0

and to toggle the screen or border color, run the following BASIC program
which loads the file back from disk and executes it:

10 zb$=string$(100,"*")
20 y=varptr(zb$)

bload "xb/w.asm",y30

40 call y
50 stop

The following brief notes may be useful in compiling programs in the above
manner:

Entry to machine code level from BASIC is in supervisor mode.
If you drop to user mode, be careful where you place your stack. Perhaps you

might like to use the following sequence of instructions that jump over your stack
or data to the beginning of the executable code. DATA 17402,4,24576+dis,...

Start LEA4(P"Cpu
BTvrais

Text or
stack

Program
code

Set A1 to start of text
dis = 2 + text length (must be even)

Start of program

If in difficulties with a BRAJ-ich or JuMP, surround with NOP's to make the
jump less sensitive to the count.

J.9



The Concise Atari ST Reference Guide

Project: Author:
Version #: Date:

Label Syntax Src
Mnm

Dest
Mnm

type dmc
dreg

)d |sreg
smod

Dec
value

Notes

0
2
4
6
8
0
2
4

6
8
0
2
4
6
8
0
2

4
6
8
0
2
4
6
8

0
2
4

6
8
0
2
4
6
8
0
2
4
6
8
0
2
4

6
8

J.10



Program Development Tools

Appendix K

Program development tools

Atari MC68000 assemblers K.2
Seka K.2
Hisoft K.4

GST K.5
Metacomco K.6

Digital Research
Compatibility table

K.7

K.8
General assembler compatibility K.9
Assembler directives compatibility K.10
Assembler conversions K.ll

General conversion chart K.12

Basic calling procedure
Executable file size

K.14

K.15

C compilers K.16

K.1



The Concise Atari ST Reference Guide

Atari MC68000 assemblers

There are a number of assemblers available for the Atari ST programmer,
they have small discrepancies in the assembly syntax used, no uniformity in the
library and utility files supplied or of the method of creating an executable
program.

This makes it difficult for the inexperienced programmer to type as source a
program listing created for another assembler, and to get it operational. What I
have tried to produce is an analysis of each assembler and a conversion chart that
may help in isolating fairly straightforward problems.

Where a published program uses a particular assembler specific facility
(special macros etc.) then translation will not always be possible by simple
substitution and there may be no easy solution. Hopefully the general assembler
compatibility chart will indicate whether there is the likelyhood of a conversion.

This guide is very much less than perfect, but it is an attempt at assisting
inexperienced programmers in a very difficult field.

The assemblers

Very few of the assemblers provide programming details of the Motorola
M68000 processor instruction set, or teach the user basic assembler language
programming. If the reader has not written assembly language programs before,
the brief overview of the language in Appendices G and H should help.

Seka

The combined editor/assembler/monitor/debugger is held in a very
compact 20K of code, this means that parts of the package are a bit weak.
Although two editors are supplied, a line editor and a screen editor, neither
performs block find and replace function. Use the Atari wordprocessor in non wp
mode for major or block changes in large files. What is likely to be more of a
significant problem is the limitation to a leading letter for label and symbol
names (the use of an underscore is very common in most libraries and the Atari
system variables). A possible solution would be to substitute a little used letter
for the leading underscore, say 'z'.

K.2



Program Development Tools

On the positive side, the Seka assembler generates absolute or relocatable
executable code directly, has limited macro and conditional capability, and is a
quick assembler for writing programs if you know what you are doing - some of
the runtime error messages are incomprehensible with no guide in the manual as
to what they are trying to tell you. It is very convenient having all the facilties in
one program, an assembly error leaves the editor at the erroneous line for
immediate correction and reassembly or the programmer may trace through the
code with the monitor/debugger. The editor also allows the programmer to type
the source code in free format; the assembled output listing is automatically
tabulated, but there is no way of simply listing the code to a printer in a tabulated
form which makes the source difficult to read when trying to debug program
logic errors. Source files entered in a tabulated form are occasionally detabulated
in parts of the assembly list file. The system for linking files is a bit messy and
very non-standard as are some of the assembler directives. The
monitor/debugger allows the programmer to single/multiple step through a
program, examine registers, set breakpoints and provides all the necessary
facilities to aid program debugging. It is important to ensure that program files
are of even length; odd file lengths sometimes produce run-time errors not
discovered by the debugger, which makes the fault extremely difficult to locate.
The assembly syntax is pretty standard; labels must terminate in a colon, 'movea'
should be entered as 'move', the assembler correcting the syntax but strangely
'adda' is acceptable.

The 36 page manual limits the two examples to very simple TOS programs,
one of which includes macros. The manual has a lot of ground to cover which it
manages only at a fairly minimal level, i.e it does not provide enough information
regarding the cause of errors - an error in a macro is flagged as an illegal operand
in the calling code. The manual contains a very useful single page command
summary.

The package is very easy to use, although not as powerful as some of the
other packages in this appendix. As an assembler, it is complete with minimal
libraries of DOS calls equates and GEM array generators.

K.3



The Concise Atari ST Reference Guide

Hisoft

A combined editor/assembler with a seperate monitor/debugger. TheHisoft
assembler employs include files to ease the access to the GEM and TOS functions
and produces machine code directly. The include files require function
parameters to be explicitly placed in the parameter arrays as per the assembler
GEM example (Appendix L). Theassembler does not have a linkerfacility, which
makes that aspect a little unusual, and does not like labels followed only by
comments on the same line. The editor is a full feature program with the minor
omission of displaying and handling only one fileat a time.

The package contains include files of equates for BDOS, BIOS, extended BIOS
calls, system variables and a GEM include file that provides program
initialisation, VDI and AES constant equates and parameter array initialisation.
The package does not provide details of the data (Chapters 3, 4 and 5) to be
placed in the arrays.

The monitor/debugger besides supporting the usual step, set breakpoints,
examine and modify registers and memory etc. enables the assembled program
to be run and debugged using seperate screens for the graphics and the monitor
output, a very useful feature.

The documentation is well written and provides a good introduction for the
beginner.

A very friendly package that could benefit from the use of a RAM disk to
hold all the files in memory at once. In a 512K machine, seperating the program
into two components does not appear to provide the optimum 'modus operandi'.

K.4



Program Development Tools

GST

The GST assembler package has a very good GEM based editor that enables
up to four files to be worked on at the same time in multiple windows, copying
blocks from one to another with ease. The only possible complaint regarding the
editor could be the relatively slow loading of program and files and of cursor
movement up and down within the file.

The assembler can produce relocatable binary output suitable for the linker
or executable code directly from position independant source. The executable
code does not contain the standard Atari TOS file header preamble, which must
be added by the programmer if the file is to act as a stand alone program. A very
useful list of the instruction mnemonics is provided, as is information on the
optimisation route taken in compiling code. The use of an underscore for the
leading character of a labelor symbol is not permitted, which entails a degreeof
non compatibilty with the standard Atari ST notation for some system variables
and extended BIOS calls.

The assembly of source is slow by virtue of the many disc accesses, but the
use of RAM disc for compilation and the loading of all modules into memory
together will obtain reasonable speed. There is no uninitialised data (BSS)
directive which means that GEM program files held on disc are about IK larger
than necessary. If some instruction sizes are not explicitly stated, a liberal supply
of warning messages are issued.

The GST linker is also supplied with the Metacomco macro assembler, it
enables other high level language modules written in Pascal, Assembler and C to
be linked together in a single program.

The library supplied contains macro definitions of conditional structures.
GEM and TOS libraries are not supplied.

The documentation consists of seperate index-less assembler, editor and
linker manuals, which are very well packaged in a ring binder, the manuals are
very detailed, but may be difficult for the inexperienced assembly language
programmer to read.

K.5



The Concise Atari ST Reference Guide

Metacomco

The screen editor is good but does not follow the normal GEM style of access,
although the user will very quickly adjust. The global 'find and replace' is
comparitively slow as the screen is re-written for each change.

The assembler is slow in comparison with the smaller assemblers evaluated
in this appendix and would benefit greatly from the use of RAM disk. Symbols
may be of up to thirty significant characters, but tabulated 'dc' data values on one
source line seperated by a comma and space are not permitted - the space may be
used to introduce a comment.

Metacomco supply the GST linker with their macro assembler which can
produce either a binary file suitable for the GST linker or a CP/M 68K object file
suitable for the DR link68 linker; which links to the complete DR set of GEM and
TOS libraries, but is undocumented.

The Metacomco assembler package is supplied with assembler source to the
GEM libraries and a monitor program. The monitor provides breakpoints, a trace
mode and register/memory change and examine facilities.

The assembler suite of programs can be batched using the Menu+ program
provided, It enables the sequence of edit, assemble, link and run to be controlled
by the menu file, which runs and loads each program producing the specified
outputs as requested and entering the next stage automatically via a pause, wait
or continue programmed instruction.

The documentation is concise and very well laid out, but gives no additional
explanation on assembly errors to that displayed on the screen during the
assembly phase.

K.6



Program Development Tools

Digital Research

The Digital Research package can use any editor/word processor that is
capable of producing an unformatted ASCII text file.

The assembler, which is a reasonable implementation of the Motorola
M68000 assembly language, has no macro facilities but optimises instructions and
branches to produce efficient code.

The DR LINK68 linker provides access to the DR GEM and TOS libraries that
consist of accessory and application header files, GEMDOS, BIOS, XBIOS, VDI,
AES and floating point libraries.

Although the assembler, linker and relocator programs can be installed as
TTP (TOS Takes Parameters) files, the programs are much easier to run via the
Activenture Corp. batch program. The additional use of a RAM disk to hold the
files and programs produces a very reasonable response, eliminating much of the
disc access.

The development package was intended for software developers and not the
general public, as such it is written with a high degree of technical jargon.
Complete withno omissions, a veritable 'Warand Peace' It provides information
on all of the GEM VDI functions and makes no mention of those not
implemented on the ST.

DR C language modules may also be linked with the assembled source and
DR libraries to produce executable programs.

The package is supplied with the DR symbolic interactive debugger 'SID'
enabling the program writer to test and debug M68000 executable code, either
from TOS or GEM, read/write/move blocks of memory, disassemble code or
produce a hex dump, examine the CPU state, trace, run or step through the code.

Atari have recently made available a new faster linker ALN to software
developers, which replaces both LINK 68 and RELMOD, the linker and relocation
package respectively.

K.7



The Concise Atari ST Reference Guide

Compatibility table

The analysis of each package necessarily concentrates on the flaws, looking
for inconsistences and omissions. What may not be apparent is how good in
absolute terms the packages are, any purchaser being able to justify the cost on
technical excellence alone.

It may be useful to give an indication as to the range of likely purchaser of
each package:

K_seka assembler:

Absolute beginner - competent programmer: Very fast program development

Hisoft devpak:

Absolute beginner - competent programmer: Fast program development,
with GEM and TOS bindings.

GST macro assembler:

Absolute beginner - expert: Full feature assembler capable of linking with
other high level language modules to form executable programs.

Metacomco assembler:

Competent programmer - expert: Full feature assembler with macros. DR's
linker may be used to provide access to the complete set of system libraries, and
GST's linker to link high level language modules into a combined language
program.

Digital Research assembler:

Software developer: Not available to the general public.

K.8



Program Development Tools

General assembler compatibility:
Not exhaustive, merely a guide to what facilities are available.

Function

Editor
multifile edit
screen/line
GEM
Assembler(i/p)
Output
-nohnk

Optimiser
Macros
conditional
Linker
Input
Submissions
Output

Libraries
GEM
TOS

Maths
Monitor
Debugger

Hisoft
assembler
GENST

No
screen

Yes

(•S)
Executable
or binary

Yes
Yes
Yes

LINKST

Yes-limited
yes-limited

No

MONST
Yes

m NoRelocator progra
Symbols
Label) column 1
end ) column n
Directives
Comment) col 1

) coin
Case (Symbols)
Quotes

16 signif
Space
Space or:

space
Selectable

Digital
Research

Can use an
wordproceisr
ASCII text.

AS68 (.S)
Binary file

Yes

No

Yes

Link68

Batch file

Yes-complejte
Yes-comple te

Yes

SID

symbolic
interactive

debug] er

RELMOD

Space or:
Colon
Optional

GST
assembler

Edit
Yes (4)
screen

Yes
(.ASM)
Binary file
or executable
(no file hea|der)

Yes

Yes
Yes

GST-LINK
Binary file
Control file

File-headei
reloc table

code

data
optsym

Metacomco

assembler
Kseka
assembler

Ed
No

screen

No

All-in-one package
No

Line & screen

No

(ASM)
See linker

Yes

Yes
Yes

Can use either
GST-LINK 01
DR's LINK68

& RELMOD

urograms
(GST-LINK
is supplied)

(.S)
Executable

Yes

Yes
Relocatable

mode
only

(odd format)

table

No

No
No

No

Notsupplied
Linker can
debug sym
in program

No"

Yes-source

No

No

Yes

Supplied
put as source
b example

on disk

No

Yes-minimal
Yes-minimal

No

Yes

Yes

~Nc7
8 signif
Space or:
Colon

char Upto 30 char
Space or:
Colon

Colon
Colon

period
* or;

Significant
Sngle/ dbldSngle/ dble

'or;
; or space
Not_signif
Single

or;

or space
cfnt Selectable
Single/doublle

Not significant
Single/double

GSTassembler executable code must supply a TOS program header and be
written in positition-independant code before it can be run. The default file
extensions are given in brackets.

K.9



The Concise Atari ST Reference Guide

Assembler directives compatibility
Directive Explanation Hisoft Digital

Research

GST Metacomco Kseka

Include(i/t ') Insert external
file

Yes (.$) No Yes (.IN)
(.MAC)

Yes Abs. code

via linke r
Text Relocatable code No Yes Section cod e Yes (def) 1Zode ==
Data Initialised data No Yes Yes No
BSS Uninitialised dat i DSBSS== Yes No Yes Data ==

even Align to word Yes *** Yes *** *** Yes & oc c
ORG odd •> Absolute sectic n Yes Yes Yes No Yes
Common Common region No Yes Yes No No
RORG <ad ir> Adjust curr lc>cn No Yes Yes No
Offset Define table via

a DS directive
No Yes Yes Yes No

OPT Select addr mode Diff meani ng Ignored PC or Ab s No No
Globl External label Yes Yes No No Yes
Xref External name Yes Yes Yes Yes No
Xdef Internal label

for external use
Yes Yes Yes Yes No

Module Link module nan le Yes Yes
Comment Include commen

in linker listing
s Yes

Equ Symbol Yes Yes Yes Yes Yes& =
Equr Register Yes Yes
Reg Register list Yes Yes Yes
Set Temporary value Yes Uses Equ Yes
DC Constant Yes Yes Yes Yes Yes
DS Storage Yes Yes Yes Yes
DCB Constant block Yes Yes Blk==
RS Yes No
Conditiona Ls Yes Yes Yes Yes Yes
IF eq,ne,gt Yes Yes No Yes If,Else
ge,lt,le IFB

String c,nc Yes Yes Yes Yes No
Symbol d,n d Yes Yes Yes No
Library Sys GEM/TOS GEM/TOS/FI5 None None Minimal

Macro If,Else,For
While,Unti
Repeat,Cas 3

Sub nth arg \n Not LnJ \n ?n

Sub unique # nni i \@ applicab e [.L] \@ ?o

Mask2 Ignored Ignored
IDNT Ignored Ignored

*** DS £ind DC word and longwords automatica Uy align to boundaries

K.10



Program Development Tools

Assembler conversions

There are a number of assemblers available for the ST, each with different
characteristics, this -section is provided as an aid to translation of programs
presented from alternative sources.

One of the by-products of the compatibility information is that it provides the
opportunity of generating a subset of directives and instructions that are of 4
almostO universal applicability, but compatibility does tend to look at the lowest
common denominator.

All of these programs have other attributes which provide a significant
improvement in performance over the base standard, these improvements are not
always apparent to the casual user but very handy to have if required.

If you wish to write source for maximum compatibility with other
assemblers, the following should minimise the problems:

- Size all instructions (move, clr, lea etc. do not default)
- Size branches (avoids masses of GST warning messages)
- Avoid using reserved words for labels such as text, code etc.
- Use a semicolon for all comments (except Hisoft and DR which should use a

'*'\

- Do not tabulate DC data, added spaces do not travel well.
- Limit label and symbol lengths to eight characters.
- Use 'EQU' directive, not '='.
- After text and data sections, it is wise to ensure that the PC is on a word

boundary. Most programs use 'EVEN', some assemblers use 'DC and 'DS' with a
.W or a .L extension.

Sizing instructions is perhaps the most difficult factor to come to terms with.
I find it extremely difficult to ignore and not stop and read any warning
messages, and become a little irritated to find that a branch 'might be short' or
that LEA has not got a .L extension. All warnings should be significant or else
they will 1 allO be treated as superfluous information.

K.11



The Concise Atari ST Reference Guide

General conversion chart
FROM To-Kseka Hisoft GST Metacoma >DR Comments
Macros MACRO MACRO A n.a. Program may use

?1 \1 [A] \1 Expanc many labels that:
Kseka ?2 \2 [B] \2 code iot appear to have

?o \@ [X] \@ in full iny function. They
vill probablybe
ireakpoints.

comment /

*
^

Size Opcoc es Size 1
Opcodes & branch opcodes

blk ds ds ds ds
Macros MACRO MACRO A n.a. Places GEM data

?1 \1 [A] Expanc directly into VDI
Hisoft ?2 \2 [B] code and AES arrays. Il

the source includes?o \@ [•L] in full
comment /

X-

Size Opcoc es Size
3EM calls, follow
:he example

Opcodes
blk ds:

& branch opcodes n appendix L

Macros MACRO MACRO MACRO A MACRO n.a. Seems to like all
?1 \1 [A] \1 Expanc

code
instructions sized

GST ?2 \2 [B] \2 or issues lots of
?o \@ [•L] \@ in full v faming messages,

-ibrary of conditiocomment *
/ I

aal macros will

Opcodes < ause problems,
lode has to belongC

blk ds to a section.

Macros MAUKUA MACRO n.a. (JEM library suppl e
?1 [A] \l Expand

code s
Implementation is

Metacome )?2 [B] \2 tandard but
?o [•L] \@ in full t:•anslation depends

an the availabilitycomment *
/

Size c if the library used,
Opcodes

blk

branch

ds
(follow example
Appendix L)

code Section C TEXT Delete any period
data Section D BSS c irective prefix.

Digital zlabel zlabel Jabel ;•>Jo macro facilities

Research xit a full set of
comment

(add
/ /

* <jEM libraries. Loo <

at example appx L
Opcodes to all to see sheer powei

ind how difficultlabels)
blk ds 1ranslation will be

K.12



Program Development Tools

The above table will help to eliminate some of the more straight-forward
program conversion problems, those that remain are likely to be due to the use of
assembler specific directives and or libraries (especially label errors).

If a program is published, one assumes that any include file data will be
generally available and can either be appended as an include file or the code
integrated with the main program block of code.

Ifyour assembler doesnot haveVDI and AES libraries, then to use GEM you
will have to create the arrays and load the addresses as shown in the assembler
GEMexample appendix L

The chart islimited tosimple conversions. Once include files and global label
definitions areused, you will need to assemble theprogram, generate a list of the
missing external labels and hopefully find them in the examples Appendix Land
or the call listings Appendix E.

Numbers

The following shows the standard presentation of the various numeric types:

Octal @nnn n=0 to 7
Binary %xxxxxxxx x=0 or 1
Decimal nnrm n=0 to 9
Hexadecimal $nnnn n=0 to 9, a to f

K.13



The Concise Atari ST Reference Guide

Basic calling procedures
Basic calling procedures for simple source files assembled (and linked)

without libraries.

Kseka

SEKA>r

FILENAME> filename

SEKA> a

OPTIONS> v

Instruction to read source file from disc
File to read (default .S extension)
Instruction to assemble source
Option to view assembly on screen

SEKA> wo
FILENAME> filename

Instruction to write output program
File to write (default .PRG extension)

Hisoft Menu driven, place cursor over instruction and click
Option > Assemble

Option dialog box
Binary filename xxxxx.prg
Listing option boxes (none/screen/printer/disc)
Assemble/cancel boxes

GST Menu driven, place cursor over instruction and click, OR double click the
TTP program file and enter the filename as the parameter:

ASM.PRG filename

LINK.PRG filename

to produce a list file and filename.BIN from a default
.ASM extension file

to produce a .MAPfileand filename.PRG from a
default .BIN extension file

Metacomco The program files are installedas TosTakes Parameters(TTP),
double click and enter input file:

ASSEM.PRG filename

LINK.PRG filename

Assembles filename.asm to produce a GSTformat
output file

Produces a .MAP file and filename.PRG from a
default .BIN extension file

Digital Research The program files are installed asTOS Takes Parameters and
the file data entered into the parameter box.

AS68.PRG filename.S Produce binary file
LINK68.PRG filename.68K = filename.o
RELMOD.PRG filename

K.14

Produce relocatable file
Produce absolute file



Program Development Tools

Executable file sizes (bytes)

Natural compilations with no optimisation extensions called.

Program Page # D.R Seka Hisoft GST Metacomcc

GEM error message L7 777 - - - 781

Assembler GEM L8-17 1651 1734

3170 3170 3016 3170

TOS colour demo LI 6 145 162

246 246 235 248

TOS VT52 screen L18-19 194

202 202 192 202

TOS sound program L20-22 324 331

591 591 586 591

Line-A sprite program L25-26 296 314
394 394 374 392

The Metacomco file sizes are for files linked via the GST tinker except for the
'GEM error message' which used the DR linker.

The Digital Research files are absolute files and therefore presumably nearer
the minimum possible size.

(a secondary figure is given which specifically sets all text and data sections
initialised to provide standard file size compilation comparisons, not all of the
test assemblers can handle an uninitialised section)

K.15



The Concise Atari ST Reference Guide

C compilers

Many C compilers have been developed for the ST range of computers,
enabling the ST programmer to produce modular, well documented, easily
maintained code that may be ported to other C systems with a minimum of
effort.

Although achieving the same end result, the C compilers differ considerably
in the way that they attain that result. I give three examples of the compilation
process:

Source text

1 Preprocessor

Intermediate file

Parser

Intermediate cocle file

Code generator

Assembler text

1 Assembler

Object file

1

Libraries

1 Link68

Executable program file

Relocator

Absolute program file

K.16

Resolve #define and

#include statements

Produce an intermediate
code file

Generate assembly
language source file

Create an object file

Link object file with
run-time library and
operating system files

Change the relocatable
information to absolute

data



GSTC compiler

Source text

I
Assembler text

C compiler

Assembler

Relocatable binary file

Libraries

Link68

Executable program file

Metacomco Lattice C

Source text

M

I LCI compiler

Intermediate quad file

I LC2 compiler

Binary file (GST or TOS format)

Libraries

Link68

Executable program file

Program Development Tools

Resolve #define and
#include statements,
produce assembly source
file.

Produce a relocatable
binary file

Link object file with
run-time library and
operating system files

Produce an intermediate
file of logical records

Produce either an object
file (DR linker or a
relocatable binary file
(GST linker)

Link object file with
run-time library and
operating system files

K.17



The Concise Atari ST Reference Guide

Those programmers who wish to program the Atari ST in C may find the
following brief notes helpful:

Unlike nearly allof thecommercial assemblers, theC compilers supplya full
set of GEM and system libraries. Commercial C compilers for the Atari ST will in
general adhere to the GEM VDI and GEM AES function names used in this book,
usually only the first 8 characters being significant. The compilers diverge
considerably in use of parameter names, the calland parameters are therefore not
provided here to avoid confusion. The manual of the C compiler you are using
will provide a definitive list of the library routines available, interfaces, and the
required parameter size, sequence and annotation.

Many compilers will have additional features to greatly simplify the task of
writing GEM programs; but bear in mind that the use of these 'super C GEM
functions may put a restraint on program portability. A definite decision should
be made as to whether the programmer is writing portable code or simply
writing a program.

On a more general note; it is very much easier to develop programs on a 1
Meg disk drive, which makes the larger drive well worth the small additional
cost for those machines without the built-in drive.

K.18



Example Programs

Appendix L

Example assembler programs

GEM

Application and accessory header file
GEM demonstration program
GEM demonstration assembly program

OS

L.3

L.8

L.9

Display demonstration program
TOS header file

L.17

L.19

Character printing program
Sound demonstration program

ine-A

Line-A parameter table
Sprite demonstration

L.20

L.22

L.26

L.28

L.1



The Concise Atari ST Reference Guide

Example programs

General

The programs presented in this section illustrate some of the techniques
involved in accessing parts of the Atari ST operating system and also present
general purpose header/include files. The programs are written as shells to
which the programmer may add his/her own composition.

It is not the intention to provide 'state of the art' programs, merely
demonstrate access to the various parts of the operating system. Any attempt at
definitive programming would rapidly succumb to the passage of time and tend
to produce a book of listings. The main place to find quality programs will be the
computer magazines, where programs developed from this and other books will
appear as programmers quickly find new, smarter routes to access and use the
ROM routines.

Desktop accessories should be compiled as applications for debugging
purposes as it is not possible to execute an accessory.

Program conversion key

L.2

n.a program not suitable for this assembler.
xxx delete this line

* use ; for Kseka, GST and Metacomco comments



Example Programs

GEM

GEM application and accessory header file

Digital Research (and Metacomco in CP/M 68K object mode) application and
desk accessory files require a similar type of header source file construct to
provide access to the GEM VDI and AES libraries, either as the first file in theDR
link statement or as the beginning of a single block of assembler code.

Part of this file determines the size of memory the application requires and
returns the remainder to GEMDOS. Some Atari ST assemblers will provide
similar code as a header/initialisation file to permit the programmer to access the
VDI and AES functions through their own integral libraries.

* Digital Research A Hisoft . GST Metacomco Seka

* * n.a n. a n.a

text * Text segment *

globl main * Make labels * . xde f

globl _crystal * accessible to * . xde f

globl _ctrl_cnts * external files *
. xde f

move .1 a.1, a 5 * store stack (a5) *

move.l #ustk,a7 * set local stack *

* Desk accessories do not require the following lines of code
* which size memory and return the unused memory to GEMDOS

move.1 4(a5),a5

move.l $c(a5),d0

add.l $14(a5),d0

add.l $lc(a5),d0

add.l #$100,dO

move.l dO,-(sp)

move.1 a5,-(sp)

move dO,-(sp)

move #$4a,-(sp)
trap #1

add.l #12,sp

* Main program call

* basepage address *

* length of text *

* length of data *

* length of BSS *

* basepage size *
* retained mem len *

* memory to modify *

* dummy word *

* reallocate to GEM*

* function number *

* tidy stack *

jsr _main * main program code*
move.l #0,-(a7) * return to GEMDOS *

trap #1 * function call *

L.3



The Concise Atari ST Reference Guide

* Digital Research
*

* GEMAES calls link through _crystal

crystal:

move 1 4(a7) ,dl * address of AES pblk*

move w #200, dO * GEMAES function #*

trap #2 * function call *

rts * return *

bss • block storage seg*

even * force even boundary*

ds.l 64 *

stk: ds.l

data

even

1 *

*

*

Ctrl cnts

Application manager

dc b 0 1 0

dc b 2 1 1

dc b 2 1 1

do b 0 1 1

dc b 2 1 1

dc b 1 1 1

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc.b 0,1,0

* Event manager

L.4

dc.b

dc.b

dc.b

dc.b

dc.b

0,1,0

3,5,0

5, 5, 0

0, 1, 1

2, 1, 0

dc. b 16,7,1

dc.b 2,1,0

dc. b 0,0,0

dc.b 0,0,0

dc. b 0,0,0

APPL_INI 10*
APPL_REAd 11*
APPL_WRIte 12 *
APPL_FINd 13*
APPLJTPLay 14*
APPL TREcord...15*

APPL_EXIt 19*

EVNT_KEY 20*
EVNT_BUTton....21*
EVNT_MOUse 22*
EVNT_MESsage... 23 *
EVNT_TIMe 24*
EVNT_MULti 25*
EVNT DCLick....26*

Hisoft GST Metacomco



* Digital Research

Menu manager

dc b 1 1 1

dc b 2 1 1

dc b 2 1 1

dc b 2 1 1

dc b 1 1 2

dc b 1 1 1

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc.b 0,0,0

Object manager

dc b 2 1 1

dc b 1 1 1

dc b 6 1 1

dc b 4 1 1

dc b 1 3 1

dc b 2 1 1

dc b 4 2 1

dc b 8 1 1

dc b 0 0 0

dc b 0 0 0

Form manager

* MENU BAR . .30*

* MENU ICHeck.. . .31*
* MENU IENable. . .32*

* MENU TNOrmal. . .33*

* MENU TEXt . .34*

* MENU REGister . .35*

OBJC_ADD 40*
OBJC_DELete.... 41*
OBJC_DRAw 42*
OBJC_FINd 43*
OBJC_OFFset....44*
OBJC_ORDer 45*
OBJC_EDIt 46*
OBJC_CHAnge. ...47*

dc.b 1 1 1 * FORM DO . .50

dc.b 9 1 1 * FORM DIAlog. . .51

dc.b 1 1 1 * FORM ALErt.. . .52

dc.b 1 1 0 * FORM ERRor.. . .53

dc.b 0 5 1 * FORM CENtre. . .54

dc.b 0 0 0 *

dc.b 0 0 0 *

dc.b 0 0 0 *

dc.b 0 0 0 *

dc.b 0,0,0

Dialog manager

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

dc b 0 0 0

Example Programs

GST Metacomco Seka

L.5



The Concise Atari ST Reference Guide

* Digital Research
*

* Graphics manager

Hisoft GST Metacomco

dc.b 4,3,0 * GRAF RUBberbox.70*

dc.b 8,3,0 * GRAF DRAgbox...71*
dc.b 6,1,0 * GRAF MOVebox...72*

dc. b 8,1,0 * GRAF GROwbox...73*

dc.b 8,1,0 * GRAF SHRinkbox.74*

dc.b 4,1,1 * GRAF WATchbOX..75*

dc.b 3,1,1 * GRAF SLIdebox..76*

dc. b 0,5,0 * GRAF HANdle. . . .77 *

dc. b 1,1,1 * GRAF MOUse 78*

dc. b 0,5,0 * GRAF MKState...79*

* Scrap manager

dc.b 0,1,1 * SCRP REAd... . .80

dc.b 0, 1, 1 * SCRP WRIte.. . .81

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

dc.b 0,0,0 *

File selector manager

dc.b 0,2,2

dc.b 0,0,0

dc. b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

dc.b 0,0,0

Window manager

L.6

* FSEL INPut. .90*

dc. b 5,1,0 * WIND CREate. .100*

dc. b 5,1,0 * WIND OPEn... .101*

dc. b 1,1,0 * WIND CLOse.. .102*

dc. b 1,1,0 * WIND DELete. .103*

dc. b 2,5,0 * WIND GET.... .104*

dc.b 6,1,0 * WIND SET .... .105*

dc.b 2,1,0 * WIND FINd... .106*

dc.b 1,1,0 * WIND UPDate. .107*

dc.b 6,5,0 * WIND CALc... .108*

dc.b 0,0,0 * A



Example Programs

* Digital Research * Hisoft GST Metacomco Seka

* Resource
*

manager

dc.b 0,1,1 * RSRC LOAd 110*

dc.b 0,1,0 * RSRC FREe 111*

dc.b 2,1,0 * RSRC_GADdress 112*

dc.b 2,1,1 * RSRC_SADdress 113*

dc.b 1,1,1 * RSRC_OBFix... 114*

dc.b 0,0,0 * *

dc.b 0,0,0 * *

dc.b 0,0,0 * *

dc.b 0,0,0 * *

dc.b 0,0,0 * *

* Shell manager

dc.b 0, 1,2 * SHEL REAd 120*

dc.b 3,1,2 * SHEL_WRIte. ...121*
dc.b 1,1,1 A *

dc.b 1,1,1 * *

dc.b 0, 1, 1 * SHEL FINd 124*

dc.b 0, 1,2 * SHEL_ENVrn... .125*
* *

end

The object file is used as the first file in the link to produce an Atari ST
program file, say myprog, that accesses the DR GEM libraries i.e:

either DR
as68 -1 -u apstart.s

or Metacomco
assem.prg apstart.asm opt j

followed by the linking of the main program file (see following example) to
the header and the DR library files.

Link68 [u] myprog.68=apstart myprog.o vdibind aesbind

Relmod myprog

Delete all temporary files, leaving either an application file myprog.prg
(which may be run by double clicking the icon in the directory listing) or an
accessory file which must be renamed myprog.acc. Reboot the system and run
the file by clicking the icon in the list of 'Desk' accessory files.

Remember to initially compile and run accessories as applications to debug
them.

L.7



The Concise Atari ST Reference Guide

GEM demonstration program

To use GEM directly, push the function parameters onto the stack in the
order given by the GEM VDI and GEM AES tables, ensuring that the correct size
of parameter is pushed.

The following program, which may be written in either DR or Metacomco
macro assembler but must use the DR link68 linker, lists in descending order the
TOS error codes in dialog boxes, the user stepping from one code to the next via
the mouse or the 'return' key.

* Digital Research * Hisoft GST Metacomco Seka

* * n.a n.a n.a

* Demo GEM program
*

globl main * * . xdef

globl form err * * . xref

globl appl ini A * . xref

globl _appl_exi
*

* * . xref

text * . The
* * Metacomco

main: * .external

jsr appl ini * .symbol
* * . names

move.w #63,d4 * Error start # * . are

loop: move.w d4,temp * Save it * .limited

move.w d4, -(sp) * Stack it * . to 8

jsr form err * What is it * characters

add.w #2,sp * Tidy it * . i .e

move.w temp,d4 * Recover it *

dbra d4,loop * and next * form er

jsr appl exi * Controlled exit * _appl_in
rts * _appl_ex

bss *

temp: ds.w 1 *

end

The file may be assembled using either
DR-

as68 -1 -u -p myprog.s

or Metacomco-

assem myprog.asm opt j

Both programs are linked with the Digital Research link68 linker i.e:

link68 [s,u] myprog.6 8k=apstart,myprog.o,aesbind

and finally relocated by:
relmod myprog

L.8



Example Programs

GEM demonstration assembly program

It is possible to write assembly language programs that do not use the DR
GEM bindings but simply access the functions via the Extended BDOS TRAP #2
calls. The following example shell shows a technique that will enable the
programmer to create a window, do some work in it, and then make a controlled
exit.

Note: Although the window is created with the sizing diamond and sliders,
no code has been written to handle the screen managers requests for change; if
these functions are activated they are ignored. If the cursor is active (as in this
program) and covers part of the foreground content of the screen when the
program is loaded, it will leave a hole when moved.

* Digital Research * Hisoft
*

* Assembler GEM program

* Size the job and free back to GEMDOS unused memory

text

move.l a7,a5 * curr - a5

move.l #ustk,a7 * set local stk

move.l 4(a5),a5 * get base page
move.l $c(a5),d0 * text segment
add.l $14(a5),d0 * data segment
add.l $lc(a5),d0 * uninitialized
add.l #5100,dO

move.1 dO,-(sp)

move.l a5,-(sp)

move dO,-(sp)

move #$4a,-(sp)
trap #1

add.l #$c,sp
jsr start
move.1 #$0, -(sp)
trap #$1

* basepage size

*

*free unused mem
*

* tidy stack

* ret to GEMDOS

* Technique for setting up VDI & AES arrays

* Initialize AES arrays

start:

jsr ini_aes * *

section c

Metacomco

. code

L.9



The Concise Atari ST Reference Guide

* Digital Research
*

* Call APPL_INI (1st call)
*

appl_ini:
move.w #$a,control

move.w #$0,control+2

move.w #$l,control+4

move.w #50,control+6

jsr aes
tst.w int_ou
bpl graf_han
rts

*

* Call GRAF_HAN to get name of the currently opened window, pg 5.26

graf_han:
move.w #77,control

move.w #$0,control+2

move.w #$5,control+4

move.w #$0,control+6

jsr aes

move.w int_ou,handle
*

* Initialize VDI arrays

jsr ini_vdi

* Open virtual workstation

v_opnvwk:
move.w #100,contrl

move.w #0,contrl+2

move.w #11,contrl+6

move.w handle,contrl+12

* 11 input parameters

move.w #1,

move.w #1,

move.w #1

move.w #1,

move.w #1,

move.w #1,

move.w #1,

move.w #1,

move.w #1|

move.w #1(

move.w #2,

jsr vdi

intin

intin+2

intin+4

intin+6

intin+8

intin+10

intin+12

intin+14

intin+16

intin+18

intin+20

*drive id

*line type

*line color

*marker type

♦marker color

*text face

*text color

♦interior fill

*fill index

*fill color

*NDC/RC

Hisoft

pg 5.6

* pg 4.9

Save virtual screen workstation device handle

move.w contrl+12,vhandl *

tst.w contrl+12 *

beq appl_exi *

L.10

GST Metacomco



Example Programs

Digital Research Hisoft . GST

* Test here for screen resolution and number of colors available

* (even in mono). Load appropriate resource file using the AES
* RSRC_LOA call if necessary.
*

* Get max possible size of window

max_wind:
move.w vhandl,int_in
move.w #7,int_in+2
jsr wind_get
tst.w int_ou
beq appl_exi

* sizes

* Calculate work area of window
*

move.w #0,int_in
jsr wind_cal
tst-w int_ou
beq appl_exi

* Calc new window bordered area

move.w #l,int_in
jsr wind_cal
tst.w int_ou
beq appl_exi

* Alloc space for full size window

wind_cre:
move.w #100,control

move.w #$5,control+2

move.w #$1,control+4

move.w #$0,control+6
*

move.w #$0fff,int_in
move.w int_ou+2,int_in+2
move.w int_ou+4,int_in+4
move.w int_ou+6,int_in+6
move.w int_ou+8,int_in+8
jsr aes

*

move.w int_ou,whandl
tst.w int_ou
beq appl_exi

* Open window at last
*

wind_ope:
move.w #101,control

move.w #$5,control+2

move.w #$1,control+4

move.w #$0,control+6

edges

xl

yi
x2

y2

* pg 5.29

* pg 5.2 9

Metacomco Seka

L.11



The Concise Atari ST Reference Guide

* Digital Research * Hisoft .
*

* Absolute parameters
*

move.w whandl,int_in *
move.w #0,int__in+2 * xl *
move.w #0,int_in+4* yl *
move.w #280,int_in+6 * x2 *
move.w #160,int_in+8 * y2 *
jsr aes *

tst.w int_ou *
beq appl_exi *

*

* Do something on the screen, this is where your program starts.

* Set screen parameters
*

vsf_inte:
move.w #23,contrl

move.w #0,contrl+2

move.w #l,contrl+6

move.w whandl,contrl+12

move.w #1,intin

jsr vdi

* Style
*

vsf_styl:
move.w #24,contrl

move.w #0,contrl+2

move.w #l,contrl+6

move.w whandl,contrl+12

move.w #1,intin

jsr vdi

* Colour

vsf_colo:
move.w #25,contrl

move.w #0,contrl+2

move.w #l,contrl+6

move.w whandl,contrl+12
*

move.w #1,intin * black

jsr vdi

* Set mouse style

graf_mou:
move.w #78,control

move.w #$1,control+2
move.w #$1,control+4

move.w #$1,control+6

L12

* pg 4.15

pg 4.15

* pg 4.15

* pg 5.2 6

Metacomco



* Digital Research

move.w #$0,int_in
jsr aes

tst.w int_ou
beq appl_exi

*

* Get position of window work area
*

where:

move.w whandl,int_in
move.w #4,int_in+2 * work area
jsr wind_get
tst.w int_ou
beq appl_exi

* Get coordinates within work area

add.w #35,int_ou+2
add.w #35,int_ou+4
sub.w #50,int_ou+6
sub.w #50,int_ou+8

* Draw a shape from those coords
*

v_rfbox:

move.w #11,contrl

move.w #2,contrl+2

move.w #0,contrl+6

move.w #9,contrl+10

move.w whandl,contrl+12

Hisoft .

pg 4.12

* Absolute coords — not window the reason for this patch

move.w int_ou+2,ptsin *
move.w int_ou+4,ptsin+2 *
move.w int_ou+6,ptsin+4 *
move.w int_ou+8,ptsin+6 *

*

jsr vdi *
*

* Wait for a sign - about 1 minute

evnt_tim:

move.w #24,control*

move.w #$2,control+2

move.w #$1,control+4

move.w #$0,control+6

move.w #$ffff,int_in
move.w #$0000,int_in+2
jsr aes

*Lo

•Hi

pg 5.9

End of program, shut the window in a controlled manner

Example Programs

Metacomco

L.13



The Concise Atari ST Reference Guide

Digital Research * Hisoft

Close v_scrn Stop o/p (Shut window down) * pg 4.9

_clsvwk:
move.w #101,contrl *

move.w #0,contrl+2 *

move.w #0,contrl+6 *

move.w vhandl,contrl+12 *

* Close window

wind_clo:
move.w #102,control

move.w #$1,control+2

move.w #$1,control+4

move.w #50,control+6
*

move.w whandl,int_in
jsr aes
tst.w int_ou
beq appl_exi

*

* Deallocate space and handle
*

wind_del:
move.w #103,control

move.w #S1,control+2

move.w #$1,control+4

move.w #50,control+6
•

move.w whandl,int_in
jsr aes
tst.w int_ou
beq appl_exi

*

* Call APPL_EXI (Last call)
*

appl_exi:
move.w #19,control

move.w #50,control+2

move.w #51,control+4

move.w #50,control+6
*

* Subroutines
*

* Get window data
A

wind_get:
move.w #104,control

move.w #52,control+2

move.w #55,control+4

move.w #50,control+6

L.14

pg 5.29

* pg 5.2 9

* pg 5.7

pg 5.30

GST Metacomco Seka



* Digital Research

move.w vhandl,int_in
move.w #7,int_in+2
jsr aes
rts

rem

out

Example Programs

Metacomco Seka

* Calculate window work area based on facilities: title,

* scroll bar etc.

wind_cal:
move.w #108, control

move.w #56,control+2

move.w #55,control+4

move.w #50,control+6
*

* move.w #0,int_in
move.w #50fff,int_in+2
move.w int_ou+2,int_in+4
move.w int_ou+4,int_in+6
move.w int_ou+6,int_in+8
move.w int_ou+8,int_in+10
jsr aes
rts

* VDI parameter block call

vdi:

rem out

edges

xl

yi
x2

*y2

move.l #contrl,pblock
move.l #pblock,dl

move.l #115,dO

trap #52
rts

* reset

AES parameter block call

move.l #control,_c
move.l #_c,dl
move.l #200,dO
trap #52

rts

Set up AES array

mi aes:

move 1 ♦control c

move 1 #global, c + 4

move 1 #int in, c+8

move 1 #int ou, c+12

move 1 #addr in c+16

move 1 #addr ou c+20

rts

pg 5.32

zc

#ZC

zc

zc+ 4

zc+8

zc+12

zc+16

zc+20

zc

#zc

ZC

zc+4

zc+8

zc+12

zc+16

zc+20

L.15



The Concise Atari ST Reference Guide

* Digital Research

* Set up VDI array

Hisoft Metacomco

ini vdi:

move 1 #contrl,pblock
move 1 #intin,pblock+4
move 1 #ptsin,pblock+8
move 1 ♦intout,pblock+12

move 1 #ptsout,pblock+16
rts

Make space for the arrays. You must ensure these are large
enough to hold the array's data. Be especially careful regarding
the spelling of the array names. 'New TOS' requires larger VDI
arrays than previous versions of the OS.

bss

even

•

ds 1 256

ustk: ds 1 1

pblock: ds .1 5

contrl: ds w 12

intin: ds w 30

ptsin: ds w 30

intout: ds w 45

ptsout: ds w 12

handle: ds w 1

vhandl: ds w 1

whandl: ds w 1

_c: ds 1 6

control: ds w 5

global: ds w 16

int in: ds w 16

int_ou: ds w 7

addr_in: ds 1 2

addr ou: ds 1 1

XXX

XXX

section d

. XXX

data

XXX

blk

blk

. blk.l

. blk.w

. blk.w

. blk.w

. blk.w

. blk.w

. blk.w

. blk.w

. blk.w

.zc blk.

. blk.w

. blk.w

. blk.w

. blk.w

. blk.l

. blk.l

The program may be assembled and linked (if required) using the assembler
calling procedures outlined in Appendix_K

L.16



Example Programs

TOS

Display demonstration program

The following program shows a typical Atari TOS file, which simply inverts
the current mono display color for those programmers who,like myself, prefer
white on black or toggles the border of a color display.

Digital Research

Demo Atari TOS program

text

move.l a7,a5

move.l #ustk,a7 *

move.1 4 (a5),a5

move.l 5c(a5),dO

add.l 514(a5),d0

add.l Slc(a5),d0

add.l #5100,dO

move.l dO,-(sp)

move.l a5,-(sp)
move dO,-(sp)

move #54a,-(sp) *
trap #1 *

add.l #5c,sp
jsr start *

move.l #50,-(sp) *

trap #51

set - a7

free unused

back to GEM

jump to prg

terminate

clr.1 -(sp)

move.w #32,

trap #1

move.1 dO,a1

move.w #-l,d0

jsr newcol
eori #l,d0

jsr newcol

(sp)

move.1 al,-(sp)

move.w #32,-(sp)

trap #1

move.l #0,- (a7)

trap #1

* set super

* get/set col

* set user

* Hisoft . GST Metacomco Seka

section c code

L.17



The Concise Atari ST Reference Guide

* Digital Research * Hisoft . GST Metacomco Seka

newcol:

move.w dO,-(sp)

move.w #0,-(sp)
move.w #7,-(sp)
trap #14

add.w #6,sp
rts

bss

ds.l 2 0

ustk: ds.l 1

end

* get color

xxx section d

Theabove programis assembled and linkedwithoutany other files.

L.18

data

blk.l

blk.l



Example Programs

TOS header file

Thefollowing shows a typicalAtari TOS header file that may be incorporated
in a user-written program to provide access to the base page offset variables.

************ ***********

* Base page format initialised by BDOS

**************** k******* **********

ltpa equ 0

htpa equ 4

lcode equ 8

codelen equ 12

ldata equ 16

datalen equ 20

lbss equ 24
bsslen
*

equ 28

* either
*

GEMDOS

*env

*

equ 44

* or Ata ri OS

freelen equ 32
ldriv equ 36

resvd equ 37

fcb2 equ 56

fcbl equ 92

* common t ail

command equ 12

Low TPA address

High TPA address + 1

Text segment start

Length of text segment
Initialized data segment start

Length of initialized data

BSS segment start

Length of uninitialized data

* Environment string pntr (GEMDOS)

* Free memory length after BSS
* Drive from which program loaded

* Reserved

* 2nd parsed fcb

* 1st parsed fcb

Command tail

Although it is good practice to size the memory requirements of you
program and return the unused memory to GEMDOS, programs can be writte:
without if they return to the GEM desktop.

GEM allocates all the memory to the program, only if it multitasks or cal
and loads another program is there any real need to return spare memory.

L.19



The Concise Atari ST Reference Guide

Character printing program

This simple program demonstrates some of the methods available for
printing to the VT52 screen. The compiled program may be installed as:

A 'GEM program' - the busy bee cursor will appear in the display and leave a
hole when moved.

A 'TOS program' - with flashing cursor, the cursor may be hidden quite
easily by incorporating within the 'prdat' string the hide cursor escape code as
specified in Appendix C.

Digital Research * Hisoft . GST

Monochrome TOS VT52 screen print program (0,0 to 24,79)

(For colour, set max print width in 'prdat' to 39)

* xxx section ctext

* GEM BIOS type print
*

clr.l d4

clr.l d5

lea prdat,a4

move.b (a4),d4

cloop:

adda.l #l,a4

move.b (a4),d5

move.w d5,-(sp)

move.w #2,-(sp)

move.w #3,-(sp)
trap #13

add.w #6,sp
dbra d4,cloop

*

* GEMDOS type print
*

lea mess,aO

move.l aO,-(sp)

move.w #9,-(sp)
trap #1

add.w #6,sp

exlp:

dloop:

move.l #200,dl

move.l #-l,d0

dbra dO,dloop

dbra dl,exlp

move.l #0,-(a7)

trap #1

rts

L.20

* Clear d4

* Clear d5

* Get data address

* Data count-1

* Get next

* Getchar byte
* Stack char.w

* Send to console

* Set bconout 0

* Call it

* Tidy stack
* loop for next

* GetASCII string

* Stack it

* set conws 0

* Call it

* Tidy stack

* Wait

* GEM return

*

* Return

Metacomco Seka

. code



Example Programs

Digital Research

data

even

Hisoft . GST Metacomco Seka

xxx section dl xxx

XXX . xxx . xxx xxx

* VT52 screen location character equivalents
*

*! " # 5 % S ' ( ) * + ,-. /0123456
*0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

*789:;< = >?8ABC DEFGHIJ
*23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42

*KLMNOPQRSTUVW XYZ[\]
* 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61

*" 'abcdefghi jklmno
* 62, 63, 64, 65, 66, 67, 68,69,70,71,72,73,74,75,76,77,78,79

* Data string to print (See Appendix C for codes)

prdat:dc.b 50 *

dc.b 27, 'E' * Clear screen

dc.b 27, 'b' ,0 * foregnd col white

dc.b 27, 'c' ,1 * backgnd col black

dc.b 27, 'Y 0,0' * Set cursor at 0,0

dc.b 27, 'Y!!1,1' A Set cursor at 1,1

dc.b 27, 'b' ,1 * foregnd col black

dc.b 27, 'C ,0 * backgnd col white
dc.b 27, 'Y8f24, 69 ' * Set curs @ 24,69

dc.b 27, 'p' * Inverse video

dc.b 27, ' I' * Up 1 line

dc.b 'hi ; t * Say something witty

dc.b 27, 'Y, 4' * set cursor at 12,20

dc.b 27, 'q' * Reset video

section d2

Print null terminated string - uses ASCII & control codes

dc.b 'hello'

dc.b 10,10,7

dc.b 'hello'

dc.b 10

dc.b 'hello'

dc.b 10,13

dc.b 'hello'

dc.b 0

end

* Alternative print
* method for screen

* printing.

* Text

* linefeed

* carriage return

* and a bell

* End of string

L.21



The Concise Atari ST Reference Guide

Sound demonstration program

This program provides a basic introduction to 'sound' programming on the
AtariST; whereexperimentation witheach of thesoundsprovided is perhaps the
bestapproach to understanding theeffects ofeach argument.

Take care of the following general points:

Userstack: Make sure it is large enough. It grows down in memory and it can
overwrite the data area.

Timing: It is necessary to provide a delay before an exit back to GEMDOS,
TOS could reallocate the sound data bytesspace.

* Digital Research
*

* Experimental TOS sounds program
*

text

move.l a7,a5 * create

move.l #ustk,a7 * space for

move.l 4(a5),a5 * program

move.1 5c(a5),dO
add.l 514(a5),d0

add.l 51c(a5),d0

add.l #5100,dO

move.1 dO,-(sp)
move.1 a5,-(sp)

move dO,-(sp)
move #54a,-(sp)
trap #1

*

add.l #5c,sp

start

move.l #soundl,al *

it

jsr dosound
*

move.l #150,dl * 15 sees

loopo

moveq #-l,d2 * wait for

loopi

dbra d2,loopi * finish

*

dbra dl,loopo

exit:

clr.l -(sp) * GEMDOS ret

trap #51
rts

L.22

Hisoft . GST Metacomco Seka

section c



Digital Research

dosound:

move 1 al,-(sp)
move w #32,-(sp)
trap #14

add. * #6,sp
rts

*

bss

*

even

ds.l 64

ustk ds.l 1

*

data

even

* * Bell

soundl:
*

dc.b 0,534

dc.b 1,0

dc.b 2,0

dc.b 3,0

dc.b 4,0

dc.b 5,0

dc.b 6,0

dc.b 7,5fe

dc.b 8,510

dc.b 9,0

dc.b 10,0

dc.b 11,0

dc.b 12,510

dc.b 13,9

*

dc.b 130,100

* sound2:

dc.b 0,5fe
dc.b 1,0

dc.b 2,0

dc.b 3,0

dc.b 4,0

dc.b 5,0

dc.b 6,0

dc.b 7,5fe

dc.b 8, 11

dc.b 9,0

dc.b 10,0

dc.b 11,0

dc.b 12,0

dc.b 13,0

dc.b 130,20

sound pointer

* Large enough not *

* to overwrite data*

*\ chan A *

*/ 2150 hz *

* \ chan *

* / B *

*\ channel *

*/ C *

* noise *

* enable A only *
* enable A envelope*
* B off *

* C off *

*\Single attack *
**envelope shape *
*/ 1 0 0 1 *

* delay *

* Siren

*\ chan A *

*/ 440 hz High note*
* \ chan *

* / B *

*\ channel *

*/ C *

* noise *

* enable A only *
* A amplitude *
* B off *

* C off *

*\ no *

* Ienvelope *
*/ shape *

Example Programs

GST Metacomco Seka

XXX section dl data

xxx . xxx xxx XXX

blk.l

blk.l

xxx section d2 code

xxx . xxx xxx xxx

L.23



The Concise Atari ST Reference Guide

* Digital Research

dc.b 0,556

dc.b 1,1

dc.b 130,20

*\ chan A Low note *

*/ 187 hz *

dc.b 0,Sfe,l,0,130,20

dc.b 0,556, 1, 1,130,20

*High note

*Low note

dc.b 8,0,9,0

dc.b 130,50

* silence

* A s B off

gunshot

dc.b 0,0,1,0,2,0,3,0,4,0,5,0

dc.b 6,15

dc.b 7,199

dc. b 8,16

dc.b 9,16

dc. b 10,16

dc.b 11,0

dc.b 12, 16

dc.b 13,0

dc.b 130,25

dc. b 8,0,9,0

dc.b 130,50

* medium noise period
* enable noise chans A,B s C

* \ using *

* Ienvelope *

* / control *

*\ envelope period *
*/ *

* one cycle decay *

* silence

* A 4 B off

* explosion

dc.b 0,0,1,0,2,0,3,0,4,0,5,0

dc. b 6,10

dc.b 7, 199

dc. b 8,16

dc.b 9,16

dc.b 10, 16

dc.b 11,0

dc.b 12, 80

dc.b 13,0

dc.b 130,120

* noise period *

* enable noise chans A,B & C

* \ using *
* I envelope *

* / control *

*\ envelope period *
* i *

* one cycle decay *

nd * silence

dc.b 8,0,9,0,10,0* A B s C off

dc.b 130,100 *

L.24

Metacomco



' Digital Research

* sound5: * whistle

dc.b 0,0,1,0,2,0,3,0,4,0,5,0,6,0

dc.b 7,254 * enable tone A only

dc. b 8, 15 * *

dc.b 9,0,10,0,11,0,12,0,13,0 *

dc.b 128,60 * Initial tempreg *

dc.b 129,0,-2,40 * reg-step-end *
dc.b 130,2 * *

exit list

dc.b 7,255,8,0

dc.b 255,0

end

off

return

Example Programs

Hisoft . GST Metacomco Seka

L.25



The Concise Atari ST Reference Guide

Line-A parameter table
The following is thecomplete list oftheLine-A equates andfunctions. Itmay

be used as a standard assembler header file to Line-A programs.
***********************************************

*

* Line-A parameter table
*

***********************************************

V_CEL_HT
V_CEL_MX
V_CEL_MY
V_CEL_WR
V_COL_BG
V_COL_FG
V_CUR_AD
V_CUR_OFF
V_CUR_CX

V_CUR_CY
V_CUR_CNT
V_CUR_TIM
V_FNT_AD
V_FNT_ND
V_FNT_ST
V_FNT_WR
V_X_MAX
V_OFF_AD
V_STATUS
V_Y_MAX
*

VPLANES

VWRAP

CONTRL

INTIN

PTSIN

INTOUT

PTSOUT

COLBITO

COLBIT1

COLBIT2

COLBIT3

LSTLIN

LNMASK

WMODE

*

XI

Yl

X2

Y2

*

PATPTR

PATMSK

MFILL

CLIP

L.26

equ -46

equ -44

equ -42

equ -40

equ -38

equ -36

equ -34

equ -30

equ -28

equ -26

equ -24

equ -23

equ -22

equ -18

equ -16

equ -14

equ -12

equ -10

equ -6

equ -4

equ 0

equ 2

equ 4

equ 8

equ 12

equ 16

equ 20

equ 24

equ 26

equ 28

equ 30

equ 32

equ 34

equ 36

equ 38

equ 40

equ 42

equ 44

equ 46

equ 50

equ 52

equ 54

.w

.w

.w

.w

.w

.w

.L

.w

.w

.w

,B

.B

.L

.W

.w

.w

.w

.L

.w

,w

.w

.w

.L

.L

.L

.1

.L

.«

.W

.w

.w

.w

.w

.w

.w

.w

.w

.w

.L

.W

.W

.w

Pixel cell height
Max cells across -1

Max cells high -1

Offset to next cell

Background index color

Foreground index color

Current cursor address

Offset to 1st cell

X cursor position

Y cursor position

Cursor flash interval

Cursor countdown timer

Font address

Last font ASCII code

1st font ASCII code

Font width

Max X pixel scrn value
Font offset table addr

Text status byte

Max Y pixel scrn value

# video planes
# bytes/video

array pntrs

write

color

VDI line style

Write mode

\
I coordinates

I

/

Curr fill patt pntr
Len fill patt mask

0_single plane
0_no clipping



Example Programs

XMINCL

YMINCL

XMAXCL

YMAXCL

XDDA

DDAINC

SCALDIR

*

MONO

SRCX

SRCY

DESTX

DESTY

DELX

DELY

FBASE

FWIDTH

STYLE

LITEMSK

SKEWMSK

WEIGHT

ROFF

LOFF

SCALE

CHUP

TEXTFG

SCRTCHP

SCRPT2

TEXTBG

COPYTRAN

SEEDABORT

equ 56

equ 58
equ 60
equ 62

equ 64

equ 66
equ 68

equ 70

equ 72

equ 74

equ 76

equ 78

equ 80
equ 82

equ 84

equ 88
equ 90

equ 92

equ 94

equ 96
equ 98

equ 100
equ 102

equ 104

equ 106

equ 108

equ 112
equ 114

equ 116

equ 118

.w \

.w 1 Clipping

.w 1 values

.w /

.w txtblt x dda accum

.w txtblt scale factor

.w 0 down

.w 0_font monospaced

.w \ Coords of char

.w / in font form

.w \ Coords of char

.w / on screen

.w Char width

.w Char height

.L Font form pointer

.W width

.w style
,M lighten text mask
.W skew text mask

.w extra text width

.w high offset skew

.w low offset skew

,w 0 no scaling
.w 0 horiz orientation

.w Text foreground color

.L Text effects buffer

,W Offset to scale buffer

.W Text background color
,w Copy raster type flag

.w Abort fill routine ptr

***********************************************

* Line-A function calls

***********************

init

putpix

getpix

abline

habline

rectfill

polyfill
bitblt

textblt

showcur

hidecur

chgcur

unsprite

drsprite

copyrstr

seedfill

****************

equ 5a000

equ init+1 * put pixel

equ init+2 * get pixel
equ init+3 * draw a line

equ init+4 * horizontal line

equ init+5 * draw filled rectangle
equ init+6 * draw 1 line poly fill
equ init+7 * bit block transfer

equ init+8 * text block transfer

equ init+9 * show mouse

equ init+10 * hide mouse

equ init+11 * transform mouse form

equ init+12 * undraw previous sprit

equ init+13 * draw sprite

equ init+14 * copy raster form

equ init+15 * polygon fill

L.27



The Concise Atari ST Reference Guide

Sprite demonstration

The following Line-A program is deliberately compressed to show the small
number of lines of assembler used to control sprites. The program produces an
alternate black and white sprite crossing a monochrome screen.

* Digital Research Hisoft GST Metacomco

* initialize init: .

* undraw sprite unsprite:

* draw sprite drsprite:

* Max X pixel scrn val V_X_MAX:

* xxx section c . code

init equ 5a000
unsprite equ init+12
drsprite
*

equ init+13

V_X_MAX equ -12

text

start: clr.l -(sp) * Set

move.w #520,-(sp) * super

trap #1 * mode

addq.l #6,sp *

move.l d0,stksv * save stack

move.w #0,olda * versn flag

move.l #0,a2 *

dew init * Init

move.1 a2, d2 * aline

bne a2ok * registers
lea #-60(al),a2 *

move.w #-l,olda
*

*

a2ok: move.l S34(a2),a3 * draw addr (4*13)

move.w #v_X_MAX(a 0) a5* get max width
move.w #0, dO * init x

move.w #50,dl A init y
move.w #10,d2 * scan count

lea sprit,aO * sprite add

lea save,a2 * bg savearea

movea.l a0,a4 * sprite col
adda.l #6,a4

*

* pointer

setcol: move.w (a4),d3 * get color

bne white *

move.l #500010001 , (a4)* black

bra loop * color

white: move.l #0, (a4) * set white

loop: movem.l d0-d2/a0- a4 - (sp)*sav r
tst.w olda * test versn

beq new *

jsr (a3) * old versn

bra cont *

new: dc.w drsprite *
new versn

cont: move.w #2000, dO *

-60(al),a2 >

V X MAX(aO) ,a5

L.28

.*]

*]

*]

.*]

*]



Example Programs

* Digital Research Hisoft Metacomco

sprit

ghoul

dbra d0,wait * delay *

lea save,a2 * bg savarea *

dew unsprite *
*

movem.l (sp)+ dO- d2/a0-a4* unsave r *

add.w #l,dO * slide over *

cmp.w a5,d0 * screen *

ble loop * *

move w #0,d0 * init x *

add.w #10,dl * drop y *

sub.w #l,d2 * count down *

bne setcol * and again *

move 1 stksv, -(sp)* back *

move w #520,- (sp) * to *

trap #1 * user *

addq 1 #6,sp A mode *

move w #0,-(sp) * back *

trap #1 * to GEM *

data * xxx section d

even * xxx . xxx

dc. •i 0,0 * x,y -*

dew -1 * l_vdi, -1 xor

dew 0 * bg col *

dc. w 0 * fg col *

dew 5ffff *

dew 503c0 *

dew Sffff
dc. w 50ff0 *

dc. w 5ffff

dc. w 51ff8 *

dc. w 5ffff
dew 53ffc *

dew 5ffff

dew S73ce *

dew 5ff ff

dew 573ce *

dc. w 5ffff

dc. w Sffff *

dew 5ffff

dc. w 5ffff *

dc. w 5ffff

dew 5fbdf *

dew 5ffff

dew 5f81f *

dew Sffff

dc. w Sffff *

dc. w Sffff

dew S67e6 *

xxx

xxx

L.29

.*]

.*]

.*]

*]



The Concise Atari ST Reference Guide

Digital Research

dew Sffff

dew 5300c

dew Sffff
dew Slff8

dew Sffff

dew S0420

dew Sffff

dew 51818

bss

even

stksv : ds.l 1

save: ds.b 7 4

olda : ds.w 1

end

Hisoft GST

xxx

xxx

section d

. xxx

Metacomco Seka

data

xxx

blk.l . *1

blk.b .

blk.w . *2

*1 There is no requirement to run this program in supervisor mode, these
lines of code may be omitted.

*2 Some versions of the disk based TOS incorrectly return the value of A2.
These lines of code are not required by ROM based versions of the ST.

*3 The use of the following code providesmore stablesprites:

MOVE #37,-(sp)
TRAP #14

ADDQ #2,sp

* wait for vblank

* XBIOS call

* tidy stack

The programmer might also contemplate hiding the busy-bee cursor.

L.30



Glossary

Appendix M

Glossary of abbreviations

M.1



The Concise Atari ST Reference Guide

ADE ASCII decimal equivalent
AES Application environment services
ACIA Asynchronous communications interface adaptor
ANSI American national standards institute
ASCII American standard code for information interchange
AUX Auxilary

BCD Binary coded decimal
BDOS Basic disk operating system
BIOS Basic input/output system
BPB BIOS parameter block
BSS Block storage segment

CCP Console command processor
CCR Condition code register
CON Console

CP/M Control program for microcomputers
CPU Central processing unit
CRC Cyclic redundancy check
CTS Clear to send

DCD Data carrier detect
DIR Directory
DMA Direct memory access
DOS Disk operating system
DPB Disk parameter block
DS Double sided

DTR Data terminal ready
D/A Digital to analogue

EPB Exception parameter block

FAT File allocation table
FCB File control block
FDC Floppy disk controller
FIFO First in, first out register

GDOS Graphics device operating system
GEM Graphics environment manager
GIOS Graphics input/output system
GP General purpose
Grd Ground

GSX Graphic system extension

M.2



HDC

ID

ikbd

IPL

I/O

LPB
LSB
LST

MD

MFDB

MFP

MIDI

MS-DOS
MSB

NDC

Hard disk controller

Identification

Intelligent keyboard
Interrupt level
Input/output

Load parameter block
Least significant byte/bit
List

Memory descriptor
Memory form definition block
Multi function peripheral
Musical instruments digital interface
Microsoft disk operating system
Most significant bit

Normalized device coordinates

OEM Other equipment manufacturer
OS Operating system
OSC Oscillator

PC Program counter
PC-DOS IBM personal computer operating system
pk-pk Peak to peak
PSG Programmable sound generator

RAM Random access memory
RC Raster coordinate
RF Radio frequency
RGB Red-green-blue
Ri Ring
ROM Read only memory
RSX Resident system extension
RTE Return from exception
RTS Return from subroutine

Rx Receive

Glossary

M.3



The Concise Atari ST Reference Guide

SASI Shugart associates standard interface
SCSI Small computer systems interface
SP Stack pointer
SR Status register
SS Single sided
SSP Supervisor stack pointer

TOS The operating system
TPA Transient program area
TTL Transistor-transistor logic
Tx Transmit

ULA Uncommitted logicarray
USART Universal synchronous/asynchronous receiver-transmitter
USP User stack pointer

VBI Vertical blank interrupt
VDI Virtual device interface
VLSI Very large scale integration

M.4



Schematic diagrams

Appendix N

Schematic diagrams

N.1



The Concise Atari ST Reference Guide

2.4576 Mhz

HD
4 Mhz

Reset

500

N.2

Atari ST schematic diagram
MC68901 Mono monitor +gv

Opto isolator
coupler



MMU

4M MADO

8M

16Mhz

MAD9

A21

D7

DO

wdat

rdat

latch

DO

DO

D7

D7

DO

DO

D7

D7

AO

D7

AO

DO

D7

DO

D7

*!-.
D7

DO

DO

D7

D7

373 244

IPL1

IPL2

8MHz

A1 DO

D15

A23

MC68000

AO AO AO

RAM

/
AO

DO DO

\
DO

A9

D7 D7 D7

AO AO

DO DO DO

A9 A9

D7 D7 D7

Shifter

'DO

D15

elk

16MHz

32MHz

R

G ,

A5
/

B

AO

Mono

A1 ROMO

ROM1

ROM2

ROM3

ROM4

6850CS

MFPcs

SNDcs

FCS

elk

D7

DO

A 9

D7

DO

D7

AO

DO

D7

A23

reset

FC2

FC1

FCO _2MHz
500KHZ

GLUE

Schematic diagrams

AO

A9 A9

D7 D7

AO

DO

A9

D7 D7

ROM

DO

D7

AO

DO

A1

A15

ROM3

ROM4

uds

Ids

DO

D15

ROM port

AO

DO

D7

DC

D7

DO

D7

DO

D7

N.3



The Concise Atari ST Reference Guide

31

N.4

128K ROM cartridge

37
LDS

4 off 27256 ROM's

+5v

Vcc A14
Vpp

0E 4CE 3
ROM

D7

Low byte

DO AO

$FB0000

t +5v
L3:

Vcc A14
Vpp
0E o
CE 3

ROM
D15

High byte

D8 AO

$FB0000

© &

-9-Q.

33

+5v
Ol

Vcc A14
Vpp

CE 4
ROM

D7

Low byte

DO AO

$FA0000

35
UDS

t +5v
r^

v- Vcc A14
Vpp

CE 4
ROM

D15

High byte

D8 AO

\

$FA0000

+§v

14

01 <

31 333537
7 6 5 4 10

14
13 8 9 11 3

15 12
12 10 8 6 4 2 0 (

13 11 9 7 5 3 1
see

ddddddddobbbbbbodooddddddddddobbbbddoddd

12 4 6 8 10 15 20 25 30 35

Data bus Address bus

40



Index

Index



The Concise Atari ST Reference Guide

ACIA control/status register 1.28
Add and add extended instructions H.ll

Add Quick, subtract quick, set conditionally
and decrement instructions H.7

Address Mode BASIC equivalents G.21
Address modes encoding H.14
Address registers G.25
AES parameter block 5.3 F.8
AES parameter block sizes 5.5
Alerts 5.22

Allowable address mode types G.22
AND, multiply, add decimal, exchange

instructions H.ll

Animation 2.15

Application environment services (AES)2.5
Application header block F.13
Application interrupts A.3
Application library 5.6
Application programs 2.5
Ascii codes D.3

Assembler conversions K.ll

Assembler directives compatibility K.10
Atari MC68000 assemblers K.2

Atari Operating System 3.2
Atari ST block diagram 1.2
Atari ST console I/O 1.6
Atari ST Hardware

Attribute functions 4.13

Attribute table 4.4

B

Base page 2.21
Base page format F.5
BASIC assembler J.6
Basic calling procedure K.14
Basicdisk operating system (BDOS) 2.4
BASIC example J.4
BASIC GEM J.2
Basicinput/output system (BIOS) 2.4
BCD and BIT data types G.24

BIOS (Trap #13) E.2
BIOScalls (trap #13) 3.3
BIOS error codes 1.2

Bit image 4.33
Bit manipulation, move peripheral and

immediate instructions H.4

Bitblt 7.5

Bitblt table 7.10

Blitter access 8.3

Blitter configuration registers B.5
Blitter control/status 8.3
Blitter flow diagram 8.4
Blitter operation 8.2
Blitter parameter table 8.6
Bomb error codes A.6

Boot loader 2.34

Boot ROM 2.35

Boot sector parameter block F.2
Boot sectors 2.32

Branch conditionally instructions H.8
BUSY bit 8.3

Byte, word and longword G.24

C compilers K.16
Cartridge header block F.13
Cartridge software 2.31
Character printing program L.20
Clipping 8.2
clock/program control 2.42
Cntrl table F.7 F.8

Coding chart J.10
Color palette table 2.13
Colour changing 2.15
Colour fields 5.16

Colour generation 2.15
Colour monitor 1.6

Command modes 1.11

Commands 6.3

Communications overview 2.36

Compare, exclusive OR instructions H.10
Compatibility table K.8
Conditional tests H.8

Configuration registers 2.8 B.2



Contour fill 7.6

Control table 4.3 5.3

Control/status register functions 2.40
Controller execute 6.6

Copy raster 7.6
CP/M 68K format 2.22
CPU resources 2.9

Critical interrupt handlers 3.6

D

Data encoding i 4.33
Data packet functions 6.7
Data packets 6.2
Data registers G.25
Data storage G.23
Data structure types 5.36
Data types G.24
Device driver F.3

Device state block F.3

Digital Research assembler K.7
Direct memory access controller (DMA) 1.30
Direct memory access port (DMA) 1.11
Disable joysticks 6.5
Disable mouse 6.4

Display configuration registers B.2
DMA bus boot code 2.48

DMA interface 2.47

DMA/Disk configuration registers B.3
Draw sprite 7.6

Edit keys 5.21
Emulation instruction, type 1010H.10
Emulation instruction, type 1111 H.13
Endmasks 8.2

Envelope calculations 2.19
Error codes 1.2

Error processing state dump A.3
Escape functions 4.27
Escape functions implemented 4.27
Escape functions not implemented 4.30

Event library 5.8
Example assembler programs 1.2
Exception vectors A.2
Executable file size K.15

Extended BDOS(Trap #2) E.5
Extended BDOS calls (trap #2) 3.24

FDC instruction bytes 1.21
File formats 4.33

File header 4.33 F.6

File header format 2.22

File selector library 5.28
Filled rectangle 7.4
Floppy disk controller interface 1.10
Floppy disk interface 2.43
Floppy parameter block F.4
Font types 5.16
Form library 5.20
Format flag 7.7
Formatting a floppy disk 2.44

Index

GEM AES access 3.24

GEM AES components 5.5
GEM AES E.9

GEM AES function calls 5.2

GEM AES Libraries 5.6

GEM Application and accessory header file L.3
GEM BIOS 2.4

GEM demonstration assembly program L.9
GEM demonstration program L.8
GEM disk operating system (GEMDOS) 2.20
GEM draw 4.36

GEM parameter blocks F.7
GEM VDI access 3.24

GEM VDI calls 4.8

GEM VDI E.6

GEM VDI function calls 4.2

GEMDOS (Trap #1) E.4
GEMDOS calls (trap #1) 3.15



The Concise Atari ST Reference Guide

GEMDOS error codes 1.3

GEMSYS J.2
General assembler compatibility K.<
General conversion chart K.12

General drawing primitives 4.11
General hardware description 1.3
General housekeeping (Glue) 1.31
Get pixel 7.3
Global array 5.3
Global array block F.8
Glossary M.2
Graphic library 5.24
Graphics concept overview 2.10
GST assembler K.5

GSX compatible keyscan codes D.4

H

Hand coding J.7
Handles and coordinates 5.4

Hard disk partitioning 2.50
Hardware bound interrupts A.3
Header blocks F.13

Hide mouse 7.5

High resolution screen 2.12 2.13
Hisoft assembler K.4

HOG bit 8.3

Horizontal line 7.3

Icon selection 5.11

ikbd command set E.12

Implemented functions 2.35
Initialization pointers 7.2
Input functions 4.18
Input functions implemented 4.18
Input functions not implemented 4.20
Inquire functions 4.22
Instruction codes H.4

Instruction summary G.2
Instruction word parsing analysis H.2
Intelligent keyboard commands 6.2

Intelligent keyboard I/O (ikbd) 1.15
Intelligent keyboard interface 2.41
Internal registers G.25
Interrogate mouse position 6.3
Interrogate time of day clock 6.5
Interrupt Handler (VBI) 3.26
Interrupt handler overview 2.27

J
Joystick 2.41
Joystick interrogation 6.4

K

Keyboard 2.41
Keycode definitions D.2
Keycodes 6.2
Keystroke selection 5.11

Line 7.3

Line-A access 7.2

Line-A L.26

Line-A parameter blocks 7.7
Line-A parameter table L.26 7.8
Line-A routines 2.4 7.3 E.13

Line-A tables F.9

Line-A variables F.9

Line-by-line filled polygon 7.4
List of callable functions E.2

Load mouse position 6.4
Load parameter block F.5
Logic table 7.6
Low resolution screen 2.12 2.14



M

Main system & device subsystem diagram 1.4
MC68000 16-bit microprocessor (CPU) 1.19
MC68000 instruction codes H.2

MC68000 instruction summary G.2
MC6850 asynchronous communications

interface adaptor (ACIA) 1.27
MC6850configuration registers B.6
Medium resolution screen 2.12 2.14

Memory allocations 2.6
Memory configuration registers B.2
Memory definition block 7.7
Memory form definition block F.12
Memory load 6.5
Memory management unit (MMU) 1.30
Memory map 2.6
Memory model 2.21
Memory parameter block F.6
Memory read 6.6
Menu bar control 5.13

Menu library 5.12
Meta file Sub Op codes 4.35
Metacomco assembler K.6

MFP configuration registers 1.24
MFP hardware interrupts 1.24
Midi interface 2.39

Midi signal levels 1.13
Miscellaneous error codes 1.4
Miscellaneous instructions H.6
MK68901 configuration registers B.6
MK68901 multi-function processor (MFP)1.23
Monitor output 1.7
Monitor/TV output 1.6
Monochrome monitor 1.6
Mouse 2.41

Mouse/joystick interface 1.16
Move byte instruction H.5
Move longword instruction H.5
Move quick instructions H.9
Move word instruction H.5

Musical instruments digital interface (MIDI)
1.13

Index

N

Noise frequency calculations 2.18

O

Object library 5.14
Object library tables 5.15
Object tree 5.14
Operating system overview 2.3
OR, divide and subtract decimal instructions

H.9

Organization of addresses in memory G.27
Output functions 4.10
Output page 4.35
Overlap 8.2
Overview of screens 2.12

Parallel data I/O 2.17
Parallel port interface 2.38
Parallel printer interface 1.8
Parameter block sizes 4.5

Parameter blocks F.2

Pause output 6.4
Period/cycle 2.19
Peripheral device communications 2.36
Physical to logical screen transposition 2.13
Plug-in cartridge port 1.14
Points table 4.4

Port 0 1.16

Port 11.16

Power levels 1.17

Power supply 1.17
Printer and terminal escape codes C.2
Printers C.5

Processor device outlines 1.18

Program counter G.26
Program development tools K.2
Program parameter blocks F.5
Put pixel 7.3



The Concise Atari ST Reference Guide

R

Raster operations 4.16
Register usage 3.2
Relocation table 2.23

Reserved configuration register space B.3
Reset 6.3

Resource library 5.35
Resource mangement overview 2.9
Resume 6.4

RS232 interface 2.37

RS232 modem interface 1.9

RS232signal levels 1.9
Run flag bits F.13

Scrap library 5.27
Sector buffer block F.4

Seka assembler K.2

Set fire button 6.4

Set joystick event reporting 6.4
Set joystick interrogation mode 6.4
Set joystick keycode mode 6.5
Set joystick monitoring 6.4
Set mouse absolute positioning 6.3
Set mouse button action 6.3

Set mouse keycode mode 6.3
Set mouse relative position reporting 6.3
Set mouse scale 6.3

Set mouse threshold 6.3

Set time of day clock 6.5
Set y base position at top 6.4
Sey y base position 6.4
Shape 2.19
Shell library 5.37
Shift and rotate instructions H.12

Show mouse 7.5

Skew 8.2

Sound concept overview 2.16
Sound configuration registers 2.18
Sound configuration registers B.4

Sound control register 2.16
Sound demonstration program L.22
Sprite definition block 7.7 F.12
Sprite demonstration L.28
ST BIOS comparisons 2.27
ST disk system 2.26
ST file system 2.25
Stack pointer G.26
Status inquiries 6.6
Status register G.26
Subtract and subtract extended instructions H.9

Supervisor to user mode 3.23
Supervisor/user toggle 3.23
Symbol table 2.23
SYSTAB J.3
System byte G.27
System initialization 2.28
System interrupt functions 3.26
System start-up block F.2
System tables 2.7
System variables A.2 A.4

Television 1.6

Test for mode 3.23

Textblt 7.5

The operating system (TOS) overview 2.2
Tone frequency calculations 2.18
TOS Display demonstration program L.17
TOS header file L.19

Transform mouse 7.6

Transient program area block F.5
Trap #1 access 3.15
Trap #13 access 3.3
Trap #14 access 3.7
Traps 3.3
Typical AES application call 5.4
Typical Epson printer codes C.2



u

Undocumented line-A variables F.U

Undraw sprite 7.6
User byte G.26
User to supervisor mode 3.23

V

VDI parameter block F.7 4.3
VDI standard keyboard codes D.5
VDI style patterns 4.26
VDI text alignment 4.46
VDISYS J.2
Video controller (Shifter) 1.31
Virtual device interface (VDI) 2.4
VT52 terminal escape codes C.4

w

WD 1772A DMA channel interface 2.45

WD1772A floppy disk controller (FDC) 1.21
Window library 5.29
Window parts bit representation 5.30
Workstation function calls 4.8

XBIOS 2.4

XBIOS (Trap #14) E.2
XBIOScalls (trap #14) 3.7

YM2149 programmable sound generator (PSG)
1.29

Index



The Concise Atari ST Reference Guide








	Front Cover
	Title
	Copyright
	Contents
	Preface
	Acknowledgements
	Foreword
	1: Atari ST Hardware
	2: TOS overview
	3: The Atari Operating System
	4: GEM VDI
	5: GEM AES
	6: Intelligent Keyboard Commands
	7: Line-A routines
	8: The Blitter
	Appendices
	A: System variables
	B: Configuration registers
	C: Printer and terminal escape codes
	D: Keycode definitions
	E: List of callable functions
	F: Parameter blocks
	G: MC68000 instruction summary
	H: MC68000 instruction codes
	I: Error codes
	J: BASIC GEM
	K: Program development tools
	L: Example assembler programs
	M: Glossary of abbreviations
	N: Schematic diagrams

	Index
	Back Cover

