
GEMWProgrammer's Reference

The complete guide to programming the ST
using the Graphics Environment Manager

LA. ATARl520ST/

Delete () / X

~pA.f!!!""'l

~~~-~iiI 7 8 9 • 

-i 4 5 6 + 
....... ~~~~~ ..... ~ .......... ~~ .................... 1 2 3 "-

o 

-:; A Data Becker book 'published by 

; AOOcusliUnUi; Software 





GEM" 
Programmer's Reference 

The complete guide to programming the ST 
using the Graphics Environment Manager 

By Norbert Szczepanowski 
and Bernd Gunther 

A Data Becker Book 

Published by 

Abacus IHmnml Software 



Second Printing, March 1986 
Printed in U.S.A. 
Copyright © 1985 

Copyright © 1985 

Data Becker GmbH 
Merowingers tr. 30 
4000 Dusseldorf, West Germany 
ABACUS Software, Inc. 
P.O. Box 7219 
Grand Rapids, MI 49510 

This book is copyrighted. No part of this book may be reproduced, stored in 
a retrieval system, or transmitted in any form or by any means, electronic, 
mechanical, photocopying, recording or otherwise without the prior written 
permission of ABACUS Software or Data Becker, GmbH. 

Every effort has been made to insure complete and accurate information 
concerning the material presented in this book. However Abacus Software 
can neither guarantee nor be held legally responsible for any mistakes in 
printing or faulty instructions contained in this book. The authors will 
always appreciate receiving notice of subsequent mistakes. 

AT ARl, 520ST, ST, TOS, ST BASIC and ST LOGO are trademarks or 
registered trademarks of Atari Corp. 

GEM, GEM Draw and GEM Write are trademarks or registered trademarks 
of Digital Research Inc. 

IBM is a registered trademark of International Business Machines. 

ISBN 0-916439-52-6 



Preface 

GEM is an easy-to-use, visually oriented operating system. It was 
developed by Digital Research as an addition to the more traditional 
command-oriented operating systems, such as MS-DOS. In fact, the GEM 
literature from Digital Research refers to MS-DOS computers, and does not 
mention the ST's system. Some find the standard GEM literature very 
difficult to follow when they are trying to program the ST. 

It was with these facts in mind that we wrote this book. We cover many 
topics: the Atari Development Package; working with the editor and linker; 
using the C language compiler and the 68000 assembler; and finally, using 
the facilities of GEM. In short, the GEM Programmers Reference is an 
invaluable book for all ST programmers and developers. 

Chapter 1 describes the basic structure of the GEM components-the 
Virtual Device Interface (VDI) and the Application Environment Services 
(AES). 

Chapter 2 describes the different programming considerations using the 
high-level C language and 68000 assembly language. We introduce you to 
the features of the the Development Package and present a sample GEM 
program. 

Chapter 3 focuses on the Virtual Device Interface, and Chapter 4 on the the 
Application Environment Services. Each function of the VDI and AES is 
thoroughly described so that you can use the enormous power of the GEM 
library routines. For every function we list the required parameters and any 
peculiarities to make your programming task easier. 

At the end of Chapters 3 and 4 we present several sample programs. This is 
the most effective way of showing you how to use the GEM facilities. We 
hope that you will tailor these programs to you own needs. 

In closing, we realize that GEM is a very complex system. Because of this, 
we've tried to carefully define our subject matter in as much detail as 
possible. Our goal is to pass onto you all the informatipn that we've learned 
about the ST's GEM operating system. 

Best wishes-

Norbert Szczepanowski 
Bernd Gunther 
December, 1985 





Table of Contents 

Preface 1 

CHAPTER 1 GEM ORGANIZATION IN THE ATARI ST 1 

1.1 The Atari ST-An Ideal GEM Computer 3 
1.1.1 The Processor-Fast as Lightning 3 
1.1.2 The Main Memory-Plenty of Room 4 
1.1.3 Graphics-A Huge Matrix 4 
1.2 GEM Structure 5 
1.2.1 GEM-VDI 6 
1.2.1.1 VDI Architecture 6 
1.2.1.2 GDOS (Graphic Device Operating System) 6 
1.2.1.3 GIOS (Graphic Input/Output System) 7 
1.2.1.4 The Metafile 7 
1.2.2 GEM-AES 8 
1.2.2.1 AES Architecture 8 
1.2.2.2 The Routine Library 8 
1.2.2.3 Multi-tasking 8 
1.2.2.4 The SHELL 9 
1.2.2.5 The Buffer 9 

CHAPTER 2 PROGRAMMING WITH GEM 11 

2.1 Programming Languages 13 
2.2 A Short Introduction to C 14 
2.2.1 A Simple C Program 15 
2.2.2 Compiling a Simple Program 15 
2.2.3 Variables and Loop Structures 17 
2.2.4 Symbolic Constants 20 
2.2.5 Functions 21 
2.2.6 Conditions 23 
2.3 A Short Introduction to the Assembler 25 
2.3.1 The 68000 Processor 25 
2.3 .2 Important Assembler Commands 26 
2.3.3 Addressing Modes on the 68000 31 
2.4 The ST Development Package 34 
2.4.1 The Editor 37 
2.4.2 The C Compiler 38 
2.4.3 The 68000 Assembler 40 
2.4.4 The Linker 43 
2.5 A Sample Program in C 45 
2.6 A Sample Program in Assembler 47 

111 



CHAPTER 3 INSIDE GEM-THE VDI 55 

3.1 The Virtual Device Interface 57 
3.1.1 Introduction to VDI Programming 57 
3.1.1.1 VDI Functions 57 
3.1.1.2 VDIOpcodes 58 
3.1.1.3 VDI Parameters 59 
3.2 The VDI Library 61 
3.2.1 The Control Functions 61 
3.2.2 The Output Functions 79 
3.2.3 Basic Graphic Functions 93 
3.2.4 The Attribute Functions 113 
3.2.5 The Raster Operations 157 
3.2.6 The Input Functions 169 
3.2.7 The Inquiry Functions 209 
3.3 Sample Programs using the VDI 230 

CHAPTER 4 INSIDE GEM-THE AES 255 

4.1 Fundamentals of AES Use 257 
4.1.1 Initializing an Application 257 
4.1.2 Determining the Screen Resolution 258 
4.1.3 Resource Files 259 
4.1.4 Displaying the Menu Bar 259 
4.1.5 Output of the Desktop Icons 260 
4.1.6 Handling User Input 260 
4.1.7 Menu Selection 261 
4.1.8 Dialog via Dialog Boxes 262 
4.1.9 Selecting an Icon 263 
4.1.10 Creating a Window 263 
4.1.11 Contr0111ing the Working Memory 264 
4.1.12 Manipulating the Windows 265 
4.1.13 Recreating the Working Storage 267 
4.1.14 Multi-tasking 268 
4.2 The AES Libraries 269 
4.2.1 Conventions 269 
4.2.2 Initialization of GEM Programs 269 
4.2.3 Window Technique 284 
4.2.4 Event Handler 305 
4.2.5 Object Representation 323 
4.2.6 Dialog Box Management 344 
4.2.7 Drop-Down Menus 361 
4.2.8 Graphics Library 369 
4.3 Sample Programs using the AES 388 

IV 



Appendix A: 

Appendix B: 

Appendix C: 

Index 

Overview of the VDI Functions 

Overview of the AES Functions 

68000 Instructions 

v 

401 

403 

405 

409 





( CHAPTER 1 J 

GEM ORGANIZATION IN THE ATARI ST 

1.1 
1.1.1 
1.1.2 
1.1.3 
1.2 
1.2.1 
1.2.1.1 
1.2.1.2 
1.2.1.3 
1.2.1.4 
1.2.2 
1.2.2.1 
1.2.2.2 
1.2.2.3 
1.2.2.4 
1.2.2.5 

The Atari ST-An Ideal GEM Computer 
The Processor-Fast as Lightning 
The Main Memory-Plenty of Room 
Graphics-A Huge Matrix 
GEM Structure 
GEM-VDI 
VDI Architecture 
GDOS (Graphic Device Operating System) 
GIOS (Graphic Input/Output System) 
The Metafile 
GEM-AES 
AES Architecture 
The Routine Library 
Multi-tasking 
The SHELL 
The Buffer 



'---



Abacus Software GEM Programmer's Reference 

GEM ORGANIZATION IN THE ATARI ST 

1.1 The Atari ST-An Ideal GEM Computer 

GEM, or Graphics Environment Manager, is a graphics oriented operating 
system. Components are represented on the screens as small pictures 
known as icons. These icons can be manipulated to perform operating 
system functions such as displaying a disk directory, copying files or 
executing a program. 

To handle all of these tasks, GEM requires a large amount of memory. To 
perform efficiently, GEM also requires a fast processor. The ST has both, 
making it a good candidate for the GEM operating system. 

1.1.1 The Processor-Fast as Lightning 

The Atari ST is a member of the 16-bit computer fraternity. The 68000 
microprocessor, developed by Motorola in the late 70s, can put the earlier 
8-bit microprocessor to shame. The 68000 microprocessor has a 
16-bit-wide data bus, operates at a speed of 8 mHz, and has an addressable 
memory range of up to 16 megabytes. The 68000 instructions are very 
powerful, since 32-bit-register operations can be performed. As an 
example, the 8-bit 6502 chip transfers 4096 bytes in memory in about 65 
milliseconds- but the 68000 only needs 6 milliseconds (that's 11 times 
faster). 

So, the 68000 is extremely well-suited to GEM. GEM is often responsible 
for handling up to several thousand graphics points on screen, and the ST is 
capable of doing this task quickly. 

3 



Abacus Software GEM Programmer's Reference 

1.1.2 The Main Memory-Plenty of Room 

The Atari ST has an enormous amount of working memory-512K. As we 
mentioned earlier, GEM is a graphics-oriented operating system, and as 
such, needs a lot of memory. One graphic "page" requires 32K, and that's 
not even counting the program used to produce the page. 

Another advantage of this large memory is the ability to hold several large 
data buffers, which lets you access several files concurrently and speed up 
the file access. 

Last, but not least, the ST allows you to perform multi-tasking (running 
several programs at once). 

1.1.3 Graphics-A Huge Matrix 

GEM is invariably associated with graphics. Without high-resolution 
graphic capabilities, GEM is worthless. The ST, of course, has three modes 
of operation: 

• 320 X 200 screen points, 16 colors 
• 640 X 200 screen points, 4 colors 
• 640 X 400 screen points, monochrome 

The colors can be chosen from a palette consisting of 512 colors. The colors 
black and white are included in the 4- and 16-color modes. 

GEM works in both 640 X 200 and 640 X 400 resolutions. The latter can 
only be used with a monochrome monitor, though. 

4 



Abacus Software GEM Programmer's Reference 

1.2 GEM Structure 

A general introduction to GEM is in order, before we do any programming. 
GEM is made up of two major subsystems: 

• VDI (Virtual Device Interface) 

• AES (Application Environment System) 

AES and VDI are nothing more than libraries (along the lines of the Library 
of Congress) of functions and program routines. These routines are 
integrated into your programs, and connected to it when compiling or 
assembling. We'll discuss usage of these functions later, in the section on 
programming in the C language. 

The VDI contains all the essential graphic functions (drawing lines, circles, 
etc.). 

The functions for windows, boxes and such are contained in the AES 
section. AES has a lower priority than the VDI, and VDI has a lower 
priority than the DOS. This hierarchy is: 

• DOS (Disk Operating System) 

• VDI (Virtual Device Interface) 

• AES (Application Environment System) 

5 



Abacus Software GEM Programmer's Reference 

1.2.1 GEM-VDI 

1.2.1.1 VDI Architecture 

The purpose of the VDI is to make graphic programming simpler for the 
user. The trick used here is to make the use of the graphic functions 
independent of the graphic output device. A VDI component, the device 
driver, concerns itself with device-specific operations. VDI has the 
following logical components: 

• GDOS (Graphic Device Operating System) 

• GIOS (Graphics Input/Output System) w/ device driver 

• Metafiles 

VDI also allows for different hardware configurations within GDOS. This 
has valuable advantages, as we'll soon find out. 

1.2.1.2 GDOS (Graphic Device Operating System) 

The GDOS contains all device-independent functions. This means that a 
programmer can write a C program on one computer (for example an IBM 
PC) that will run on the ST. Furthermore, the programmer can use the 
GOOS to access virtually any type of disk drive, regardless of brand. 

With the GDOS, the device-independent functions provide for two types of 
coordinates: 

• NDC (Normalized Device Coordinates) 

• RC (Raster Coordinates) 

The normal device coordinates range from 0,0 (lower left-hand comer) 
to 32767,32767 (upper right-hand comer). While not all of these points are 
usable on present devices, GEM is designed for the future with upward 
compatibility to more advanced graphic capabilities. 

6 



Abacus Software GEM Programmer's Reference 

The raster coordinates begin in the upper left-hand corner (0,0) and end 
in the lower right-hand corner, which is (640,400) in the maximum 
(monochrome) graphic mode. 

1.2.1.3 GIOS (Graphic Input/Output System) 

As the title says, the GIOS is GEM's input/output system, containing all 
device-specific I/O functions for devices connected with the ST. The 
programmer does not talk directly to the GIOS. All graphic functions are 
routed by GOOS to the GIOS which then performs the appropriate function. 

GIOS is the interface between GnOS and input/output devices. 

For each device connected, the GIOS has a device driver. A graphic 
application can be adapted easily for a new input/output device by supplying 
a new device driver. 

GDOS loads the needed device driver into memory. The application can 
work with every device that has a driver residing in memory. 

1.2.1.4 The Metafile 

All graphic output can be written as a standardized file called a Metafile. A 
Metafile can be read and updated by any application. With Metafiles, it's 
possible to combine graphics from GEM DRAW with text from the word 
processor GEM WRITE. In short, you have the ability to move graphics to 
any other application. 

7 



Abacus Software GEM Programmer's Reference 

1.2.2 GEM-AES 

1.2.2.1 AES Architecture 

AES stands for Application Environment System. This "environment" is 
graphic-oriented in GEM. Communication between user and computer is 
performed by "manipulating" graphic elements (e.g., windows and icons). 
The graphic environment is an especially powerful operating system, made 
up of several components. 

The Routine Library can be used to access all elements of the AES. 
Multi-tasking makes it possible to run several applications simultaneously. 
The Shell represents the operating system itself (TOS). Choice of screen 
elements makes it possible to temporarily store graphic pages. 

1.2.2.2 The Routine Library 

The routine library contains all of the AES function calls, such as those that 
move graphic objects, read the mouse, monitor windows, etc. 

The library is stored in ROM in the Atari ST (early versions of the ST may 
not have a ROM-based library). The Atari Development Package also 
contains a set of C routines. A proposed set of Pascal routines may soon be 
available. 

1.2.2.3 Multi-tasking 

Multi-tasking allows processes to run simultaneously. The Atari ST is 
limited to the following processes: 

• one application 
• three desk-accessory programs with a maximum of 

six desk accessories (utilities, such as a calculator) 
or six background processes 

• AES screen manager 

8 



Abacus Software GEM Programmer's Reference 

1.2.2.4 The SHELL 

The Shell switches between graphic applications and text applications. It 
also acts as an interface to the operating system. It can activate the TOS 
command set and supply commands. 

1.2.2.5 The Buffer 

The Desk Accessory Buffer contains the program codes of the desk 
accessories, which are permanently available. It includes a buffer that 

. supports the graphic functions. For example, as soon as the user picks an 
area containing a menu screen, the menu is saved into a buffer. If the menu 
is needed again, the AES can automatically reconstruct the screen from this 
buffer. 

9 





(CHAPTER 2) 

Programming with GEM 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.4 
2.2.5 
2.2.6 
2.3 
2.3.1 
2.3.2 
2.3.3 
2.4 
2.4.1 
2.4.2 
2.4.3 
2.4.4 
2.5 
2.6 

Programming Languages 
A Short Introduction to C 
A Simple C Program 
Compiling a Simple Program 
Variables and Loop Structures 
Symbolic Constants 
Functions 
Conditions 
A Short Introduction to the Assembler 
The 68000 Processor 
Important Assembler Commands 
Addressing Modes on the 68000 
The ST Development Package 
The Editor 
The C Compiler 
The 68000 Assembler 
The Linker 
An Sample Program in C 
An Sample Program in Assembler 





Abacus Software GEM Programmer's Reference 

Programming with GEM 

2.1 Programming Languages 

GEM lets you work with either of two main programming languages: C or 
Assembler. Both languages have advantages and disadvantages. Here is a 
short overview: 

!: ASSSi:mblSi:r 
Execution Speed + 
Program Length + 
Readability + 
Error Checking + 
Portability + 

Choosing a language is really up to you; have a good look at the criteria, 
and decide which one would best fit your applications. For example, a fast 
graphics program would be best written in assembly language. The 
disadvantage here is that this program will only run quickly on another 
system using the same processor. Such a program might be comparable to 
an IBM's. But a program written in C would be compatible and easily 
transportable to an IBM PC, for example. 

Then again, most C compilers can produce efficient assembler code. 

GEM itself is written in C. 

13 



Abacus Software GEM Programmer's Reference 

2.2 A Short Introduction to C 

C is an all-purpose programming language, with speed that compares 
favorably to the speed of machine language. C was originally used for 
operating system program development. The UNIX operating system was 
written in C. However, C is also a fine language for writing databases and 
word processing applications. 

C is like machine code in the sense that characters, numbers and addresses 
are used, but it has no parallels with BASIC or COBOL. Because of its 
relatively concise set of statements, it is difficult to work with complete 
character strings or arrays in C. 

The standard set of C statements has no 110 operations like READ or 
WR I TE. These operations have to be implemented through the function 
library (a collection of computer dependent routines with standard calis). 

The omission of these language elements really puts C at a great 
disadvantage. But this is an advantage for many programmers-thanks to 
its small command set, C is a relatively simple language to learn. Also, and 
perhaps more importantly, most computers have compatible versions of C, 
so the language is extremely portable. 

C has all the important control structures like subroutines, loops and 
interrupt criteria. Furthermore, it uses address arithmetic and pointer values. 
Functions that cannot be changed are given as arguments. Like Pascal, C 
also has recursive functions that can be recalled at any time. C is a highly 
effective language for a huge spectrum of applications. The following 
section will introduce the fundamentals of the C language. 

14 



Abacus Software GEM Programmer's Reference 

2.2.1 A Simple C Program 

Learning a language requires you to learn its elements, as well as the proper 
and most efficient "grammar". This short program will illustrate the 
fundamen tals of C. It prints the word AT ARI on the screen: 

/* Program Name: FIRST.C */ 
main () 
{ 
printf (nATARI\nn); 
} 

C programs are basically composed of one or more functions. The function 
main () is, as its name implies, the main function. It must be included in 
every C program. Parameters may be paired to all functions by enclosing 
them in parentheses. Function identifiers must be followed by a set of 
parentheses even if no parameters are required. 

A function is composed of one or more statements. These statements are 
delimited by brackets ({}). The brackets are equivalent to Pascal's BEGIN 
and END commands. Outputting text is performed by the standard C 
function printf, which is not in the normal C language set. Instead, 
printf is in the standard I/O (Input/Output) library. 

The function argument for printf is "ATARI\n" in our example. The 
characters \n are C's way of saying <RETURN>. 

Every statement is ended with a semicolon. 

2.2.2 Compiling a Simple Program 

Try the following examples out on your ST. To make the transition to C 
easier for you, detailed comments will accompany every example. 

The diskettes in your development package should include the EDITOR 
diskette, the COMPILER diskette, and the LlNKER diskette. The program 
is written using the EDITOR. 

The Mince editor program was used for all the examples in this book. The 
most important editing commands of the Mince editor are: 

15 



Abacus Software 

CONTROL-X 
CONTROL-X 
CONTROL-X 
CONTROL-X 

CONTROL-R 
CONTROL-W 
CONTROL-S 
CONTROL-C 

GEM Programmer's Reference 

Read a file 
Save file, enter file name 
Save current file 
Exit editor 

When you save a C source file, be sure to add a . C extension (e.g. 
FIRSTC. C). 

On a one drive system, save the source program (FIRSTC. C) directly to 
the compiler disk. To start the compiler select the program BATCH. TTP. 
An input box appears, and you should enter: 

C filename 
For example, typing in C FIRSTC compiles the file FIRSTC. C. Notice 
that you do not enter the . C extension of the filename. After compiling, the 
temporary work files are erased, and an object module is written to the disk. 
This module has the extension. 0 (e.g. FIRSTC. 0), and is then copied to 
the linker diskette (with a single drive system). 

Check to see if the file LINKTOS. BAT is on the linker disk. If not, type 
in the following general-purpose batch file with the editor, and save it with 
the name LINKGEN. BAT: 

link68 [ul %1.68k=gemsta rt,%1, vdibind,osbind,aesbind, libf,geml i b 
relmod %1 
rm %1.68k 
wait 

Start the linker by selecting the BATCH. TTP program from the linker 
disk. At the input window enter: 

LINKGEN filename 

To link FIRSTC. 0, type FIRSTC for the filename. Don't include the 
extension . o. The linking procedure will start, and produce an executable 
program with the extension . PRG. See Chapter 2.5 for details on these 
items. 

16 



Abacus Software GEM Programmer's Reference 

2.2.3 Variables and Loop Structures 

The next sample C program gives the sum of the numbers from 1 to 100. 

/* Output of sum of numbers from 1 to 100 */ 
/* Program Name: SUMC.C */ 

main () 
{ 

int number, sum; 

number = 1; 
sum = 0; 

while (number <= 100) 
{ 

sum = sum + number; 
number = number + 1; 

} 
printf ("%d\n",sum); 

gemdos(Ox1); /* wait for keypress */ 

Note the presence of main () , as well as our opening comments (always 
written between / * * /). Comments can be placed almost 
anywhere in a program. A good place is after the semicolon at the end of the 
line described. Comments make programs much more readable and 
informati ve. 

Note that within the first set of brackets, the local variables are defined. The 
declaration int specifies a 16-bit integer number between -32768 and 
+32767. Both number and sum are declared as 16-bit integers. 

Along with int are the other C data types: 

flo a t floating-point variables with mantissa and exponents 

char a single character 

short an 8-bit whole number 

long a 32-bit whole number 

double a floating-point number with doubled accuracy 

17 



Abacus Software GEM Programmer's Reference 

After variable definition follows the assignment statements. This assigns a 
starting value to each variable: 

number = 1; 
sum = 0; 

Variables aren't automatically set to zero, and may contain a random 
number. 

The while statement is used to calculate the sums. An expression 
following a while statement is enclosed in parentheses. The wh il e 
statement loops until the expression becomes false or zero. 

The statements within a while loop will normally be the program itself 
(this is good to know). During every iteration of the loop, the value of 
number is added to sum and the value of number is raised by one. 
Incrementing number can also be accomplished in C like this: 

number++; 

Double plus-signs (++) raise the value of the variable by one. Both loop 
statements can be used: 

Simpler still: 

sum = sum + number; 
number++; 

sum = sum + number++; 

The above statement will increment number after the addition. The 
statement: 

sum = sum + ++number 

increments number before adding it to sum. 

Decrementing numbers (decreasing the variable by one) is just as simple as 
incrementing: 

number-- or --number 

This is identical to number = number - 1. 

18 



Abacus Software GEM Programmer's Reference 

Finally the program prints the final sum to the screen. The function to do 
this is printf. The character sequence %d is a format specification and 
means that the variable to be printed is a whole decimal number (integer). C 
gives us other format specifications as well: 

% f print floating point number 

% x print unsigned hexadecimal number 

% 0 print unsigned octal number 

% c print a single character 

% s print a character string 

Floating-point variables allow us to represent numbers with decimal points 
and digits to the right of that point. The format element % 4 . 2 f describes a 
number with four digits, with two decimal places (e.g. 34.45,23.76). 

The function gemdos (Oxl) is a GEMDOS call. This function waits for 
input from the keyboard. 

Besides while, the C language has another loop structure. It contains the 
starting number, loop operation and condition all on the same line. Here's a 
sample program for this type of loop: 

/*Output of the sum of numbers between 1 and 100 */ 
/* Program name: SUM2.C */ 

main () 

int number, sum; 
for (number=l; number <= 100; number++) 

sum = sum + number; 
printf ("%d\n",sum); 
gemdos(Ox1) ; 

} 

The for loop contains three arguments, each separated by a semicolon. 
The first argument is executed once, and is the initial setting of the control 
variable: 

number=O 

The second argument is the condition that controls the end of the loop: 

19 



Abacus Software GEM Programmer's Reference 

number <= 100 

The last argument is the repeating assignment that is performed during each 
iteration of the loop body: 

number++ 

The addition sum = sum + number can also be put in the third 
argument in a for loop: 

/* Output of the sum of numbers from 1 to 100 */ 
/* Program name: SUM3.C */ 

ma i n () 
{ 
int number, sum; 

for (number=l;number <= 100; 
sum = sum + number++); 

printf ("%d\n",sum); 
gemdos (Ox1) ; 

The loop structure used depends on the situation. 

2.2.4 Symbolic Constants 

Constants can be defmed symbolically and given values. To assign a value 
to the symbol, the #define statement is used. All symbolic definitions 
are placed at the beginning of the program. Let's revise our original 
program slightly: 

/* Output of the sum of numbers from 1 to 1 00 */ 
/* Program name: SUM4.C */ 
main () 
#define MAX 100 

i nt number, sum; 
for (number=l;number <= MAX; 

sum = sum + number++); 

20 



Abacus Software 

printf (" %d \ n",sum); 
gemdos(Ox1) ; 

GEM Programmer's Reference 

You aren't limited to defining numerical constants-you can even define 
character strings: 

/* Output of sums of numbers from 1 to 100 */ 
/* Program name: SUMS.C */ 
main () 
#define MAX 100 
#define RET \ n 

int number, sum; 

for (number=l;number <= MAX; 
sum = sum + number++); 

printf (" %d'RET''',sum); 
gemdos(Ox1) ; 

Now the carriage return (\n) is represented by the symbolic name RET. 

Notice that a semicolon does not follow the #define statement. 

2.2.5 Functions 

A function in C is equivalent to a subroutine in BASIC, a function in 
Fortran, and procedures in COBOL, PLiI or Pascal. Function calls are the 
best method of arranging complex programs. In general, the more functions 
in a program, the more clearly it is arranged. The statement main () is 
basically just a function call. 

The following program prints the third power for the numbers I to 100: 

21 



Abacus Software GEM Programmer's Reference 

/* Third power of numbers 1 to 100 */ 
/* Program name: THIRDC.C */ 

main () 
{ 

/*main program which calls pot function* / 

int i; 
long pot(); 

for (i=l; i <= 100; i++) 
printf(" %d %ld\n",i,pot(i)); 

gemdos(Ox1) ; 

long pot(n) 
int n; 

/* n to third power function */ 

{ 

long X; 
x= n * n * n; 
return (x); 

This program can be stated a bit more eloquently, we used this sample only 
to give you a general demonstration of a function. 

All functions are built on the same principle: 

Name (parameter list) 
Parameter declarations 
{ /*function body starts here*/ 

Declarations 
Statements 

The parameter list can be skipped when a function has no parameters. The 
parameter declaration (variable definition) is given before the body of the 
function. 

The argument used by the function must be declared within the function 
definition to indicate the function's data type. The function itself occurs 
within brackets. Next, the local variables of the function are declared. 

Note: In contrast with other languages, the function called cannot alter the 
variables of the calling function called. 

22 



Abacus Software GEM Programmer's Reference 

The function can return a result to the cailed function. This result can be 
placed in the variables by using the return () command, and must have 
been declared in the function as a local variable. Our example uses the 
variable x. If no result is given, return () would be used. 

2.2.6 Conditions 

One of the fundamental structures of a programming language is the 
condition. For example: 

/* Print primary numbers from 2 to 10000 */ 
/* Runtime: approx. 3 minutes 45 seconds*/ 
/* Program name: PRIMEC.C */ 

main () 
{ 
int i,ni 
for (n = 2; n <= 10000; ++n) 

{ 

for (i = 2; i < n; ++i) 
if (n % i == 0) 
break; /* no prime number */ 

if (i == n) 
printf("%d\n",n); /* output */ 

} 
gemdos (Ox1) ; 
} 

The first loop declares the starting and ending point of the loop (2 to 1000). 
The second loop tests for the existence of a prime number at the 
moment-if (n % i == 0). A conditional must be enclosed in 
parentheses. The two equal signs set up equality between one and the other 
condition. The operation n % i finds the integer remainder of both 
variables after division. When the remainder is 0, then it is not handled as a 
prime number. The loop is left with the break statement. 

The next conditional (i==n) tests only whether all the numbers are 
smaller than the number in the first condition. If so, the number is displayed 
with the printf function. 

23 



Abacus Software GEM Programmer's Reference 

Here are all the comparative operations: 

< less than 
<= less than/equal to 
> greater than 
>= greater than/equal to 
-- equal 
,- unequal 

Congratulations-you've just learned the essentials of C. There are many 
books on the C language. We recommend that you get one to find out more 
details of C, while we move on to other topics. 

24 



Abacus Software GEM Programmer's Reference 

2.3 A Short Introduction to the Assembler 

This chapter will briefly explore assembly language on the ST, and includes several sample programs. 

The advantages of assembly language over a higher-level language are that assembly language programs execute at a higher speed and use less memory. Its disadvantages are that it is tedious work, difficult to read and debug, and very seldom transportable (easily moved from computer to computer). With the ST's 512K of memory, the fast disk drive, and the overlay techniques available, your life might be a little simpler if you avoided assembly language (also called machine language) programming. 

For all its drawbacks, machine code is the most efficient language to use. And, in the long run, 68000 assembly language really isn't that much harder to use than C. 

2.3.1 The 68000 Processor 

The 68000 has 8 data registers that contain the operands for the different operations. Each register is 32 bits (4 bytes) wide. The diagram below illustrates the layout of a data register, where the the most significant bit is leftmost. The · data registers are numbered from DO to D7. 

DATA REGISTER 
WORD I WORD----

byte 3 byte 2 I byte 1 I byte 0 
bit 31 24 23 16 15 8 7 o 

most significant least significant 

The 68000 has 8 address registers numbered from AO to A 7. It is possible to access memory locations directly with the address register, but you're not limited to this. We shall discuss the different types of addresses later. Each address register is 32 bits long, but only 24 bits of each are used for addressing. In addition, every address register can be used as a stack pointer. Address register A 7 is the stack pointer used by the processor in subroutine calls. 

25 



Abacus Software GEM Programmer's Reference 

The 68000 has two working modes: user mode (normally on) and 
supervisor mode. Supervisor mode has its own stack pointer. 

Like any other microprocessor, the 68000 has a status register, which 
informs you of what the system is up to. The most significant byte of the 
16-bit-wide registers contains system information, while the least significant 
byte stores program conditions (e.g. overflows). 

2.3.2 Important Assembler Instructions 

We will only touch on the most important of the assembler's large 
instruction set. Almost all the instructions used in 8-bit programming are 
used here. If you've done machine language programming before, most of 
this will be review material. 

On the 68000, almost all instructions can have 32-bit-Iong operands, 
although you can still use 16- or even 8-bit operands. Sometimes operand 
lengths are variable in an instruction. There are three identifiers used to tell 
the assembler the instruction length: 

.B 8 bits (byte) 

.w 16 bits (word) 

.L 32 bits (longword) 

If no identifier is used, the assembler assumes the operand is 16 bits long. 

The most-used instruction is MOVE: 

MOVE Operand1,Operand2 

Operand1 and Operand2 refer to specific registers or memory locations. 
The instruction moves the contents of Operandl to Operand2. 

MOVE.W DO,D1 

The above example moves the least significant 16 bits from data register DO 
to data register D 1. The first operand is the source, the second the 
destination. This sequence is used for all instructions. 

26 



Abacus Software GEM Programmer's Reference 

Another useful instruction is the addition instruction: 

ADO.W 00,01 

The contents of DO and D 1 are added together, and the result is placed in 
D 1. What happens, though, if we add $FFFF and $0001 (both 16-bit numbers)? The result would be $10000, and is 1 bit longer than ADD. W can handle. The processor sets an additional bit when this happens; which bit set depends on the situation and conditions. This bit is found (among others) in the user byte of the status register. 

User-Byte of Status Register 

Bit: 
76543210 
---XNZVC 

C-Flag (Carry) 

If a carry occurs as a result of an arithmetic operation, this bit is 
set. SHIFT and ROTATE instructions use this bit as temporary 
storage space. 

V -Flag (Overflow) 

The V-flag is set when an overflow occurs. 

Z-Flag (Zero) 

The Z-flag is set when an arithmetic operation has a zero input. 
This happens when memory locations and/or registers beneath 
one another are compared and found equal. 

N-Flag (Negative 

A negative result sets this bit. It, too, is used in comparisons. 

27 



Abacus Software GEM Programmer's Reference 

X-Flag (Extend) 

This has the same function in principl ... as the C-flag, but this 
bit affects fewer instructions. 

The main purpose of the flags is to alter the sequence of program execution 
according to the current status of the processor. The branch instruction is 
used to alter the sequence of program execution. 

Branch instructions can be divided into three categories: 

1) Branches depending on flag status 

BCC/ carry cleared 
BCS / carry set 
BNE/ zero cleared 
BEQ/ zero set 
BVC/ overflow cleared 
BVS/ overflow set 
BPL/ negative cleared 
BMI/ negative set 

2) Branches after unsigned comparison 

BHI/ greater than 
BHS/ greater than or equal 
BLO/ less than 
BLS/ less than or equal to 
BEQ/ equal 
BNE/ unequal 

3) Branches after signed comparison 

BGT/ greater than 

to 

BGE/ greater than or equal to 
BLT/ less than 
BLE/ less than or equal to 
BEQ/ equal 
BNE/ unequal 

Categories 2 and 3 are branches that follow comparisons. For the moment, 
we'll concentrate on the first group. 

28 



Abacus Software GEM Programmer's Reference 

In practice, using branch instructions would look like this: 

ADD DO,Dl 
BCS label 1 **If result too large, goto label 1 

Label 1 **e.g., error output 

When two values are compared, the system distinguishes between numbers 
with leading characters and those without (e.g. 3000 and -3000). This 
comparison is accomplished by the CMP instruction: 

CMP DO, Dl 
BH1 label 2 **branch if Dl is more than DO 

Label 1 

The second (destination) operand is compared with the first (source) 
operand; the sequence of operands is very important. There is also another 
branch instruction-BRA (Branch Always). The BRA instruction will branch 
regardless of flag conditions or the results of comparisons. 

If you're accustomed to programming in high-level languages, you already 
know about loop programming. Thanks to the DB command, you can use 
loops in assembly language. DB will cause a jump to a loop under certain 
conditions. 

MOVE #7,DO * eight iterations 
Loop. **This section will be repeatedly executed 

DBF DO, Loop 

29 



Abacus Software GEM Programmer's Reference 

Break conditions can be given using the branch instructions. In addition, 
you have available the instructions DBF (no break) and DBT (always break): 

DBT/ 
DBF/ 
DBHI/ 
DBLS/ 
DBCC/ 
DBCS/ 
DBNE/ 
DBEQ/ 
DBVC/ 
DBVS/ 
DBPL/ 
DBMI/ 
DBGE/ 
DBLT/ 
DBGT/ 
DBLE/ 

always break 
no break 
greater than 
less than or equal to 
carry cleared 
carry set 
unequal 
equal 
overflow cleared 
overf l ow set 
positive result 
negative result 
greater than or equal to 
less than 
greater than 
less than or equal to 

We mentioned the unconditional branch instruction BRA a few paragraphs 
ago. This instruction can only branch within about 32000 bytes in either 
direction. Larger branches must be accomplished using JMP (jump): 

JMP Label_ 3 ** goto Label_ 3 

Frequently used program sections can be separated into subprograms or 
subroutines. Each time the subroutine is needed, a J S R (jump to 
subroutine) is called. On reaching the RTS instruction in the subroutine 
(return from subroutine), the main program picks up where it left off. 

JSR subprogram ** call subroutine 
*the main program will 
*executing here once the 
*subroutine is finished 

JSR subprogram ** call it again 

subprogram 
*instructions of 
*the subroutine here 

RTS ** go back to main program section 

30 



Abacus Software GEM Programmer's Reference 

Another useful instruction in OEM is the TRAP instruction. The operand of the TRAP instruction should have a number between 0 and 15; this number selects a certain routine, rather than an address. 

TRAP #1 **call for GEM handler 

2.3.3 Addressing Modes on the 68000 

The 68000 has a variety of addressing modes. An addressing mode is the means by which the address of one of the operands is calculated in that instruction's operand. Below are the different addressing modes: 

1) Immediate addressing 

In this addressing mode, the data is specified as part of the instruction: 

MOVE #30,D6 

The above instruction immediately loads the decimal number 30 into data register 6. 

2) Absolute long/short addressing 

In this addressing mode, the memory location containing the data is specified as part of the instruction: 

MOVE $FF7795,D6 

The contents of memory location $FF7795 are transferred to data register 6. 

If the memory location lies in the range $000000-$07FFFF or $FF8000-$FFFFFF, then a special form of the instruction called short addressing is used. The advantage is that the length of the instruction is reduced by two bytes. 

The assembler can distinguish between the two addressing modes, and will act accordingly. 

31 



Abacus Software GEM Programmer's Reference 

3) Indirect addressing 

In this addressing mode, the address of the data is specified in a register: 

MOVE (AO),D5 

The contents of memory location contained in address register AO are copied 
into data register D 5. 

4) Indirect addressing with displacement 

In this addressing mode, a constant value (displacement) is added to the 
contents of the register. The sum of these is the effective address of the data: 

MOVE D 1 , 10 (AS) 

The contents of data register D 1 are copied to the memory location whose 
address is the sum of 10 and the contents of address register AS. 

5) Indirect indexed addressing with displacement 

One disadvantage of indirect addressing with displacement is that the 
displacement is always a constant value. In this addressing mode, we can 
get around this limitation by adding the contents of an additonal data or 
address register to produce the effective address: 

MOVE DO,20(A2,DO) 

If A2 = 500 and DO = 100, DO results in the following: 

500 
+100 
.L.2..Q 

620 

In simple indexed addressing (without offset), the displacement is zero. 

6) Pre-decrement addressing 

This addressing mode is similar to indirect addressing, only the value of the 
given address registers includes a decrement value (1, 2 or 4 bytes): 

32 



Abacus Software GEM Programmer's Reference 

MOVE D2,-(A7) 

The contents of data register D 2 are copied to the memory location specified 
by address register A 7 before address register A 7 is decremented by one. 

7) Post-increment addressing 

This addressing mode performs the exact opposite operation of 
pre-decrement addressing. The value of a register's contents are 
incremented by 1 ~ the operation is performed. 

The two addressing modes (pre-decrement and post-increment) are useful 
for maintaining stacks. A stack is created with pre-decrement mode, and 
can be accessed with post-increment mode. 

MODE DO,-(A7) **put 2 values on the s tack 
MOVE D 1 , - (A 7 ) 

MOVE (A7)+,D1 ** get values from stack 
MOVE (A7)+,DO 

8) Relative program counter addressing with offset 

In this addressing mode, adisplacement is added to the contents of the 
program counter (PC) to produce an effective address: 

CLR 10 (PC) 

The constant value 10 is added to the contents of the program counter to 
yield an effective address. This memory location is cleared (zeroed). 

9) Relative program counter addressing 
with indexing and offset 

This addressing mode is rarely used. It is similar to 5) Indirect indexed 
addressing with displacement, except that the PC is substituted for the 
address register. 

33 



Abacus Software GEM Programmer's Reference 

2.4 The ST Development Package 

The ST Development Package consists of 7 diskettes and 2000 pages of 
documentation. This serves as a starting place for developing GEM 
applications. The diskettes contain the following: 

The TOS Disk 

TOS.lMG 

DESK1.ACC 
DESK2.ACC 

The Lam::ua2e Disk 

LOGO.PRG 
LOGO.RSC 
ANIMAL.LOG 
KNOWN. LOG 

GEM Desktop, AES, VDI, GEMDOS 
and BIOS 

VT52 Terminal Emulator 
Control panel 

lJ()(}O-Interpreter 
LOGO-resource file 
Example program 
Data for ANIMAL.LOO 

The MINCE Editor Disk* 

PRGINTRO.DOC 
LESSON4.DOC 
LESSON6.DOC 
LESSONS. DOC 
MINCE.PRG 
MINCE.SWP 
CONFIG.PRG 

Introduction to MINCE editor 

the editor 
MINCE overlay 

*New versions of the package may have a different editor 

34 



Abacus Software 

The Compiler Disk 

'CP68.PRG 
C068.PRG 
C168.PRG 

,AS68.prg 
AS681NIT 

'AS68SYMB.DAT 

BATCH.TTP 
RM.PRG 

WAIT.PRG 
C.BAT 

DEFINE.H 
GEMBIND.H 
GEMDEFS.H 

, VDIBIND.H 
TOSDEFS.H 

, OBDEFS.H 
.OSBIND.H 
PORTAB.H 
MACHINE.H 

- TADDR.H 

The Linker disk 

'L1NK68.PRG 
RELMOD.PRG 

"BATCH.TTP 
, RM.PRG 

"WAIT.PRG 
L1NKAP.BAT 

lLiNKACC.BAT 

GEM Programmer's Reference 

3-pass C-compiler 

68000 Assembler 

Batch processing program 
Program to delete files 

Return to desktop program 
Compile batch file 

Type definitions 
Gem binding kit 
Common GEM definitions 
External VDI functions 
TOS file attributes / error definitions 

GEM object definitions 
For binding GEM and BIOS 
Files for porting IBM applications 

Linker program 
Relocation program 
Program for batch files 
Program to delete files 

Return to desktop program 
Linker batch file for applications 
Linker batch file for accessories 

35 



Abacus Software 

ACCSTART.O 
APSTART.O 
GEMS.O 

('GEMSTART.O 
AESBIND 

,/VDIBIND 
GEMLIB 

'/ LlBF 

The Utility Disk 

COMMAND.PRG 
DUMP.PRG 
FIND.PRG 
HIGH.PRG 
LOW.PRG 
KERMIT.PRG 
NM68.PRG 
AR68.PRG 
SID.PRG 
SIZE.PRG 
APSTART.S 
ACCSTART.S 
ACSKEL.C 
APSKEL.C 

GEM Programmer's Reference 

GEM accessory start file 
Gem application start file 
C library start file 
C, VDI, AES library start files 
AES library 
VDI library 
C library 
Floating point library 

Command line interpreter 
Hex-file print 
find string 
Medium res. program 
Low-res program 
file transfer program 
symbol table print program 
Library creation utility 
Debugger 
Program segment size utility 
Source to application start routine 
Source to accessory start 
Example accessory 
Example application 

The Resource Construction Disk 

RCS.PRG 
RCS.RSC 
DOODLE.PRG 
DOODLE.RSC 
DOODLE.C 
DOODLE.H 
DOODLE.DEF 

Resource Construction Set 
RCS resource file 
Example application 
Doodle resource 
Doodle C definitions 
Doodle header file 
Resource definitions 

The following pages contain an overview of the development package 
needed for GEM program development. 

36 



Abacus Software GEM Programmer's Reference 

2.4.1 The Editor 

The editor is the program that allows you to write and edit source programs 
to be compiled. You can also create batch files with this editor. 

The editor included in the development package is MINCE (later versions of 
the development package may contain a different editor). 

MINCE. PRG is the editor program itself. It is started like all other 
applications, but it isn't a GEM application; it runs under the TOS 
applications (Menu Options). On every boot-up, it's wise to install it as a 
TOS application. Thus, you install the MINCE. PRG from the menu 
OPTIONS with TOS-takes parameters (TTP) or you can rename 
the program to MINCE. TTP from the FILE menu with SHOW Info .... 

CONFIG. PRG is a program for adapting the editor to the computer. All 
details of the keyboard, screen and other compatability factors are kept here, 
but is redundant, since MINCE is adapted specifically for the ST. 
MINCE. SWP is the Atari ST configuration data. 

LES SONS are text files that can be read into the editor. They give 
instructions on use of the MINCE editor. 

Here are some editor basics. Start the editor; you can now input a program. 

To save the program as a file, press the key combination 
Control-X/Control-W after you give it a name. If the program file 
is to be compiled with the C compiler, add the suffix. C (e.g. TEST. C). 

To read a previously created file, press the key combination 
Control-X/Control-R). After making any changes to this file, 
you can resave the file without entering a new filename by pressing 
Control-X/Control-S. 

To exit the MINCE editor, press Control-X/Control-C. 

The list below gives your the most important MINCE commands. The 
Control key is represented by the character ©. 

©-A Start - of-line 
©-D Delete line 
©-J New line 
©-T Exchange character 
©-X ©-S Save file 

©-x 
©-E 
©-K 
©-X 
©-X 

37 

©-C Exit editor 
Goto end-of-line 
Delete line 

©-R Read file 
©-W Rename & save file 



Abacus Software GEM Programmer's Reference 

2.4.2 The Compiler 

The development package contains a C-compiler from Digital Research. In 
addition to the compiler program, there are several other programs on the 
compiler disk: 

CP68 .PRG, C068 .PRG and C168 .PRG are part of the three-pass 
compiler. Sourcefiles are compiled in three steps. Programs are compiled by 
calling the C. BAT file, which is called from the BATCH. TTP program. 
(TTP means TOS Takes Parameters, and allows you to input the filename). 

The compiler steps cannot be executed individually. The batch program 
C. BAT automatically runs them. If this batch file isn't on your compiler 
disk, type the following lines using the editor, and save it on your compiler 
disk with the name C.BAT: 

cp68 %l.c %1.1 
co68 %l.i %1.1 %1.2 %1.3 -f 
c168 %1.1 %1.2 %l.s 
rm %1.1 
rm %1.2 
as68 -1 -u %l.s 
rm %l.s 
wait.prg 

The program rm is necessary to delete the work files. The temporary work 
files are deleted so they do not clutter the disk. If the assembler source file is 
needed, remove the line rm %1. s from the C. BAT file. 

The wait. prg program waits after the compiling procedure, until 
<RETURN> is pressed. This allows you to read any error messages on the 
screen. 

The BATCH. TTP program starts a procedure which brings up the batch 
files to be run. On the OPEN APPLICATION command line enter: 

C name 

C is the name of the batch file to be called, and name is the program to 
be compiled. Do not enter the . C suffix, because it's included in the 
C. BAT file. The %1 in the C. BAT file is the place-holder for the filename 
parameter. 

38 



Abacus Software GEM Programmer's Reference 

The actual programs of the C compiler are described below: 

1) The CP 6 8 Preprocessor 

The preprocessor connects the source file to any header file 
specified by #include, and sets up needed symbols 
specified by #define. The preprocessor is called as follows: 

CP68 file.C file.i 

f i 1 e . C is the source file and f i 1 e . i the new resulting 
source file. 

2) The co 68 Parser 

The parser produces an "intermediate compiled code" from the 
fIle created by the preprocessor. The parser is called with: 

C068 file.i file.1 file.2 file.3 -f 

3) The C168 Code Generator 

The code generator creates an assembler source file from the 
intermediate fIle. 

C168 file.1 file.2 file.s 

File. s is the assembler source file. File.1 and file. 2 
are work fIles. 

The compiler does not create "ready-to-run" object files. 
Instead it creates assembler source fIles. This has advantages: 
it's easier to find errors, and makes programs more efficient 
using assembler files. The assembler source file contains the 
corresponding C source lines, as described on the next page. 

39 



Abacus Software GEM Programmer's Reference 

The Assembler Source File 

The assembler source file is processed with the assembler found on the 
compiler disk. It is called like this: 

AS68 -1 -u file.s 

The parameter -1 states that all addresses will be handled in 32-bit form. 
The parameter -u declares that all unknown symbols are to be treated as 
external variables. 

The assembler produces the object file, f ile. 0, which has to be linked 
together with the various operating system files using the linker disk at a 
later time. 

Next we'll describe the assembler, and then discuss the linker. 

2.4.3 The 68000 Assembler 

If you want to run the assembler seperately fromthe C compiler, you'll have 
to install the application AS68 to TOS-takes parameters from the 
desktop menus Options/ I nstal l Applications. As the AS68 
starts with a double-click on the mouse, you enter the following options in 
the OP EN AP PL ICATION window's command line: 

[-F d: ] [-P ] [ -S d: ] [ -U ] [-L ] [ -N ] [- I] 
[-0 Ob j ect - fil ename ] Sourcecode-filename 
[>List i ng-Filename] 

Characters in brackets are optional and are not required for assembly. Their 
meanings are described here: 

-F d: During the assembly of AS68 files, the work files will 
automatically be deleted. The - F option lets you state on which 
disk drive these files will be generated. d: is the character 
code of the disk drive, followed by a colon. If you skip this 
option, the disk drive which is active at the time is used. 

- I The - I option initializes the assembler. This has already been 
done for the ST, and need not be repeated. This creates the file 
AS68SYMB.DAT. 

40 



Abacus Software GEM Programmer's Reference 

-p This option outputs a listing of the assembler program. 
Normally, the list will appear on screen. When the 
Listing-Filename is given the extension. L, the system 
will write the listing to the diskette. If no listing is desired, the 
error messages will be output to the screen from the AS68. 

- S d: This option declares which disk drive contains the file 
AS 68SYMB. DAT . The value d: is the drive identifier. Like 
-F d:, the default will be the currently active drive if d: is left 
unused. 

-u All undefined labels will be handled as global values, i.e., they 
can be used in linking other programs. 

-L This option will set-up all constants as longwords. Although 
programs don't run in the first 64K of the Atari ST, this option 
is mandatory. 

-N This option causes the J S R command to no longer be 
automatically converted into the BSR command. The 4-byte 
BSR commands aren't converted into 2-byte BSR commands. 

-T This option allows the assembler to accept 68010 opcodes. 

Sourcecode-Filename 
This is the filename of the program to be assembled. It's 
standard practice to end this filename with. S. 

Listing-Filename 
When the - P option is on, the listing of the given file is active. 
If the - P option is off, only the error messages will be stored 
on disk. It's standard to end this filename with . L . 

41 



Abacus Software GEM Programmer's Reference 

Assembler Directiyes 

Directives are instructions to the assembler. They are "imbedded" as part of 
the assembler source file. Here is a list of the most important AS 68 
assembler directives: 

.data 
The assembly will be done in DATA segments . 

. bss 
Assembly is performed in block storage segments . 

. text 
Assembly done in TEXT segments . 

. end 
Assembly ended. After this command, a <RETURN> will output 
the error messages . 

. de NR[,NR, ... ] 
Sets a number or a set of numbers in memory. You have three 
sub-options: 

· de . b Handles the numbers as byte-values. An 
uneven number of byte-values will cause an 
appended extra zero (if no more . de . b 
directives follow). 

· de. w Handles them as 2-byte constants (words). 
When text is given containing an uneven 
number of characters, a zero is inserted. 

· de . 1 4-byte constants (longwords). If the numbers 
of bytes doesn't fit into a multiple of 4, the 
last longword will be filled in with zeroes . 

. ds number of values 
Memory is reserved without the number being initialized: 

.ds.b 

.ds.w 

.ds.l 

bytes reserved 
words reserved 
longwords reserved 

42 



Abacus Software GEM Programmer's Reference 

label . equ value 
A label will have a value associated with it. A label can be defined 
only once. If the value itself is a label, it must be previously 
defined in the program . 

. even 
Sets the internal program counter to the next address. This 
directive is used when working with assembler segments with 
.text, .data or .bss. 

The 68000 Assembler can assemble several segments, under these 
conditions: 

-The text segments are contained in program text; 
-The data segments are stored as block segments of data. 

Program comments are preceded by asterisks ("*"). Text can be enclosed in 
single or double quotation marks (' or "). Register names can be presented 
in upper- or lowercase letters--e.g. dO is the same as DO. 

2.4.4 The Linker 

The linker converts several object programs into a single executable 
program. It determines which modules are needed from its library in order 
to produce an executable program. These fall into three different 
applications: 

-Desk Accessory: A GEM application that's called from the 
Desk menu. 

-GEM-Application: started with the double-click of the mouse. 

-TOS-Utility: TOS routines, rather than GEM routines . 
SID is a TOS utility. 

Each of these choices has its own linking procedure. On the next page are 
the required batch files for each of the procedures in case these aren't 
already on the Development Package diskette: 

43 



Abacus Software 

Accessory Batch 
LINKACC.BAT 

GEM Programmer's Reference 

link68 [u] %1. 68k=accstart,%1,vdibind, 
aesbind,osbind,libf 

relmod %1 
rm %1.68k 
wait 

Application Batch 
LINKAPP.BAT 

link68 [u] %1. 68k=apstart,%1,vdibind, 
aesbind,osbind,lib£ 

relmod %1 
rm %1.68k 
wait 

TOS Batch 
LINKTOS.BAT 

link68 [u] %1.68k=gemstart,%1, osbind, gemlib,libf 
relmod %1 
rm %1.68k 
wait 

If you have a single disk drive system, the object programs from the 
compiler (file. 0) must be copied to the linker disk before you can use 
these procedures. The BATCH. TTP will then call one of the three batch 
files: 

LINKACC file 
LINKAPP file 
LINKTOS file 

The RELMOD program converts the relocatable command file produced by 
LINK68 into a file that is executable by GEMDOS. When the linker batch 
file is finished a running program with the extension .PRG is created. 

44 



Abacus Software GEM Programmer's Reference 

2.5 A Sample Program in C 

We have already discussed using TOS applications in C. This chapter will 
illustrate GEM applications with VDI (Virtual Device Interface) calls. This 
program draws a square on the outer edges of the high-resolution screen. 
Type this program in using the editor, and save it with the name 
SAMPLEC. C. 

/* Draw one rectangle */ 
/* in 600X400 resolution */ 
/* Program Name : SAMPLEC.C */ 

#include "gemdefs.h" 

int contrl[12], 
intin[128], 
ptsin[128], 
intout[128], 
ptsout[128]; 

int handle; 

int work_in [12] , 
work_out [57] , 
pxarray[10]; 

main () 

int i,; 

appl init () ; 
for(l=0 ;i<10;work_in[i++]=1) ; 
work in[10] = 0; 
v_ opnvwk(work_in, &handle, work_out); 

pxarray[O] 
pxarray[l] 
pxarray[2] 
pxarray[3] 
pxarray[4] 
pxarray[5] 
pxarray[6] 
pxarray[7] 
pxarray[8] 

1; 
1; 
638; 
1; 
638; 
398; /* 198 for color monitor */ 
1; /* in medium res. mode */ 
398; /* 198 for color monitor */ 
1; 

45 



Abacus Software GEM Programmer's Reference 

pxarray[9 ] = 1; 

v_pline(handle, 5, pxarray); 
gemdos(Ox1) ; 
v clsvwk(handle); 
appl_exit () ; 

Now copy this program from the editor diskette to the compiler diskette. 
Start the program BATCH. TTP with a double click of the mouse and enter 
the following on the command line: 

C SAMPLEC 

The batch file C . BAT starts and documents its progress on screen. At the 
end of the procedure, copy the file SAMPLEC. 0 from the compiler to the 
linker diskette. Any errors that occur are displayed on screen. Correct any 
errors in the program with the editor and recompile if necessary. 

Now we are ready to link the assembled object program SAMPLEC .0 with 
the necessary libraries. Start the linker batch file processing program 
BATCH. TTP and call the batch file LINKGEN . BAT (from Section 
2.2.2) by entering the following on the command line: 

LINKGEN SAMPLEC 

The linker runs, and creates the program SAMPLEC. PRG. This can be 
started with the double-click of the mouse. It's possible to call TOS 
applications directly from the GEM screen, which will cause a white screen 
to appear. This is accomplished by installing the program, from the menu 
OPTIONS/Install Applications, as a TOS program. It can also 
be accomplished by renaming the file name extension .PRG to .TOS from 
the FILE/Show Info menu. 

Follow the above procedures with the C examples that are presented later in 
this book. Keep in mind that on single drive systems you'll only have room 
for one program to work on per diskette. When you're finished, copy 
source files and program files from the compiler and linker diskettes onto 
another diskette. Then delete the old ones from the compiler and linker 
diskettes. 

46 



Abacus Software GEM Programmer's Reference 

2.6 A Sample Program in Assembler 

Now we're ready to proceed with an assembler program example by 
following specific procedures, as we did with a C program in the previous 
section. 

Since we're not using a "how-to" cookbook format ("step 3: add LINKTOS 
and mix thoroughly" ... ), we assume that you've taken at least a little time to 
work with the utility programs in C. If you haven't done any programming 
in C, don't read this chapter yet-go back to Chapter 2.2, A Short 
Introduction to C. 

Four basic working steps are needed when you write an assembler 
program: 

1) Type in the source program text with of the editor, and save the 
text on diskette. You'll need this program text (source file) for 
later steps in development (assembly, linking, relocation). 

2) Call the AS68 assembler. This produces a machine code 
object file, which can't be run just yet. If your program is 
composed of several modules, each module must be assembled 
separately. 

3) Call the linker. This program chains together separate program 
sections into one program, and will change labels and symbols 
to consistent values. 

4) The linked program can then be executed. The linker adds 
information that indicates which commands and addresses are 
relative values. To convert a relative program into an absolute 
program (shorter and faster than a relative program), the 
relocating modifier RELMOD is used. 

The sequence in which the last three steps are called is particularly 
important. But another way to accomplish these steps is to automate the 
operation. This can be done by using a batch file. 

A batch file is simply a list of commands to be executed in a particular 
sequence. Instead of typing these commands at the keyboard, the 
commands are read from a file contained on diskette. 

47 



Abacus Software GEM Programmer's Reference 

The batch file initiator is called BATCH. TTl>. It takes as its parameter the 
name of the batch file to be used for a particular sequence of events-for 
example, compiling a C source file to an executable program. 

A batch file has a name with a .BAT extension. A batch file to assemble a 
68000 source file is called AS. BAT. This batch file contains all the 
commands to convert an assembler source file into an executable program. 

Before we take a closer look at this batch file, we must first make a work 
diskette containing all of the programs used by the batch file. 

Format a diskette. Next copy the following from the editor diskette to the 
newly formatted diskette: 

a) MINCE.SWP 
b) MINCE.PRG 

The second program (program b), the editor itself, has a small drawback. 
Every time you start the program, you have to install it as a TOS application 
instead of a GEM application. The reason for this is that a GEM application 
chooses a mouse pointer, but drops the cursor. Obviously, an editor 
without a cursor makes for difficult editing. So instead of calling the editor 
directly, we install the application so that TOS-takes parameters 
(from the Opt ions menu). This gives us the cursor and loads the editor 
automatically. Change the Document type in the information box if all 
your files will use the extension . S. You can also rename the MINCE. PRG 
to MI NCE. TTP (TOS Takes parameters) from the FILE menu. 

Next copy the following to the newly formatted diskette from the compiler 
diskette: 

c) BATCH.TTP 
d) AS68.PRG 

e) AS68INIT 
f) AS68SYMB.DAT 

Finally, copy these programs from the linker diskette to your work diskette: 

g) LINK68.PRG 
h) RELMOD. PRG 
i) RM.PRG 
j) WAIT.PRG 

48 



Abacus Software GEM Programmer's Reference 

Now we can create a batch file necessary for assembly language 
programming. Put your newly-created work disk into the drive. You won't 
need any other disks from the development package if you program in 
assembly language only. 

Run the editor (MINCE. PRG) and type in the following text: 

as68 -1 -u %l.s 
link68 [co[%l.inp]] 
relmod %1.68k %l.prg 
rm %1.68k 
wait 

The expression % 1 is the placeholder for a filename. The filename will be 
input later from the OPEN APPLICATION box. Before you do that, 
though, you'll have to save the batch file. Type in the commands 
contro1-x and contro1-w, and input the file name AS. BAT to 
save the batch file. The batch file is now ready. 

In the second line of the batch file is the label" co". This means that as soon 
as the batch program is started, its commands come from one of its own 
files. The filename is the same as the assembler program name, but with the 
suffix. INP . Clear the text of the AS. BAT batch file from the editor, and 
type this in: 

[u] test.68k=test.o 

This line is the command for the linker. Save this (c 0 n t r 0 1- x / 
contro1-w) under the name TEST. INP . 

Your assembler work disk is now completed. Remember to make a backup 
copy before proceeding, just to play it safe. As long as you keep using the 
file name TE ST. S for your source program, you won't need to make any 
changes to this disk. Any new file names will require changing the 
command line for the linker. 

The routine in Chapter 2.5 that draws a box on the high-resolution screen 
will serve as a good assembler sample program. If you can understand that 
program, you should have a general understanding of GEM. You'll want to 
read the next section carefully, to get a thorough understanding. 

Using the editor, type in the machine language source code listing that 
begins on the next page. 

49 



Abacus Software 

move.l 
move.l 
move.l 
move.l 
add.l 
add.l 
add.l 
move.l 
move.l 
move 
move 
trap 
add.l 
jsr 
move 
trap 
add.l 
move.l 
trap 

aes: 
move.l 
move 
trap 
rts 

vdi: 
move.l 
moveq.l 
trap 
rts 

main: 
move.l 
move.l 
move.l 
move.l 
move 
move 
move 
move 
move 

a7,aS 
#nstapel,a7 
4 (as) ,as 
$c(aS) ,dO 
$14(aS),dO 
$lc(aS),dO 
#$100,dO 
dO,-(sp) 
as,-(sp) 
dO,-(sp) 
#$4a,-(sp) 
#1 
#12,sp 
main 
#l,-(sp) 
#1 
#2,sp 
#0, (a7) 
#1 

#aespb,d1 
#$c8,dO 
#2 

#vdipb,d1 
#$73,dO 
#2 

#0,ap1resv 
#0,ap2resv 
#0,ap3resv 
#0,ap4resv 
#10,opcode 
#O,sintin 
#l,sintout 
#O,saddrin 
#O,saddrout 

jsr aes 

GEM Programmer's Reference 

************************ 
*Sample 68000 assembly * 
*language program that * 
* draws a box on the * 
*high resolution screen* 
************************ 

*appl init 

50 



Abacus Software GEM Programmer's Reference 

move 
move 
move 
move 
move 
jsr 

move 

move 
move 
move 
move 

move 
move 
move 
move 
move 
move 
move 
move 
move 
move 
move 
jsr 

move 
screen 
move 
move 
move 
jsr 

move 
move 
move 
move 

move 
jsr 

move 
move 
move 

#77,opcode 
#O,sintin 
#5,sintout 
#O,saddrin 
#O,saddrout 
aes 

intout,grhandle 

*graph_handle 

#100,opcode *open_vwork 
#O,contrl+2 
#11,contrl+6 
grhandle,contrl+12 

#l,intin 
#1,intin+2 
#1,intin+4 
#1,intin+6 
#1,intin+8 
#1,intin+l0 
#1,intin+12 
#1,intin+14 
#1,intin+16 
#1,intin+18 
#2,intin+20 
vdi 

#3,contrl *clear workstation / erase 

#O,contrl+2 
#O,contrl+6 
grhandle,contrl+12 
vdi 

#17,contrl *Polyline-color 
#O,contrl+2 
#1,contrl+6 
grhandle,contrl+12 

#l,intin 
vdi 

#6,contrl 
#5,contrl+2 
#O,contrl+6 

51 

black 



Abacus Software GEM Programmer's Reference 

move grhandle,contrl+12 

move 
move 
move 
move 
move 
move 
move 
move 
move 
move 
jsr 

rts 

.data 

.even 

aespb: 

#1, ptsin 
#1, ptsin+2 
#638,ptsin+4 
#1, ptsin+6 
#638,ptsin+8 
#398,ptsin+10 
#1, ptsin+12 
#398,ptsin+14 
#1, ptsin+16 
#1, ptsin+18 
vdi 

*198 for color monitor 

* 198 for color monitor 

.dc.l contrl,global,intin,intout,addrin,addrout 

contrl: 
opcode: .ds.w 1 
sintin: .ds.w 1 
sintout: .ds.w 1 
saddrin: .ds.w 1 
saddrout: .ds.l 1 
.ds.w 5 

global: 
apversion: .ds.w 1 
apcount: .ds.w 1 
apid: .ds.w 1 
apprivate: .ds.l 1 
apptree: .ds.l 1 
ap1resv: .ds.l 1 
ap2resv: .ds.l 1 
ap3resv: .ds.l 1 
ap4resv: .ds.l 1 

intin: 
.ds.w 128 

ptsin: 

52 



Abacus Software 

.ds.w 128 

i ntout: 
.ds.w 128 

ptsout: 
.ds.w 128 

addrin: 
.ds.w 128 

addrout: 
.ds.w 128 

GEM Programmer's Reference 

vdipb: .dc.l contrl,intin,ptsin,intout,ptsout 
grhandle: .ds.w 1 

.bss 

.even 

.ds.l 300 
nstapel: 
.ds.l 1 
.ds.w 10 

.end 

Save this program under the name TEST. S. Now call the batch program 
initiator BATCH. TTP with a double-click of the mouse. BATCH. TTP 
displays a dialog box-it's asking you to enter the name of a batch file . 
Type: 

AS TEST 

Pressing <RETURN> results in automatic assembly, linking and relocation 
of the source file. The word AS is the batch file name, TE S T is the name of 
the assembler source code. When the conversion of the program to machine 
language is over, you'll find a new file on diskette called TEST. PRG. This 
is an executable program, which you can now start with a double click of 
the mouse. If any errors occur in your typing in of the source program, the 
system will find them during assembly or linking, and list the line number 
of the error. You'll then have to correct the problem, and restart the batch 
processing program (BATCH. TTP). 

In rare cases, we found that the batch program crashes due to errors. If this 
happens, all you can do is start from scratch (RESET button). 

53 





( CHAPTER 3) 

Inside GEM-the VDI 

3.1 
3.1.1 
3.1.1.1 
3.1.1.2 
3.1.1.3 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 
3.2.6 
3.2.7 
3.3 

The Virtual Device Interface 
Introduction to VDI Programming 
VDI Functions 
VDI Opcodes 
VDI Parameters 
The VDI Library 
The Control Functions 
The Output Functions 
Basic Graphic Functions 
The Attribute Functions 
The Raster Operations 
The Input Functions 
The Inquiry Functions 
Sample Programs using the VDI 





Abacus Software GEM Programmer's Reference 

Inside GEM-the VDI 

3.1 The Virtual Device Interface 

This section of the book presents the Virtual Device Interface (VDI). As previously mentioned, the VDI is a collection of graphic routines. 

By using the facilities of the VDI, the program developer is freed from having to know and use device-specific codes to create graphics. When the programmer uses the graphic functions through library routine calls, the VDI device driver adapts the functions for the particular output device. This device-independent arrangement makes it fairly easy to move applications to other computer systems capable of running GEM. 

3.1.1 Introduction to VDI Programming 

3.1.1.1 VDI Functions 

The VDI functions are divided into several groups. Here is a general overview of these functional groups: 

Control Functions 

These functions initialize the graphic workstation and set defaults for use with the applications. 

Output Functions 

Output functions produce the graphic primitives such as lines, circles, etc. 

Attribute Functions 

These functions set up for the output functions for color, type and style. 

Raster Functions 

These functions control the operation of rectangular bit blocks in memory and device-specific point blocks. 

57 



Abacus Software GEM Programmer's Reference 

Input Functions 

These functions allow input for a user program. 

Inquiry Functions 

These functions transmit the actual set-ups for device-specific attributes 

such as color, type, etc. 

Escape Functions 

These functions handle screen controls (e.g. cursor position). 

3.1.1.2 VDI Opcodes 

The different functions of the VDI are identified by a distinct numerical 

value called an opcode. All functions of the VDI are invoked by calling a 

single routine (entry point) in the library. The opcode enables the routine to 

determine the desired function. 

The individual VDI functions require one or several parameters. A call to the 

entry point requires that the parameters be passed in the form of five arrays. 

Calls to the VDI maybe made from applications written in assembly 

language or C. The opcode for the VDI function is passed in the variable 

Contrl (0). 

58 



Abacus Software GEM Programmer's Reference 

3.1.1.3 VDI Parameters 

The following pages describe the parameters of VDI calls. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(S) 
contrl(6) 
contrl(7-n) 
intin 
ptsin 

Output Parameters 

contrl(2) 
contrl(4) 
contrl(6) 
contrl(7-n) 

intout 
ptsout 

Function opcode 
Number of points in array ptsin 
Length of array intin 
Identification of subfunction 
Device identifier handle 
Opcode- dependent information 
Integer input parameter array 
Input coordinate array 

Number of points in array ptsout 
Length of array intout 
Device handle 
Opcode-dependent information 

Integer output parameter array 
Output coordinate array 

The parameters contrl (1) and contrl (2) must be set correctly. 
Each coordinate point in the arrays ptsout and ptsin consist of two 
entries, the coordinate pair x and y. If no coordinates are used, 
contrl (1) and contrl (2) must be set to O. 

The parameters contrl (3) and contrl (4) must always be set. If 
they are defaulted, intin and intout cannot contain integer variables. 

If calling the VDI from an assembly language program, you must place the 
addresses of the five array parameters in a parameter block (p B) in 
longword size (4-byte). 

59 



Abacus Software GEM Programmer's Reference 

Address 

PB 
PB + 4 
PB + 8 
PB + 12 
PB + 16 

Contents 

Control array (contrl ) 
Input array (intin) 
Input coordinate array (ptsin) 
Output array (intout) 
Output coordinate array (ptsout) 

Before calling VDI, the address of PB will be stored in the 32-bit register 
D 1. In addition, the library ID is placed into register DO (73 h=VD I, 
CSh=AES). Next, the interrupt function TRAP 2 is called, the address of 
which is contained in GOOS. 

C language programmers need not be concerned about the P B. Your 
parameters are defined in your C program, before the main () function. 
This makes the variables accessible to GDOS. Therefore, you can name 
external variables: 

int contrl[12], 
intin [128], 
ptsin [128], 
intout[128], 
ptsout[128]; 

60 



Abacus Software GEM Programmer's Reference 

3.2 The VDI Library 

3.2.1 The Control Functions 

The control functions initialize the graphic workstation and take instructions 
for user programs. 

OPEN WORKSTATION Opcode = 1 

This function loads the device driver for a specific input/output device. The 
ST has no driver for some devices like a plotter or a graphics tablet. 
Nevertheless, we'll briefly talk about these devices. 

The I/O device is initialized by the parameters for the input array. The output 
array transmits similar information to the device. In addition, these 
functions can be controlled within a program in contrl (6) . 

If the device can't be opened, the device identifier is zero. If contrl (6) 
is not equal to 0, the function continues. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl (3) 

intin(O) 

intin(lO) 

work in(O) 

61 



Abacus Software 

Output Parameters 

contrl(2) 
contrl(4) 
contrl (6) 

intout(O) 

GEM Programmer's Reference 

handle 

work_out (0) 

intout (44) workout (44) 

ptsout(O) 

ptsout (11) 

Parameter Descriptions 

contr l (O) 
contrl(l) 
contrl(3) 

intin (0) 

intin (1) 
intin(2) 
intin(3) 
intin(4) 
intin (5) 
intin(6) 
intin(7) 
intin(8) 
intin(9) 
intin(10) 

contrl(2) 
contrl(4) 
contrl(6) 

intout (0) 

Opcode (1) 
Number of ptsin points (0) 
Length of intin array (11) 

Device identification, given on 
loading Device driver 
Line type 
Color for Line operation 
Type of marking 
Color of mark i ng 
Character set 
Text color 
Fill type 
Fill pattern i ndex 
Fill color 
Coorciinate flag 

o Normal coordinates 
1 = reserved 
2 = Raster coordinates 

Number of ptsout arrays (arrays /2 )=6 
Length of intout arrays (45) 
Device identifier 

Raster width of devices in points or 
steps (e.g. monochrome screen = 639) 

62 



Abacus Software 

intout(l) 

intout(2) 
intout(3) 
intout (4) 

intout (5) 

intout (6) 
intout (7) 

intout (8) 
intout (9) 

intout (10) 
intout (11) 
intout (12) 
intout (13) 

intout (14) 

intout(15) 
to 

intout (24) 

GEM Programmer's Reference 

Raster height of device in points or 
steps (e . g. monochrome screen = 399) 
Not applicable to ST (0) 
Point or plotter step-width in mm/1000 
Point or plotter step-height in 
mm/1000 
Number of different text sizes 

o = changeable 

Number of line types 
Number of line widths 

o = changeable 

Number of marking types 
Number of marking sizes 

o = changeable 

Number of character sets on device 
Number of patterns 
Number of Hatch types 
Number of colors (2 for monochrome 
monitor) 
Number of graphic basic functions 

Sequential list of basic graphic 
functions supported. -1 indicates 
the end of the list 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10= 

Block 
Curve 
Circle segment 
Circle 
Ellipse 
Elliptical Arc 
Ellipse segment 
Rounded rectangle 
Filled-in rounded 
Justified graphic 

63 

rectangle 
text 



Abacus Software 

intout (25) 
to 

intout (34) 

intout(35) 

intout (36) 

intout (37) 

intout (38) 

intout (39) 

intout (40) 

intout (41) 

intout(42) 

GEM Programmer's Reference 

Sequential list of basic function 
attributes 

o Line operation 
1 Marking operation 
2 Text 
3 Filled out range 
4 No attribute 

Flag color represntation 
o not available 
1 = available 

Flag for text rotation 
o not available 
1 = available 

Flag fill-out range 
o not available 
1 = available 

Flag function cell array 
o not available-
1 = available 

Number of available colors 
o = more than 32767 colors 
1 = monochrome 
>2 = Number of color 

Graphic cursor-control 
1 = only on keyboard 
2 = on keyboard and another device 

(Mouse) 

number-changeable inputs 
1 on keyboard 
2 = other device 

Key choice 
1 Function keys 
2 = other key field 

64 



Abacus Software GEM Programmer's Reference 

intout(43) alphanumeric input 
1 = keyboard 

intout (44) 

ptsout(O) 
ptsout(l) 
ptsout(2) 

ptsout(3) 
ptsout (4) 
ptsout(5) 
ptsout(6) 
ptsout (7) 
ptsout(8) 
ptsout (9) 
ptsout (10) 
ptsout (11) 

C-Definitions 

Type 
o 
1 
2 
3 
4 

of work device 
output device 
input device 
In/Output device 
reserved 
Metafile-output 

minimum character width 
minimum character height 
maximum character width 

maximum character height 
minimum character width 
0 
maximum character width 
0 
minimum marking width 
minimum marking height 
maximum marking width 
maximum marking height 

int work in[12]; 
int work_out [57] ; 
int handle; 

C-Function Call 

Remarks 

The Open Workstation function is not available for the ST, and tends to 
crash. The reason for this is the same as for the missing device drivers (as 
explained above). 

The standard method of opening the ST workspace is accomplished with the 
function open virtual screen workstation. 

65 



Abacus Software GEM Programmer's Reference 

CLOSE WORKSTATION Opcode = 2 

This function closes the workstation opened by open workstat ion. 
Before closing a device opened in this way, all virtual devices (op e n 
virtual screen workstation) must be closed. This function, like 
open workstation, is not set up on the ST. 

Input Parameters 

contrl (0) 
contrl(l) 
contrl (3) 
contrl (6) handle 

Output parameters 

contrl(2) 
contr l (4) 

Parameter Descriptions 

contrl(O) Opcode 
contrl(l) Number 
contrl(3) Length 
cont rl (6) Device 

contrl(2) Number 
contrl(4) Length 

C-DefInition 

int handle; 

C-Function Call 

(2 ) 
of ptsin points 
of intin arrays 
identifier 

of ptsout points 
of intout arrays 

v_ c l swk(handle) ; 

66 

(0 ) 
(0 ) 

(0 ) 
(0 ) 



Abacus Software GEM Programmer's Reference 

OPEN VIRTUAL SCREEN WORKSTATION 
Opcode = 100 

This function is necessary in all applications using the screen. The ST 
screen cannot be opened with open workstation. 

Input Parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

intin(10) 

Output Parameters 

contrl(2) 
contrl(4) 
contrl (6) 

intout (0) 

intout(44) 

ptsout(O) 

ptsout (11) 

Parameter Descriptions 

handle 

handle 

Opcode (100) contrl(O) 
contrl(6) Device identifier on function 

The rest of the parameters are identical with those in the 0 pen 
workstation (v_opnwk) call. 

67 



Abacus Software GEM Programmer's Reference 

The following is a list of established device parameters used in connection 
with a monochrome monitor: 

intout(O) 
intout (1) 
intout(2) 
intout (3) 
intout (4) 
intout (5) 
intout (6) 
intout(7) 
intout (8) 
intout(9) 
intout (10) 
intout (11) 
intout(12) 
intout (13) 
intout (14) 
intout (15) 

to 
intout (24) 

intout (25) 
to 

intout (34) 

intout (35) 
intout (36) 
intout (37) 
intout (38) 
intout (39) 
intout(40) 
intout(41) 
intout(42) 
intout(43) 
intout (44) 

ptsout(O) 
ptsout(l) 
ptsout(2) 
ptsout(3) 
ptsout(4) 
ptsout(5) 
ptsout (6) 
ptsout(7) 

work_out [0] 
work_out [1] 
work_out [2] 
work_out [3] 
work_out [4] 
work_out [5] 
work_out [6] 
work_out [7] 
work_out [8] 
work_out [9] 
work_out [10] 
work_out [11] 
work_out [12] 
work_out [13] 
work_out [14] 
work_out [15] 

work_out [24] 

work_out [25] 

work_out [34] 

work_out [35] 
work_out [36] 
work_out [37] 
work_out [38] 
work_out [39l 
work_out [40] 
work_out [41] 
work_out [42] 
work_out [43] 
work_out [44] 

work_out [45] 
work_out [46] 
work_out [47] 
work_out [48] 
work_out [49l 
work_out [50] 
work_out [51l 
work_out [52l 

68 

639 
399 
escape 
372 
372 
3 
7 

° 6 
8 
1 
24 
12 
2 
10 

1,2,3,4,5,6,7,8,9,10 

3,0,3,3,3,0,3,0,3,2 

° 1 
1 

° 2 
2 
1 
1 
1 
2 

5 
4 
7 
13 
1 

° 40 

° 



Abacus Software 

ptsout(8) 
ptsout(9) 
ptsout (10) 
ptsout (11) 

C-Definition 

work_out [53] 
work_out [54] 
work out [55] 
work_out [56] 

int work in[12]; 
int work_out[57]; 
int handle; 

C-Function Call 

Remarks 

GEM Programmer's Reference 

15 
11 
120 
88 

The peculiarity of this function is that contrl (6) , i.e., the device 
identifier, is included in both the input and the output parameters. The 
reason is the entry to the screen as a multi-work station. The established 
device identifier open workstation is given in this function. Another 
possibility is the transfer with the AES-function graf _handle. 

The ST doesn't allow parameters to be passed with this function. It does not 
respond. The attribute must be passed through the attribute functions. 

On the ST, it is necessary to set the AES call appl ini t () before 
v opnvwk. By the same token, closing a work device must be followed 
by an appl_exit (). 

69 



Abacus Software GEM Programmer's Reference 

CLOSE VIRTUAL SCREEN WORKSTATION 
Opcode =101 

This function closes the virtual workspace. Output to this device is then 
prevented. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

Output parameters 

handle 

contrl(2) 
contrl(4) 

Parameter description 

contrl(O) 
contrl (1) 
contrl (3) 
contrl(6) 
contrl(2) 
contrl (4) 

C-Definition 

Opcode (101) 
Number of ptsin points (0) 
Length of intin arrays (0) 
Device identifier 
Number of ptsout points (0) 
Length of intout arrays (0) 

int handle; 

C-Function Call 

v_ clsvwk(handle) ; 

Remarks 

This function closes the virtual workstation. It should be followed by the 
standard AES call to end (appl_ exit). 

70 



Abacus Software GEM Programmer's Reference 

CLEAR WORKSTATION Opcode = 3 

The call to clear workstation erases the screen and sets the 
screen to the background color. If the device is a printer or plotter, a new 
page occurs. For a Metafile the opcode is output. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

Output Parameters 

contrl(2) 
contrl(4) 

handle 

Parameter description 

contrl(O) Opcode (3) 
contrl(l) Number of ptsin 
contrl(3) Length of intin 

points 
arrays 

contrl(6) Device identifier 

contrl(2) Number of ptsout points 
contrl(4) Length of intout arrays 

C Definition 

int handle; 

C Function Call 

v_clrwk(handle) ; 

Remarks 

(0 ) 
(0 ) 

(0 ) 
(0 ) 

After opening the workstation, the function clear workstation is 
executed automatically. 

71 



Abacus Software GEM Programmer's Reference 

UPDATE WORKSTATION Opcode = 4 

Graphic commands aren't immediately performed by printers or plotters. 
Instead, they are put into a buffer. The function update workstation 
executes the commands in the buffer. This call is unneccessary for screen 
work, because all graphic commands are executed on request. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

Output Parameters 

contrl(2) 
contrl(4) 

Parameter Descriptions 

handle 

contrl(O) Opcode (4) 
contrl(l) Number of points in ptsin array (0) 
contrl(3) Length of intin arrays (0) 
contrl(6) Device Identifer 
contrl(2) Number of points in ptsout arrays (0) 
contrl(4) Length of intout arrays (0) 

C Definition 

int handle; 

C-Function Call 

v_updwk(handle) ; 

Remarks 

The function update workstation cannot manage a page feed. In this 
case, the function clear workstation should be used. 

72 



Abacus Software GEM Programmer's Reference 

LOAD FONTS Opcode = 119 

Every device driver contains information that states how many character sets 
the device has available. This function provides this information and loads 
the character sets available. When the character sets have already been 
called, or no other character sets exist, zero is returned. 

Input Parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

Output Parameters 

contrl (2) 
contrl(4) 

intout (0) 

handle 

select 

additional 

Parameter Descriptions 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 
intin(O) 

contrl(2) 
contrl(4) 
intout(O) 

C Definition 

Opcode (119) 
Number of points in ptsin array (0) 
Length of intin arrays (1) 
Device Identifer 
Reserved for future use (1) 

Number of points in ptsout arrays (0) 
Length of intout arrays (1) 
Number of addition character sets 

int handle; 
int additional; 
int select; 

73 



Abacus Software GEM Programmer's Reference 

C Function Call 

additional=vst load_fonts(handle, select); 

Remarks 

This function give a null value for the ST's screen. This means that no other 
character sets are available. 

74 



Abacus Software GEM Programmer's Reference 

UNLOAD FONTS Opcode = 120 

This function frees up the memory occupied by alternate character sets. 
When the character sets are available to all virtual devices with the same 
device identifier, then all virtual devices must be closed, or the function 
unloads fonts for each virtual device. The standard character set remains 
behind. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

intin(O) 

Output Parameters 

contrl(2) 
contrl(4) 

handle 

select 

Parameter Descriptions 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

contrl(2) 
contrl(4) 

C Definition 

Opcode (120) 
Number of points in ptsin array (0) 
Length of intin array (1) 
Device Ident. 

reserved 

Number of points in ptsout array (0) 
Length of intout array (0) 

int handle; 
int select; 

75 



Abacus Software GEM Programmer's Reference 

C Function Call 

vst unload fonts (handle, select); 

76 



Abacus Software GEM Programmer's Reference 

SET CLIPPING RECTANGLE Opcode = 129 

Under GEM, all graphic operations may be c1ipped--confined to a defined 
portion of the screen called a window. This area is specified as a pair of 
diagonal coordinates that represent the opposing comers of the window. 
Clipping can also be switched off with this function. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

handle 

pxyarray(O) 
pxyarray(l) 
pxyarray(2) 
pxyarray(3) 

Parameter Descriptions 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin (0) 

ptsin(O) 
ptsin(l) 
ptsin(2) 

ptsin(3) 

C Definition 

Opcode (129) 
Number of points in ptsin array (2) 
Length of intin array (1) 
Device Ident. 

Flag 
o = Clipping off 
1 = Clipping on 

x-coordinate of corner point 
y-coordinate of corner point 
x-coordinate of opposite diagonal 
corner point 
y-coordinate of opposite diagonal 
corner point 

int handle; 
int clip_flag; 
int pxyarray[4]; 

77 



Abacus Software GEM Programmer's Reference 

C Function Call 

vs_ cl i p (handle, clip_ flag, pxyarray); 

Remarks 

Clipping is normally switched off after opening the workspace. 

78 



Abacus Software GEM Programmer's Reference 

3.2.2 The Output Functions 

All graphic functions such as circles, ellipses, etc., are output functions. 

POLYLINE Opcode = 6 

Poly lines are screen coordinates joined to one another. A polygon, for 
example, is a series of connected points, wherein the starting point is the 
same as the endpoint. The VDI's ability to draw multi-sided objects is a 
convenient one. Note, however, that this routine cannot draw individual 
points. 

The lines can be any form. The attribute functions that determine the 
following items must be supplied: 

-Color 
-Line type 
-Line width 
-End appearance 
-Character mode 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

ptsin(O) 
ptsin(l) 

ptsin(2n-2)= 
ptsin(2n-l)= 

Output Parameters 

contrl(2) 
contrl(4) 

handle 

pxyarray(O) 
pxyarray(l) 

pxyarray(2n-2) 
pxyarray (2n-l) 

79 



Abacus Software GEM Programmer's Reference 

Parameter Descriptions 

contrl(O) Opcode (6 ) 
contrl(l) Number of points in ptsin array (n) 
contrl(3) Length of intin array (0) 
contrl (6) Device Identifer 

ptsin(O) x-coordinate of 1st point 
ptsin(l) y-coordinate of 1st point 
ptsin(2) x-coordinate of 2nd point 
ptsin(3) y-coordinate of 2nd point 

ptsin(2n-2) x-coordinate of last point 
ptsin (2n-1) y-coordinate of last point 

contrl(2) 
contrl(4) 

Number of points in ptsout array (0) 
Length of intout array (0) 

C Definition 

int handle; 
int count; 
int pxyarray[2 * count]; 

C Function Call 

v_pline(handle, count, pxyarray); 

Remarks 

See Chapter 2.5 for an example of this function. 

80 



Abacus Software GEM Programmer's Reference 

POLYMARKER Opcode = 7 

This function places several pt s in array-defined markers on the screen at 
the same time. These markers can be of different types-in their simplest 
form, as screen points. The marker type, as well as other details, are 
specified by the attribute functions: 

-Marker color 
-Marker size 
-Marker type 
-Character mode 

These parameters must be specified before calling the function. 

Input Parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

ptsin(O) 
ptsin(l) 

ptsin(2n-2)= 
ptsin(2n-l)= 

Output Parameters 

contrl (2) 
contrl(4) 

handle 

pxyarray(O) 
pxyarray(l) 

pxyarray (2n-2) 
pxyarray (2n-l) 

81 



Abacus Software GEM Programmer's Reference 

Parameter Descriptions 

contrl(O) 
contrl(l) 
contrl (3) 
contrl(6) 

ptsin (0) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

ptsin(2n-2) 
ptsin (2n-1) 

Opcode (7 ) 
Number of points in ptsin array 
Length of intin array (0 ) 
Device Identifer 

x-coordinate of 1st marker 
y-coordinate of 1st marker 
x-coordinate of 2nd marker 
y-coordinate of 2nd marker 

x-coordinate of last marker 
y-coordinate of last marker 

(n) 

contrl(2) 
contrl(4) 

Number of points in ptsout array (0) 
Length of intout array (0) 

C Definition 

int handle; 
int count; 
int pxyarray[2 * count]; 

C Function Call 

v_pmarker (handle, count, pxyarray); 

82 



Abacus Software GEM Programmer's Reference 

TEXT Opcode = 8 

You cannot use the printf for putting text on the graphic screen in C. 
There is a special function for that. 

This function specifies the x and y coordinates at which the text is to be 
displayed on the screen (left-centered). The baseline for the text is specified 
by the x-coordinate. Additionally, attribute functions, described later, can be 
used to change text formats (centered, right-justified, etc.). 

The in tin array contains the string to be printed. The charac ter code is 
contained in the least significant byte of each element of in tin. If a 
character doesn't belong to the character set, a special character signalling 
this fact is sent. The C-programmer has it a little easier here-there's no 
need to fill in the intin array character-for-character. Just call the function 
for the string to be output. This string must end with the ASCII value 0, 
which is always the case in C. The VDI library function then sets this string 
into the LSBs of the intin array. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin 

ptsin(O) 
ptsin(l) 

Output Parameters 

contrl(2) 
contrl (4) 

handle 

string 

x 
y 

83 



Abacus Software GEM Programmer's Reference 

Parameter Descriptions 

contrl(O) 
contrl (1) 
contrl (3) 
contrl (6) 

intin 

ptsin(O) 
ptsin(l) 

contrl(2) 
contrl(4) 

C Definition 

Opcode (8) 
Number of points in ptsin array (1) 
Length of intin array (n) 
Device Identifer 

String in 16-bit characters 

x-coordinate of text display 
y-coordinate of text display 

Number of points in ptsout array (0) 
Length of intout array (0) 

int handle; 
int x; 
int y; 
char string[length); 

C Function Call 

v_ gtext (handle, x, y, string); 

Remarks 

The string is automatically transferred to the in t in array. 

84 



Abacus Software GEM Programmer's Reference 

(
FILLED AREA Opcode = 9 

This function fills in a specified polygon, which is defined by the ptsin 
array. The maximum number of polygon corner points must be determined 
by the Inquire functions. The following parameters can be set with the 
attribute functions: 

-Pill color 
-Pill type (empty, full, checkered, pattern, 

cross-hatched or self-defined) 
-Character mode 
-Pill pattern 

These details must be specified before calling the function. 

The filled area is normally framed with the fill color. However, this can be 
suppressed with an attribute function. 

If the output device is unable to fill in the polygon, the polygon is displayed 
in the standard fill color. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

ptsin(O) 
ptsin(l) 

ptsin(2n-2)= 

Output Parameters 

contrl(2) 
contrl(4) 

handle 

pxyarray(O) 
pxyarray(l) 

pxyarray(2n-2) 

85 



Abacus Software GEM Programmer's Reference 

Parameter Descriptions 

contrl(O) 
contrl(l) 

contrl(3) 
contrl(6) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

ptsin(2n-2) 
ptsin (2n-1) 

contrl(2) 
contrl(4) 

C Definition 

Opcode (9) 
Number of polygon points (Maximum 
manageable by Inquire function) 
Length of intin array (0) 
Device identifier 

x-coordinate of 1st point 
y-coordi nate of 1st point 
x-coordi nate of 2nd point 
y-coordinate of 2nd point 

x-coordinate of last point 
y-coordinate of last point 

Number of points in ptsout array (0) 
Length of intout array (0) 

int handle; 
int count; 
int pxyarray[2 * count]; 

C Function Call 

v_fillarea(handl e, count, pxyarray); 

86 



Abacus Software GEM Programmer's Reference 

CELL ARRAY Opcode = 10 

This function is complex. 

First we'll draw a defmed rectangle. This rectangle is logically divided into 
a table with any number of rows and columns. Every table element is 
arrange a freely definable color of the screen points within that limited table 
element. For example, we divide the graphic screen into four equal 
sections- giving us four color zones as well. The graphic point displayed 
shows the color of the zone in which it lies. 

Not every working device (e.g., the monochrome monitor) allows this 
function. When this happens, you will have to limit yourself to working in 
the current line color and line width. 

Input Parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 
contrl (7) 
contrl(8) 
contrl(9) 
contrl (10) 

intin(O) 

intin(n) 

ptsin (0) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

Output Parameters 

contrl(2) 
contrl(4) 

handle 
row_length 
el used 
num rows 
wrt mode 

colarray(O) 

colarray(n) 

pxyarray(O) 
pxyarray(l) 
pxyarray(3) 
pxyarray(3) 

87 



Abacus Software GEM Programmer's Reference 

Parameter Descriptions 

contrl (0) 
contrl(l) 
contrl(3) 

contrl(6) 
contrl (7) 
contrl(8) 
contrl (9) 
contrl(10) 

intin 

ptsin (0) 

ptsin(l) 

ptsin (2) 

ptsin(3) 

contrl(2) 
contrl(4) 

C Definition 

Opcode (10) 
Number of points in ptsin array (2) 
Length of intin array (n) 
(color array) 
Device identifier 
Line length in color array intin 
Number of zones in color array lines 
Number of lines in color array 
Character mode 
(see attribute functions) 

Color array, contains the color of 
every table zone (stored linewise) 

x-coordinate of the lower-left corner 
of rectangle 
y-coordinate of the lower left corner 
of the rectangle 
x-coordinate of the upper right corner 
of the rectangle 
y-coordinate of the upper right corner 
of the rectangle 

Number of points in ptsout array (0) 
Length of the intout array (0) 

int handle; 
int pxyarray[4]; 
int row_length; 
int el used; 
int num rows; 
int wrt mode; 
int colarray[num_rows * el_used]; 

C Function Call 

v_cellarray(handle, pxyarray, row length, 
el_used, num_rows, wrt_mode~ colarray) ; 

88 



Abacus Software GEM Programmer's Reference 

CONTOUR FILL Opcode = 103 

This function fills an area until either the edge of the screen or a defined 
color is reached. It is the standard fill algorithm found in many graphics 
programs. The start point is stored in the pt sin array. This is a point 
contained within the surface to be filled. 

Input Parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

ptsin(O) 
ptsin (1) 

Output Parameters 

contrl(2) 
contrl(4} 

handle 

index 

x 
y 

Parameter Descriptions 

contrl (0) 
contrl (1) 
contrl(3) 
contrl (6) 

intin(O) 

ptsin(l) 

contrl(2) 
contrl(4) 

Opcode (l03) 
Number of points in ptsin array (1) 
Length of the intin array (1) 
Device identifier 

Color of the surface to be 
filled ptsin(O) x -coordinate of the 
start point 
y-coordinate of the start point 

Number of points in ptsout array (0) 
Length of the intout array (0) 

89 



Abacus Software 

C Definition 

int handle; 
int index; 
int x; 
int Yi 

C Function call 

GEM Programmer's Reference 

v contourfill (handle, x, y, index) i 

Remarks 

This function is not supported by all devices. 

90 



Abacus Software GEM Programmer's Reference 

FILL RECTANGLE Opcode = 114 

This function fills a defined rectangle. Here too, the attribute must be set as 
for a filled polygon. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

ptsin(O) 

ptsin(3) 

Output Parameters 

contrl(2) 
contrl (4) 

handle 

pxyarray(O) 

pxyarray(3) 

Parameter descriptions 

contrl(O) Opcode (114) 
contrl(l) Number of points in ptsin array 
contrl(3) Length of the intin array (0 ) 
contrl (6) Device identifier 

ptsin(O) x-coordinate of the corner point 
ptsin(l) y-coordinate of the corner point 
ptsin(2) x-coordinate of the end point 

diagonally opposite 
ptsin(3) y-coordinate of the end point 

diagonally opposite 

contrl(2) Number of points in ptsout array 
contrl (4) Length of the intout array (0 ) 

91 

(2 ) 

(0) 



Abacus Software 

C definition 

int handle; 
int pxyarray; 

C function call 

GEM Programmer's Reference 

vr_recfl(handle, pxyarray); 

92 



Abacus Software GEM Programmer's Reference 

3.2.3 Basic Graphic Functions 

These functions include a number of basic geometric forms like circles and 
ellipses. All of the basic functions have a single opcode (11). Each of the 
routines executed under this opcode contains a number for identification 
which is passed to the function in cont r 1 (5) . The C programmer can 
avoid this structure since a function name is present in the library for each 
basic function. 

All angles are given in tenths of a degree. The following overview should 
clarify this declaration: 

900 

1800 ....... 0 

2700 

The upper right quadrant of the circle, for example, stretches from 0 to 
900,or from 0 to 90 degrees. 

The following section contains a list of all of the basic graphics functions. 
All coordinates can be passed as normal or raster coordinates. It should be 
noted however that the ST screen accepts only raster coordinates (see 
open virtual screen workstation). 

93 



Abacus Software GEM Programmer's Reference 

BAR Opcode = 11, function ID = 1 

The function draws a filled bar. It is intended for creating bar charts. Before 
the call, the following settings must be made with the help of the attribute 
functions for fill operations: 

Fill color 
Fill type (empty, full, dotted, pattern 

shaded or user-defined) 
Draw mode 
Fill pattern 
Border 

Input parameters 

contrl (0) 
contrl(l) 
contrl (3) 
contrl (5) 
contrl (6) 

ptsin(O) 
ptsin (1) 
ptsin(2) 
ptsin(3) 

Output parameters 

contrl (2) 
contrl(4) 

handle 

pxyarray(O) 
pxyarray(l) 
pxyarray(2) 
pxyarray(3) 

94 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(5) 
contrl (6) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin (3) 

contrl(2) 
contrl (4) 

C definitions 

Opcode (11) 
Number of points in ptsin array (2) 
Length of the intin array (0) 
Function 10 (1) 
Device identifier 

x-coordinate of the corner 
y-coordinate of the corner 
x-coord. of diagonally opposite corner 
y-coord. of diagonally opposite corner 

Number of points in ptsout array (0) 
Length of the intout array (0) 

int handle; 
int pxyarray[4]; 

C function call 

v bar (handle, pxyarray); 

95 



Abacus Software GEM Programmer's Reference 

ARC Opcode = 11, function 10 = 2 

The function draws an arc which has starting and ending angles defined in 
the initin array. 

The following attributes for lines must fIrst be set: 

Line color 
Line type 
Character mode 
Line width 
End form 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (5) 
contrl(6) 

intin(O) 
intin(l) 

ptsin(O) 
ptsin (1) 
ptsin( 2 ) 
ptsin(3) 
ptsin ( 4 ) 
ptsin(5) 
ptsin (6) 
ptsin(7) 

Output parameters 

contrl(2) 
contrl(4) 

hand l e 

begang 
end a ng 

x 
y 

r adius 

96 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (11 ) 
contrl(l) Number of points in ptsin array 
contrl(3) Length of the intin array (2 ) 
contrl (5) Function ID (2 ) 
contrl(6) Device identifier 

intin(O) Start angle (0-3600 ) 
intin(l) End angle (0-3600) 

ptsin(O) x-coordinate of the center point 
ptsin(l) y-coordinate of the center point 
ptsin(2) 0 
ptsin(3) 0 
ptsin(4) 0 
ptsin(5) 0 
ptsin (6) Radius 
ptsin(7) 0 

contrl(2) Number of points in ptsout array 
contrl (4) Length of the intout array (0 ) 

C definitions 

int handle; 
int x; 
int y; 
int radius; 
int begang; 
int endang; 

C function call 

(4 ) 

(0 ) 

v arc (handle, x,y, radius, begang, endang); 

Remarks 

This function is not supported by every device. Assembly language 
programmers must set unused ptsin variables to O! 

97 



Abacus Software GEM Programmer's Reference 

PIE Opcode = 11, function ID = 3 

This function draws a filled arc which has starting and ending points 
connected to the center point. This results in a surface that looks like a piece 
of pie. Pie charts can easily be created with the help of this function. 

The following fill attributes must be set before the call: 

Fill color 
Fill type (empty, full, dotted, pattern, 
shaded or user-defined) 
Character mode 
Fill pattern 
Border 

Input parameters 

contrl (0) 
contrl (1) 
contrl(3) 
contrl (5) 
contrl(6) 

intin(O) 
intin(l) 

ptsin (0) 
ptsin(l) 
ptsin(2) 
ptsin(3) 
ptsin(4) 
ptsin (5) 
ptsin (6) 
ptsin(7) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

begang 
endang 

x 
y 

radius 

98 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (11 ) 
contrl(l) Number of po i nts in ptsin array 
contrl(3) Length of the intin array (2 ) 
contrl (5) Functions ID (3 ) 
contrl(6) Devi ce indentifier 
intin (0) Start angle (0 - 3600 ) 
intin(l) End angle (0-3600) 

ptsin(O) x-coordinate of the center po i nt 
ptsin(l) y-coordinate of the center point 
ptsin(2) 0 
ptsin (3) 0 
ptsin(4) 0 
ptsin(5) 0 
ptsin(6) Radius 
ptsin(7) 0 

contrl(2) Number of points in ptsout a rray 
contrl(4) Length 

C definitions 

int handle; 
int x; 
int y; 
int radius; 
int begang; 
int endang; 

C function call 

of the intout array (0) 

v_pieslice (handle, x, y,radius ,begang, 
endang) ; 

Remarks 

(4 ) 

(0 ) 

This function is not supported by every device. Assembly language 
programmers must be sure to set ptsin variables to O! 

99 



Abacus Software GEM Programmer's Reference 

CIRCLE Opcode = 11, function 10 = 4 

This function creates a filled circle. The following fill attributes must first be 
set: 

Fill color 
Fill type (empty, full, dotted, pattern, 

shaded or user-defined) 
Character mode 
Fill pattern 
Border 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(5) 
contrl(6) 

ptsin(O) 
ptsin (1) 
ptsin(2) 
ptsin(3) 
ptsin(4) 
ptsin(5) 

Qumut parameters 

contrl(2) 
contrl(4) 

handle 

x 
y 

radius 

100 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) Opcode ( 11) 
contrl(l) Number of points in ptsin array (3 ) 
contrl (3) Length of the intin array (0 ) 
contrl(5) Function ID (4 ) 
contrl(6) Device identifier 

ptsin(O) x-coordinate of the center point 
ptsin(l) y-coordinate of the center point 
ptsin(2) 0 
ptsin (3) 0 
ptsin(4) radius 
ptsin (5) 0 

contrl(2) Number of points in ptsout array (0 ) 
contrl(4) Length of the intout array ( 0) 

C definitions 

int handle ; 
int x; 
int y; 
int radius; 

C function call 

v circle (handle, x, y, radius); 

Remarks 

Assembly language programmers must be sure to set the unused pt s in 
variables to O! 

101 



Abacus Software GEM Programmer's Reference 

ELLIPTICAL ARC Opcode = 11, function 10 =6 

A segment of an ellipse can be drawn with this function, specified by the 
center point, x and y radii, and start and end angles. The following line 
attributes must be previously set: 

Line color 
Line type 
Character mode 
Line width 
End form 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(5) 
contrl (6) 

intin(O) 
intin(l) 

handle 

begang 
endang 

x ptsin(O) 
ptsin(l) 
ptsin (2) 
ptsin(3) 

y 
xradius 
yradius 

Output parameters 

contrl(2) 
contrl(4) 

102 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (11 ) 
contrl (1) Number of points in ptsin array 
contrl(3) Length of the intin array (2 ) 
contrl(5) Function ID (6 ) 
contrl(6) Device indentifier 

intin(O) Start angle (0-3600) 
intin (1) End angle (0-3600) 

ptsin (0) x-coordinate of the center point 
ptsin(l) y-coordinate of the center point 
ptsin(2) Radius in x-direction 
ptsin(3) Radius in y-direction 

contrl (2) Number of points in ptsout array 
contrl (4) Length of the intout array (0) 

C definitions 

int handle; 
int x; 
int y; 
int xradius; 
int yradius; 
int begang; 
int endang; 

C function call 

v el l arc (handle, x,y, xradius, yradius, 
begang, endang); 

103 

(2 ) 

(0 ) 



Abacus Software GEM Programmer's Reference 

ELLIPTICAL PIE Opcode = 11, function 10 = 7 

The function described here creates a filled ellipse segment whose start and 
end are connected to the center point. This surface is also called an elliptical 
pie segment. As with the previous function, the start and end angles, x and 
y radii, as well as the center point are specified. The appropriate settings 
must first be made with the attribute functions for fill operations: 

Fill color 
Fill type (empty, full, dotted, pattern, 

shaded or user-defined) 
Character mode 
Fill pattern 
Border 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(5) 
contrl (6) 

intin(O) 
intin (1) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

Output parameters 

contrl(2) 
contrl (4) 

handle 

begang 
endang 

x 
y 
xradius 
yradius 

104 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (5) 
contrl(6) 

intin(O) 
intin(l) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

Opcode (11) 
Number of points in 
Length of the intin 
Function ID (7) 
Device identifier 

Start angle (0-3600) 
End angle (0-3600) 

ptsin array 
array (2) 

x-coordinate of the center point 
y-coordinate of the center pointer 
Radius in x-direction 
Radius in y-direction 

(2 ) 

contrl(2) 
contr l (4) 

Number of points in ptsout array (0) 
Length of the intout array (0) 

C definitions 

int handle; 
int x; 
int y; 
int xradius; 
int yradius; 
int begang; 
int endang; 

C function call 

v_ellpie (handle, x,y, xradius, yradius, 
begang, endang); 

105 



Abacus Software GEM Programmer's Reference 

ELLIPSE Opcode = 11, function 10 = 5 

In addition to circles, whose X and Y radii are identical, this function can 
also draw filled ellipses with different radii. Parameters like X and Y radii 
as well as the center point must be passed to the function. In addition, it is 
necessary to set the fill attributes: 

Fill color 
Fill type (empty, full, dotted, pattern, 

shaded or user-defined) 
Character mode 
Fill pattern 
Border 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(5) 
contrl(6) 

ptsin(O) 
ptsin (1) 
ptsin(2) 
ptsin(3) 

Output parameters 

contrl (2) 
contrl(4) 

handle 

x 
y 
xradius 
yradius 

106 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (11) 
contrl(l) Number of points in ptsin array (2 ) 
contrl(3) Length of the intin array (0) 
contrl(5) Function ID (5 ) 
contrl(6) Device identifier 

ptsin(O) x-coordinate of the center point 
ptsin(l) y-coordinate of the center point 
ptsin(2) Radius in x-direction 
ptsin(3) Radius in y-direction 

contrl(2) Number of points in ptsout array (0 ) 
contrl(4) Length of the intout array (0 ) 

C definitions 

int handle; 
int x; 
int y; 
int xradius; 
int yradius; 

C function call 

v_ellipse (handle, x,y, xradius, yradius); 

107 



Abacus Software GEM Programmer's Reference 

ROUNDED RECTANGLE Opcode = 11, function 10 = 8 

Besides the normal rectangles, rectangles with rounded corners can also be 
drawn. This function makes this possible. The two corner points opposite 
each other are passed to the function. It is also necessary to set the line 
attributes: 

Line color 
Line type 
Character mode 
Line width 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(5) 
contrl (6) 

ptsin(O) 
ptsin (1) 
ptsin(2) 
ptsin(3) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

pxyarray(O) 
pxyarray(l) 
pxyarray(2) 
pxyarray(3) 

108 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(5) 
contrl(6) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

contrl(2) 
contrl (4) 

C definitions 

Opcode (11) 
Number of points in ptsin array (2) 
Length of the intin array (0) 
Function ID (8) 
Device identifier 

x-coordinate of the corner point 
y-coordinate of the corner point 
x-coord. of diagonally opposite corner 
y-coord. of diagonally opposite corner 

Number of points in ptsout array (0) 
Length of the intout array (0) 

int handle; 
int pxyarray[4]; 

C function call 

v rbox (handle, pxyarray); 

109 



Abacus Software GEM Programmer's Reference 

FILLED ROUNDED RECTANGLE 
Opcode = 11, function ID = 9 

This function is very similar to the previous one. Only the function ID and 
the attribute, as well as the function call (v rfbox), are different. The 
function ID is: -

contrl(5) Function ID (9) 

The fill attributes to be set: 

Fill color 
Fill type (empty, full, dotted, pattern, 
shaded or user-defined) 
Character mode 
Fill pattern 
Border 

110 



Abacus Software GEM Programmer's Reference 

JUSTIFIED GRAPHICS TEXT Opcode =11, func. 10 =10 

This function allows the output of easily-formatted text on the screen. The 
text is left and right justified in which the left setting as well as the text 
length is freely selectable. The text is extended to the desired length by 
inserting spaces between the characters or words. The padding of characters 
and/or words can be turned off. 

The text is passed character by character in the intin array at index 2 in 
the lower-order bytes. This doesn't concern the C programmer, however. 
In C, simply pass a string terminated by the ASCII value zero to the 
function. The library function automatically places this in the intin array. 
The C string must be terminated with the ASCII byte O. The text attribute 
functions are used for additional formatting of the text: 

Text style 
Text color 
Text height 
Text alignment 
Angle of the text line 
Text effects 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 
intin (1) 
intin(2) 
intin(2+n) 

ptsin(O) 
ptsin(l) 
ptsin(2) 
ptsin(3) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

word_space 
char space 
string(O) 
string (2+n) 

x 
y 
length 

111 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(5) 
contrl(6) 

intin(O) 

intin (1) 

intin (2) 
intin(n+2) 

ptsin(O) 
ptsin (1) 
ptsin(2) 

contrl(2) 
contrl (4) 

C definitions 

Opcode (11) 
Number of points in ptsin array (2) 
Length of the intin array (1) 
Function ID (10) 
Device identifier 

Flag for word stretching 

o Word stretch off 
1 Word stretch on 

Flag for for character stretching 

o Character stretch off 
1 Character stretch on 

1st character of the string 
Last character of the string 

x-coordinate of the text alignment 
y-coordinate of the text alignment 
Desired text length in x-direction 

Number of points in ptsout array (0) 
Length of the intout array (0) 

int handle; 
int x; 
int y; 
int length; 
int word_space; 
int char space; 
int string [n] ; 

C function call 

v justified (handle, x, y, string, length, 
word_ space, char_space); 

112 



Abacus Software GEM Programmer's Reference 

3.2.4 The Attribute Functions 

The graphics operations of the output functions can be varied in many 
ways. The attribute functions allow the line, fill, and text properties to be 
set. 

SET WRITING MODE Opcode = 32 

The drawings created by the graphics operations are normally output 
without consideration of the drawings previously contained in the work 
area. This means that points are always set where there had been no points 
before. GEM offers several options to take already existing graphics into 
account when outputting graphics. Not only the points but also the color of 
the points plays a role here. For the description of the drawing modes, the 
operators for the boolean functions should first be described: 

obj Graphics_object (line, fill pattern, 
circle etc. ) 

col Co l or mask of the object 
old Color of the already set point 
new Resulting point color 

Replace mode 

The replace mode sets the points without concern for the existing graphics. 
This is the normal drawing mode. 

new = col AND obj 

Transparent mode 

In the transparent mode, the points are only set where no points are yet 
present. In addition, the points of the graphic at which points are to be set 
without color are cleared. This can be better clarified with an example. A 
filled surface is to be drawn. If the screen area is empty, there is no 
difference between the replace and transparent modes. If the screen area 
already contains graphics, however, the fill pattern would not be recognized 

.in the replace mode. A fill pattern on a screen having the color of the fill 
pattern cannot be recognized in the replace mode. 

new = (col AND obj) OR (old AND NOT obj) 

113 

.~ 



Abacus Software GEM Programmer's Reference 

XOR-Mode 

In the XOR mode, points are set only where none are contained in the 
already existing graphic. All points already set at the new positions are 
erased. The points of intersection of an old and new line are thereby erased. 

new = obj XOR old 

Reverse Transparent mode 

In this mode, all overlapping points for which no color is assigned in the 
object remain (such as the gaps in a dashed line). The overlapping points 
which are assigned a color in the object are erased. A fill pattern drawn on a 
black surface in reverse transparent mode is therefore the negative of the 
corresponding fill pattern in the transparent mode. 

new= (old AND obj) OR (col AND NOT obj) 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

handle 

mode 

set mode 

114 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

i ntin(O) 

contrl(2) 
contrl (4) 

intout(O) 

C definitions 

Opcode (32) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Drawing mode 

1 Replace 
2 Transparent 
3 XOR 
4 Reverse transparent 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected drawing mode 

int handle; 
int mode; 
int set_mode; 

C function call 

set mode vswr mode (handle, mode); 

115 



Abacus Software GEM Programmer's Reference 

SET COLOR REPRESENTATION Opcode = 14 

The colors of the ST can be arbitrarily mixed from the basic colors red, 
green, and blue (ROB). Each color index is assigned a color intensity 
between 0 and 1000 for the three colors. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 
intin(l) 
intin (2) 
intin(3) 

Output parameters 

contrl(2) 
contrl (4) 

handle 

index 
rgb in(O) 
rgb -in (1) 
rgb-in(2) 

Parameter description 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 
intin(l) 
intin(2) 
intin(3) 

contrl(2) 
contrl (4) 

Opcode (14) 
Number of points in ptsin array (0) 
Length of the intin array (4) 
Device identifier 

Color index 
Red intensity (0-1000) 
Green intensity (0-1000) 
Blue intensity (0-1000) 

Number of points in ptsout array (0) 
Length of the intout array (0) 

116 



Abacus Software 

C definitions 

int handle; 
int index; 
int rgb_in[3 ] ; 

C function call 

GEM Programmer's Reference 

vs color (handle, index, rgb_in); 

Remarks 

The number of color indices is dependent on the device. The OPEN 
WORKSTATION v opnwk and v opnvwk communicate color options in 
intout [13] Of work_out [13]. 

117 



Abacus Software GEM Programmer's Reference 

SET POLYLINE COLOR INDEX Opcode = 17 

The color of the line to be drawn is selected from the table of colors mixed 
with the previous function. Only color indices 0 and 1 exist for 
monochrome monitors, which naturally do not have to be mixed 
beforehand. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

handle 

color index 

set co lor 

Parameter description 

contrl (0) 
contr l (1) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

Opcode (17) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identif ier 

Line co lor 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected line color 

118 



Abacus Software 

C definitions 

int handle; 
int color index; 
int set color; 

C function call 

GEM Programmer's Reference 

set color vsl color (handle, color_index); 

119 



Abacus Software GEM Programmer's Reference 

SET POLYLINE LINE TYPE Opcode = 15 

With the Polyline function not only dotted lines but dashed lines can be 
output. The desired line type can be selected from the several types available 
with this function: 

style 

1 
2 
3 
4 
5 
6 
7 

MSB (16 Bit) LSB 

1111111111111111 
1111111111110000 
1110000011100000 
1111111000111000 
1111111100000000 
1111000110011000 
extern defined 

Line type 7 must be defined with the function Set User-Defined 
Line Style Pattern. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

handle 

style 

120 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl (3) 
contrl(6) 

intin (0) 

contrl(2) 
contrl(4) 

intout(O) 

C definitions 

Opcode (15) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Line type (style) 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected line type 

int handle; 
int style; 
int set_type; 

C function call 

vsl_type (handle, style); 

Remarks 

This function is not available on every device. The OPEN WORKSTATION 
functions v opnwk and v opnvwk communicate this in intout [6] or 
work_out [" 6] . The ST screen allows all 7 line types. 

121 



Abacus Software GEM Programmer's Reference 

SET USER-DEFINED LINE STYLE PATTERN 
Opcode = 113 

The line type 7 of the previous function is defined with a 16-bit word in this 

function. The highest-order bit is the first point of the line. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin (0) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

pattern 

Parameter description 

contrl(O) Opcode (113) 
contrl(l) Number of points in ptsin 

contrl(3) Length of the intin array 

contrl (6) Device identifier 

intin(O) Line type (16 bit word) 

contrl(2) Number of points in ptsout 

array 
( 1) 

array 

contrl (4) Length of the intout array (0) 

C definitions 

int handle; 
int pattern; 

C function call 

vsl_udsty (handle, pattern); 

122 

(0 ) 

(0 ) 



Abacus Software GEM Programmer's Reference 

SET POLYLINE LINE WIDTH Opcode = 16 

In addition to the line type, the width of the lines can also be specified. The 
width of the lines is given in odd numbers starting with 3. 

Input parameters 

contrl(O) 
contrl (1) 
contrl (3) 
contrl(6) 

ptsin(O) 
ptsin(l) 

Output parameters 

contrl (2) 
contrl(4) 

ptsout(O) 
ptsout (1) 

handle 

width 

set width 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 

ptsin(O) 
ptsin(l) 

contrl(2) 
contrl(4) 

ptsout (0) 
ptsout(l) 

Opcode (16) 
Number of points in ptsin array (1) 
Length of the intin array (0) 
Device identifier 

Line width 
o 

Number of points in ptsout array (1) 
Lengt h of the intout array (0) 

Selected line width 
o 

123 



Abacus Software 

C definitions 

int handle; 
int width; 

GEM Programmer's Reference 

int set width; 

C function call 

set width vsl width (handle, width); 

Remarks 

This function is not available on every device. The OPEN WORKSTATION 
functions v opnwk and v opnvwk communicate this in intout [7] or 
workout (7]. The width is arbitrarily selected on the ST screen. 

124 



Abacus Software GEM Programmer's Reference 

SET POLYLINE END STYLES Opcode = 108 

The line or line sequences created with the POLYLINE function can be formed at the start and end. There are three options: 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 
intin (1) 

Output parameters 

-squared (normal) 
-arrow 
-rounded 

handle 

beg_style 
end_style 

contrl(2) 
contrl(4) 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 

intin(l) 

contrl (2) 
contrl (4) 

Opcode (108) 
Number of points in ptsin array (0) 
Length of the intin array (2) 
Device identifier 

Shape of the line start 
o squared 
1 arrow 
2 rounded 

Shape of the line end 
o squared 
1 arrow 
2 rounded 

Number of points in ptsout array (0) 
Length of the intout array (0) 

125 



Abacus Software 

C definitions 

int handle; 
int beg_style; 
int end_style; 

C function call 

GEM Programmer's Reference 

vsl ends (handle, beg_style, end_ style); 

126 



Abacus Software GEM Programmer's Reference 

SETPOLYMARKERTYPE Opcode = 18 

Markers for the POLYMARKER function can be represented not only as a 
point, but also as such symbols as a star or cross. The following options are 
offered by this function: 

1 Point 
2 Plus sign 
3 Star 
4 Square 
5 Diagonal cross 
6 Diamond 
7 to n = device dependent 

The point as the smallest type of marker cannot be enlarged. If an inavlid 
type of marker is selected, the VDI sets the star (3) as the default. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout(O) 

handle 

symbol 

127 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 

contrl(2) 
contrl(4) 

intout (0) 

C definitions 

Opcode (18) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Type of marker 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected marker type 

int handle; 
int symbol; 
int set_type; 

C function call 

vsm_type (handle, symbol); 

Remarks 

The number of marker types is varied. The OPEN WORKSTATION 
functions v opnwk and v opnvwk communicate this intout [ 8 ] or 
work_out [8] . There are 6 marker symbols available on the ST screen. 

128 



Abacus Software GEM Programmer's Reference 

SET POL YMARKER HEIGHT Opcode = 19 

The height of the markers is determined by this function. If the value is too 
large, the next-smallest size is set. 

Input parameters 

contrl(O) 
contrl(1) 
contrl(3) 
contrl(6) 

ptsin(O) 
ptsin(l) 

Output parameters 

contrl(2) 
contrl(4) 

ptsout(O) 
ptsout(l) 

handle 

height 

Parameter description 

contrl(O) Opcode ( 19) 
contrl(l) Number of points in ptsin array 
contrl(3) Length of the intin array ( 0) 
contrl (6) Device identifier 

ptsin(O) 0 
ptsin(1) Marker height 

contrl(2) Number of points in ptsout array 
contrl (4) Length of the intout array (0) 

ptsout(O) Set marker width 
ptsout(l) Set marker height 

129 

( 1) 

(1 ) 



Abacus Software 

C definitions 

int handle; 
int height; 

GEM Programmer's Reference 

int set handle; 

C function call 

vSffi_height (handle, height); 

130 



Abacus Software GEM Programmer's Reference 

SET POL YMARKER COLOR INDEX Opcode = 20 

The color of the markers is selected with this function. If an invalid color 
index is passed, the function sets the index to 1 (black). 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

handle 

color index 

set color 

Parameter description 

contr l( O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl (4) 

intout (0) 

C definitions 

Opcode (20) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Color index 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected color index 

int handle; 
int color index; 
int set color; 

131 



Abacus Software 

C function call 

set color 

GEM Programmer's Reference 

vsm color (handle, color_index ); 

132 



Abacus Software GEM Programmer's Reference 

SET CHARACTER HEIGHT, ABSOLUTE MODE 
Opcode = 12 

This function makes it possible to vary the graphic text in height. The 
character height, the distance from the character baseline to the end of the 
character box, is defined. The function returns four sizes: 

current character width 
current character height 
current character box width 
current character box height 

If the character set is proportionally spaced, the measurements of the largest 
character are returned. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

ptsin(O) 
ptsin (1) 

Outvut parameters 

contrl(2) 
contrl(4) 

ptsout(O) 
ptsout (1) 
ptsout(2) 
ptsout(3) 

handle 

height 

char width 
char-height 
cell-width 
cell=height 

133 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (12) 
contrl(l) Number of points in ptsin array 
contrl (3) Length of the intin array (0 ) 
contrl (6) Device identifier 

ptsin(O) 0 
ptsin (1) Character height 

contrl(2) Number of points in ptsout array 
contrl(4) Length of the intout array ( 0) 

ptsout(O) Current 
ptsout (1) Current 
ptsout(2) Current 
ptsout(3) Current 

C definitions 

int handle; 
int height; 
int char width; 
int char-height; 
i nt cell-width; 
int cell=height; 

C function call 

character width 
character height 
character box width 
character box height 

vst height (handle, height, &char_width, 

(1 ) 

(2 ) 

- &char_height, &cell_width, &cell height) 

134 



Abacus Software GEM Programmer's Reference 

SET CHARACTER CELL HEIGHT, POINTS MODE 
Opcode = 107 

Each character is found within a box whose height is set with this function. 
The height of the box is given in printer-steps (points) of 1172 inch. The 
height of the box corresponds to the distance between the baselines of the 
print lines. 

The function returns the current height and width of the character and the 
character box in NDC/RC coordinates. For proportional type, the 
measurements of the largest character are returned. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O ) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

ptsout(O) 
ptsout (1) 
ptsout(2) 
ptsout(3) 

handle 

point 

set_point 

char width 
char-height 
cell-width 
cell=height 

135 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin (0) 

contrl(2) 
contrl(4) 

intout(O) 

ptsout(O) 
ptsout(l) 
ptsout(2) 
ptsout(3) 

C definitions 

Opcode (107) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Height of the character box 
(line spacing) 

Number of points in ptsout array (2) 
Length of the intout array (1) 

Selected height of the box 

Current character width 
Current character height 
Current character box width 
Current character box height 

int handle; 
int point; 
int set point; 
int char width; 
int char-height; 
int cell-width ; 
int cell_height; 

C function call 

set~oint = vst_point (handle, point, 
&char width, &char height, &cell_ width, 
&cell-height) -

136 



Abacus Software GEM Programmer's Reference 

SET CHARACTER BASELINE VECTOR Opcode = 13 

The baseline of the characters can be rotated with this function. The text can 
thus be printed diagonally on the screen of other devices. The angle is 
specified in 1I10th degrees according to the following specifications: 

900 

1800 ......... 0 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

intout(O) 

2700 

handle 

angle 

set baseline 

137 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) 
contrl(l) 
contrl (3) 
contrl (6) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

C definitions 

Opcode (13) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identification 

Angle of the character baseline 
(0-3600) 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected angle 

int handle; 
int angle; 
int set baseline; 

C function call 

set baselin vst rotation (handle, angle); 

Remarks 

This function is not available on every device. The OPEN WORKSTATION 
functions v opnwk and v opnvwk indicate this in intou t [36] or 
work_out [36]. The ST screen does work with this. 

138 



Abacus Software GEM Programmer's Reference 

SET TEXT FACE Opcode = 21 

A character set is selected with this function. The character set 1 is standard. 
All others must be loaded with LOAD FONTS. 

Since no device driver with multiple character sets exists for the ST at this 
time, no more exact specifications about the numbers of the characters can 
be given. 

Input parameters 

contrl(O) 
contrl (1) 
contrl (3) 
contrl(6) 

intin (0) 

Output parameters 

contrl(2) 
contrl(4) 

intout(O) 

handle 

font 

set font 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

contr l (2) 
contrl(4) 

intout (0) 

Opcode (21) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Character set number 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected character set 

139 



Abacus Software 

C definitions 

int handle; 
int font; 

GEM Programmer's Reference 

int set font; 

C function call 

set font vst font (handle, font); 

Remarks: 

This function is not available on every device. The OPEN WORKSTATION 
functions v _ opnwk andv_opnvwk indicate this in intout [10] or 
work_out [10 ]. 

140 



Abacus Software GEM Programmer's Reference 

SET GRAPHIC TEXT COLOR INDEX 

This function sets the color of the text. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) = color index 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) set color 

Parameter description 

Opcode (22) 

Opcode =22 

contr l(O) 
contrl (1) 
contrl(3) 
contrl (6) 

Number of points in ptsin array (0) 
Length of the intin aray (1) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

Device identifier 

Color index of the text 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected color index 

141 



Abacus Software 

C definitions 

int handle; 
int color index; 
int set color; 

C function call 

GEM Programmer's Reference 

set color vst color (handle, color index); 

142 



Abacus Software GEM Programmer's Reference 

SET GRAPHIC TEXT SPECIAL EFFECTS 
Opcode = 106 

This function permits easy programming of graphic text. The following 
manipulations are possible: 

bold type 
light type 
italic type 
underlined type 
01UtallnlDledl aYJPle 
~Thl.!ltdlowetdl QYJPe 
any combination 

The type effects are selected with the 6 least-significant bits of 
intin (0). For effect: 

Bi t Va lue Type 
0 1 bold 
1 2 l i ght 
2 4 i talic 
3 8 underline 
4 16 outline 
5 32 shadowed 

If, for example, the type is to appear bold and italic, bits 0 and 2 are 
set- that is, the value 5 is passed to the function. 

Intput parameters 

contr l (0) 
contrl(l) 
contrl (3) 
contrl(6) = handle 

intin(O) = effect 

143 



Abacus Software 

Output Parameters: 

contrl(2) 
contrl(4) 

intout (0) 

GEM Programmer's Reference 

set effect 

Parameter description: 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

C definitions 

Opcode (106) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Bit map of the effects 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected effects 

int handle; 
int effect; 
int set effect; 

C function call 

set effect vst effects (handle, effect); 

Remarks: 

If this function is not available, set _effect is O. 

144 



Abacus Software GEM Programmer's Reference 

SET GRAPHIC TEXT ALIGNMENT Opcode = 39 

The text, which will be printed with v justified, can be aligned 
horizontally and vertically with this functIon. Horizontally, the text can be 
left- or right-justified or centered. There are 6 different possibilities for the 
vertical: 

bottom line 
descent line 
base line 
half line 
ascent line 
top line 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) handle 

lower boundary character box 
lower boundary descent 
lower boundary character 
upper boundary lowercase 
upper boundary character 
upper boundary character box 

intin (0) 
intint(l) 

hor in 
vert in 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 
intout (1) 

hor out 
vert out 

145 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

intin(l) 

contrl(2) 
contrl(4) 

intout(O) 
intout (1) 

C definitions 

Opcode (39) 
Number of points in ptsin array (0) 
Length of the intin array (2) 
Device identifier 

Hor i zontal alignment 

o left 
1 centered 
2 right 

Vertical alignment 

o baseline 
1 half line 
2 ascent line 
3 bottom line 
4 descent line 
5 top line 

Number of points in ptsout array (0) 
Length of the intout array (2) 

Se l ected horizontal alignment 
Selected vertical alignment 

int handle; 
int hor in; 
int hor out; 
int vert in; 
int vert out; 

C function call 

vst_alignment (handle, hor in, vert in, 
&hor_out, &vert_out); 

146 



Abacus Software GEM Programmer's Reference 

SET FILL INTERIOR STYLE Opcode = 23 

This function sets one of 4 different fill types for the fill functions: 

o Surface is not filled 
1 Surface is completely filled with fill color 
2 Surface is filled with dots 
3 Surface is cross-hatched 
4 Surface is filled with a user-defined fill pattern 

The function accepts the fill type and returns the selected fill type. 

Input parameters: 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 

Output parameters: 

contrl(2) 
contrl(4) 

intout(O) 

handle 

style 

set interior 

Parameter description: 

contrl(O) 
contrl(l) 
contrl (3) 
contrl(6) 

intin (0) 

contrl(2) 
contrl(4) 

intout (0) 

Opcode (23) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Fill type (0-4) 

Number of points in ptsout array (0) 
Length of the intout array (2) 

Selected fill type 

147 



Abacus Software 

C definitions 

int handle; 
int style; 

GEM Programmer's Reference 

int set interior; 

C function call 

set interior vsf interior (handle, style); 

148 



Abacus Software GEM Programmer's Reference 

SET FILL STYLE INDEX Opcode = 24 

This function expands the possibilities for filling surfaces. It allows the 
selection of 24 different bit patterns and 12 different cross-hatched patterns. 
Before calling this function, the fill type dotted or crosshatch must be set 
with the previous function. 

The following overview shows all of the fill patterns: 

DOTIED (fIll type=2) 

CROSSHATCH (fill type=3) 

If a fill type other than 2 or 3 was chosen before, this function has no effect 
on the fill pattern. 

If the number of the fill pattern is invalid, the standard fill type is set. 

149 



Abacus Software 

Input parameters 

contr l (0) 
contrl(l) 
contr l (3) 
contr l (6) = handle 

intin(O) = style index 

QutDut Parameters 

contrl(2) 
contr l (4) 

intout (0) set style 

Parameter description 

Opcode (24) 

GEM Programmer's Reference 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

intin (0) 

contrl(2) 
contrl (4) 

intout(O) 

C definitions 

Fill pattern (1-24) 

Number of po i nts in ptsout array (0) 
Length of the intout array (1) 

Selected fill pattern 

int handle; 
int style_ index; 
int set style; 

C function call 

set style vsf_style (handle, style index); 

150 



Abacus Software GEM Programmer's Reference 

SET FILL COLOR INDEX Opcode = 25 

This function sets the color for fill operations. These colors can be mixed 
with the function SET COLOR REPRESENTATION. With monochrome 
screens, only the colors black (1) and white (0) are available. 

Input parameters: 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) = color index 

Output parameters: 

contrl(2) 
contrl(4) 

intout (0) set color 

Parameter description: 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

intin (0) 

contrl(2) 
contrl(4) 

intout (0) 

Opcode(25) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Fill color 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected fill color 

151 



Abacus Software 

C definitions 

int handle; 
int color index; 
int set color; 

C function call 

GEM Programmer's Reference 

set color vsf color (handle, color index); 

152 



Abacus Software GEM Programmer's Reference 

SET FILL PERIMETER VISIBILITY Opcode = 104 

This function turns the frame of the fill surface on and off. By default, all 
fill surfaces are enclosed by a line in the fill color. This line can be disabled 
with this function. 

Input parameters: 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) = per_vis 

Quq:mt parameters: 

contrl(2) 
contrl (4) 

intout (0) set_perimeter 

Parameter description: 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

Opcode (104) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Frame flag 

o frame off 
1 frame on 

Number of points in ptsout array (0) 
Length of the intout array (2) 

Selected option 

153 



Abacus Software 

C definitions 

int handle; 
int per_vis; 
int set_perimeter; 

C function call 

GEM Programmer's Reference 

set perimeter = vsf perimeter (handle, 
- per_vis) ; 

154 



Abacus Software GEM Programmer's Reference 

SET USER-DEFINED FILL PATTERN Opcode = 112 

A user-defined fill type can be specified by this function. 

The fill pattern requires sixteen 2-byte words. Bit 15 of the first word is the 
upper left and bit 1 of the 16th word is the lower right point of the fill 
pattern. These 16 words are stored in the intin array. 

Multi-color fill patterns require multiple sixteen 2-byte word groups. These 
groups are contained sequentially in the intin array. One group must be 
defined for each color. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) pfill_pat(O) 

intin(n) pfill_pat(n) 

Output parameters 

contrl (2) 
contrl(4) 

155 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 
to 

intin(15) 

intin(16) 
to 

intin (31) 

Opcode (112) 
Number of points in ptsin array (0) 

Length of the intin array (16 *n ) 
Device identifier 

First 16-word group 

Second 16-word group 

intin ( (n-1) *16) 
to 

intin(n*16-1) Last 16-word group 

contrl(2) 
contrl (4) 

C definitions 

int handle; 

Number of points in ptsout array (0) 

Length of the intout array (0) 

int planes; /* Number of fill colors */ 

int pfill_pat [planes *16] 

C function call 

vsf_updat (handle, pfill_pat, planes); 

156 



Abacus Software GEM Programmer's Reference 

3.2.5 The Raster Operations 

Raster operations are an easy-to-use graphics aid. With these operations, 
arbitrary rectangular segments of the graphic on a device can be transferred 
to memory. The reverse is also possible. In addition, parts of the screen can 
be repositioned to other parts of the screen. Graphic areas can be moved on 
the screen in this manner. 

The raster areas must be defined in the form of a Memory Form Definition 
Block (MFDB). This block consists of 10 words (word = 2 bytes) and 
contains the following information: 

-32-bit address of the upper-left point of the raster 

-The height and width of the raster in points 

-The width of the raster in words. This specification 
corresponds to the width of the raster in points divided 
by 16. 

-The number of planes of the raster. One plane is used for 
each color. 

-A flag that indicates if the raster format is standard or 
device-specific. 

-Some specifications for future use. 

-The raster must begin on a word boundary and comprise 
a multiple of 16 points. 

157 



Abacus Software GEM Programmer's Reference 

The structure of the MFDB ( Memory Form Definition Block): 

Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 

Word 7 
Word 8 
Word 9 
Word 10 

Memory address, bits 31-16 
Memory address, bits 15-0 
Raster width in points 
Raster height in points 
Raster width in points/16 
Flag raster format 
o device specific 
1 = standard format 

Number of raster planes 
Reserved for future use 
Reserved for future use 
Reserved for future use 

In addition to a straight copy type of transfer, there is the option to logically 
combine the source raster with the destination raster. In the following 
boolean formulas, q represents the source raster, z the destination raster, 
and r the resulting, stored destination raster. 

Mode Combination 

0 r = 0 
1 r = q AND z 
2 r = q AND (NOT z) 
3 r = q (1: 1 transfer) 
4 r = (NOT q) AND z 
5 r z 
6 r q XOR z 
7 r = q OR z 
8 r = NOT (q OR z) 
9 r = NOT (q XOR z) 
10 r = NOT z 
11 r = q OR (NOT z) 
12 r NOT q 
13 r (NOT q) OR z 
14 r = NOT (q AND z) 
15 r = 1 

158 



Abacus Software GEM Programmer's Reference 

COPY RASTER, OPAQUE Opcode = 109 

This function copies the source raster. Instead of copying it to another memory space, it logically combines it with another memory area, the destination raster. All previously-described logical operations can be performed. 

If both rasters have different sizes, the size of the source raster is used. The option of enlarging the rasters is determined with the expanded inquiry function. 

The function works only with device-specific raster forms. Corresponding conversions are possible with the function TRANSFORM FORM, described later. 

The MDFB's need be allocated only for assembly-language programs. The C library functions construct these themselves. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 
contrl (7-8) 
contrl(9-10) 

intin(O) 

ptsin(O) 

ptsin (7) 

Output parameters 

contrl(2) 
contrl(4) 

handle 
psrcMFDB 
pdesMFDB 

wr mode 

pxyarray(O) 

pxyarray(7) 

159 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 
contrl(7-8) 

contrl(9-10) 

intin(O) 

ptsin(O) 

ptsin (1) 

ptsin(2) 

ptsin(3) 

ptsin(4) 

ptsin(5) 

ptsin(6) 

ptsin(7) 

contrl(2) 
contrl(4) 

Opcode (109) 
Number of points in ptsin array ( 4 ) 
Length of the intin array ( 1) 
Device identifier 
Double-word address MFDB of the source 
raster 
Double-word address MFDB of the 
destination raster 

Mode for logical combination 

X-coordinate of the corner point of 
the source raster 
Y-coordinate of the corner point of 
the source raster 
X-coordinate of the diagonally 
opposite corner point of the source 
raster 
Y-coordinate of the diagonally 
opposite corner point of the source 
raster 
X-coordinate of the corner point of 
the destination raster 
Y-coordinate of the corner point of 
the destination raster 
X-coordinate of the diagonally 
opposite corner point of the 
destination raster 
Y-coordinate of the diagonally 
opposite corner point of the 
destination raster 

Number of points in ptsout array (0) 
Length of the intout array (0) 

160 



Abacus Software 

C definitions 

int handle; 
int wr mode; 
int pxyarray[8]; 
int *P1~. cMFDB; 
int *pAIi§MFDB; 

C function call 

GEM Programmer's Reference 

vro_ cpyform (handle, wr_mode, pxyarray, 
psrcMFDB, pdesMFDB); 

161 



Abacus Software GEM Programmer's Reference 

COpy RASTER, TRANSPARENT Opcode = 121 

This function copies a single-color raster to a color raster. The color of the 
set and unset points is defined in the int in array. 

In contrast to the previous function, the only logical combinations possible 
here are those known from the function SET WRITE MODE (replace, 
transparent, XOR, reverse transparent). 

If the size of both rasters is different, the function performs the transfer in 
the size of the source raster, starting with the upper left comer of the 
destination raster. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 
contrl (7-8) 
contrl(9-10) 

intin(O) 
intin (1) 
intin(2) 

ptsin (0) 

ptsin (7) 

Output parameters 

contrl (2) 
contrl (4) 

handle 
psrcMFDB 
pdesMFDB 

wr mode 
color index(O) 
color-index (1) 

pxyarray (0) 

pxyarray(7) 

162 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contr l (6) 
contrl(7-8) 

contrl(9- 10) 

intin(O) 

intin(l) 
intin(2) 

ptsin(O) 

ptsin(l) 

ptsin(2) 

ptsin(3) 

ptsin(4) 

ptsin(5) 

ptsin (6) 

ptsin(7) 

contrl (2) 
contrl(4) 

Opcode (121) 
Number of points in ptsin array 
Length of the intin array (3 ) 
Device ident i fier 
Double-word address MFDB of the 
raster 
Double-word address MFDB of the 
destination raster 

Drawing mode 
(see function SET WRITE MODE) 
Color index of the set point 
Color index of the unset point 

( 4 ) 

source 

X-coordinate of the corner point of 
the source raster 
Y-coordinate of the corner point of 
the source raster 
X-coordinate of the diagonally 
oppos i te corner point of the source 
raster 
Y-coordinate of the diagonally 
opposite corner point of the source 
raster 
X-coordinate of the corner point of 
the destination raster 
Y-coordinate of the corner point of 
the destination raster 
X-coordinate of the diagonally 
opposite corner point of the 
destination raster 
Y-coordinate of the diagonally 
opposite corner point of the 
destination raster 

Number of points in ptsout array (0 ) 
Length of the intout array (0) 

163 



Abacus Software 

C definitions 

int handle; 
int wr mode; 
int color_index[2]; 
int pxyarray[8]; 
int *psrcMFDB; 
int *pdesMFDB; 

C function call 

GEM Programmer's Reference 

vro_cpyfm (handle, wr_mode, pxyarray, psrcMFDB, 
pdesMFDB, color_index); 

164 



Abacus Software GEM Programmer's Reference 

TRANSFORM FORM Opcode = 110 

This function converts raster formats from standard to the device-specific 
format and back. The current format, defined in the MFDB, is always 
converted into the other. This function may have to be called in conjunction 
with the function vro cpyform, since this is usable only with 
device-specific formats. -

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 
contrl (7-8) 
contrl (9-10) 

handle 
psrcMFDB 
pdesMFDB 

Output parameters 

contrl(2) 
contrl(4) 

Parameter description 

contrl (0) 
contrl (1) 
contrl(3) 
contrl (6) 
contrl (7-8) 

Opcode (110) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 
Double-word address MFDB of the source 
raster 

contrl(9-10) Double-word address MFDB of the 
destination raster 

contrl(2) 
contrl(4) 

Number of points in ptsout array (0) 
Length of the intout array (0) 

165 



Abacus Software 

C definitions 

int handle; 
int *psrcMFDB; 
int *pdesMFDB; 

C function call 

GEM Programmer's Reference 

vr trnfm (handle, psrcMFDB, pdesMFDB); 

166 



Abacus Software GEM Programmer's Reference 

GET PIXEL Opcode = 105 

This function determines if a defined point of a graphic area (such as the 
screen) is set or not. In addition, the color of the point is determined. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) handle 

ptsin(O) = x 
ptsin (1) y 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 
intout(l) 

pel 
index 

Parameter description 

contrl (0) Opcode (105) 
contrl (1) Number of points in 
contrl(3) Length of the intin 
contrl(6) Device identifier 

ptsin(O) X-coordinate of the 
ptsin(l) Y-coordinate of the 

contrl(2) Number of points in 

ptsin array 
array (0 ) 

point 
point 

ptsout array 
contrl(4) Length of the intout array (2 ) 

intout (0) Value of the point (0 or 1) 
intout (1) Color of the point 

167 

(1 ) 



Abacus Software GEM Programmer's Reference 

C definitions 

int handle; 
int x; 
int y; 
int *pel; 
int *index; 

C function call 

v_get_ pixel (handle, x, y, pel, index); 

Remarks 

With an unset point in the standard format, the background color 0 is 
always returned. The background color of the unset point can only be 
determined in device-specific format. 

168 



Abacus Software GEM Programmer's Reference 

3.2.6 The Input Functions 

The dialog of the user with the program is controlled by the input functions. 
The keyboard, the function keys, and the mouse can be used as input 
devices to control the program. Individual functions are available for all of 
these input devices. 

Some of the input functions work in two operating modes: 

In the request mode the function waits for an input event 
such as a keypress. 

In the sample mode the function simply determines the 
condition or position of the input device. 

169 



Abacus Software GEM Programmer's Reference 

SET INPUT MODE Opcode=33 

This function sets the mode of the logical input unit. The GEM VDI 
supports four specific input units: 

Position inputs are made in the ST standard configuration 
with the mouse or the cursor keys for controlling the graphic 
cursor. 

Value-changing inputs are performed with the up and 
down cursor keys. These keys effect only the value which the 
function returns. 

The logical select unit of the ST are the function keys. A 
selection number is returned which corresponds to the function 
key pressed. 

String input is done via the keyboard. 

The function SET INPUT MODE sets the mode in which the functions 
of the logical input units are to work (request or sample). 

Input parameters 

contrl (0) 
contrl(l) 
contrl (3) 
contrl (6) 

intin(O) 
intin(l) 

Output parameters 

contrl(2) 
contrl(4) 

intout(O) 

handle 

device_type 
mode 

set mode 

170 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

intin(l) 

contrl(2) 
contrl(4) 

intout(O) 

C definitions 

Opcode (33) 
Number of points in ptsin array (0) 
Length of the intin array (2) 
Device identifier 

Logical input device 

1 position input device 
2 value input device 
3 selection input device 
4 string input device 

Input mode 

1 request mode 
2 sample mode 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Selected input mode 

int handle; 
int set mode; 
int dev_type; 
int mode; 

C function call 

set mode vsin mode (handle, dev_type, mode); 

171 



Abacus Software GEM Programmer's Reference 

INPUT LOCATOR, REQUEST MODE Opcode = 28 

This function determines the position of the graphic cursor. Since it works 
in the request mode, it does not return the position until a key is pressed. 

During the function call, the cursor is visible at the specified location 
regardless of the state. 

This function is used in programs whenever the user is to mark a location 
on the screen. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) handle 

ptsin(O) X; 
ptsin (1) y; 

Output parameters 

contrl (2) 
contrl(4) 

intout (0) term 

ptsout(O) xout 
ptsout(l) yout 

172 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 

ptsin (0) 

ptsin(l) 

contrl(2) 
contrl(4) 

intout (0) 

Opcode (28) 
Number of points in ptsin array (1) 
Length of the intin array (0) 
Devi ce identifier 

Initialized position of the graphic 
cursor (X-coordinate) 
Initialized position of the graphic 
cursor (Y-coordinate) 

Number of points in ptsout array (1) 
Length of the intout array (1) 

Function end key 

The low byte of this parameter 
contains the ASCII code of the key 
which terminates the positioning (such 
as RETURN=13) . 

Special end keys include the two mouse 
buttons or buttons on a graphics 
tablet. The code of these keys starts 
at 20h (32). The left key of the mouse 
has the code 20h (32), the right 21h 
(33) . 

ptsout (0) 
ptsout (1) 

X position 
Y position 

C definitions 

int handle; 
int Xi 

int y; 
int xouti 
int youti 
i nt term; 

173 



Abacus Software GEM Programmer's Reference 

C function call 

vrq_locator (handle, x, y, &xout, &yout, &term) 

Remarks 

Since the function can be ended with any key, the programmer must take 
over the control via a conditional termination key. That is, he calls the 
function until "his" key is pressed. 

174 



Abacus Software GEM Programmer's Reference 

INPUT LOCATOR, SAMPLE MODE Opcode = 28 

The graphic cursor of the ST is controlled by an interrupt. This means that 
the program need not coordinate the movement of the cursor itself. The user 
can move the cursor, even if the program is busy with something else. The 
function is passed an initializing coordinate. The function then returns 
whether the coordinates, the position of the graphic cursor, changed and if a 
key was pressed. The corresponding changed position and the pressed key 
are naturally returned as well. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contr1(6) = handle 

ptsin(O) = x 
ptsin(l) y 

Output parameters 

contrl(2) 
contrl(4) 

ptsout(O) 
ptsout(l) 
intout (0) 

status 
status 

xout 
yout 
term 

175 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) 
contrl (1) 
contrl(3) 
contrl(6) 

ptsin(O) 

ptsin(1) 

contrl(2) 

contrl(4) 

intout (0) 

ptsout(O) 
ptsout(l) 

Opcode (28) 
Number of points in ptsin array (1) 
Length of the intin array (0) 
Device identifier 

Initialized position of the graphic 
cursor (X-coordinate) 
Initialized position of the graphic 
cursor (Y-coordinate) 

Number of points in the ptsout array 

1 coordinates have changed 
o coordinates have not changed 

Length of the intout array 

1 key pressed, value in intin(O) 
o no key was pressed 

Function-end key 

The low byte of this parameter 
contains the ASCII code of the key 
which was pressed (for example, 
RETURN=13) . 

Special end keys include the two mouse 
buttons or buttons on a graphics 
tablet. The code of these keys start 
at 20h (32). The left button on the 
mouse has the code 20h (32), the right 
21h (33). 

New X position 
New Y position 

176 



Abacus Software 

C definitions 

int handle; 
int status; 

/ * status 

int X; 
int y; 
int xout; 
int yout; 
int term; 

C function call 

GEM Programmer's Reference 

contrl (2) (cont rl(4) « 1 ) */ 

status vsm locator (hand l e, X, y, &xout, 
&yout, &term); 

Remarks 

The variable status returns the following values: 

status Position changed? Key pressed? 
0 no no 
1 yes no 
2 no yes 
3 yes ye s 

Before using the function vrq locator, the function s et mode 
vsin mode (hand l e, 1, 1) must be called, and before 
vsm locator the function set mode vs i n mode (handle, 
1, 2). 

177 



Abacus Software GEM Programmer's Reference 

INPUT VALIDATOR, REQUEST MODE Opcode = 29 

This function manages the logical input unit for changing values. The 
cursor-up and cursor-down keys, for example, are standard keys for 
value-changing input. A value between 1 and 100 is always returned, 
according to each pressed key or key combination. The following 
declaration holds for the cursor keys: 

CURSOR UP 
CURSOR DOWN 
SHIFf/CURSOR UP 
SHIFf/CURSOR DOWN 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 

intin(O) 

Output parameters 

contrl(2) 
contrl (4) 

intout(O) 
intout (1) 

handl e 

valuator in 

valuator out 
terminator 

178 

value+lO 
value-lO 
value+1 
value-1 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

intin(O) 

contrl(2) 
contrl (4) 

intout (0) 
intout (1) 

C definitions 

Opcode (29) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Initialized value 

Number of points in ptsout array (0) 
Length of the intout array (2) 

Value returned 
Key pressed 

int handle; 
int valuator in; 
int valuator out; 
int terminator; 

C function call 

vrq valuator (handle, valuator_in, 
&valuator_out, &terminator); 

179 



Abacus Software GEM Programmer's Reference 

INPUT VALUATOR, SAMPLE MODE Opcode = 29 

This function corresponds in large measure to the previous one. The 
difference is that it does not wait for a keypress. The function determines 
which actions the input unit performed. The principle corresponds to that of 
the function INPUT LOCATOR. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) = val in 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 
intout (1) 

status 

val out 
term 

180 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl (3) 
contrl (6) 

intin (0) 

contrl(2) 
contrl(4) 

intout (0) 
intout(l) 

C definitions 

Opcode (29) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Initialize value 

Number of points in ptsout array (0) 
Length of the intout array 

o no action 
1 value was changed 
2 key was pressed 

New value 
Pressed key, ASCII code 

int handle; 
status; 
int val in; 
int val out; 
int term; 

C function call 

vsm valuator (handle, val_in, &val_out, &term, 
&status) ; 

Remarks 

Before using the function vrq_valuator the function set_mode = 
vsin mode (handle, 2, 1) must be called and before 
vsm valuator the function set mode vsin mode (handle, 
2, 2). 

181 



Abacus Software GEM Programmer's Reference 

INPUT CHOICE, REQUEST MODE Opcode = 30 

This function waits for the action of a selection (function) key. If no valid 
function key was pressed, the function returns the ASCII code of the 
"wrong" key. Otherwise it returns the number of the function key. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) = handle 

intin(O) = ch in 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) ch out 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

contrl(2) 
contrl(4) 

intout(O) 

Opcode (30) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Initialized selection number (1-10) 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Pressed selection key (1-1 0) 

182 



Abacus Software 

C definitions 

int handle; 
int ch in; 
int *ch out; 

C function call 

GEM Programmer's Reference 

vrq_choice (handle, ch_in, ch out); 

183 



Abacus Software GEM Programmer's Reference 

INPUT CHOICE, SAMPLE MODE Opcode = 30 

The function determines the last-pressed selection (function key). If no valid 
function key was pressed, the ASCII code of the invalid key is returned. 

Input parameters 

contrl (0) 
contrl(l) 
c ontrl( 3 ) 
contrl (6) 

Output parameters 

contrl (2) 
contrl( 4 ) 

intout (0) 

hand l e 

status 

cho i ce 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

contrl(2) 
contrl(4) 

i ntout(O) 

Opcode (30 ) 
Number, of points i n ptsin array 
Length of the intin array (0 ) 
Dev i ce identifier 

Number of points in ptsout array 
Lengt h of the intout ar r ay (0 ) 

o no key was pressed 
1 a key was pressed 

(0 ) 

(0 ) 

Pre s sed select ion key (1-10) or ASCII 
code o f the inva l id key. 

184 



Abacus Software 

C definitions 

int handle; 
int status; 
int choice; 

C function call 

GEM Programmer's Reference 

status vsm choice (handle, &choice); 

Remarks 

Before using the function vrq choice, the function set mode = 
vs in mode (handle, ~ 1) must be called and before 
vsm choice, the function set mode vsin mode (handle, 3, 
2).- -

185 



Abacus Software GEM Programmer's Reference 

INPUT STRING, REQUEST MODE Opcode = 31 

This function reads a string from the keyboard. A RETURN or reaching the 
maximum string length is the end criterium. 

If the echo mode is enabled, the characters entered from the keyboard are 
also displayed on the screen in a specified area. All attribute functions for 
text are also valid in this echo mode. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

intin (0) 
intin(l) 

ptsin (0) 
ptsin(l) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

max length 
echo mode 

echo_xy(O) 
echo_xy(l) 

intout = string 

186 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 
intin (1) 

ptsin(O) 
ptsin(l) 

contrl(2) 
contrl(4) 

intout (1) 
intout(n) 

C definitions 

Opcode (31) 
Number of points in ptsin array (1) 
Length of the intin array (2) 
Device identifier 

Maximum string length 
Echo mode 

o echo mode off 
1 echo mode on 

X-coordinate of the echo area 
Y-coordinate of the echo area 

Number of points in ptsout array (0) 
Length of the intout array (n) 

First character of string in low byte 
Last character of string in low byte 

int handle; 
int max_length; 
int echo mode; 
int echo-xy[2); 
char strlng[max_length); 

C function call 

vrq_string (handle, max length, echo_mode, 
echo_xy, &string); 

187 



Abacus Software GEM Programmer's Reference 

Remarks 

For C programmers, the intin array is not relevant. The library function 
transfers the string from the intin array to the defined string (string []) 
and terminates it with a zero byte. 

If the maximum string length is negative, the 2-byte code of the VDI 
standard keyboard will be placed in the intout array. 

188 



Abacus Software GEM Programmer's Reference 

INPUT STRING, SAMPLE MODE Opcode = 31 

This function corresponds closely to the request mode. Additionally, it 
returns the information if an invalid key was pressed. This cannot be 
determined in the request mode. If the string will be ended with 
<RETURN>, the function should be performed in the request mode. 

Input parameters 

contrl(O 
contrl (1) 
contrl(3) 
contrl (6) handle 

intin (0) 
intin (1) 

max_length 
echo mode 

ptsin(O) 
ptsin( 1) 

Output parameters 

echo_xy(O) 
echo_xy(l) 

contrl(2) 
contrl(4) = status 

intout = string 

189 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 

intin(O) 
intin (1) 

ptsin(O) 
ptsin(l) 

contrl(2) 
contrl (4) 

intout(l) 
intout(n) 

C definitions 

Opcode (31) 
Number of points in ptsin array (1) 
Length of the intin array (2) 
Device identifier 

Maximum string length 
Echo mode 

o echo mode off 
1 echo mode on 

X-coordinate of the echo area 
Y-coordinate of the echo area 

Number of points in ptsout array (0) 
Length of the intout array (n) 

o = function was terminated with an 
invalid key 
>1 = size of the string 
(length of intin) 

First character of string in low byte 
Last character of string in low byte 

int handle; 
int status; 
int max_length; 
int echo mode; 
int echo-xy; 
char strIng[max_length ] ; 

190 



Abacus Software GEM Programmer's Reference 

C function call 

status = vsm string (handle, max_length, echo_mode, 
eCho_xy,- &string) ; 

Remarks 

The intin array is not relevant for C programmers. The library function 
transfers the string from the intin array to the defined string (string []) 
and tenmnates it with a zero byte. 

If the maximum string length is negative, the 2-byte code of the VDI 
standard keyboard (see appendix) is placed in the intout array. 

Before using the function vrq string, the function set mode = 
vs in mode (handle, -4, 1) must be used and before 
vsm_string, the function set_mode vsin mode (handle, 4, 
2) . 

191 



Abacus Software GEM Programmer's Reference 

SET MOUSE FORM Opcode = 111 

This function defines a new form for the graphic cursor. The size of the 
cursor is 16 by 16 pixels and is defined in two arrays of 16 words. Bit 15 
of the first word is the upper left point of the cursor definition. The first 
array, the cursor mask, designates the cursor form without color 
information. In the second array, the points are set to 1 which are to appear 
in the foreground color. 

In addition, an action point must be specified within the cursor form. This 
point determines the exact location of the cursor The tip of the standard 
arrow-cursor, for example, is the action point for it. The action point is 
addressed relative to the upper left comer of the cursor. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl (6) 

intin(O) 

intin (36) 

Output parameters 

contrl (2) 
contrl (4) 

handle 

pcur_form(O) 

pcur _ form (3 6) 

192 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (111) 
contrl(l) Number of points in ptsin array (0 ) 
contrl(3) Length of the intin array (0 ) 
contrl(6) Device identifier 

intin (0) X-coordinate of the action point 
intin(l) Y-coordinate of the action point 
intin(2) Reserved for future use 

(must be set to 1 ) 
intin(3) Color index mask (normally 0) 
intin(4) Color index cursor form (normally 1 ) 
intin (5-20) 16-word group of the mask 
intin (21-36) 16-word group of the cursor form 

contrl(2) Number of points in ptsout array (0 ) 
contrl (4) Length of the intout array (0) 

C definitions 

int handle; 
int pcur_form[37]; 

C function call 

vsc form (handle, pcur_form); 

193 



Abacus Software GEM Programmer's Reference 

EXCHANGE TIMER INTERRUPT VECTOR 
Opcode = 118 

With this function the system interrupt can be directed to your own routine. 
The function is passed the address of the new interrupt routine in 32-bit 
format in con t r 1 (7 - 8) . The function then returns the old interrupt 
address and the interval of the interrupt calls in milliseconds. 

The interrupt routine must take care of saving registers and returning to the 
system itself. The system interrupt is activated again by setting the old 
interrupt address. 

Input parameters 

contrl (0) 
contrl(l) 
contrl (3) 
contrl(6) 
contrl (7-8) 

Quymt parameters 

contrl(2) 
contrl(4) 
contrl(9-10) 

intout (0) 

Parameter description 

handle 
tim addr 

otim addr 

tim conv 

contrl(O) 
contrl (1) 
contrl(3) 
contrl (6) 
contrl (7-8) 

Opcode (118) 

contrl(2) 
contrl(4) 

intout(O) 

Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 
Address of the new interrupt routine 

Number of points in ptsout array (0) 
Length of the intout array (n) 

Interrupt interval in milliseconds 

194 



Abacus Software 

C definitions 

int handle; 
int *tim addr; 
int *otim addr; 
int tim conv; 

C function call 

GEM Programmer's Reference 

vex time (handle, tim addr, otim_addr, 
&tim conv); -

195 



Abacus Software GEM Programmer's Reference 

SHOW CURSOR Opcode = 122 

This function causes the graphic cursor to become visible on the screen and 
enables it to be moved with the mouse. The cursor can be turned off again 
with the HIDE CURSOR function. 

The VDI makes note internally how often the function HIDE CURSOR is 
called. To display the cursor again, the same number of calls to SHOW 
CURSOR are necessary. If, for example, the HIDE CURSOR function was 
called three times, SHOW CURSOR must also be called three times in order 
to make the cursor visible. This relationship between HIDE and SHOW 
CURSOR can also be disabled, however. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

reset 

196 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 

contrl(2) 
contrl(4) 

C definitions 

Opcode (122) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Reset flag 

o = number of HIDE CURSOR calls is 
ignored 
1 = normal function 

Number of points in ptsout array (0) 
Length of the intout array (0) 

int handle; 
int reset; 

C function call 

v show c (handle, reset); 

197 



Abacus Software GEM Programmer's Reference 

HIDE CURSOR Opcode = 123 

The cursor activated by the function SHOW CURSOR can be turned off again 
with this function. This function is used whenever the user is to have no 
influence over the program flow. As was described for the previous 
function, the function SHOW CURSOR must be called exactly as often as 
was the function HIDE CURSOR in order to make the cursor visible again. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) handle 

Output parameters 

contrl(2) 
contrl(4) 

Parameter description 

contrl (0) Opcode 
contrl(l) Number 
contrl(3) Length 
contrl (6) Device 

contrl(2) Number 

(123) 
of points in ptsin 
of the intin array 
identifier 

of points in ptsout 

array 
(0 ) 

array 
contrl (4) Length of the intout array (0 ) 

C definitions 

int handle; 

C function call 

v hide c (handle); 

198 

(0 ) 

(0 ) 



Abacus Software GEM Programmer's Reference 

SAMPLE MOUSE BUTTON STATE Opcode = 124 

This function is used to detennine the state of the mouse button. In addition, 
it also returns the current position of the graphic cursor. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) handle 

Output parameters 

contrl (2) 
contrl (4) 

intout(O) pstatus 

ptsout(O) = x 
ptsout(l) y 

Parameter description 

Opcode 
Number 

(124) 
of points in ptsin 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

Length of the intin array 
Device identifier 

Number of points in ptsout 

array 
(0 ) 

array contrl(2) 
contrl(4) Length of the intout array (0 ) 

intout (0) 

ptsout(O) 
ptsout(l) 

Status of the mouse button 

o button not pressed 
1 button pressed 

x-posit ion of the graphic cursor 
Y-position of the graphic cursor 

199 

( 0) 

(0) 



Abacus Software 

C definitions 

int handle; 
int pstatus; 
int x, y; 

C function call 

GEM Programmer's Reference 

vq_ ffiouse (handle, &pstatus, &x, &y); 

200 



Abacus Software GEM Programmer's Reference 

EXCHANGE BUTTON CHANGE VECTOR 
Opcode = 125 

This function passes control to a defined address when the mouse button is 
pressed. Generally, a routine is found at the defined address which reacts to 
the mouse button. The function also returns the address of the previous 
mouse routine. 

Setting and resetting the registers must be taken care of by the program 
itself. 

Tnpu t parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 
contrl (7-8) 

Output parameters 

contrl(2) 
contrl(4) 
contrl(9-10) 

Parameter description 

handle 
pusrcode 

psavcode 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 
contrl (7-8) 

Opcode (125) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 
Address of the new mouse-button 
routine 

contrl(2) Number of points in ptsout array (0) 
contrl(4) Length of the intout array (0) 
contrl(9-10) Address of the old mouse-button 

routine 

201 



Abacus Software 

C definitions 

int handle; 
int *pusrcode; 
int *psavcode; 

C function call 

GEM Programmer's Reference 

vex butv (handle, pusrcode, psavcode); 

Remarks 

The pressed mouse button can be read from a processor register in the 
mouse routine. 

202 



Abacus Software GEM Programmer's Reference 

EXCHANGE MOUSE MOVEMENT VECTOR 
Opcode = 126 

The function allows the actions of the mouse to be more comprehensively 
managed. The routine is given an address to which the VDI is to jump when 
the mouse is moved. Before branching to this mouse routine the new X/Y 
position of the cursor is calculated, but not performed. 

The function returns the address of the mouse routine before the function 
call. 

The new X/y position of the still-invisible cursor can be read from a register 
pair of the 68000, but it can also be changed. Not until the return to the VDI 
is this position saved as the current position. 

Setting and resetting the registers must be taken care of by the program 
itself. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 
contrl (7-8) 

Output parameters 

contrl(2) 
contrl (4) 
contrl(9-10) 

handle 
pusrcode 

psavcode 

203 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) 
contrl (1) 
contrl(3) 
contrl (6) 
contrl(7-8) 

Opcode (126) 
Number of points in ptsin array (0) 
Length of t he intin array (0) 
Device identif i er 
Address of the new mouse movement 
routine 

contrl(2) Number of points in ptsout array (0) 
contrl(4) Length of the intout array (0) 
contrl(9 - 10) Address of the old mouse movement 

routine 

C definitions 

int handle; 
int *pusrcode; 
int *psavcode; 

C function call 

vex motv (handle, pus r code, psavcode); 

204 



Abacus Software GEM Programmer's Reference 

EXCHANGE CURSOR CHANGE VECTOR 
Opcode = 127 

This function jumps to a defined address if the cursor has changed position 
on the screen. The routine is passed an address to which the VDI is to jump 
when the position of the graphic cursor changes. Before branching to this 
mouse routine the new X/Y position of the cursor is calculated and 
performed. 

The function returns the address of the mouse routine before the function 
call. 

The new X/Y position of the cursor can be read from a register pair of the 
68000. 

Setting and resetting the registers must be taken care of by the program 
itself. 

Input parameters 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 
contrl (7-8) 

OutPut parameters 

contrl(2) 
contrl(4) 
contrl(9-10) 

handle 
pusrcode 

psavcode 

205 



Abacus Software 

Parameter description 

contrl(O) Opcode 
contrl(l) Number 
contrl(3) Length 
contrl(6) Device 
contrl (7-8) Address 

routine 

contrl(2) Number 
contrl (4) Length 
contrl(9-10) Address 

routine 

C definitions 

int handle; 
int *pusrcode; 
int *psavcode; 

C function call 

GEM Programmer's Reference 

(127) 
of points in ptsin array (0 ) 
of the intin array (0 ) 
identi f ier 
of the new graphic cursor 

of points in ptsout array (0 ) 
of the intout array (0 ) 
of the old graphic cursor 

vex curv (handle, pusrcode, psavcode); 

206 



Abacus Software GEM Programmer's Reference 

SAMPLE KEYBOARD STAT INFORMATION 
Opcode = 128 

This function determines which of the following keys was pressed and sets 
the keyboard status in bits 0-3 of int in (0) or pstatus accordingly: 

Bit 
o 
1 
2 
3 

Value 
1 
2 
4 
8 

Key 
right SHIFT key 
left SHIFT key 
CONTROL key 
ALT key 

The bits of the keys which are pressed are set to 1. The value 5, for 
instance, indicates that the left SHIFT key and the CONTROL key were 
pressed. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

Output parameters 

contrl(2) 
contrl(4) 
intout(O) 

handle 

pstatus 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

contrl (2) 
contrl(4) 

intout (0) 

Opcode (128) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 

Number of points in ptsout array (0) 
Length of the intout array (1) 

Keyboard status (0-15) 

207 



Abacus Software 

C definitions 

int handle; 
int pstatus; 

C function call 

GEM Programmer's Reference 

vq_ key_s (handle, &pstatus); 

208 



Abacus Software GEM Programmer's Reference 

3.2.7 The Inquiry Functions 

When you open a workstation, the VDI makes a lot of infonnation about the 
device available to the programmer. This makes it possible for the 
programmer to write the application in such a way that it is portable from 
one GEM computer to another. The VDI, in fact, makes 57 data items 
available. 

Additional infonnation about a device can be obtained through inquiry 
functions. For example, you can determine is a device is usable, the current 
line color, fill pattern or text attributes using the inquiry functions. 

209 



Abacus Software GEM Programmer's Reference 

EXTENDED INQUIRE FUNCTION Opcode = 102 

This extended inquiry function offers two options: 

• Determines the status of the 57 data items from 0 PEN 
WORKSTATION. 

• Determines the status of 19 additional device specific data 
items. 

45 intout and 6 ptsout or 57 work in parameters are passed 
regardless of the selected option. -

The description of the standard information is found with the function 
v opnwk and the contents of the parameters for the AT ARI ST with the 
function v _ opnvwk . 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin (0) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 

intout(44) 

ptsout (0) 

ptsout (11) 

handle 

owflag 

210 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl (4) 

Opcode (102) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Information type 

o OPEN WORKSTATION parameters 
1 extended parameters 

Number of point in ptsout array (6) 
Length of the intout array (45) 

The extended parameters (parentheses are the ST monochrome values): 

intout (0) 

intout (1) 

intout(2) 

intout(3) 

intout(4) 

Type of screen (4) 
o no screen 
1 separate alpha and graphic 

controllers with separate screen 
2 separate alpha and graphic 

controllers with common screen 
3 common alpha and graphic 

controller with separate graphic 
storage 

4 command alpha and graphic 
controller with common graphic 
storage 

Number of available background colors 
(1 ) 

Supported text effects (31) 

Enlarging raster (0) 
o enlargement not possible 
1 = enlargement possible 

Number of color planes for raster (1) 

211 



Abacus Software 

intout (5) 

intout (6) 

intout (7) 

intout(8) 

intout (9) 

intout (10) 

intout(ll) 

intout(12) 

intout (13) 

intout(14) 

intout (15) 

GEM Programmer's Reference 

"look-up table" support (0) 
o supported 
1 = not supported 

Number of 16*16 raster operations per 
second (1000) 

CONTOUR FILL support (1) 
o not supported 
1 = supported 

Support text rotation (1) 
o no support 
1 only in 90-degree steps 
2 arbitrary rotation angle 

Number of drawing modes (4) 

Highest-possible input mode (2) 
o none 
1 request mode 
2 sample mode 

Support text alignment (1) 
o not supported 
1 = supported 

Color change with color pens 
(plotter) 0 
o supported 
1 = not supported 

Color change with color band shift 
(matrix printer) (0) 
o not supported 
1 = supported 

Maximum number of points in polyline, 
polymarker, or filled area (128) 
-1 = unbounded 

Maximum length of intin array (-1) 
-1 = unbounded 

212 



Abacus Software GEM Programmer's Reference 

intout(16) Number of mouse buttons (2) 

intout(17) Line types for wide lines (0) 
o not supported 
1 = supported 

intout (18) Drawing modes for wide lines (0) 

intout(19-44)Reserved, contains value 0 

ptsout(0-11) Reserved, contains value 0 

C definitions 

int handle; 
int owflag; 
int work out[57]; 

C function call 

vq_extnd (handle, owflag, work out); 

213 



Abacus Software GEM Programmer's Reference 

INQUIRE COLOR REPRESENTATION Opcode = 26 

This function sets the color mix for the current or specified color index. 

If the selected color index is not available, the function returns a -1 In 

intout(O). 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 
intin(l) 

Output parameters 

contrl(2) 
contrl(4) 

intout (0) 
intout (1) 
intout (2) 

handle 

color index 
set flag 

rgb (0) 
rgb (1) 
rgb(2) 

214 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin(O) 
intin(l) 

contrl (2) 
contrl(4) 

intout (0) 
intout(l) 
intout(2) 
intout(3) 

C definitions 

Opcode (26) 
Number of points in ptsin array (0) 
Length of the intin array (2) 
Device identifier 

Color index to analyze 
Flag of current passed color index 

o passed color index 
1 current color index 

Number of points in ptsout array (0) 
Length of the intout array (0) 

Color index 
Red intensity (0-1000) 
Green intensity (0-1000) 
Blue intensity (0-1000) 

int handle; 
int color index; 
int set_flag; 
int rgb[3]; 

C function call 

vq_ color (handle, color_index, set flag, rgb); 

215 



Abacus Software GEM Programmer 's Reference 

INQUIRE CURRENT POLYLINE ATTRIBUTES 
Opcode = 35 

This function determines all line attributes. The description of the attributes 
is found with the attribute functions. 

Input parameters 

contrl (0) 
contrl(l) 
contrl (3) 
contrl(6) 

Output Parameters 

contrl(2) 
contrl (4) 

intout(O) 

intout (4) 

ptsout (0) 
ptsout(l) 

handle 

attrib (0) 

attrib (4) 

attrib(5) 

216 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) 
contrl (1) 
contrl(3) 
contrl(6) 

contrl(2) 
contrl(4) 

intout (0) 
intout(l) 
intout(2) 
intout(3) 
intout (4) 

ptsout(O) 
ptsout (1) 

C definitions 

Opcode (35) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 

Number of points in ptsout array (1) 
Length of the intout array (5) 

Line type 
Line color 
Drawing mode 
Appearance starting point 
Appearance ending point 

Line width 
o 

int handle; 
int attrib [6] ; 

C function call 

vql_attributes (handle, attrib); 

217 



Abacus Software GEM Programmer's Reference 

INQUIRE CURRENT POLYMARKER ATTRIBUTES 
Opcode = 35 

This function determines the set marker types. More information can be 

found under the attribute functions. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

Output Parameters 

contrl(2) 
contrl(4) 

intout(O) 
intout(l) 
intout(2) 

ptsout(O) 
ptsout(l) 

handle 

attrib(O) 
attrib (1) 
attrib(2) 

attrib(3) 
attrib (4) 

218 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl (6) 

contrl(2) 
contrl(4) 

intout(O) 
intout (1) 
intout(2) 

ptsout(O) 
ptsout (1) 

C definitions 

Opcode (36) 
Number of points in ptsin array (1) 
Length of the intin array (3) 
Device identifier 

Number of points in ptsout array (0) 
Length of the intout array (0) 

Marker type 
Marker color 
Drawing mode 

Marker width 
Marker height 

int handle; 
int attrib (5) ; 

C function call 

vqm_attributes (handle, attrib); 

219 



Abacus Software GEM Programmer's Reference 

SET CURRENT FILL AREA ATTRIBUTES 
Opcode = 37 

This function returns the set fill attributes. These attributes are described in 
the attribute functions. 

Input parameters 

contrl (0) 
contrl (1) 
contrl(3) 
contrl(6) 

Output Parameters 

contrl (2) 
contrl(4) 

intout (0) 

intout (4) 

handle 

attrib (0) 

attrib (4) 

Parameter description 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

contrl(2) 
contrl(4) 

intout (0) 
intout (1) 
intout(2) 
intout(3) 
intout (4) 

Opcode (37) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 

Number of points in ptsout array (0) 
Length of the intout array (5) 

Fill type 
Fill color 
Fill pattern 
Drawing mode 
Status frame 

220 



Abacus Software 

C definitions 

int handle; 
int attrib(5); 

C function call 

GEM Programmer's Reference 

vqf_ attributes (handle, attrib); 

221 



Abacus Software GEM Programmer's Reference 

INQUIRE CURRENT GRAPHIC TEXT 
ATTRIBUTES Opcode = 38 

This function returns the text attributes described under the attribute 

functions. 

Input Parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

Output Parameters 

contrl(2) 
contrl(4) 

intout (0) 

intout (5) 

ptsout (0) 

ptsout(3) 

handle 

attrib(O) 

attrib (5) 

attrib (6) 

attrib(9) 

222 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl (0) 
contrl(l) 
contrl(3) 
contrl(6) 

contrl(2) 
contrl(4) 

intout(O) 
intout (1) 
intout(2) 
intout(3) 
intout (4) 
intout (5) 

ptsout(O) 
ptsout (1) 
ptsout(2) 
ptsout(3) 

C definitions 

Opcode (38) 
Number of points in ptsin array (0) 
Length of the intin array (0) 
Device identifier 

Number of points in ptsout array (2) 
Length of the intout array (6) 

Character set 
Text color 
Rotation angle 
Horizontal alignment 
Vertical alignment 
Drawing mode 

Character width 
Character height 
Character box width 
Character box height 

int handle; 
int attrib (10) ; 

C functions 

vqt_attributes (handle, attrib); 

223 



Abacus Software GEM Programmer's Reference 

INQUIRE TEXT EXTENT Opcode = 116 

This function calculates the dimensions of a specified string based on the 

current text attributes. The four comer points of the rectangle encompassing 

the string are returned. The string-encompassing rectangle is placed with the 

two comer points left of the text on the X and Y axes. The comer points of 

the rectangle are numbered starting in the lower left in and going around in 

clockwise fashion. 

Input parameters 

contrl(O) 
contrl (1) 
contrl(3) 
contrl(6) 

intin 

Output parameters 

contrl(2) 
contrl(4) 

ptsout(O) 

ptsout(7) 

handle 

string 

extent (0) 

extent (7) 

224 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) Opcode (116 ) 
contrl (1) Number of points in ptsin array (0 ) 
contrl(3) Length of the intin array (n) 
contrl(6) Device identifier 

intin(l) First character of text in low byte 

intin(n) Last character of text in low byte 

contrl(2) Number 
contrl(4) Length 

ptsout(O) Relative 
ptsout (1) Relative 
ptsout(2) Relative 
ptsout(3) Relative 
ptsout (4) Relative 
ptsout (5) Relative 
ptsout (6) Relative 
ptsout(7) Relative 

C definitions 

int handle; 
int string[]; 
int extent[8]; 

C function call 

of points in ptsout 
of the intout array 

X-coord. for point 1 of 
Y-coord . for point 1 of 
X-coord. for point 2 of 
Y-coord . for point 2 of 
X-coord. for point 3 of 
Y-coord . for point 3 of 
X-coord. for point 4 of 
Y-coord . for point 4 of 

vqt_extent (handle, string, extent); 

Remarks 

array (0 ) 
( 0) 

the string 
the string 
the string 
the string 
the string 
the string 
the string 
the string 

C programmers do not have to transfer the string to the int.in array. The function does this for you. 

225 



Abacus Software GEM Programmer's Reference 

INQUIRE CHARACTER CELL WIDTH Opcode = 117 

This function determines the measurements of a specified character and the 
character box surrounding. Text effects and rotation are not taken into 
account. 

Input parameters 

contrl (0) 
contrl (1) 
contrl(3) 
contrl(6) = handle 

intin(O) = character 

Output parameters 

contrl(2) 
contrl (4) 

intout(O) status 

ptsout(O) 
ptsout(2) 
ptsout(4) 

cell width 
left delta 
right_delta 

226 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

intin(O) 

contrl(2) 
contrl(4) 

intout (0) 

ptsout(O) 
ptsout(l) 
ptsout(2) 

ptsout(3) 
ptsout(4) 

ptsout(5) 

C definitions 

Opcode (117) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Character to measure 

Number of points in ptsout array (3) 
Length of the intout array (1) 

Measures character 
(-1 if character invalid) 

Width of the character box 
o 
Distance of character from left edge 
of the character box 
o 
Distance of character from left edge 
of the character box 
o 

int handle; 
int status; 
char character; 
int cell width; 
int left delta; 
int right_delta; 

C function call 

status = vqt width (handle, character, 
&cell_width, &left_delta, &right delta); 

227 



Abacus Software GEM Programmer's Reference 

INQUIRE INPUT MODE Opcode = 115 

This function determines the current input mode of the specified logical 

input unit. More information about the logical input units can be found 

under the input functions. 

Input parameters 

contrl(O) 
contrl(l) 
contrl(3) 
contrl(6) 

i ntin (0) 

Output parameters 

contrl(2) 
contrl(4) 

handle 

intout(O) =input_ ffiode 

228 



Abacus Software GEM Programmer's Reference 

Parameter description 

contrl(O) 
contrl(l) 
contrl(3) 
contr l (6) 

intin (0) 

contrl(2) 
contr l (4) 

intout(O) 

C definitions 

Opcode (115) 
Number of points in ptsin array (0) 
Length of the intin array (1) 
Device identifier 

Logical input unit 

1 graphic cursor unit 
2 value-changing input unit 
3 selection input unit 
4 string input unit 

Number of points in ptsout array (0) 
Length of the intout array (0) 

Input mode 

o request mode 
1 sample mode 

int hand l e; 
int dev_type; 
int input_mode; 

C function call 

vqin_mode (handle, dev_type, &input_ mode); 

229 



Abacus Software GEM Programmer's Reference 

3.3 Sample Programs using the VDI 

The following are several sample programs that demonstrate the use of 
some of the VDI functions. Some of the programs are written in C and 
some in assembly language. 

Use the editor to enter the text of the programs and compile them as 
described in Chapter 2. 

Preceding each example is a picture of the output created by the program. 
The pictures are drawings and not the actual output of the programs, this 
was done to improve the clarity of the examples. To eliminate errors the 
programs were transferred from the ST to the computer with which this 
book was edited by means of the KERMIT file transfer program. 

C Example Program 1: 

Partial output from program VD leO 1 . C : 

35=0 
36=1 
37=1 
38=0 
39=2 
40=2 
41=1 
42=1 
43=1 
44=2 
45=5 
46=4 
47=7 
48=13 
49=1 
50=0 
51=40 
52=0 
53=15 
54=11 
55=120 
56=88 

230 



Abacus Software GEM Programmer's Reference 

/* Output of the work out array */ 
/* of the function v opnvwk */ 
/* Program Name: VDIC01.C */ 

#include "gemdefs.h" 

int contrl[12], 
intin[128], 
ptsin[128], 
intout[128], 
ptsout[128]; 

int handle; 

int work in[12], 
work-out[57]; 

main () 

int i; 

appl ini t () ; 
for (i=O;i<lO;work_in[i++]=l) ; 
work in[lO] = 2; 
v_opnvwk(work_in, &handle, work out); 

for(i=O;i<57;i++) 
printf("%d=%d\n",i,work_out[i]) ; 

gemdos(Oxl); 
v clsvwk(handle); 
appl_exit () ; 

*/ wait for key press */ 

231 



Abacus Software GEM Programmer's Reference 

C Example Program 2: 

Output from program VDIC02 . PRG, remember to install this program as a 
TOS application so the screen clears. 

<> <> 

<> <> 

/* Draw markers with the function v_pmarker */ 
/* Program Name: VDIC02.C */ 

int contrl[12], 
intin[128], 
ptsin[128], 
intout[128] , 
ptsout[128]; 

int handle; 

int work_in [12], 
work_out [57], 
pxarray [8] ; 

int set_type, 
set_height; 

main () 

232 



Abacus Software GEM Programmer's Reference 

int l, ; 

appl init(); 
for (i=0;i<10;work in [i ++] =1) ; -
work in[10] = 0; 
v_opnvwk(work_in, &handle, work out) ; 

-

pxarray[O] 100; 
pxarray[l] 100; /* 50 color monitor 
pxarray[2] 540; 
pxarray[3] 100; /* 50 color monitor 
pxarray[4] 540; 
pxarray[5] 300; /* 150 color monitor 
pxarray[6] 100; 
pxarray[7] 300; /* 150 color monitor 

set_type = vsm_type(handle, 6); 
set_height = vsm_height(handle, 50); 
v pmarker(handle, 4, pxarray); 
gemdos (Ox1) ; 
v clsvwk(handle); 
appl_exit () ; 

233 

/* 

/* 

/* 

/* 



Abacus Software GEM Programmer's Reference 

C Example Program 3: 

Output from program VDIC03. PRG, this program was installed as a GEM 
application so the screen is not cleared. 

/************************************/ 
/* Output a string with v gtext */ 
/* Program Name: VDIC03.C */ 
/************************************/ 

int contrl[12], 
intin[128], 
ptsin[128], 
intout [128], 
ptsout[128]; 

int handle; 

int work out[57], 
work-in [12]; 

char string[] = "This is a test of v_gtext"; 

234 



Abacus Software GEM Programmer's Reference 

/************** ****************/ 
/* OPEN WORK */ 
/******************************/ 

int i; 

appl ini t () ; 
for(I=O;i<lO;work_in[i++]=l) ; 
work in[lO] = 2; 
v_opnvwk(work_in, &handle, work_out) 

/****************** ************/ 
/* CLOSE WORK */ 
/*********** *******************/ 

close_work () 
{ 

gemdos (Oxl) ; 
v clsvwk(handle); 
appl_exit () ; 

/******************************/ 
/* MAIN PROGRAM */ 
/******************************/ 

main () 
{ 

open work(); 
v_gtext(handle,200,lOO,string); 
close work(); 

235 



Abacus Software GEM Programmer's Reference 

C Example Program 4: 

Output from program VD lCO 4 . PRG, remember to install this program as a 
TOS application so the screen is cleared. 

/*****************************/ 
/* Test filled Ellipse */ 
/* with v ellipse */ 
/* Program Name: VDlC04.C */ 
/*****************************/ 

int contrl[12], 
intin[128], 
ptsin[128], 
intout[128], 
ptsout[128]; 

int handle, 
x, y, xradius , yradius; 

int set_interior, 

236 



Abacus Software 

set_color, 
set_mode, 
set style, 
set_perimeter; 

int work out[57], 
work-in [12] ; 

GEM Programmer's Reference 

/******************************/ 
/* OPEN WORK */ 
/******************************/ 

int i; 

appl init(); 
for(1=O;i<10;work_in[i++]=1) ; 
work in[10] = 2; 
v_opnvwk(work_in, &handle, work_out) 

/******************************/ 
/* CLOSE WORK */ 
/******** ********************** / 

gemdos (Ox1) ; 
v clsvwk(handle); 
appl_exit () ; 

/******************************/ 
/* SET ATTRIBUTES */ 
/******************************/ 

set interior = vsf interior (handle, 2); 
/* Fill type */ 

set color vsf color(handle, 1); 

237 



Abacus Software GEM Programmer's Reference 

/* Fill color black */ 
set mode = vswr mode (handle, 1) ; 

/* character mode normal */ 
set style = vsf style(handle, 7); 

- /* Fill pattern */ 
set_perimeter vsf perimeter(handle, 1); 

- /* border */ 

/******************************/ 
/* MAIN PROGRAM */ 
/******************************/ 

main () 
{ 

open_ work(); 
set_attr( ) ; 
v _ ellipse (handle, 320, 200, 50, 100); 

/* v_ellipse (handle, 320, 100, 50, 100); for */ 
/* color monitor */ 

close_work() ; 

238 



Abacus Software GEM Programmer's Reference 

C Example Program 5: 

Output from program VDIC05. PRG. 

/*********************************/ 
/* Test fill pattern (vsf style) */ 
/* Program Name: VDIC05.C- */ 
/*********************************/ 

int contrl[12], 
intin[128], 
ptsin [128], 
intout[128], 
ptsout[128]; 

int handle; 

int set_interior, 
set_color, 
set_mode, 
set_style, 
set perimeter, 
style_index; 

239 



Abacus Software 

int work_out [57] , 
work_in [12] ; 

int pxyarray[4]; 

GEM Programmer's Reference 

/******************************/ 
/* OPEN WORK * / 
/******************************/ 

open_work () 
{ 

int i; 

appl ini t () ; 
for(I=O ;i<10;work in[i++]=l); 
work in[10] = 2; -
v_opnvwk(work_in, &handle, work out); 
v clrwk(handle); 

/************* *****************/ 
/* CLOSE WORK */ 
/******************************/ 

close_work () 
{ 

gemdos(Ox1) ; 
v clsvwk(handle); 
appl_ exit () ; 

/******************************/ 
/* SET ATTRIBUTES */ 
/******************************/ 

set color = vsf color(handle, 1); 
/*Fill color black */ 
set mode = vswr mode (handle, 1); 
/ * Char. mode normal * / 
set_perimete r vsf_perimeter(handle, 1); 

240 



Abacus Software GEM Programmer's Reference 

/* visible border */ 

/******************************/ 
/* MAIN PROGRAM */ 
/* VDIC05.C */ 
/******************************/ 

main () 
{ 

int style, index; 
open_work () ; 
set_attr() ; 
for (style=O; style<=3; style++) 
{ 

style index = vsf interior (handle, style) ; 
/* Fill type set */ 

for (index=O; index<=24; index++) 
{ 

set style 

pxyarray[O] 
pxyarray[l] 

pxyarray[2] 
pxyarray[3] 

vsf style(handle, index); 
- /* Fill pattern set */ 

index*20+5; 
style*80+19; 

/* 50+0 for color */ 
index*20+20; 
style*80+80; 

/* 50+50 for color */ 

v rfbox (handle, pxyarray); 

close_ work() ; 

241 



Abacus Software GEM Programmer's Reference 

C Example Program 6: 

Output from program VDICO 6. PRG. 

/* Set the final appearance of the polyline */ 
/* Program Name: VDIC06.C */ 

int contrl[12], 
intin [128], 
pt s in [ 128] , 
intout[128], 
ptsout[128]; 

int handle; 

int work_ in[12], 
work_out[57], 
pxyarray [10] ; 

int set width; 

main () 
{ 

int i,; 

appl init () ; 
for(i=O;i<10;work_in [i ++ ] = 1 ); 
work in[10] = 0; 
v_opnvwk(work_in, &handle, work_out); 
v clrwk(handle); 
vsl_ends(handle, 1, 3); 

242 



Abacus Software GEM Programmer's Reference 

pxyarray[O] 100; 
pxyarray[l] 100; /* 50 for color */ 
pxyarray[2] 400; 
pxyarray[3] 100; /* 50 for color */ 
pxyarray[4] 400; 
pxyarray[5] 200; /* 150 for color */ 
pxyarray[6] 100; 
pxyarray[7] 200; /* 150 for color */ 
pxyarray[8] 100; 
pxyarray[9] 100; /* 50 for color */ 

v_ pline(handle, 5, pxyarray) ; 
gemdos(Ox1); 
v_clsvwk(handle) ; 
appl_exit() ; 

243 



Abacus Software GEM Programmer's Reference 

Note: 

The following two assembler examples both contain an initialization routine. 
This initialization routine is explained in section 4.2.2, Initialization of GEM 
Programs. Use the editor to enter the text of the assembler programs and 
then assemble them. 

Assembler Example 1: 

Output from program VD lAO 1 . S : 

************************** 
* Initialization routine * 
************************** 
move.l a7,a5 
move.l #nstapel,a7 
move.14(a5),a5 
move.l $c(a5),dO 
add.l $14(a5),dO 
add.l $lc(a5),dO 
add.l #$100,dO 
move.l dO,-(sp) 
move.l a5,-(sp) 

244 



Abacus Software 

move dO,-(sp) 
mov e #$4a,-(sp) 
trap #1 
add.l #12,sp 
jsr main 
move #l,-(sp) 
trap #1 
add.l #2,sp 
move. 1 # 0, (a 7 ) 
trap #1 

aes: 
move.l #aespb,d1 
move #$c8,dO 
trap #2 
rts 

vdi: 
move.l #vdipb,d1 
moveq . l #$73,dO 
trap #2 
rts 

main: 
move.l #O,ap1resv 
move.l #O,ap2resv 
move.l #O,ap3resv 
move.l #O,ap4resv 
move #10,opcode 
move #O,sintin 
move #l,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move #77,opcode 
move #O,sintin 
move #5,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move intout,grhandle 

GEM Programmer's Reference 

*appl init 

*graf_handle 

245 



Abacus Software GEM Programmer's Reference 

move #lOO,opcode *open_vwork 
move #O,contrl+2 
move #11,contrl+6 
move grhandle,contrl+12 

move #l,intin 
move #1,intin+2 
move #1,intin+4 
move #1,intin+6 
move #1,intin+8 
move #1,intin+l0 
move #1,intin+12 
move #1,intin+14 
move #1,intin+16 
move #1,intin+18 
move #2,intin+20 
jsr vdi 

************************* 
* 
* 
* 

Assembler example 
Displq.y a 

filled circle. 

* 
* 
* 

*Program Name: VDIA01.S * 
************************* 

move #23,contrl 
move #O,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #2,intin 
jsr vd i 

move #24,contrl 
move #O,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #16,intin 
jsr vdi 

*Fill type 
*set 

*Fill pattern 
*set 

246 



Abacus Software 

move #25,contrl 
move #0,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #l,intin 
jsr vdi 

move #3,contrl 
move #0,contrl+2 
move #0,contrl+6 
move grhandle,contrl+12 
jsr vdi 

move #ll,contrl 
move #3,contrl+2 
move #0,contrl+6 
move #4,contrl+10 
move grhandle,contrl+12 

move #100,ptsin 
move #100,ptsin+2 
move #0,ptsin+4 
move #0,ptsin+6 
move #80,ptsin+8 
move #0,ptsin+10 
jsr vdi 

rts 

.data 

.even 

aespb: 

GEM Programmer's Reference 

*Fill color 
*set 

*clear 
*screen 

*Draw circle 

*Orgin = 
*(1001100) 

*Radius 80 

.dc.l contrl,global,intin,intout,addrin,addrout 

contrl: 
opcode: 
sintin: 
sintout: 
saddrin: 
saddrout: 

.ds.w 1 

.ds.w 1 

.ds.w 1 

.ds.w 1 

.ds.l 1 

247 



Abacus Software 

.ds.w 5 

global: 
apversion : 
apcount: 
apid: 
apprivate : 
apptree: 
aplresv: 
ap2resv : 
ap3res v : 
ap4res v : 

intin : 
.ds.w 128 

ptsin: 
.ds.w 128 

intout: 
.ds.w 128 

ptsout: 
.ds.w 128 

addrin: 
.ds.w 12 8 

addrout: 
.ds.w 12 8 

.ds .w 1 

. ds .w 1 

.ds .w 1 

.ds . l 1 

.ds . l 1 

. ds . l 1 

. ds .l 1 

.ds.l 1 

. ds . l 1 

GEM Programmer's Reference 

vdipb: .dc . l cont rl ,intin,ptsin,int out ,pt s out 
grhandle : . d s. w 1 

.bss 

.even 

.ds.l 300 
nstape l: 
.ds.l 1 
.ds . w 10 

.end 

248 



Abacus Software 

Assembler Example program 2: 

Output from VD lAO 2 . S : 

************************** 
* Initialization routine * 
************************** 
move.l a7,aS 
move.l #nstapel,a7 
move.l 4(aS) ,as 
move.l $c(aS),dO 
add.l $14(aS),dO 
add.l $lc(aS),dO 
add.l #$100,dO 
move.l dO,-(sp) 
move.l as,-(sp) 
move dO,-(sp) 
move #$4a,-(sp) 
trap #1 
add.l #12,sp 
jsr main 
move #l,-(sp) 
trap #1 
add.l #2,sp 
move.l #0, (a7) 
trap #1 

249 

GEM Programmer's Reference 



Abacus Software 

aes: 
move.l #aespb,dl 
move #$c8,dO 
trap #2 
rts 

vdi: 
move.l #vdipb,dl 
moveq.l #$73,dO 
trap #2 
rts 

main: 
move . l #O,aplresv 
move.l #O,ap2resv 
move.l #O,ap3resv 
move.l #O,ap4resv 
move #lO,opcode 
move #O,sintin 
move #l,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move #77,opcode 
move #O,sintin 
move #5,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move intout,grhandle 

GEM Programmer's Reference 

*graf_handle 

move #lOO,opcode *open_vwork 

move #O,contrl+2 
move #11,contrl+6 
move grhandle,contrl+12 

move #l,intin 
move #1,intin+2 
move #1,intin+4 
move #1,intin+6 
move #1,intin+8 

250 



Abacus Software 

move #1,intin+10 
move #1,intin+12 
move #1,intin+14 
move #1,intin+16 
move #1,intin+18 
move #2,intin+20 
jsr vdi 

************************ 
* Assembler example * 
* Display of * 
* Graphic text. * 
*Program Name: VDIA02.S* 
************************ 

move #22,contrl 
move #O,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #l,intin 
jsr vdi 

move #3,contrl 
move #O,contrl+2 
move #O,contrl+6 
move grhandle,contrl+12 
jsr vdi 

move #106,contrl 
move #O,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #16,intin 

jsr vdi 

move #8,contrl 

move #1,contrl+2 
move #3,contrl+6 
move grhandle,contrl+12 

GEM Programmer's Reference 

*Text color 
*set 

*clear 
*screen 

*Text effects 

*outline 

*Text output 

251 



Abacus Software 

movem text1,dO-d2 
movem dO -d2,intin 

move #O,ptsin 
move #16,ptsin+2 
jsr vdi 

move #8,contrl 
move #1,contrl+2 
move #6,contrl+6 
move grhandle,contrl+12 
movem text2,dO-d5 
movem dO-d5,intin 

move #O,ptsin 
move #380,ptsin+2 
jsr vdi 

move #8,contrl 
move #1,contrl+2 
move #6,contrl+6 
move grhandle,contrl+12 
movem text3,dO-d5 
movem dO-d5,intin 

move #300,ptsin 
move #200,ptsin+2 
jsr vdi 

move #106,contr l 
move #0,contrl+2 
move #1,contrl+6 
move grhandle,contrl+12 

move #O,intin 
jsr vdi 

rts 

GEM Programmer's Reference 

*180 for color 

*100 for color 

*Text effects 

*normal 
*Display 

text1: .dc.b O,"t",O,"o",O,"p" 
text2: .dc.b O,"b",O,"o",O,"t",O,"t",O,"o",O,"m" 

text3: .dc.b O,"A",O,"b",O,"a",O,"c",O,"u",O, "s" 

252 



Abacus Software 

.data 

.even 

aespb: 

GEM Programmer's Reference 

.dc. l contrl,global,intin,intout,addrin,addrout 

contrl: 
opcode: 
sintin: 
sintout: 
saddrin: 
saddrout: 
.ds.w 5 

global: 
apversion: 
apcount: 
apid: 
apprivate: 
apptree: 
ap1resv: 
ap2resv: 
ap3resv: 
ap4resv: 

intin: 
.ds.w 128 

ptsin: 
.ds.w 128 

intout: 
.ds.w 128 

ptsout: 
.ds.w 128 

addrin: 
.ds.w 128 

addrout: 
.ds.w 12 8 

.ds.w 1 

.ds.w 1 

.ds.w 1 

.ds.w 1 

.ds.l 1 

.ds.w 1 

.ds.w 1 

.ds.w 1 

.ds.l 1 

.ds.l 1 

.ds.l 1 

.ds.l 1 

.ds. l 1 

.ds.l 1 

253 



Abacus Software GEM Programmer's Reference 

vdipb: .dc.l contrl,intin,ptsin,intout,ptsout 

grhandle: .ds.w 1 

.bss 

.even 

.ds.l 300 
nstapel: 
.ds.l 1 
.ds.w 10 

.end 

254 



( CHAPTER 4 J 
Inside GEM-THE AES 

4.1 
4.1.1 
4.1.2 
4.1.3 
4.1.4 
4.1.5 
4.1.6 
4.1.7 
4.1.8 
4.1.9 
4.1.10 
4.1.11 
4.1.12 
4.1.13 
4.1.14 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.3 

Fundamentals of AES use 
Initializing an application 
Determining the screen resolution 
Resource files 
Displaying the menu bar 
Outputting the desktop icons 
Handling user input 
Menu selection 
Input via dialog boxes 
Selecting an icon 
Creating a window 
Controlling the working memory 
Manipulating the Windows 
Recreating working storage 
Multi-tasking 
The AES libraries 
Introduction 
Initializing 
Window techniques 
Event handler 
Object representation 
Dialog box management 
Drop-Down Menus 
Graphic library 
Sample programs using the AES 





Abacus Software GEM Programmer's Reference 

Inside GEM-THE AES 

4.1 Fundamentals of AES use 

The following sections describe the GEM calls required for typical 
applications. The following functions will be handled: 

a) The initializing of the application 
b) Detennining the screen resolution 
c) Resource files 
d) Displaying the menu bar 
e) Outputting the desktop icons 
f) Handling user inputs 
g) Menu selection 
h) Input via dialog boxes 
i) Selecting an icon 
j) Creating a window 
k) Controlling a work area 
1) Window manipulation 
m) Recreating a work area 
n) Multi-tasking 

4.1.1 Initializing an application 

Three steps are necessary in order to initialize an application: 

1. After loading the program, a TOS routine that releases the 
memory from the end of the program to the end of the work 
space should be called. This memory space is needed for a 
resource file to be loaded later. In addition, sufficient stack space 
should be reserved. 

2. The data structures are defmed and initialized for calling the GEM 
routines. If you program in C, the arrays must be previously 
declared; in assembler you need only reserve sufficient memory 
space and designate it with a labeL 

257 



Abacus Software GEM Programmer's Reference 

The following arrays must be prepared: 

AES parameter block 
control array 
global array 
integer input array (intin) 
integer output array (intout) 
address input array (addrin) 
address output array (addrout) 

If you use the GEM AES/VDI libraries and bindings of the 
development system, you can skip the declarations. 

3. The function APPL INTP must be called. This prepares the 
GEM-internal data-structures and returns an application 
identification number (apid) to the system. 

4.1.2 Determining the screen resolution 

Output of program data such as graphics or text are stored in resource files. 
The following elements can be stored in this manner: 

Text 
Icons 
Menus 
Dialog boxes 
Forms 

Since the ST has three different resolution modes, it is useful to have three 
resource files, differeing only in the coordinate values, available to each 
program. So that the application loads the correct resource file, it must first 
determine the currently-active screen resolution. To do this, the following 
steps are performed: 

1. The function GRAF HANDLE is called in order to determine the 
screen identifier for VDI calls. 

2. The VDI function OPEN VIRTUAL WORKSTATION is 
called. This returns the value of the screen resolution as a 
parameter. 

258 



Abacus Software GEM Programmer's Reference 

4.1.3 Resource files 

The resource file is loaded into memory with the RSRC LOAD function. 
But this function does something more: special pointers to data structures 
are set and the coordinates are converted into screen coordinates. This is 
necessary because the coordinates in the resource file must be stored 
according to the following pattern: 

High byte = number of the character position (0-79 in X-direction, 0-24 
in Y -direction). 

Low byte = number of the screen point relative to the character position. 

A point with the coordinates (100117) is stored as the coordinate pair 
(12*256+4/1 *256+1 [with a character size of 8 by 16 points]). 

The function RSRC LOAD is used to determine the address of specific 
data structures in theresource file. It can be called at any time. It is most 
useful if the address of all relevant data structures are determined once and 
then stored so that they are easily accessable for later uses. 

4.1.4 Displaying the menu bar 

The menu bar is found within the resource file and is part of a menu object 
tree. The following steps are to be performed for its display: 

1. If the address of the menu object tree is not yet known, it is 
determined through the function RSRC _ GADDR. 

2. This address is passed to the function MENU BAR before it is 
called. The funtion is executed, after which the flag me bshow 
is set to 1 (=display the menu bar). The menu bar then appears in 
the top text line. 

259 



Abacus Software GEM Programmer's Reference 

4.1.5 Outputting the desktop icons 

In order to display icons in the desktop window, the position and size of the 

working memory must be known. This value is determined by the 

command WIND GET, where the following parameters are passed: 

0, in order to show that information should be 
gathered about the desktop window. 

3, in order to show that the coordinates and size 
are being searched for. 

Next, an OBJC DRAW call is performed in order to draw the icons. The 

ICONBLK structure contains information about the size and position of the 

icons. 

4.1.6 Handling user input 

After the menu bar and the icons have been displayed, the application is 

ready to handle any input from the user. These are, for example: 

• keypress 
• mouse-button press 
• mouse movement 
• report, generated by a user request or a process 
• elapse of a certain length of time 

If the application must handle several events at once, the function 

EVNT MULTI is called, which can process an arbitrary combination of 

events. 

260 



Abacus Software GEM Programmer's Reference 

4.1. 7 Menu selection 

The interaction of the user with the menu bar is controlled independently by 
the AES. Processing a menu selection is as follows: 

1. The application calls the function EVNT MULTI, one of 
the events must be a request to print a report. 

2. Sometime the user will touch a menu point in the menu bar 
with the mouse pointer. 

3. AES calls the screen manager which temporarily stores the 
area which the menu uses on the screen display. The 
corresponding menu title is displayed in reverse on the 
menu bar. 

4. The user clicks a menu option with the mouse button. 

5. The screen manager records this fact in the event buffer of 
the application. The record contains the indices of the menu 
title in the menu bar and the menu entry. 

6. Control is passed back to the application. 

7. The flag for the request for a report in ev mwhich is 
~. -

8. The application nows read the event buffer and 
appropriately handles the menu selection. 

9. Finally, the function MENU TNORMAL is called, 
whereby me nnormal is set to 1 so that the menu title 
appears in normal representation again. 

261 



Abacus Software GEM Programmer's Reference 

4.1.8 Input via dialog boxes 

In order to allow dialog via dialog boxes, the following processes must be 
programmed: 

1. The command RSRC GADDR returns the address of the 
object tree that displays the dialog box. 

2. The function FORM DIAL is called, whereby 
fo diflag must be set to o. In this step the screen 
memory for displaying the dialog box is saved temporarily. 

3. The function FORM D I A L is called with 
fo diflag=l in order to draw an enlarged box. You 
can lea e-Q:is step out without impairing the dialog. 

4. The routine OBJC DRAW is activated. The dialog box 
appears on the screen as a result. 

5. After calling the function FORM DO the AES has control 
over the interaction of the user with the dialog box. 

6. If the user has clicked a button in the dialog box to cause 
an end to the dialog input, AES passes program control 
back to the application. The application now determines 
which dialog options have changed their status. 

7. If necessary, text input fields or buttons are put back in 
their original state so that a predefined state is maintained 
for the next dialog input. 

8. FORM DIAL is called, where fo diflag = 2. The 
AES th~drawf, a shrinking box. ThiS step in optional. 

9. FORM DIAL is called with fo diflag=3. All edge 
components that were destroyea by the dialog box are 
redrawn by the AES. In addition, AES writes a record in 
the event buffer to indicate that the screen area occupied by 
the dialog box must be redrawn. 

262 



Abacus Software GEM Programmer's Reference 

4.1.9 Selecting an icon 

If the user is able to select an icon by clicking the mouse, the following 
process is used: 

1. The flag bit to recognize a mouse button event and a 
double-click is set. Then the function EVNT MULTI is 
called. 

2. As soon as the user presses the mouse button, the routine 
EVNT _MULTI returns control to the application. 

3. The application determines the coordinates of the mouse 
pointer by using the function GRAF _ MKSTATE. 

4. These coordinates are passed to OBJC FIND, to 
determine which object is under the mouse pointer. 

5. If the clicked object is a selectable icon, its status is 
changed from NORMAL to SELECTED (Function: 
OB JC _ CHANGE). 

4.1.10 Creating a window 

Creation of a window is performed in two steps: 

1. Set up the window with the function WIND CREATE. 
This function does three things. First, it sets the maximum 
size of the window. Second, information specifying the 
active components of the border area is set. Third, the 
window indentification number, essential for further 
functions, is passed to the application. In representing the 
border components, each component is represented by a 
bit. If this bit is set, the component appears and can be 
activated by the user. A cleared bit indicates to the function 
WIND CREATE that the corresponding component 
shouldnot appear. 

2. Display the window with WIND_OPEN. 

263 



Abacus Software GEM Programmer's Reference 

4.1.11 Controlling the working memory 

Before using the WIND OPEN function, it may be necessary to know the 
working memory or dimensions of the window. This function is performed 
by the WIND_CALC function. 

• From the outer window dimensions and the position of the 
window border, you can determine the position dimensions 
of the working memory with WINDOW_CALC. 

• From the position and size of the working storage, 
WIND CALC determines the position and size of the outer 
border.-

The WIND OPEN function makes the window appear on the screen. The 
postion ana size of the outer area and the window identifer are input 
parameters. WIND OPEN writes a record in the event buffer to tell the 
application that the working area of the window must be redrawn. 

The window management is divided into two parts. The first keeps track of 
the user actions with the border elements of the window: 

title line 
movement columns 
size field 
full field 
close field 
arrows 
scroll columns 
slider 

This is performed by AES. If one of the above interactions occurs, a record 
is written in the event buffer. The application must react by closing a 
window, for example. 

The second area refers to the control of the working storage of the window. 
The application is responsible for this. 

264 



Abacus Software GEM Programmer's Reference 

4.1.12 Manipulating the Windows 

a) Size and position of the slider: 

If only part of the total view of the text or graphic is found in the working 
storage of the window, the WIND SET function is called four times to set 
the following values: -

position of the vertical slider 
relative size of the vertical slider 
position of the horizontal slider 
relative size of the horizontal slider 

If the user changes the contents of the window using the slider the 
WIND_SET function is used to implement the changed values. 

b) Changing the window size: 

As soon as the user activates the left mouse button on the size box (and 
doesn't let go), AES draws a rectangular box whose upper left corner 
coincides with the upper left corner of the window. The lower right corner 
is determined by the position of the mouse pointer. As soon as this is 
moved, the box changes its dimensions. If the user lets go of the mouse 
button, AES writes a record containing the user request and the new size of 
the window to the event buffer. The application calls the WIND SET 
function to change the size of the window correspondingly. If the new 
window size is smaller than the old, the working storage does not need to 
be recreated. Otherwise AES writes the record WMREDRAW to the event 
buffer. If the requested new window size is not valid, the application must 
handle this accordingly (such as by ignoring the user request). 

c) Changing the window position: 

The procedure corresponds to procedure b). As soon as the user moves a 
window, AES draws a rectangle of the size of the window, which moves 
with the mouse pointer. If the user lets go of the mouse button, AES writes 
a record in the event buffer which specifies the new position of the window. 

265 



Abacus Software GEM Programmer's Reference 

d) Closing a window 

If the user activates the close field of a window, the appropriate record is 
written to the event buffer, specifing the window identifier. The window 
disappears from the screen with WIND CLOSE. It will reappear by calling 
WIND OPEN. If the WIND DELETE function is called after 
WIND_CLOSE, the window identifier is released, and WIND_OPEN can 
only be used again if the window is recreated with WIND_CREATE. 

e) Activating a window 

In order to recognize this user request, the flag bit for a mouse-button event 
must be set for the obligatory EVNT MULTI call. If the user presses the 
mouse button at some time, the function EVNT MULTI returns the 
coordinates of the mouse pointer. These are used by the application, with 
the help of the function WIND FIND, to determine which window the 
mouse pointer is in. If the winaow identifier is 0, no window should be 
activated and the following steps are irrelevant. Otherwise the screen 
manager writes the record WMTOPPED, which contains the window 
identifier of the window to be activated, to the event buffer. The application 
can bring the window to the top level by calling the command 
WIND SET. 

266 



Abacus Software GEM Programmer's Reference 

4.1.13 Recreating working storage 

a) The rectangle list 

So that the application "knows" which parts of the window are visible, the 
smallest number of visible rectangles is created. These rectangles are found 
in the rectangle list and can be sequentially checked by the WIND GET 
function to determine their size and position. If the size is zero, the 
previously-read rectangle is the last in the list. 

b) Preliminaries before recreating the working storage 

An application must inform AES before recreating working storage. This 
prevents the recreation routines from "colliding" with the application and 
menu management functions of GEM. 

First call the WIND UPDATE function and set the flag wi ubegend to 
a one. This release the rectangle list for the window to be redrawn and 
disables the menu management fucnction. When working storage has been 
recreated, call WIND UPDATE again, to set the flag wi ubegend 
back to zero. - -

c) Renewing the working storage 

The first rectangle of the rectangle list can be read with the help of the 
command WIND GET. If there is an area that intersects the area to be 
renewed, this piece must be redrawn by the application. Then the 
application reads the next rectangle, and so on. This is continued until there 
are no more rectangles in the rectangle list. 

267 



Abacus Software GEM Programmer's Reference 

4.1.14 Multi-tasking 

As we're finding, the operating system is very complex. The screen 
manager, the application and the background processes appear to run 
simultaneously. An operating system routine (the dispatcher) sees to it that 
the different processes do not interfere with one another. To accomplish 
this, the dispatcher maintains two lists: the ready list and the wait list. 

The ready list contains all of the processes which would like to run. Since 
the 68000 can process only one program at a time, only one of the 
processes is active at any given instant. The process that is found at the 
"top" of this ready list is the one that is selected to run. But if this process 
were always allowed to run, it would prevent all others on the ready list 
from running. 

To avoid this, the order of the processes on the ready list is rotated. Each 
time a process calls the AES, the dispatcher places the "top" process on the 
bottom of the ready list. This allows the next process to run until it calls for 
services from the AES. 

What happens if the active process doesn't call the AES? It would appear 
that this process would continue to run thereby denying the other waiting 
processes. To prevent this, the applications which don't call the AES during 
long calculations, for example, should make regular calls to 
EVNT TIMER. By specifying a delay time of 0 milliseconds, the other 
processes on the ready list are given art opportunity to run. 

The wait list contains those processes which are not able to run until some 
event is completed. For example, if an application is waiting for a keypress, 
the process is placed on the wait list until the keypress is completed. At that 
time, the process is placed on the end of the ready list. 

In this way the dispatcher can handle multiple processes. Since the 68000 
can perform very quickly, these different processes may appear to run 
simultaneously. In reality only one process is running at a time. 

268 



Abacus Software GEM Programmer's Reference 

4.2 The AES libraries 

4.2.1 Introduction 

The facilities of the AES are easier to use with C language programs than 
with assembly language programs. By using the AES libraries, a 
programmer can become very productive on the ST. 

Even though the VDI and AES facilities aren't usually available to the 
assembly language programmer, we'll show you how to "trick" the system 
into allowing this in the next section. 

Each GEM program must be preceded by a short routine to allocate 
memory. If programming in C, these routines are provided by the libraries 
and are bound to the application during compilation or linking. By using 
these libraries you avoid having to redefine system variables in every 
program. 

4.2.2 Initialization of GEM programs 

Before a GEM application will run, two requirements must be fulfilled. 

1. You must ensure that enough memory space is available 
for the stack, since GEM uses it quite a bit. You reserve 
enough memory space with the help of an assembly 
language instruction to set the stack pointer (processor 
register A 7) to the end of this memory block. This is done 
because the stack pointer is decremented when it is used by 
the processor. 

But how much memory space is enough? The stack must 
be large enough so that the stack space is available for the 
command with the largest stack space requirement. 

The following rule of thumb can be used for calculating the 
stack requirement for a function: 

269 



Abacus Software GEM Programmer's Reference 

-For Open virtual workstat i on: 

about 128 bytes 

-For all other functions: 

Size of the pts i n array 
+ 1 28 bytes 
+ operating system requirements 

Because the last factor cannot be determined exactly, we 
reserve 1200 bytes for the stack. This should be enough 
for any case. 

2. The operating system automatically allocates the leftover 
memory after loading your program. This memory must be 
released again with the TOS function SETBLOCK because 
it is absolutely required for the menus. Since knowledge of 
TOS is not important for understanding GEM, we will not 
go into it any further here. 

On the next pages is the initialization program for the AES routines. 

270 



Abacus Software GEM Programmer's Reference 

************************** 
* Initialization routine * 
************************** 

move.l 
move.l 

move.l 
move.l 
add.l 
add.l 
add.l 
move.l 
move.l 
move 
move 
trap 
add.l 

jsr 
move 
trap 
add.l 

move.l 
trap 

aes: 
move.l 
move 
trap 
rts 

vdi: 
move.l 
moveq.l 
trap 
rts 

main: 
move.l 
move.l 
move.l 

a7,aS 
#nstack,a7 

4(aS),aS 
$c(aS),dO 
$14 (as) ,dO 
$lc(aS),dO 
#$100,dO 
dO,-(sp) 
as,-(sp) 
dO,-(sp) 
#$4a,-(sp) 
#1 
#12,sp 

main 
#l,-(sp) 
#1 
#2,sp 

#0, (a7) 
#1 

#aespb,d1 
#$c8,dO 
#2 

#vdipb,d1 
#$73,dO 
#2 

#0,ap1resv 
#0,ap2resv 
#O,ap3resv 

* old stack pointer 
* set stack pntr to new stack 

* Memory calc. for SETBLOCK 
* text segement length 
* data segement length 
* block segement length 
* base page offset 
* memory space requirments 
* as parameters for TOS 

* code for SETBLOCK command 
* call function 
* restore stack 

* call main program (your prg) 
* wait for key 
* call function 
* stack correction 

* back to GEM desktop 
* call function 

* call AES function 

* Call VDI function 

271 



Abacus Software GEM Programmer's Reference 

move.l #O,ap4resv 
move #lO,opcode 
move #O,sintin 
move #l,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move #77,opcode 
move #O,sintin 
move #5,sintout 
move #O,saddrin 
move #O,saddrout 
jsr aes 

move intout,grhandle 

*appl init 

*graf_handle 

move #lOO,opcode *open_vwork 

move #O,contrl+2 
move #11,contrl+6 
move grhandle,contrl+12 

move #l,intin 
move #1,intin+2 
move #1,intin+4 
move #1,intin+6 
move #1,intin+8 
move #1,intin+l0 
move #1,intin+12 
move #1,intin+14 
move #1,intin+16 
move #1,intin+18 
move #2,intin+20 
jsr vdi 

***************************************** 

* 
* 
* 

Your program goes here 
* 
* 
* 

***************************************** 

* definition all of the arrays and stack* 

* described later in this section * 

***************************************** 

272 



Abacus Software GEM Programmer's Reference 

The address of the stack (designated by the constant nstack) is later 
passed in order not to mix up the sequence of the initialization program. For 
the same reason the subroutines "aes" and "vdi" are not explained until 
later. This has the advantage that you can enter program segments which are 
explained gradually in exactly the order in which they appear in the 
program. 

Now we come to the question how the GEM programmer can make full use 
of the available functions. To do this you must know that GEM represents 
itself to the programmer in two parts. The first is the VDI (Virtual Device 
Interface). This offers simple functions, such as drawing lines, filling 
regular and irregular surfaces, outputting strings, etc. The AES (Application 
Environment Service) offers you considerably more advanced functions, 
like management of the screen windows or keeping track of the mouse 
movements. The AES accesses functions of the VDI, though you don't 
notice any of the process. Since it is somewhat easier to use the VDI in 
machine language than it is the AES, we will start with the VDI. 

All parameters which you pass to the VDI or which it passes to you are 
stored in arrays. An array consists of a succession of 2-byte (4-byte) 
values. There are a total of five of these arrays, which you can place 
anywhere in memory (and in any order): 

Name of Size (in Function: 
the array words) 

1. contrl 11 Here are passed information about the type 
of command to be executed as well as about 
the size of the other arrays given by the 
programmer and to the programmer. 

2. intin 128 These are integer values (every 2 bytes is 
1 value), which the VDI requires for the 
given function (such as for transmission 
of a color code). 

3. ptsin 256 Here the programmer passes coordinates 
(such as the end points of lines). 

4. intout 128 The VDI outputs information (such as 
about the currently-pressed key). 

5. ptsout 12 VDI passes point coordinates in this array. 

273 



Abacus Software GEM Programmer's Reference 

As you see, the directions of data transfer for arrays 2 through 5 is set. You 
write information (pass it to GEM) in arrays 2 and 3, while GEM passes 
back information through arrays 4 and 5. The scope and meaning of the 
contents of these arrays varies from function to function. Constant is the 
meaning of the contrl array, and the data direction of this array is mixed 
(l=the programmer passes information, 2=the VDI passes information): 

No. Address: Data Meaning: 
direction: 

o contrl 1 Command number. 

1 contrl +2 1 Number of coordinate pairs of the 
ptsin array, one coordinate pair 
consists of two words 
(X and Y-coordinate). 

2 cont r 1 +4 2 Number of coordinate pairs of the 
ptsout array, one coordinate pair 
consists of two words 
(X and Y-coordinate). 

3 contrl+6 1 Number of words in the intin array. 

4 contr 1 +8 2 Number of words in the intout array. 

5 contrl+10 1 Sub-function command number. 

6 contrl+12 1 and 2 Device handle. 

7.. control+14 .. 1 and 2 command-dependent 

In the following, the number of an element in the array will be set in 
parentheses behind the array name. The array element contrl (6) , for 
instance, has the address contrl+12. 

I doesn't help if you set the arrays cont r 1 and int in (which can be 
assigned anywhere in memory) as prescribed and then simply call the VDI 
function. How does GEM know where the arrays are at the moment? You 
must first tell GEM the addresses of the five arrays. The parameter block is 
used for this purpose. This is an array which consists of five entries, each 
of which consists of not two but four bytes. As you may have guessed, 
each entry contains the address of one of the five arrays. 

274 



Abacus Software 

The layout of the parameter block: 

Element of the parameter block 

vdipb(O) 
vdipb (1) 
vdipb (2) 
vdipb(3) 
vdipb (4) 

GEM Programmer's Reference 

Function: 

Pointer to contrl 
Pointer to intin 
Pointer to ptsin 
Pointer to intout 
Pointer to ptsout 

The parameter block of the VDI consists of five entries, each of four bytes, 
that is, it is a total of 20 bytes long. The parameters block is therefore 
something of a puppeteer which holds the strings (addresses of the arrays) 
in its hand. The VDI need only know the puppeteer, that is, the address of 
the parameter block. For this purpose, you pass the address of the 
parameter block in the D 1 . L register. Then you write the "secret code" $ 7 3 
in register DO (only the GEM developers know why this number was 
chosen) and execute a TRAP #2. If all arrays were previously assigned the 
appropriate values, the VDI recognizes by means of the command number 
in con t r 1 (0) which function is to be performed. 

The register D 1 is pointer to an array which contains pointers to the other 
arrays (the AES is even less friendly). 

The AES functions require 6 arrays, the significances of which are 
explained in the following table: 

275 



Abacus Software GEM Programmer's Reference 

Name of 
the array: 

control 

global 

intin 

addrin 

addrout 

Bytes per 
element: 

2 

2 

2 

4 

4 

Meaning: 

Contains the command code and information 
about the size of the other arrays. 

Here are stored several GEM constants (such 
as the version number). 

These are integer values which the AES 
requires for certain functions (such as 
transmission of a window number). 

Pointers to memory areas or data structures, 
which the programmer communicates to the 
AES. 

Pointers to memory areas, which the AES 
communicates to the programmer. 

The control array in the AES also stores the function and the size of the 
arrays (except the global array, which has a constant length): 

Name: Array Function: 
(n. official) element 

opcode contrl(O) Command number 

sintin contrl(l) Size of the intin array (in bytes). 

sintout contrl(2) Size of the intout array (in bytes). 

saddrin contrl (3) Size of the addr in array 
(in long words=4 bytes) 

saddrout contrl (4) Size of the addrout array 
(in long words). 

As you can see from the table, the elements of the control array are assigned 
names. These names do not correspond to the official designations from 
Digital Research (in contrast, for example, to "global"), but serve to 
simplify the use of the example programs. The first letter "s" stands for 
"size" (of the array). 

276 



Abacus Software GEM Programmer's Reference 

The second of the six AES arrays, the global array is composed as follows 
(l=programmer passes information, 2=AES passes a function): 

Name of the Data Size Meaning: 
element: direction: (in bytes): 

ap_ version 2 2 Version number of the 
GEM-AES version used. 

ap_ count 2 2 Maximum number of user 
programs that can be in 
memory or active at one time. 

ap id 2 2 Identification number for the 
-

currently active user program 
(= application). 

ap_ private 1 4 Arbitrary, programrner-
selected information about 
the application. 

ap_ ptree 1 4 A pointer to a tree structure. 

ap lresv 1 4 Reserved for future 
-

applications. 

ap 2esv 1 4 Reserved for future 
-

applications. 

ap 3esv 1 4 Reserved for future -
applications. 

ap_ 3esv 1 4 Reserved for future 
applications. 

The term "application" (abbreviated to "ap") is explained below. In general, 
you can completely disregard the meaning of the elements in the global 
array. You will probably never have the opportunity to worry about this 
array, with the exception that you must reserve the necessary memory 
space, of course. For now you should concentrate on things other than the 
global array. One of these more important things is the parameter block 
(aespb), which, as with the VDI, points to the array addresses. 

277 



Abacus Software GEM Programmer's Reference 

The arrays contrl, intin, and intout are use by both the VDI and 

the AES. 

Next we'll discuss the use of GEM functions from assembly language, and 

learn something about the functions that make it possible to work with 

GEM. The first to be named would be the command APPL INIT (AES), 

which initializes an application (as the name says). -

But what is an application? Basically, this is just another name for the term 

"program." The difference is that an application is a program that uses GEM 

functions. GEM allows you to have several applications in memory at one 

time. These applications can be called and exchange data, things called 

scraps, among each other. If, for example, you create an invoice on the 

computer with a word processing program, you can (as long as this is built 

into the program) move the data from a calculation program and pass it to 

the invoice. This ability to switch back and forth between programs is called 

multi-tasking. In order that your program be able to use multi-tasking (and 

other GEM capabilities), GEM must know that your application is in 

memory. To do this, you call the APPL INIT function, where you pass 

the following values: -

APPL INIT: 

control (0) (opcode) 
control (1) (sintin) 
control (2) (sintout) 
control (3) (saddrin) 
control (4) (saddrout) 

10 ;command number 
o ;intin array empty 
1 ;one output value 
o ;no address input 
o ;no address output 

As you can see above, one value will be output: 

intout (0) = ap_id 

C function call 

ap_id = appl_int () ; 

This uses an identification number for your application. As you see above, 

GEM can work with several resident applications. So that it is clear which 

application GEM calls are intended for, the AES assigns an ID number to 

278 



Abacus Software GEM Programmer's Reference 

ap1resv: 
ap2resv: 
ap3resv: 
ap4resv: 

intin: 
.ds.w 128 

ptsin: 
.ds.w 128 

intout: 
.ds.w 128 

ptsout: 
.ds.w 128 

addrin: 
.ds.w 128 

addrout: 
.ds.w 128 

.ds.l 1 

.ds.l 1 

.ds.l 1 

.ds.l 1 

vdipb: .dc.l contrl,intin,ptsin,intout,ptsout 
grhandle: .ds.w 1 

****************************************** * Here are the variables which must * be initialized after the start. 
* 
* ****************************************** 

.bss 

.even 

.ds.l 300 
nstack: 
.ds.l 1 
.ds.w 10 

****************************************** * Here are placed the variables which do * * not have to be initialized. * ****************************************** 
.end 

279 



Abacus Software GEM Programmer's Reference 

The arrays contrl, intin, and intout are use by both the VDI and 
the AES. 

Next we'll discuss the use of GEM functions from assembly language, and 
learn something about the functions that make it possible to work with 
GEM. The first to be named would be the command APPL INIT 
(AES), which initializes an application (as the name says). 

But what is an application? Basically, this is just another name for the term 
"program." The difference is that an application is a program that uses GEM 
functions. GEM allows you to have several applications in memory at one 
time. These applications can be called and exchange data, things called 
scraps, among each other. If, for example, you create an invoice on the 
computer with a word processing program, you can (as long as this is built 
into the program) move the data from a calculation program and pass it to 
the invoice. This ability to switch back and forth between programs is called 
multi-tasking. In order that your program be able to use multi-tasking (and 
other GEM capabilities), GEM must know that your application is in 
memory. To do this, you call the APPL INIT function, where you pass 
the following values: -

APPL INIT: 

control (0) (opcode) 
control (1) (sintin) 
control (2) (sintout) 
control (3) (saddrin) 
control (4) (saddrout) 

10 ;command number 
o ;intin array empty 
1 ;one output value 
o ;no address input 
o ;no address output 

As you can see above, one value will be output: 

intout (0) = ap_id 

C function call 

This uses an identification number for your application. As you see above, 
GEM can work with several resident applications. So that it is clear which 
application GEM calls are intended for, the AES assigns an ID number to 
each application, which it returns to the application. If too many applications 

280 



Abacus Software GEM Programmer's Reference 

are in memory at once, the number -1 ($FFFF) is returned. The maximum possible number is written in the global array by APPL INIT. Since we are working with only one application at the moment, this problem cannot occur. You don't have to worry about the identification number. 

A second value is important, something called the graphics handle. Each time an application accesses the VDI, for example to use primitive functions like drawing a circle, the handle of this application must be passed as part of the function call. You can determine the handle by calling the 
GRAF _HANDLE function (AES): 

GRAF HANDLE: 

control (0) 77 
control (1) 0 
control (2) 5 
control (3) 0 
control (4) 0 

Output 

intout (0) 
intout(l) 
intout(2) 
intout(3) 
intout (4) 

gr handle ;handle 

C function call 

gr=hwchar ;Width of a letter 
gr hhchar ;Height of a letter 
gr-hwbox ;Width of a character box 
gr=hhbox ;Height of a character box 

gr_handle =graf_handle 
(&gr_hwchar,&gr_hhchar,&gr_hwbox,&gr hhbox); 

The values intout (1) to intout (4) are system-specific information, which is unimportant at the moment. You should store the handle in in t ou t (0) immediately so that it can be used later. The function calls described here are listed in section 2.6 in the proper order as a listing for entry. The AES is not completely initialized, so we can work with it. 

281 



Abacus Software GEM Programmer's Reference 

What is still missing is the initialization command for the VDI. The 

command has the name OPEN VIRTUAL SCREEN WORKSTATION 

(VD I) : 

OPEN VIRTUAL SCREEN WORKSTATION: 

control (0) 
control (1) 
control (3) 
control (6) 

100 ;command number 
o 

11 
handle 

intin(O) device identification number 

intin (1) 1 ; diverse values for char. operations 

intin(2) 1; contrary to the GEM manual, these 

intin(3) 1; values are not automatically accepted 

intin (4) 1; they must be initialized before use 

intin (5) 1 
intin(6) 1 
intin(7) 1 
intin (8) 1 
intin(9) 1 
intin(lO) = RC/NDC; transformation flag 

C function call 

C definitions 

int handle; 
int work_in [11]; 
int work out [57]; 

Since this is a VDI function, it is called with JSR VD 1. You already know 

the meaning of the graphics handle, but we still have to explain the device 

identification number and the transformation flag. 

282 



Abacus Software GEM Programmer's Reference 

The VDI is in the position to work with different input and output devices; each device type is assigned several numbers: 

Device 

Screen 
Plotter 
Printer 
Metafile 
Camera 
Graphics tablet 

Device numbers: 

1-10 
11-20 
21 -30 
31-40 
41 -50 
51-60 

With the option "metafile," the graphics functions are not executed on a device, but are written to disk. Since all outputs should be directed to the screen, we store the value 1 in inti n (0) . 

The ST is capable of displaying 640x400 points in the highest resolution (640 by 200 in the medium resolution, 320 by 200 in the lowest). To select a point, you specify both an x and a y coordinate (the point (0/0) lies in the upper left comer). Imagine that you are writing a GEM program to run on several different computers, all of which have different screen resolutions. A given point on the screen of one computer would have a different position on the screen of another, despite having the same coordinates. Or you are writing a program for the ST which is intended to function in all three resolution modes. A point with Y -coordinate 399 would lie at the lower edge of the screen in the high-resolution mode, but would not be visible at all in the medium resolution mode since the Y -coordinates here may be a maximum of 199. 

To correct this problem there is the normalized coordinates system (NDC, normalize device coordinates). The X-coordinates run from 0 to 32767, the Y-coordinates also from 0 to 32767. GEM automatically converts the normalized coordinates to the true screen coordinates, that is, a rectangle, for instance, with side lengths 32768 and 32768 would (in the high-resolution mode) be displayed as a rectangle with side lengths 640 and 400. The disadvantage of the use of NDC coordinates is loss of speed. In order not to lose the speed advantage of machine language, we will use the true screen coordinates (if you use the medium or low resolution, you must reduce the coordinates in the example programs). The following applies for the transformation flag: 

283 



Abacus Software 

Transfonnation flag: 
(intin(lO)) 

o 
2 

GEM Programmer's Reference 

Coordinate system: 

NIX 
RC 

So store the value 2 in intin (10). If the highest possible speed is not 

required, you should consider using the nonnalized coordinates, since they 

offer greater flexibility when using devices of different resolutions. 

4.2.3 Window technique 

The responsibility for window management is divided between the 

programmer and the AES. AES keeps track of all actions of the user 

concerning the border of the window. It is possible to track the following 

window elements: 

• movement columns (for horizontal and vertical 

movement of the window) 
• size box (to reduce or enlarge the window) 
• screen size box (to enlarge the window to screen size 

or reduce it to nonna! size) 
• close box (to close the window) 
• arrows, scroll columns, sliders (to move the window 

contents) 

The programmer, on the other hand, is responsible for what goes on within 

the window. 

Displaying a window is performed in two steps. First, the 

WIND CREATE function (AES) is used to set those components of the 

window which should be present. You can, for example, eliminate all of the 

elements so that the user cannot move the window or change its size. In 

addition, this function is used to define the maximum size of the window. A 

bit array is used to determine which elements are visible, where each bit 

represents a specific element. 

With each WIND CREATE call, the AES passes an ID value to the 

programmer, by means of which the window can be identified. This is the 

window handle. If GEM, for example, tells the application that the user 

284 



Abacus Software GEM Programmer's Reference 

would like to close a window, this ID value is automatically passed so that the programmer knows for which window the action of the program user is intended. Two dimensions should be taken into acount with a window: 

1. The outer size 
2. The working area (smaller than the total size) 

With the knowledge of one of the sizes, the other can be determined with 
the function WIND_CALC CABS). More about this later. 

If, for example, you want to display some text in a window, you must know the size of the working area so that it is clear how large the text segment must be. 

Now let's make our example a little more complicated. Suppose a smaller window lies in front of the first window? If you fill the underlying window with text, you would overwrite the smaller window. 

For this reason, it makes sense to divide the partially visible window into rectangles which all lie in the visible area, and together cover the entire visible region. If you then fill each rectangle sequentially with the text Cor graphics) that belongs there, you have your text displayed in the lower window without disturbing the upper window. 

It would not be easy to create such a list of visible rectangles and continually update the list depending on the last action. AES therefore takes care of 
managing the rectangle list. The WIND GET function CABS) can be used to not only read the elements of the rectangle list for each window, but also the size of each window as well as the size and position of the horizontal and vertical slider. 

285 



Abacus Software 

WIND GET 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

int i n (0) 
intin(l) 

104 
2 
5 
o 
o 

wi ghandl e 
wi=gfield 

GEM Programmer's Reference 

Opcode = 104 

intin (1) may assume various values. GEM recognizes by means of its 

contents which information should be read: 

4: The coordinates of the working area of a window are 

returned. 

wi gw1 
wi-gw2 
wi-gw3 
wi= gw4 

X-coordinate 
Y-coordinate 
width 
height 

5: The coordinates of the total size of the window including 

border, title line, and information line are returned. 

wi gw1 
wi- gw2 
wi- gw3 
wi= gw4 

X-coordinat e 
Y-coordinate 
width 
height 

6. The coordinates of the total size of the previous window 

are returned. 

wi_ gw1 
wi gw2 
wi- gw3 
wi= gw4 

X-coordinate 
Y-coordinate 
width 
height 

286 



Abacus Software GEM Programmer's Reference 

7. The coordinates of the total size of the window are returned 
in its largest possible size (determined by 
WIND_CREATE). 

wi gwl 
wi-gw2 
wi-gw3 
wi=gw4 

X-coordinate 
Y-coordinate 
width 
height 

8: The relative position of the horizontal slider is returned 
(between 1 and 1000). 

wi_ gwl: l=far left, lOOO =far r i ght 

9: The relative position of the vertical slider is returned. 

wi_gwl = window handle 

10: The window handle of the top (=active) window is 
returned. 

11: The coordinates of the first rectangle in the rectangle list of 
the window are returned. 

wi gwl 
wi-gw2 
wi- gw3 
wi=gw4 

X-coordinate 
Y-coordinate 
width 
height 

12: The coordinates of the next rectangle in the rectangle list of 
the window is returned. 

wi gwl 
wi-gw2 
wi- gw3 
wi=gw4 

X-coordinate 
Y-coordinate 
width 
height 

13: Reserved, no function . 

287 



Abacus Software GEM Programmer's Reference 

15: The size of the horizontal slider relative to the size of the 

box surrounding it is returned. 

wi gw1 = -1: minimal size (square box) 

1-1000: relative size in comparison 

to the scroll bars 

16: The size of the vertical slider relative to the size of the box 

surrounding it is returned. 

wi_ gw1 = -1: minimal size (square box) 

1-1000: relative size in comparison 

to the scroll bars 

Output 

intout (0) 
intout (1) 
intout(2) 
intout(3) 
intout (4) 

wi greturn 
wi-gw1; see above for meaning 
wi-gw2 
wi-gw3 
wi=:gw4 

wi _gret urn is the return code and has the following meaning: 

0: An error occurred (such as a non-existent window handle) 

n (positive number): No error occurred 

C function call 

wi greturn 
wind get (wi ghandle,wi gfield,&wi gw1,&wi gw2, 

&wi_ gw3,&wi=:gw4); -

Programming a window consists of two essential parts: 

1. Displaying the window (once at the start, then later only if the user 

wants to change the size or position of the window on the screen). 

2. Continual refreshing of the working area (once at the start, later if 

the user moves the window over a work surface which is larger 

than the working surface of the window). 

288 



Abacus Software GEM Programmer's Reference 

The first part is performed in several steps. Using function WIND_CALC 
(AES) is not absolutely necessary, that is, steps 2 through 4 do not always 
have to be programmed. The order of the function calls is as follows: 

1. The application calls the command WIND GET function. Set 
int in (0) to 4, and (in tin ( 1) ) to O. "The window ID (0) 
represents the screen. The coordinates and the area of the screen, 
are returned. 

2. To specify the desired window elements call the WIND_CALC 
function using the coordinates returned from step 1. The size of the 
working area of the window is returned. 

3. Next you must decide upon the size of the working area for the 
window. The maximum size is the value returned from step 2, 
because your window (==working area + border area) may not be 
larger than the screen. 

4. The size is passed to the WIND CALC function again but you 
request the total area of the window. All window commands 
(except for one version of WIND CALC) refer to the total size of 
the window. Therefore you shoula save the coordinates from these 
function calls for subsequent use. If you skip steps 2 through 4, 
you should store the value you have chosen as the window size. 

5. Call the WIND CREATE function and specify the outer 
coordinates of the window and the required border components. 
The coordinates represent the maximum possible window size. The 
window can later by reduced or enlarged again, but not larger than 
the maximum window size. The window ID, the window handle, 
are returned. You should save these values for use with later 
function calls. 

6. Call the WIND OPEN function. The window appears on the 
screen in the size which you specified in the function call. This can 
be the maximum window size. 

7. You can now display the desired information on the window, such 
as text or graphics. 

289 



Abacus Software GEM Programmer's Reference 

8. If the application has completed working with the window and 
wants to clear it from the screen, it can be made "invisible" with the 
WIND_CLOSE function. It can be made visible again at any time 
by the WIND_OPEN function. 

9. If the window is no longer needed, it can be completely deactivated 
with WIND DELETE. The window handle of this window is 
released agaIn and will be assigned to a new window when the 
WIND_CREATE function is called again. Step 8 must be 
performed before using WIND_DELETE. 

The following steps are to be performed if the whole screen area is to be 
reconstructed with the aid of the AES rectangle list (such as a smaller 
surface than the screen, which then represents a rectangular surface to be 
renewed, which can consists of several elements of the rectangle list): 

1. The application calls the WIND UPDATE function with 
in tin (0 ) = 1. This releases the rectangle list and blocks additional 
user requests for the duration of the screen construction. 

2. Steps 2 through 7 must be repeated as appropriate for multiple 
windows. The WIN 0 GET function is called with 
in tin ( 0 ) = 11 to get the first rectangle in the rectangle list. 

3. If the height and width of the rectangle are zero, there are no further 
entries for this window in the rectangle list. In this case you execute 
step 8. 

4. Determine if the rectangle in the rectangle list is partial or 
completely covered by the rectangular surface to be renewed. 

5. Redraw the partial surface. If the two rectangles do not intersect at 
all, no new screen segment is drawn. In order to simplify working 
with the surface-segment calculation, the VDI offers the function 
"set clip rectangle", which constructs only the screen parts in the 
rectangle from the list which are found in the rectangle to be 
reconstructed. 

6. The function WIND GET is called with intin (0) =12 to get 
the next rectangle from the list. 

290 



Abacus Software GEM Programmer's Reference 

7. Steps 3 through 6 are repeated until the end of the list is detected in 
step 3. 

8. The function WIND UPDATE is called with intin (0) = 0 to 
remove the blockade of user requests. 

Except for the command WIND GET, the other window functions above 
are still without exact description-:i-Iere is a detailed list: 

291 



Abacus Software GEM Programmer's Reference 

WIND CREATE 

control (0) 100 
control (1) 5 
control (2) 1 
control (3) 0 
control (4) 0 

intin(O) wi crkind 
intin(l) wi crwx 
intin(2) wi_crwy 
intin(3) wi crww 
intin(4) wi-crwh 

Output 

intout(O) = wi crreturn 

Opcode = 100 

Through intin (0) you determine which components of the border area 
of the window should be visible and active. It is a bit field, in which a set 
bit stands for an active component, a cleared bit for an inactive component. 

The bits have the following meaning: 

Bit no. 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Meaning 

NAME (title line with name of the window) 
CLOSE (close field) 
FULL (screen-size field) 
MOVE (movement field) 
INFO (information line) 
SIZE (size field) 
UPARROW (arrow up) 
DNARROW (arrow down) 
VSLIDE (vertical slider) 
LFARROW (arrow left) 
RT ARROW (arrow right) 
HSLIDE (horizontal slider) 

292 



Abacus Software GEM Programmer's Reference 

wi crwx = X-coordinate of the largest possible 
window dimension 

wi_ crwy = Y-coordinate of the largest possible 
window dimension 

wi crww Width of the largest possible window 
dimension 

wi crwh Height of the largest possible window 
dimension 

wi crreturn = Window handle 

A negative number indicates that the AES has no more windows available. 

C function call 

wi c r return = wind create (wi crkind, wi_crwx, 
wi_ crwy, wi crww, wi crwh); 

293 



Abacus Software GEM Programmer's Reference 

WIND OPEN 

Function 

Display a window. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin (1) 
intin(2) 
intin(3) 
intin (4) 

Output 

intout (0) 

101 
5 
5 
o 
o 

wi ohandle 
wi owx 
wi_owy 
wi oww 
wi-owh 

wi oreturn 

Opcode = 101 

wi ohandle: Window handle of window to opened 

wi owx: X-coordinate of the window 

wi_owy: Y-coordinate of the window 

wi oww: Width of the window 

wi owh: Height of the window 

wi oreturn:O=An error occured 
n(positive number)=No error occurred 

C function call 

wi oreturn = wind_open (wi_ ohandle, wi_owx, Wl_OWY, 
wi_oww, wl_owh); 

294 



Abacus Software GEM Programmer's Reference 

WIND CLOSE Opcode = 102 

Function 

Close a window. The window can be displayed again with WIND_OPEN. 

control (0) 102 
control (0) 1 
control (0) 1 
control (0) 0 
control (0) 0 

intin(O) = window handle (wi clhandle) 

Output 

intout(O) = wi clreturn 

O=An error occurred 
n (positive number)=No error occurred 

C function call 

wi clreturn 

295 



Abacus Software GEM Programmer's Reference 

WIND DELETE Opcode = 103 

Function 

The memory occupied by the window and the window itself are released. 
Before WIND OPEN can be called again, the function WIND CREATE 
must be called. Before calling WIND DELETE the window should be 
closed with WIND CLOSE because ius not possible to do so later (the 
window handle required for closing does not exist after WIND_DELETE). 

contro l (0) 103 
control(l) 1 
control (2) 1 
control (3) 0 
control (4) 0 

intin(O) = window handle (wi_dhandle) 

Output 

intout(O) = wi dreturn 

O=An error occurred 
n (positive number) =No error occurred 

C function call 

wi dreturn 

296 



Abacus Software GEM Programmer's Reference 

WIND SET 

Function 

Change the appearance of the border area or the title line. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

105 
6 
1 
o 
o 

Opcode = 105 

intin(O) 
intin(l) 
intin(2) 
intin(3) 
intin(4) 
intin (1) 

window handle (wi_shandle) 
wi sfi e l d 
wi sw1 
wi s w2 
wi sw3 
wi sw4 

Output 

intout(O) = wi sretur n 

O=An error occurre d 
n (positive number)=No error occurred 

The contents of int i n (1) (wi sf ield) determines which value 
should be changed. To change the legend of the movement bar and the title 
line, WIND SET must be called, generally immediately after the 
WIND CREATE function and at the latest before the WIND OPEN 
function. 

wi _ sfield may have the following values: 

1: The bit field which determines which components of the 
border area of the window are to be visible is stored in 
wi swl. The meaning of the bits in the bit field is found 
unaer the WIND CREATE function. 

297 



Abacus Software GEM Programmer's Reference 

2: wi swl and wi sw2 represent a pointer which points to 
a string in memory. This string is the name of the window. It 
must be organized in memory as follows: 

1st byte: 1st letter 
2nd byte: 2nd letter 

nth byte: last letter 
n+1st byte: zero 
n+2nd byte: zero 

The text is automatically centered. 

3: wi swl and wi sw2 are a pointer to a string which 
disPlays the information line of the window. See 2 for 
information about the string. 

5. The active window is determined. This option corresponds to 
the WIND_GET function, option 5 and 6. 

8: The relative position of the horizontal slider is changed. The 
parameters are the same as those of WIND_GET, option 8. 

9: The relative position of the vertical slider is changed. The 
parameters are the same as those of WIND_GET, option 9. 

10: The currently-active window is set. Only one window can be 
active, that is, changeable by the user at anyone time. This 
option corresponds to the WIND_GET function, option 10. 

14. The address of a new GEM desktop drawing for the basic 
state is passed. 

wi sw1 

wi sw2 

wi sw3 

address of the object tree 
structure (low word) 
address of the object tree 
structure (high word) 
index of the first object to be 
drawn 

298 



Abacus Software GEM Programmer's Reference 

15: The relative size of the horizontal slider is changed. The 
parameters are the same as those of WIND_GET, option 15. 

16: The relative size of the vertical slider is changed. The 
parameters are the same as those of WIND_GET, option 16. 

C function call 

wi sreturn = wind set (wi shandle, wi sfield, 
wi_swl, wi_sw2, wI_sw3, wi_sw4); 

299 



Abacus Software GEM Programmer's Reference 

WIND FIND Opcode = 106 

Function 

The window handle of the window under the mouse pointer is returned. A 
value of zero means that the mouse pointer is not positioned over a window, 
but empty screen space. 

control (0) 106 
control (1) 2 
control (2) 1 
control (3) 0 
control(4) 0 

intin(O) X-coordinate of the mouse position 
(wi fmx) 
intTn(l) Y-coordinate of the mouse position 
(wi fmy) 

-

Output 

intout (0) window handle (wi freturn) 

C function call 

wi freturn wind_find(wi fmx, wi fmy); 

300 



Abacus Software GEM Programmer's Reference 

WIND UPDATE Opcode = 107 

Function 

This function can assume two different functions: 

1. The AES is informed that the application is rebuilding screen area 
or that the rebuilding is completed. GEM does not allow an user 
actions during this time. 

2. The AES is informed that the application assumes the supervision 
of the mouse functions or that GEM is to assume them again. In 
the first case, the AES does not report to the application anymore 
if the user wants to change the position and size of a window. In 
addition, the drop-down menus are inactive. 

control (0) 107 
control (1) 1 
control (2) 1 
control (3) 0 
control (4) 0 

intin(O) = wi_ ubegend 

Output 

intout(O) = wi ureturn 

O=An error occurred 
n (positive number)=No error occurred 

wi_ubegend may have the following values: 

0: End of the screen construction (END UPDATE) 
1: Start of screen construction (BEG UPDATE) 
2: End of the mouse control through the user 

(END _ MCNTRL) 
3: Start of the mouse control through the user 

(BEG_MCNT~) 

301 



Abacus Software GEM Programmer's Reference 

C function call 

wi ureturn 

302 



Abacus Software GEM Programmer's Reference 

WIND CALC Opcode = 108 

Function 

If the dimensions of the working area of a window are known, the outline 
dimensions are calculated. If the outline dimensions are known, the 
dimensions of the working area are calculated. 

control (0) 
control (0) 
control (0) 
control (0) 
control (0) 

intin(O) 
intin (1) 
intin(2) 
intin(3) 
intin(4) 
intin (5) 

Output 

intout (0) 
intout (1) 
intout(2) 
intout(3) 
intout(4) 

108 
6 
5 
o 
o 

wi ctype 
wi-ckind 
wi cinx 
wi_ciny 
wi cinw 
wi-cinh 

wi creturn 
wi coutx 
wi couty 
wi-coutw 
wi-couth 

wi _ ctype decides which of the two possible functions will be executed: 

o output of the total dimensions 
1 output of the dimensions of the working 

area 

wi ckind is a bit field which specifies the visible components of the 
boraer area of the window. These are used in the calculation of the window 
size. The meaning of the bits is the same as for the command 
WIND CREATE. 

303 



Abacus Software GEM Programmer's Reference 

wi_creturn is a return message: 

O=An error occurr ed 
n (positive number) =No error occurred 

Meaning of the remaining arrays depends on the function: 

Element: 

wi cinx 

wi ciny 

wi cnw 
wi- cnh 

wi coutx 

wi_ couty 

wi coutw 
wi- couth 

C function call 

Function O/function 1: 

X-coordi nate of the work ing area/total 
window 
Y-coordi nate of the work ing area / total 
window 
Width of the work ing a r ea / total window 
Height of the working area/total 
window 
X-coordinate o f t h e t otal 
window/working a rea 
Y-coordi nate of the tot al 
window/working a rea 
Width o f the t otal window/ working area 
Height of the t otal window/ working 
area 

wl creturn = wind calc(wi ctyp e, wi ckind, 
wi- cinx, wi ciny,wi cinw, - wi cinh , -
&wi_coutx, &wi_couty, &wi_cou t w, &wi_couth); 

304 



Abacus Software GEM Programmer's Reference 

4.2.4 Event handler 

An interactive application must be in the position to react to the following 
events: 

• keyboard event (the user presses a key) 
• mouse button event (the user presses a mouse button or lets 

go of it) 
• mouse event (the user moves the mouse in a 

rectangularly-bordered field or out of such a field) 
• message event (AES informs the application that the user 

would like to move a window, for instance, or has selected a 
menu option) 

• time event (the built-in clock has reached a specific value) 
• combined event (some combination of the events mentioned 

above occurs) 

With older operating systems, the programmer had to determine the 
occurrence of an event in a polling loop. It is almost impossible to receive 
messages from other processors at the same time in this manner, and so 
multi-tasking is impractical on such systems. It's different with the ST: 
thanks to good, well-thought-out software, supervising the events is a 
relative minor programming problem. How does this look in practice? The 
programmer informs the system which event or combination of events it 
should wait for. If the event has occurred, the AES passes a message to the 
programmer. The following contains an exact description of the events to 
which GEM can react. 

Event combination: 

As long as the system is waiting for just one type of event, other events that 
may be important are ignored. For this reason, the AES can wait for an 
arbitrary combination of events (multiple events). If one of the awaited 
events occurs, the AES leaves the waiting state and returns a value to the 
application that contains the information in coded form regarding which 
event occurred. When the application has reacted to this event, it can call the 
function to wait for an event combination again (EVNT MULTI). 

305 



Abacus Software GEM Programmer's Reference 

Keyboard event: 

The AES recognizes keyboard events; the keyboard code is passed to the 
program as a 16-bit value. See the keyboard table for the values (for 
standard characters, the low byte contains the ASCII code, while a scan 
code is found in the high byte). 

Mouse button event: 

The AES can recognize the button activation of mice with up to 16 buttons. 
A 16-bit word determines which buttons will be waited for, whereby the 
lowest-order bit corresponds to the button on the far left. On the ST a bit 
mask value of % 10 means that the AES will wait for the user to press the 
right button. The AES can also register if a button was pressed several times 
within a time interval. In this manner "double-clicks" can be recognized 
within a program. The AES informs the program how often a specific 
button was pressed within a time interval, and the programmer can 
determine the upper limit of the value it returns. 

Mouse event: 

In interactive applications programs, its possible that entering or exiting a 
screen area with the mouse will trigger some specific action on the part of 
the program. Let us take as an example the mini drawing program "Dr. 
Doodle" included with the development package. As soon as the mouse 
pointer encounters the drawing field, it is converted from the arrow form to 
a crosshair. The AES is able to recognize the mouse entering or exiting a 
rectangular area. 

Time event: 

When displaying information on the screen designed to disappear after a 
predetermined period of time, it is useful to have a function available that 
waits that time period has elapsed. The AES can perform such a delay, 
where the delay time is given in milliseconds. 

306 



Abacus Software GEM Programmer's Reference 

Message event: 

As you can gather from the introductory sections and the work with the 
GEM desktop, one window on the screen is specially designated. It has a 
filled-in title line. This indicates that this window is the top window and 
thereby the active window, that is, this is the only window which the user 
can change in format by clicking the elements on the border region. To 
"activate" another window, the user need only click its surface. The AES 
informs the program of the wish of the user to activate a new window as 
well as the case that a user would like to manipulate the window format by 
activating an element of the border area. 

The GEM AES automatically takes over the supervision of the menu bar and 
the interaction of the user with the menu options. 

All of the functions can be quickly named, since all mentioned events can be 
supervised through a single function. The message event to the program, 
that one of the mentioned events has occurred, is accomplished through the 
pipeline principle (message pipe), that is, there exists a 16-byte buffer in 
which one report per event will be written. Reading an event by an 
application (function: APPL READ (AES)) has the effect that next event in 
the chronological order willbe read and the automatically erased from the 
buffer. The AES report can also be read directly from memory at the buffer 
address. The first 3 words of the buffer are allocated by the AES, 
independent of the type of event: 

Word 0: A number to designate the event. 

Word 1: apid (application ID) of the application that is responsible for 
the occurrence of the event. 

Word 2: The length of the report without consideration of the 16-byte 
boundary. If word 2 is zero, the report is smaller than 16 bytes, 
otherwise word 2 specifies the length minus 16 bytes. In this 
case you should be sure to make use of the function APPL READ 
(AES). -

The following events are held in the pipeline buffer: 

307 



Abacus Software GEM Programmer's Reference 

MN SELECTED: 

This event signals that the user has select an option from the drop-down 
menu: 

Word 0 = 10 
Word 3 = Object index of the menu title 
Word 4 = Object index of the menu entry 

WM REDRAW: 

The user has done something which makes it necessary to redraw some part 
of the screen surface, such as when a dialog box is to be erased from the 
screen. 

Word 0 = 20 
Word 3 = Window handle 
Word 4 = X -coordinate of the area to be redrawn 
Word 5 = Y -coordinate of the area to be redrawn 
Word 6 = Width of the area to be redrawn 
Word 7 = Height of the area to be redrawn 

WM TOPPED: 

The user wants to activate a window. Only one winqow may be active at a 
time. This can be changed in size and position. 

Word 0 = 21 
Word 3 = Window handle 

WM CLOSED: 

The user clicked the close box of the active window in order to close it. 

Word 0 = 22 
Word 3 = Window handle 

308 



Abacus Software GEM Programmer's Reference 

WM FULLED: 

The user clicked the full box in order to enlarge the window to screen size or reduce it again. 

WM ARROWED: 

The user clicked one of the four arrows or one of the two scroll fields in order to move a line (or column) or page. 

WordO = 24 
Word 3 = Window handle 
Word 4 = Field of the border area which was clicked: 

o = Page up 
1 = Page down 
2 = Line up 
3 = Line down 
4 = Page left 
5 = Page right 
6 = Column left 
7 = Column right 

WM HSLID: 

The user moved the horizontal slider to a new position. 

WordO = 25 
Word 3 = Window handle 
Word 4 = Relative position of the slider from 0-1000 

0 = Far left 
1000 = Far right 

309 



Abacus Software GEM Programmer's Reference 

WM VSLID: 

The user moved the vertical slider to a new position. 

WordO = 26 
Word 3 = Window handle 
Word 4 = Relative position of the slider from 0-1000 

O= Top 
1000 = Bottom 

WM SIZED: 

The user selected the size box with the mouse and wants to change the size 
of the window. The new size is specified including the border elements. 

WordO = 27 
Word 3 = Window handle 
Word 4 = Desired X-coordinate of the window (matches the current 

X-coordinate) 

Word 5 = Desired Y-coordinate of the window (matches the current 
Y -coordinate) 

Word 6 = Desired (new) window width 
Word 7 = Desired (new) window height 

WM MOVED: 

The user selected the position field with the mouse and want to change the 
position of the mouse. The new position is specified including the border 
elements. 

WordO = 28 
Word 3 = Window handle 
Word 4 = Desired (new) X-coordinate of the window 
Word 5 = Desired (new) Y -coordinate of the window 
Word 6 = Desired (new) width of the window (matches the current width) 
Word 7 = Desired (new) height of the window (matches the current height) 

310 



Abacus Software GEM Programmer's Reference 

WM NEWTOP: 

The application is infonned that a window was activated. 

WordO= 30 
Word 3 = Window handle 

AC OPEN: 

The user selected one of the six possible desk accessories. 

WordO = 30 
Word 3 = The menu identification number, which can be read through the 

function MENU_ REGISTER (AES). 

AC CLOSE: 

This event occurs under the following conditions: 

-The screen is cleared 
-The window data have changed 
-The running application as interrupted 

Word 0 = 31 
Word 3 = Menu ID number (see also AC _OPEN) 

Here is a list of all functions that react to events or the management of the 
pipeline: 

311 



Abacus Software GEM Programmer 's Reference 

EVNT KEYBD: Opcode = 20 

Function 

The AES waits for a keypress and outputs the code of the pressed key. 

control (0) 20 
control (1) 0 
control (2) 1 
control (3) 0 
control (4) 0 

Output 

intout (0) code of the pre ssed ke y (ev_kreturn) 

C function call 

ev kreturn evnt_keybd(); 

312 



Abacus Software GEM Programmer's Reference 

EVNT BUTTON: Opcode = 21 

Function 

The AES waits until one (or more) mouse buttons are pressed. 

control (0) 21 
control (0) 3 
control (0) 5 
control (0) 0 
control (0) 0 

intin(O) ev bclicks 
intin(O) ev bmask 
intin(O) ev bstate 

Output 

intout(O) 
intout (1) 
intout(2) 
intout(3) 
intout (4) 

ev breturn 
ev bmx 
ev_bmy 
ev bbutton 
ev bkstate 

ev bclicks: The number of "mouse clicks" which should lead to a response from the application. Usually the value is one for a simple keypress or 2 for a double click. Larger values should not be specified since not every user can press the mouse button several times in a fraction of a second. 

ev bmask: Each mouse button which should be taken into account when reading the mouse buttons is represented by a set bit: 

01 = left button 
02 = right button 
03 = both buttons 

313 



Abacus Software GEM Programmer's Reference 

ev _ bstat : This determines which state of the mouse buttons specified in 
ev _ bmask should be relevant in generating the event. The same bit layout 
as above applies and the bit values have the following meaning: 

0= button not pressed 
1 = button pressed 

ev _ bret urn: Specifies how often the mouse button is pressed. This 
number lies between 1 and ev bclicks. 

ev bmx: X-coordinate of the mouse pointer at the time the button was 
pressed. 

ev bmy: Y-coordinate of the mouse pointer at the time the button was 
pressed. 

ev_button: Pressed mouse buttons; values as with ev_bmask and 
ev bstate. 

ev bkstate: Status of the keys of the keyboard which do not send an 
ASCII value. The following bit values apply: 

1 = right shift key 
2 = left shift key 
4 = control key 
8 = alternate key 

Bit=O: key not pressed 
Bit=1: key pressed 

C function call 

ev breturn = evnt button(ev bclicks, ev bmask, 
ev_bstate, &ev bmx, &ev_bmy~ &ev_button~ 
&ev_bkstate) ; 

314 



Abacus Software GEM Programmer's Refereuce 

EVNT MOUSE: Opcode = 22 

Function 

The AES waits until the mouse pointer enters or exits a defined rectangular field. 

control(O) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin (1) 
intin (0) 
intin (0) 
intin (0) 

Output 

intout(O) 
intout (1) 
intout(2) 
intout(3) 
intout (4) 

22 
5 
5 
o 
o 

ev_moflags 
ev mox 
ev moy 
ev-mowidth 
ev=moheight 

ev moresvd 
ev momx 
ev_momy 
ev mobutton 
ev mokstate 

ev _ mo flag s: Specifies which functions should be activated: 

o = End function upon entry in the rectangle 
1 = End function upon exit from the rectangle 

ev _ mox: X-coordinate of the rectangle 

ev _ moy: Y-coordinate of the rectangle 

ev mowidth: Width of the rectangle 

315 



Abacus Software GEM Programmer's Reference 

ev _ moheight: Height of the rectangle 

ev _ moresvd: Reserved for future applicatio::s; always set to 1 

ev _ momx: X-position of the mouse pointer when generating the event 

ev _ momy: Y-position of the mouse pointer when generating the event 

ev mobutton: Status of the mouse buttons when generating the event. 

Thefollowing button layout applies: 

1 = left button 
2 = right button 

Bit=O: key not pressed 
Bit= 1: key pressed 

ev _ mokstat e: Status of the keyboard when generating the event: 

1 = right shift key 
2 = left shift key 
4 = control key 
8 = alternate key 

Bit=O: key not pressed 
Bit=l: key pressed 

C function call 

ev moresvd = evnt mouse (ev mof l ags, ev mox, 

ev moy, ev_mowidth, ev_moheTght, &ev_ momx, 

&ev_momy, &ev_mobutton, &ev_mokstate); 

316 



Abacus Software GEM Programmer's Reference 

EVNT TIMER: Opcode = 24 

Function 

The AES waits until a certain amount of time has elapsed. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin (1) 

Output 

24 
2 
1 
o 
o 

ev tlocount 
ev-thicount 

intout(O) = ev tresvd 

ev tlocount, ev thicount: Low word and high word of a 64-bit value which specifies the number of milliseconds which the AES should 
wait. 

ev t re s vd: Reserved for future applications; the value always set to 1. 

C function call 

ev tresvd 

317 



Abacus Software GEM Programmer's Reference 

EVNT MESAG: Opcode = 23 

Function 

The AES waits until a report is present in the event buffer. 

control (0) 23 
control (1) 0 
control (2) 1 
control (3) 1 
control (4) 0 

addrin(O) = ev_mgpbuff 

Output: 

intout(O) = ev_mgresvd 

ev _ mgre svd: Reserved for future applications; the value is always set to 

1. 

ev _ mgpbuff: Address of the 16-byte memory area at which the report is 

to be placed (message pipe). 

C function call 

318 



Abacus Software GEM Programmer's Reference 

EVNT MULTI: Opcode = 25 

Function 

The AES waits for the occurrence of one or more events. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin(l) 
intin(2) 
intin (3) 
intin(4) 
intin (5) 
intin(6) 
intin (7) 
intin (8) 
intin(9) 
intin(10) 
intin (11) 
intin(12) 
intin(13) 
intin (14) 
intin(15) 

addrin(O) 

25 
16 
7 
1 
o 

ev mflags 
ev-mbclicks 
ev mbmask 
ev mbstate 
ev_mmlflags 
ev mmlx 
ev mmly 
ev-mmlwidth 
ev-mmlheight 
ev-mm2flags 

ev mm2x 
ev-mm2y 
ev-mm2width 
ev=mm2height 
ev mtlocount 
ev-mthicount 

319 



Abacus Software 

Output 

intout(O) 
intout (1) 
intout(2) 
intout (3) 
intout(4) 
intout (5) 
intout (6) 

ev mwhich 
ev mmox 
ev_mmoy 
ev mmobutton 
ev mmokstate 
ev mkreturn 
ev mbreturn 

GEM Programmer's Reference 

Most parameters are explained in the previous functions. The function can 

respond to two mouse events, the parameters for the fIrst rectangle have the 

designation ev _ mm1 ... , those for the second ev _ mm2 . " 

ev_mflags: The type of combined event whose occurrence should be 

awaited (one of the subevents). Each active event is represented by a set bit. 

The following bit layout applies: 

Bit 0: 
Bit 1: 
Bit 2: 
Bit 3: 
Bit 4: 
Bit5: 

MU KEYBD (keyboard result) 
MU -BUTTON (mouse button event) 
MU - M1 (mouse event, first rectangle) 
MU - M2 (mouse event, second rectangle) 
MU - MESAG (report occurred) 
MU = TIMER (timer event) 

ev mwhich: The result or the results which has/have occurred. The bit 

layout is the same as for ev _ mflags. 

C function call 

ev_mwhich = evnt_multi (ev_mflags, ev_mbclicks, 

ev mbmask, ev mbstate, ev mmlflags, ev mmlx, 

ev-mmly, ev mmlwidth, ev mmlheight, ev-mm2flags, 

ev-mm2x, ev-mm2y, ev mm2width, ev mm2height, 

ev=mmgpbuff~ ev_evmtlocount, ev_mthicount, 

&ev mmox, &ev mmoy, &ev mmobutton, &mmokstate, 

&ev-mkreturn,-&ev_mbreturn); 

320 



Abacus Software GEM Programmer's Reference 

APPL READ: 

Function 

A specified number of bytes are read from an event buffer. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin (1) 

11 
2 
1 
1 
o 

ap_rid 
ap_rlength 

addrin(O) = ap_rpbuff 

Output 

intout(O) = ap_rreturn 

Opcode = 11 

apr i d: Identification number of the application for which the event 
buffer is to be read. 

ap_ rlength: The number of bytes to be read. 

ap rreturn: 0= an error occurred 
n (positive number)= no error occurred. 

ap _ rpbuff: Address of the buffer which contains the byte to be read. 

C function call 

ap_rreturn 
ap_ rbuff) ; 

321 



Abacus Software GEM Programmer's Reference 

APPL WRITE: Opcode = 12 

Function 

A specified number of bytes is written in an event buffer. 

Input 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

i ntin(O) 
intin (1) 

12 
2 
1 
o 
o 

ap_wid 
ao_wlength 

addrin(O) = ap_wpbuff 

Output 

intout(O) = ap_wreturn 

a p wid: Identification number of the application for which the event 
buffer is to be written (in general another process running in parallel/an 
application which is to receive information through this command). 

ap _ wlength: The number of bytes which are to be written. 

ap wreturn: O=an error occurred 
n (positive number)=no error occurred 

ap _ wpbuff: Address of the buffer which contains the bytes to be written. 

C function call 

ap_ wreturn appl_write(ap_wid, ap_ wlength, 
ap_ wpbuff) ; 

322 



Abacus Software GEM Programmer's Reference 

4.2.5 Object representation 

Objects are shapes which can be made visible on the screen. There is a set 
of standard objects such as rectangles, strings, icons. The programmer can 
also create his own objects, such as his own icons or strings in 
non-standard type styles. For this purpose it is necessary to know the 
structure of the object storage precisely. 

Imagine a large white box in the middle of the screen. In this box are to be 
two smaller boxes next to each other. In the right box is a small drawing. 
So there are a total of four objects. These objects have a certain relationship 
to each other. The large white box contains all the other objects. It can be 
viewed as a kind of root which branches in two directions: each branch 
stands for one of the two smaller boxes. There is another branch coming 
from the second branch: the small drawing mentioned above. 

There are therefore objects which have no, one, or several other subordinate 
objects. Such an organization is called a tree structure. The tree in our 
example has three hierarchy levels: the root, the two branches (on a 
common level), and the branch coming from the second branch. The 
following rule is important: All subordinate objects must be created such 
that they fit in the object above them. What does the layout of elements look 
like in memory? Since the memory is a one-dimensional list, and we want to 
show a two-dimensional tree (it can grow in height as well as width). We 
must have a way to represent this structure, we use a pointer. 

The information about the objects are stored in memory in arbitrary order, 
where 24 bytes represent each object. Six of these bytes are reserved for 
three pointers. The objects receive a number from 0 (first object) to n-1 (last 
object) depending on their position in memory. One pointer contains the 
number (called the index) of the object subordinate to this one. If the object 
contains no subordinate objects (such as the small drawing on our 
example), both of these pointers are set to -1 ($FFFF) in order to tell the 
AES that neither a fIrst nor a last subordinate object exists for this object. 

Objects with more than two subordinate objects are not placed in the group 
of objects lying one level deeper in the hierarchy. For this purpose each 
object has a third pointer which points to the next object on the same level. 

323 



Abacus Software GEM Programmer's Reference 

If, for example, an object with index 5 has 4 subordinate objects having 
indices 8 to 11, object 8 points to object 9, object 9 to object 10, object 10 
to object 11. Object 11 cannot point to an additional object; it therefore 
points back one level higher to object 5. 

As mentioned above, each object in the object list has a 24-byte entry. This 
is organized as follows: 

Word 0: 
Word 1: 
Word 2: 
Word 3: 
Word 4: 
Word 5: 
Word 6 and word 7: 
Word 8: 

Word 9: 

Word 10: 
Word 11: 

next object 
starting object 
ending object 
object type 
object flags 
object status 
Object specification 
object X-coordinate (relative to the object above) 

object Y-coordinate (relative to the object above) 

Object width 
Object height 

next object: the index of the next object belonging to a group of 
subordinate objects. If this involves the root object, the value must be -1 
($FFFF). 

Starting object: The index of the flrst subordinate object. 

Ending object: The index of the last subordinate object. 

Ob j ect type: Type of the object (see description below). 

Ob j e ct flags: Selectability of objects (see description below). 

Object status: State of the object (see description below). 

Object specification: The following rule applies to the object 
types G_BOX, G_IBOX, and G_BOXCHAR: 

Word 7 is the object color. The high byte of word 6 is a letter code for 
G _ BOXCHAR, else it is zero. The low byte of word 6 specifies the thickness 
of the border: 

324 



Abacus Software GEM Programmer's Reference 

Zero = no border 
1-128 (positive number) = thickness of border toward inside 
-1-(-127) (negative number) = thickness of border toward outside 

For all other object types the object specification is a pointer (32 bits) to an 
object-specific data structure. 

Object types 

The following object types are realizable (ordered by object type number): 

20: G BOX 
21: G TEXT 
22: G BOXTEXT 
23: G IMAGE 
24: G PROGDEF 
25: G IBOX 
26: G BUTTON 
27: G BOXCHAR 
28: G STRING 
29: G FTEXT 
30: G FBOXTEXT 
31: G ICON 
32: G TITLE 

G _ BOX: a rectangular box 

G TEXT: graphic text; the object specification is a pointer to a TED INFO 
strU.cture. The pointer tep text, which points to a text to be outputted, is 
relevant here. -

G BOXTEXT: a rectangular box that contains text. The object specification 
isa pointer to a TED INFO structure. The pointer tep _text, which points 
to a text to be outputted, is relevant here. 

G _ IMAGE: a drawing in the bit-raster mode. The object specification is a 
pointer to a BITBLK structure. 

G PROGDEF: an object defined by the programmer. The object 
specification is a pointer to an APPLBLK structure. 

325 



Abacus Software GEM Programmer's Reference 

G I BOX: an "invisible" rectangle without fill. It can serve as a 
super-ordinate object that is not intended to be visible. 

G _ BUTTON: centered graphic text in a rectangle. The object specification 
points to a text to be outputted, which must be terminated with a zero byte. 

G BOXCHAR: a rectangle containing a single centered letter. The low byte 
ofthe high word of the object specification contains the letter ccxie. 

G STRING: graphic text; the object specification is a pointer to the text to 
be printed (used for the drop-down menus). 

G_FTEXT: formatted graphic text; the object specification points to a 
TED INFO structure. 

G FBOXTEXT: a rectangular box containing formatted graphic text. The 
o6]ect specification points to a TED INFO structure. 

G _ I CON: an icon; the object specification points to a I CONBLK structure. 

G TITLE: graphic text; the object specification points to a string, which 
must be terminated with a zero byte (used for the menu titles of the 
drop-down menus). 

Data structures 

TEDINFO structure: 

This structure serves for formatted text output or input. It is possible to edit 
text with the help of the command OBJC _ ED IT. This data structure is used 
by the object types G TEXT, G BOXTEXT, G FTEXT, and 
G FBOXTEXT, whereby the object speCification is a pointer to the address 
of the pertaining TEDINFO structure. The following memory layout 
applies: 

Word 0 and word 1: te ptext 
Word 2 and word 2: te - ptmplt 
Word 4 and word 5: te pvalid 
Word 6: te font -
Word 7: te resvdl 
Word 8: te -just 
Word 9: te color 

326 



Abacus Software 

Word 10: te resvd2 
Word 11: te - thickness 
Word 12: te -txtlen 
Word 13: te= tmplen 

GEM Programmer's Reference 

te ytext: The pointer to the string to be outputted. If the fIrst character 
in the string is a parenthesis, this character and all of the following are 
interpreted as spaces. Important for a text string is that it be terminated with 
a zero byte. 

te ptmplt: A pointer to a string that will be mixed with te ptext 
and uses as the input mask for text input. A character position that is to be 
changeable by the user must have the character "_". At these positions the 
user can type in another character, which can be limited by te pvalid 
(such as only digits allowed). When first printing the string, the characters 
in te ptext are used. The string te ptmpl t must be terminated with a 
zero bYte. -

te pvalid: This is a pointer to a string that specifies which type(s) of 
characters are allowed for text input. Each input position can be set 
separately: 

9: Only digits 0-9 are allowed 
A: Only uppercase letters A _ Z or spaces are allowed 
a: Only upper and lowercase letters or spaces are allowed 
N: Only digits 0-9 and uppercase letters A-Z or spaces are allowed. 
n: Digits 0-9 and upperllowercase letters A-Z or a space are allowed. 
F: All valid TOS fIlename characters and ? * : 
p: All valid TOS fIlename characters and \ : ? * 
P: All valid TOS fIlename characters and \ : 
X: All characters are allowed 

te font: Number of the character set that should be used. 
-3 = normal character set 

5 = reduced character set 

te _ resvdl : reserved for future applications. 

t e jus t: specifIes if the text should be formatted. 
- 0 = left justifIed 

I = right justified 
2 = centered 

327 



Abacus Software GEM Programmer's Reference 

t e _ co lor: detenninationof color (see below) 

re _ resvd2 : reserved for future applications 

te_ thickness: thickness of the rectangle border 
0 = no border 
1-128 (positive number) = thickness of border toward inside 
-1-( -127) = thickness of border toward outside 

te_ txtlen: length of the string to which te_pte xt points. This value 
must be one larger than the true value, because the zero byte at the end of 
the string will be counted. 

te tmplen: length of the string to which te ptmplt points. This value 
must be one larger than the true value, since the zero byte at the end of the 
string will be counted. 

Here is an example of how text and text format are mixed: 

1. t e _ ptext is to be the text for a clock that should always appear as the 
basic value when first displayed: "1530" (3:30 PM). 

2. te_ ptmp l t is to be the template which determines the input line: 
"Enter clock time: / ". 

3. teyvalid indicates that only digits are allowed on input: "9999". 

4. The first two strings are mixed on output: "Enter clock time: 15/30". 

5. If the user enters the digits "1640", the text "Enter clock time: 16/40" 
appears. The next section contains information on the editing possibilities in 
the input field. 

ICONBLK Structure 

Icons can be defined with the help of the object type G _ I CON. The object 
specification is a pointer to the address of an ICONBLK structure. The 
structure is constructed as follows: 

Word 0 and word 1: i b_pmask 
Word 2 and word 3: ib_pdata 

328 



Abacus Software GEM Programmer's Reference 

ICONBLK Structure 

Icons can be defined with the help of the object type G ICON. The object 
specification is a pointer to the address of an ICONBLK structure. The 
structure is constructed as follows: 

Word 0 and word 1: ib pmask 
Word 2 and word 3: ib - pdata 
Word 4 and word 5: ib - ptext 
Word 6: i b char -
Word 7: ib - xchar 
Word 8: ib - ychar 
Word 9: ib - xicon 
Word 10: ib yicon 
Word 11: ib - wicon 
Word 12: ib -hicon 
Word 13: ib - xtext 
Word 14: ib - ytext 
Word 15: ib - wtext 
Word 16: ib -htext 
Word 17: 0 

ib _pma s k: Pointer to an array of words that describes the icon mask. 

Bit=1 : screen point is visible 
Bit=O : screen point is invisible 

ib _pda t a: Pointer to an array of words that describes the appearance of 
the icon (bit values stand for different colors). 

ib _ptext: Pointer to a text string that is to appear in the icon. The last 
character of the string must be a zero byte. 

ib _ char: Letter code of a single character to appear in the icon 

ib _ xchar: X-coordinate of the single character. 

ib _ ychar: Y-coordinate of the single character. 

ib xicon: X-coordinate of the icon. 

ib _ yicon: Y-coordinate of the icon. 

329 



Abacus Software GEM Programmer's Reference 

ib wicon: Width of icon in pixels. The value must be divisible by 16. 

ib _ hicon: Height of the icon in pixels. 

ib xtext: X-coordinate of the icon text. 

ib _yt e xt: Y -coordinate of the icon text. 

ib _ wtext: Width of the icon text in pixels. 
ib _ htext: Height of the icon text in pixels. 

BITBLK Structure: 

The object type G IMAGE allows the display of bit-mapped graphics. The 
object specification points to a B ITBLK structure, which contains more 
information about the size, etc. of the graphic: 

Word 0 and word 1: bi pdata 
Word 2: bi wp -
Word 3: bi hl 
Word 4: bi x 
Word 5: bi-y 
Word 6: bi-color 

bi pdata: A pointer to a bit-map array. The array is constructed of word 
andrepresents the bit-mapped graphic. 

bi wb: The width of the bit-mapped graphic in bytes. This number must 
be even because the bit-map array consists of words. 

bi _ hl: The height of the bit-mapped graphic in pixels. 

b i _~ l: The X-position of the points in the bit-mapped array. The 
position is declared in the bit form declaration. 

bi _y: Position of the first row in the bit-mapped array in bit form. 

bi _color: Color of graphic 

330 



Abacus Software GEM Programmer's Reference 

APPL BLK Structure: 

With the help of the object type G PROGDEF, you can tie in your own 
drawing routines in a tree structure in place of an object. For example, you 
can automatically have a bell sound each time a structure of objects appears 
on the screen by tying in the bell program as an "object" in the tree. For the 
object type G_PROGDEF the object specification points to an APPLBLK 
structure: 

Word 0 and word 1: ab code 
Word 2 and word 3: ab_parm 

ab code: Pointer to the address of the routine 

ab _parm: An optional value for the AES to pass to the routine 

Object flags: 

The object flags determine which function an object in a dialog box is to 
have (see next section). Each flag is represented by a bit in the word 
ob _flag s of the object storage structure: 

No bit set: NONE 
Bit 0: SELECTABLE 
Bit 1: DEFAULT 
Bit 2: EXIT 
Bit 3: EDITABLE 
Bit 4: RBUTTON 
Bit5: LASTOB 
Bit 6: TOUCHEXIT 
Bit 7: HIDETREE 
Bit 8: INDIRECT 

SELECTABLE: The object functions as an input object. The user can select 
the object, and this then appear in reverse. 

DEFAULT: Indicates that it is not only possible to activate this object 
through selecting with the mouse, but also by pressing the RETURN key. 
In general, such an object is used as a button to end a dialog call. Only one 
object in the tree may be designates as "DEFAULT'. 

331 



Abacus Software GEM Programmer's Reference 

EXIT: Clicking this button causes control to be passed from the AES over 
the dialog (see next section) back to the application. 

EDITABLE: Indicates that the object is changeable by the user in some 
manner. 

RBUTTON: Radio buttons are groups of more than two objects, which 
have a special property when selecting: As soon as one button of the group 
is activated, the previously active button (displayed in reverse) is "released" 
(displayed in normal), while the selected one is displayed in reverse. The 
elements of a group of radio buttons must all be subordinate objects of the 
same object. 

LASTOB: Indicates that an object in the sequential list of the tree structure is 
the last object. There can be only one "LASTOB" object per tree. 

TOUCHEXIT: Control is passed back to the application as soon as the 
mouse pointer is on the object and the mouse button is depressed. In 
contrast to the EXIT flag, the mouse button need not be released in order to 
exit the dialog box. 

HIDETREE: All subordinate objects (in all levels) of the object are made 
"invisible", that it, they are no longer available for the functions 
OBJC DRAW and OBJC FIND. 

INDIRECT: Indicates that the object specification is not the real value but a 
pointer to this value. 

Object status: 

The bits in the value ob state of the object storage structure determine 
how the object is to be displayed: 

No bit set: NORMAL 
Bit 0: SELECTED 
Bit 1: CROSSED 
Bit 2: CHECKED 
Bit 3: DISABLED 
Bit 4: OUTLINED 
Bit 5: SHADOWED 

332 



Abacus Software GEM Programmer's Reference 

SELECTED: The object is displayed in reverse in order to show that the 
state which it represents is active. 

CROSSED: An "X" is drawn in the object. Can only be used with 
... box ... object types. 

CHECKED: A symbol marking the object as "checked off' is drawn in the 
object. 

DISABLED: The object is drawn shaded (used for text). 

OUTLINED: A border is drawn around the object 

SHADOWED: A shadow falling to the lower right is drawn around the 
object. 

Colors: 

All data structures which use a color word use the following color coding 
and scheme: 

white 0 
black 1 
red 2 
green 3 
blue 4 
cyan 5 
yellow 6 
magenta 7 
white 8 
black 9 
light red 10 
light green 11 
light blue 12 
light by an 13 
light yellow 14 
light magenta 15 

333 



Abacus Software 

The following bit division is used: 

MSB LSB 
Bit: 1111110000000000 

5432109876543210 

Function: aaaabbbbcdddeeee 

a: border color 

b: text color 

c: write mode: 

O=transparent 
1=covering 

d: fill mode: 

0 = no fill 
7 = covering fill 
1-6 = fi11levels (density increasing) 

e: fill color 

GEM Programmer's Reference 

Following is a list of the most important object functions: 

334 



Abacus Software GEM Programmer's Reference 

OBJC DRAW: Opcode = 42 

Function 

Draws an object tree, whereby a rectangle can be selected which sets the 
drawing borders. In addition, the level to which the tree will be drawn can 
be selected. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin(l) 
intin(2) 
intin(3) 
intin(4) 
intin(5) 

42 
6 
1 
1 
o 

ob drstartob 
ob drdepth 
ob-drxclip 
ob -dryclip 
ob-drwclip 
ob=drhclip 

addrin(O) = ob drtree 

Output: 

intout(O) = ob drreturn 

ob_drstartob: the index of object to be drawn first. 

ob drdepth: the number of levels to be drawn. Objects with a higher 
level number than that specified will be ignored when drawing. The 
following level declaration applies: 

0: root object 
1: root object and subordinate objects 
2: root object, subordinate objects, and objects subordinate to 

these objects. 
3-n: etc. 

335 



Abacus Software GEM Programmer's Reference 

ob _ drxclip: X-coordinate of bordering rectangle. 

ob _ dry c 1 i p: Y -coordinate of bordering rectangle. 

ob_drwclip: Width of the bordering rectangle. 

ob _ drhclip: Height of the bordering rectangle. 

ob drret urn: 0= an error occurred 
n (positive number)= no error occurred 

ob drt ree: Address of the object tree 

C function call 

ob drreturn = objc draw(ob drtree, ob drstartob , 
ob drdepth, ob drxclip, ob_dryclip, ob_ drwclip, 
ob=drhclip) ; 

336 



Abacus Software GEM Programmer's Reference 

OBJC FIND: 

Function 

Determines the object under the mouse pointer. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

-intin(O) 
intin (1) 
intin(2) 
intin(3) 

43 
4 
1 
1 
o 

ob fstartob 
ob_ fdepth 
ob fmx 
ob_fmy 

addrin(O) = ob ftree 

Output 

intout(O) ob fobnum 

Opcode = 43 

ob fstartob: the index of the object at which the search is to start. 

ob fdepth: the number of levels to be searched (declaration as for 
OBJC _ DRAW). 

ob fmx: X-position of the mouse pointer 

ob _ fmy: Y -position of the mouse pointer 

ob ftree: address of the tree to be searched. 

ob _ f obn urn : index of the object under the mouse pointer (-1 = no object 
is under the mouse pointer). 

337 



Abacus Software GEM Programmer's Reference 

C function call 

ob fobnum = objc_find(ob_ ftree, ob_fstartob, 
ob_fdepth, ob_fmx, ob_fmy); 

338 



Abacus Software GEM Programmer's Reference 

OBJC OFFSET: Opcode = 44 

Function 

Calculates the coordinates of an object relative to the screen origin. 

control (0) 44 
control (1) 1 
control (2) 3 
contro l (3) 1 
control (4) 0 

intin(O) = ob_ofobject 

addrin(O) = ob of tree 

Output 

intout (0) 
intout(l) 
intout (2) 

ob ofret urn 
ob ofxoff 
ob=ofyoff 

ob _ of ob j e ct: the index of the object whose pointer is to be returned. 

ob _ oft r e e: address of the object tree. 

ob ofreturn: 0 = an error occurred 
n <Positive number) = no error occurred 

ob _ ofxoff: X-coordinate of the object in relation to the screen 

ob _ of yo f f: Y -coordinate of the object in relation to the screen 

C function call 

ob ofreturn = objc_offset(ob_ oftree, ob_ofobject, 
&ob_ ofxoff, &ob_ofyoff); 

339 



Abacus Software GEM Programmer's Reference 

OaJC EDIT: Opcode = 46 

Function 

The user can enter text in the object, as long as this has type G _TEXT or 
G BOXTEXT. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin(l) 
intin (2) 
intin(3) 

46 
4 
2 
1 
o 

ob_edobject 
ob edchar 
ob-edidx 
ob-edkind 

addrin(O) = ob edtree 

Output 

intout (0) 
intout (1) 

ob edreturn 
ob-ednewidx 

ob _ edob j e ct : the index of the object containing the text to be entered 

ob _ edchar: the character input of the user 

ob _ edidx: the number of the next character position in te _ ptext 

ob edkind: desired editor functions: 

0: reserved for future applications (ED START) 
l:mixte ptextandte ptmplt,cursorto(ED INIT) 
2: use te pvalid, input te ptext and display (ED CHAR) 
3: turn cursor off (ED _END) - -

340 



Abacus Software GEM Programmer's Reference 

(call function three times with ob _ edkind from 1 to 3) 

ob _ edt ree: address of the object tree 

ob edret urn: O=an error occurred 
n (positive number)=no error occurred 

ob_ednewidx: number of the next character position after calling the function OBJC EDIT. 

C function call 

ob edreturn = objc edit (ob edtree, ob edobject, 
ed_edchar, ob_edidx, ob_edklnd, &ob_ednewidx); 

341 



Abacus Software GEM Programmer's Reference 

OBJC CHANGE: Opcode = 47 

Function 

Change the value of the variable ob state. Only the objects within the 
specified bordering rectangle are changed in appearance. 

control (0) 
control ( 1 ) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin(l) 
intin(2) 
intin (3) 
intin(4) 
intin(5) 
intin(6) 
intin ( 7 ) 

47 
8 
1 
1 
o 

ob_ cobject 
ob cresvd 
ob-cxclip 
ob- cyclip 
ob= cwclip 
ob_chclip 
ob cnewstate 
ob credraw 

addrin(O) = ob ctree 

Output 

intout (0) ob creturn 

ob_cobject: the index of the object whose status is to be changed. 

ob _ cresvd: reserved for future applications; must be set to zero. 

ob _ cxclip: X-coordinate of the bordering rectangle 

ob _ c Y c 1 i p: Y -coordinate of the bordering rectangle 

ob _ cwc 1 i p: width of the bordering rectangle 

342 



Abacus Software GEM Programmer's Reference 

ob _ chclip: height of the bordering rectangle 

ob _ cnewstate: new object status of the object 

ob redraw: 0 = object should not be redrawn 
1 = object should be redrawn 

ob ctree: address of the object tree 

ob creturn: 0 = an error occurred 
n (positive number) = no error occurred 

C function call 

ob creturn = objc change(ob ctree, ob cobject, 
ob cresvd, ob cxclip, ob cyclip, ob cwclip, 
ob=chclip, ob=newstate, ob_redraw);-

343 



Abacus Software GEM Programmer's Reference 

4.2.6 Dialog box management 

A dialog box in GEM looks like a questionnaire that you fill out on the 
screen instead of on paper. The applications for a dialog box are unlimited: 
from input for data management software to computer-supported printing of 
lottery tickets. In order to simplify the programming of dialog boxes, the 
AES perfonns the following tasks: 

• displaying the dialog box 
• complete supervision of all user activities, that is, text input and 

selection of fields. 

Text fields were discussed in the previous section. When editing text, a 
large set of functions is a available to the user in order to make the input as 
effective as possible: 

-left and right arrows: the cursor is moved over the text left or right. 

-down arrow or tab key: the cursor is moved to the next input field. It 
is then positioned to the next available writing location. 

-up arrow or shift+tab: the cursor is moved to the previous input field. 
It is then positioned at the next available writing position. 

-delete key: deletes the character to the right of the cursor 

-backspace key: deletes the character to the left of the cursor and the 
cursor is moved one position to the left. 

-RETURN or Enter key: if an object has the flag "DEFAULT", the 
dialog is ended and program control is passed back to the application. 

-Escape: All characters of the input field are erased. 

If a character is entered which is not allowed by te pvalid, the AES tries 
to find the character in the text template (t e pt emp 1 t). If the result of the 
search is positive, the cursor behind the character found. 

When developing the dialog box you can follow one of two paths: develop 
the dialog with all of its objects and object hierarchies yourself or use the 
Resource Construction Set from Digital Research. The latter produces a file 
after compiling the C or Pascal source code which contains all the tree 

344 



Abacus Software GEM Programmer's Reference 

structure information and can be loaded with the RSRC LOAD function 
(AES) . 

A dialog box is not connected with window borders on the screen, that is, it 
can overlap one or more windows. When the user ends his interaction with 
the dialog box, the application must detemine which objects were changed. 
Programming a dialog call is completed in several steps. Step la) and I b) 
need only be executed if you have created a resource file with the RCS 
(Resource Construction Set) which you would like to use. Step la) need not 
be called again when working with the same dialog box if the resource file 
is still in memory. Steps 2,4, and 7 are optional. The following order is to 
be followed: . . 

la) Call RSRC LOAD in order to load the resource file into 
memory andrelease the memory space required for it. 

lb) The application calls RSRC GADDR in order to determine the 
address of the object tree justloaded. 

2) The routine FORM CENTER is called to set the coordinates of 
the dialog box such that it is located in the center of the screen. 

3) FORM_DIAL is called to reserve screen memory space. 

4) FORM _D IAL is called to draw a growing box. This results in 
the visual impression that the dialog box appears "out of 
nowhere." 

5) OBJC _DRAW is called to draw the dialog box. If step 2 was 
executed previously, the centered coordinates are used as the 
input coordinates for the function. 

6) FORM_DO is called. The AES now assumes complete control 
of the interaction between the user and dialog box until the user 
ends the dialog input by pressing the RETURN key or clicking 
an EXIT object. 

7) The function FORM _D IAL is called to draw a diminishing box 
so that the dialog box appears to shrink back to nothing. 

345 



Abacus Software GEM Programmer's Reference 

8) FORM DIAL is called to release the space reserved in step 3. 
The result is that the borders of the windows are redrawn, 
which may have been disturbed by displaying the dialog box. 

9) The working surfaces of the windows which were covered by 
the dialog box must be redrawn by the application. 

Following is a list of the functions which are required for dialog box 
management: 

346 



Abacus Software GEM Programmer's Reference 

RSRC LOAD Opcode = 110 

Function 

Memory space is released and an object tree structure is loaded into memory 
(resource file). 

control (0) 110 
control (1) 0 
control (2) 1 
control (3) 1 
control (4) 0 

addrin(O) = re_lpfname 

Output 

intout(O) = re lreturn 

re lreturn: O=an error occurred 
n (positive number)=no error occurred 

re _lpfname: pointer to a string containing the filename. The string must 
be terminated by a zero byte. 

C function call 

re lreturn rsrc_load(re lpfname); 

347 



Abacus Software GEM Programmer's Reference 

RSRC FREE Opcode = 111 

Function 

The memory space loaded by the command RSRC _LOAD is released. After 
this, the resource me in memory is no longer access able. 

control (0) 111 
control(l) 0 
control(2) 1 
control (3) 0 
control(4) 0 

Output 

intout(O) = re freturn 

re fret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

re freturn rsrc free(); 

348 



Abacus Software GEM Programmer's Reference 

RSRC GADDR Opcode = 112 

Function 

The address of a data structure in memory is determined. This can involve 
object trees or object-specific information. 

control (0) 
control (1) 
control(2) 
control (3) 
control (4) 

intin(O) 
intin(l) 

Output 

112 
2 
1 
o 
1 

re gtype 
re=gindex 

intout(O) = re_greturn 

addrout(O) = re_gaddr 

re gt ype: this value determines the type of data structure whose address 
is to be found: 

0: tree structure (of the tree loaded with RSRC LOAD) 
1: object (meaning of the following symboiS is explained in the 

previous section) 
2: TED INFO (text information) 
3: ICONBLK (icon information) 
4: BITBLK (bit-mapped graphic information) 
5: string (text) 
6: imagedata (pointer to a bit-mapped graphic) 
7: obspec (object specification) 
8: te_ptext (pointer to a string) 
9: te _ptmp 1 t (pointer to a text template) 
10: te yvalid (pointer to a text input limiting string) 
11: ib _pma s k (icon display mask) 
12: ib_pdata (icon bit map) 

349 



Abacus Software GEM Programmer's Reference 

13: ib ptext (icon text) 
14: bi - pdata (pointer to bit-mapped graphic) 
15: ad-frstr (address of a pointer to a free string) 
16: ad= frimg (address of a pointer of a free bit-mapped graphic) 

re _gindex: index of the object in question 

re gret urn: O=an error occurred 
- n (positive number)=no error occurred 

re _gaddr: the address of the data structure 

C function call 

re_greturn rsrc_ gaddr(re_gtype, re_gindex, 
&re_gaddr) ; 

350 



Abacus Software GEM Programmer's Reference 

RSRC SADDR Opcode = 113 

Function 

The address of a data structure is stored in an object-specific data structure. 

control (0) 113 
control (1) 2 
control(2) 1 
control (3) 1 
control (4) 0 

intin(O) re stype 
intin(l) re-sindex 

addrin(O) = re saddr 

Output 

intout(O) re sreturn 

re s type: type of data structure whose address is to be stored. The 
values are the same as for RSRC GADDR. 

re_sindex: the index of the object with the data structure to be changed. 

re s ret urn: O=an error occurred 
n (positive number)=no error occurred 

re saddr: address of the data structure 

C function call 

re sreturn 
re saddr); 

rsrc_saddr(re_stype, re sindex, 

351 



Abacus Software GEM Programmer's Reference 

FORM DO Opcode = 50 

Function 

The program control is passed to the AES, which then supervises the user 
input in the dialog box. 

control(O) 50 
control (1) 1 
control (2) 2 
control (3) 1 
control (4) 0 

intin(O) = fo dostartob 

addrin(O) = fo dotree 

Output 

intout (0) fo doreturn 

fo dostartob: If the dialog box contains text fields, this is the index of 
therirst text field to be edited. If there are no text fields, this value must be 
set to zero. 

fo dotree: the address of the object tree which described the dialog 
box. 

fo doret urn: the index of the object which the user selected and which 
caUses an end to the dialog box input. 

C function call 

fo doreturn form_do (fo_dotree, fo dostartob); 

352 



Abacus Software GEM Programmer's Reference 

FORM DIAL Opcode = 51 

Function 

The function FORM DIAL actually contains four functions numbered from 
o to 3. These four functions are required for dialog box management in the 
order presented (functions 1 and 2 are optional): 

reserve of a screen memory storage area 
draw an expanding rectangle 
draw a shrinking rectangle 
release the reserves screen memory area 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin(l) 
intin(2) 
intin(3) 
intin(4) 
intin(5) 
intin(6) 
intin (7) 
intin(8) 

Output 

intout (0) 

51 
9 
1 
1idummy 
o 

fo diflag 
fo-dilittlx 
fo=dilittly 
fo dilittlw 
fo-dilittlh 
fo dibigx 
fo-fibigy 
fo-fibigw 
fo=fibigh 

fo direturn 

353 



Abacus Software GEM Programmer's Reference 

fo _ d iflag: number of the function which is to be called: 

0: reserve a screen memory area (serves for later restoration of the 
window border components). 

1: draw an expanding box. This is drawn in several levels from 
d il ittl. .. to the size of dibig ... (optional). 

2: draw a shrinking box. This is drawn in several levels from 
d i b i g ... to di l ittl. .. (optional). 

3: release the reserved screen memory. The disturbed border 
elements of the window are restored. 

fo _ d ili tt l x: X-coordinate of the rectangle in its smallest size 

f 0 _ d i 1 i tt 1 y: Y -coordinate of the rectangle in its smallest size 

f 0 _ d i 1 i t t 1 w: width of the rectangle in its smallest size 

f o _ d il itt lh : height of the rectangle in its smallest size 

fo _ d i bigx: X-coordinate of the rectangle in its largest size 

f 0 _ d i b i gy: Y -coordinate of the rectangle in its largest size 

f o _ d i bigw: Width of the rectangle in its largest size 

f o _ d i bigh: Height of the rectangle in its largest size 

f o d i ret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

fo d i return = f orm dial(fo diflag, fo dilittx, 
f o d i lit ty, fo dilIttw, fo-dilitth, fo dix, fo_diy, 
fo_d i w, fO_ dih) ; - -

354 



Abacus Software GEM Programmer's Reference 

FORM CENTER Opcode = 54 

Function 

The coordinates of a specific object tree are calculated so that when 
displayed it will appear in the middle of the screen. 

eontrol(O) 54 
eontrol(l) 0 
eontrol(2) 5 
eontrol(3) 1 
eontrol(4) 0 

addrin(O) = fo etree 

Output 

intout (0) 
intout(l) 
intout (2) 
intout(3) 
intout (4) 

fo eresvd 
fo e x 
fo_ey 
fo ew 
fo eh 

fo etree: Address of the tree structure whose centered coordinates are 
to be calculated. 

fo ex: X-coordinate of the object tree (centered) 

fo _ ey: Y -coordinate of the object tree (centered) 

fo ew: Width of the object tree 

f 0 _ eh: Height of the object tree 

fo _ eresvd: reserved for future applications. The value is always 1. 

355 



Abacus Software GEM Programmer's Reference 

C function call 

f o cresvd = f orm_center (fo_ ctree, &fo_ cx, &f o_ cy, 
&fo_ cw, &f o ch); 

Error and warning messages: 

This happens with a certain type of dialog boxes. In addition to an icon 
(optional), accompanying text is outputted. The user can acknowledge the 
message by clicking one of at most three acknowledgement fields or 
pressing Return (optional). The size of the field for the warning message as 
well as the position (center of the screen) are determined by the AES and 
cannot be changed. The information about the 3 components is stored in a 
string, whereby each component must be set in a pair of square brackets. 

Construction of the string: 
[ icon ] [text ] [text of the acknowl edgement buttons ] 

The following syntax is assigned to the display of the components: 

1. Icon: A digit specifies which icon (if any) will be displayed to the left of 
the text. Three icons are available: 

0 = no icon 
1 = NOTE icon 
2 = WAIT icon 
3 = STOP icon 

2. Text: The text may consist of a maximum of 5 lines with a maximum of 
40 characters per line. The character "I" (logical OR) separates characters 
from each other. 

3. Text of the acknowledgement button: The number of the 
acknowledgement button may be up to 20 characters long. When the 
function is called, one knob can be defined as an exit knob, that is, clicking 
this button can be simulated by pressing the Return key. This knob has a 
heavy border. The text for the buttons is separated by the same line 
separator as for the text (see above). 

356 



,: 

Abacus Software GEM Programmer's Reference 

The following steps are automatically executed by the AES when the 
function FORM ALERT is called: 

1. A suitable object tree is defmed by means of the string described above. 

2. The screen memory is partially saved in a buffer. 

3. OBJC _ DRAW is called in order to display the warning message. 

4. FORM_DO is called in order to wait for user input. 

5. If the user has acknowledged the warning message, the destroyed 
screen area is restored. 

6. The application is informed which button was clicked. 

357 



Abacus Software GEM Programmer's Reference 

FORM ALERT Opcode = 52 

Function 

Display a warning message. 

control (0) 52 
control (1) 1 
control (2) 1 
control (3) 1 
control (4) 0 

intin(O) = fo adefbttn 

addrin(O) = fo_astring 

Output 

intout (0) fo aexbttn 

fo adefbttn: number of the button whose activation pressing 
RETURN can simulated. 

0= no button 
1 = first button 
2 = second button 
3 = third button 

fo _astr ing: address of the string which determines the appearance of 
the warning message. 

fo aexbttn: number of the button which the user will activate for 
ackTIow ledgement: 

1 = first button 
2 = second button 
3 = third button 

358 



Abacus Software GEM Programmer's Reference 

C function call 

fo aexbttn 

TOS error messages: 

Error messages are simplified warning messages which have only one 
acknowledgement button with the expression "Cancel" as well as one text 
line with the text "TOS error #"+the error number. The STOP icon is used 
as the icon. A definition string is then omitted, but the error message can 
only be used for operating system error messages. The function 
FORM ERROR executes the same set of procedures as the function 
FORM ALERT. 

359 



Abacus Software 

FORM ERROR 

Function 

A warning message is displayed. 

control (0) 53 
control (1) 1 
contro l (2) 1 
control (3) 0 
control (4) 0 

intin(O) fo enum 

fo enum: TOS error number 

C function call 

fo eexbttn 

GEM Programmer's Reference 

Opcode = 53 

360 



Abacus Software GEM Programmers's Reference 

4.2.7 Drop-down menus 

In general, menus serve to select one of several alternatives and thereby to 
prompt a program to specific action. On previous computers, the menu 
alternatives were usually selected with a keypress. On the ST, the preferred 
method of menu selection is by using the mouse although alternatives may 
be selected with keys as well. 

As soon as the user touches a menu point on the menu bar, a box drops 
down which shows several alternatives in text form. If the mouse pointer 
touches one of these alternatives, the text line is displayed in reverse, unless 
the text is in light print, in which case that menu option is disabled and 
cannot be activated. A mouse click activates that menu option. The box then 
disappears and the AES writes a record in the buffer (message pipe) which 
specifies the number of the menu option. If an area outside the box is 
clicked, the box disappears and no record is written to the buffer. 

Under certain circumstances, a menu entry consists of two more elements 
next to the text. The presence of these two elements is optional: 

1. Check 
Left of the text is space for a check mark, though a blank is 
usually found there. The check mark indicates that the certain 
status, having some connection to the menu option, is active at 
the current time. 

2. Key symbol: 
If a menu option can also be selected by pressing a certain key, 
the symbol of the corresponding key is found to the right of the 
menu text. 

Since certain menu options are selectable only under certain conditions, a 
menu option can be deactivated with the function MENU _ IENABLE. It then 
appears in light type and can no longer be selected by the user. The same 
function can also activate the menu option. 

All user actions for selection of menu options are controlled by AES. The 
programmer has the following to manage himself: 

1. Call to display the menu bar 
2. Activate and deactivate the menu entries 
3. Activate check marks 

361 



Abacus Software GEM Programmers's Reference 

4. Reset a menu title displayed in reverse by AES 
5. Change the text of a menu entry 
6. Activate a desk accessory name 

The following steps must be programmed in order to work with the menus: 

1. Development of a menu object tree. The data structure is the same as 
for normal object trees. 

2. The menu object tree is appended to an existing resource file. Steps 1 
and 2 are best performed with the help of the Resource Construction 
Set which is part of the development package from Digital Research. 
This saves you the necessary coordinate computations. 

3. The resource file is loaded into memory with the help of the command 
RSRC LOAD. 

4. By using the MENU BAR function, the menu bar is displayed. These 
steps are necessary-for initialization. As a result, the desired menu 
texts appear in the menu bar. 

5. The function EVNT MESAG or EVNT MULTI is called to transfer the 
supervision of the Interaction between user and menu bar or menu 
options to the AES. 

6. If the user selects a menu point, the AES writes a record to the buffer. 
This record indicates which object index of the menu bar was 
selected. 

7. The application performs the action requested by the user. 

8. The menu is restored to its original state by using the function 
MENU _ TNORMAL (me _ nnormal = 1). 

9. Start again at step 5. 

To allow selection of menu options with keypresses, the function 
EVNT _ MULT I is called in step 5 so that the keyboard input is also taken 
into account. If a key is pressed by the user, the application can display the 
corresponding title in the menu bar in reverse (function: MENU TNORMAL, 
me _ nnormal = 0) and put back to the normal state after execution of the 
operation (function: MENU_TNORMAL, me_nnormal = 1). 

362 



Abacus Software GEM Programmers's Reference 

MENU BAR 

Function 

The menu bar of a menu object tree is displayed or erased. 

control(O) 30 
control (1) 1 
control (2) 1 
control (3) 1 
control (4) 0 

intin(O) = me bshow 

addrin(O) = me btree 

Output 

intout(O) me breturn 

Opcode = 30 

me bshow: specifies if the menu bar is to be drawn or erased: 

o = erase menu bar 
1 = draw menu bar 

me _ btree: address of the menu object tree 

me bret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

me breturn 

363 



Abacus Software GEM Programmers's Reference 

MENU ICHECK 

Function 

Erase or display a check mark. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin (1) 

31 
2 
1 
1 
o 

me citem 
me ccheck 

addrin(O) = me ctree 

Output 

intout (0) me creturn 

me _ cit em: number of the menu entry 

Opcode = 31 

me _ c c h e c k: specifies if the check mark is to appear to the left of the 
menu entry or not: 

o = erase check mark 
I = set check mark 

me _ ct ree: address of the menu object tree 

me cret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

me creturn=menu icheck(me_ctree,me_citem,me_ccheck; 

364 



Abacus Software GEM Programmers's Reference 

MENU ENABLE 

Function 

Activate or deactivate a menu entry. 

control (0) 32 
control (1) 2 
control (2) 1 
control (3) 1 
control (4) 0 

intin(O) me eitem 
intin(l) me eenable 

addrin(O) = me etree 

Output 

intout (0) me ereturn 

Opcode = 32 

me ei tern: specifies if the menu entry is to be activated of deactivated: 

0 = deactivated (menu entry in light type) 
1 = activated (menu entry in normal type) 

me _ et ree: address of the menu object tree 

me eret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

me ereturn menu_enable (me_etree, me_ eitem, 
me_ eenable) ; 

365 



Abacus Software GEM Programmers's Reference 

MENU TNORMAL 

Function 

Display a menu title in the menu bar in reverse or normal. 

control (0) 33 
control (1) 2 
control (2) 1 
control (3) 1 
control (4) 0 

intin(O) me ntitle 
intin(l) me nnormal 

addrin(O) = me ntree 

Output 

intout (0) me nreturn 

me n tit 1 e: number of the menu title 

Opcode = 33 

me _ nnormal: specifies if menu title is displayed in normal or reverse: 

o = display reverse 
1 = display normal 

me _ ntree: address of the object menu tree 

me nreturn: O=an error occurred 
n (positive number)~no error occurred 

C function call 

me nreturn menu_tnormal(me_ntree, me_ntitle, 
me_nnorma l) ; 

366 



Abacus Software GEM Programmers's Reference 

MENU TEXT Opcode = 34 

Function 

Change the text of a menu entry. The application can respond to various system conditions which concern a certain menu option. The menu entry could for example assume on of the strings "Page forward" or "Page back". The new string cannot in any event by longer than the old one or the menu tree structure is destroyed. 

control (0) 34 
control (1) 1 
control (2) 1 
control (3) 2 
control (4) 0 

intin(O) = me titem 

addrin(O) 
addrin (1) 

Output 

me ttree 
me ttext 

intout(O) = me treturn 

me _ tit em: number of the menu entry 

me _ t tree: address of the menu object tree 

me t text: address of the new menu text. The string must be terminated with a zero byte. 

me treturn: O=anerroroccurred 
n (positive number)=no error occurred 

C function call 

me treturn 

367 



Abacus Software GEM Programmers's Reference 

MENU REGISTER Opcode = 35 

Function 

Activate the name of a desk accessory within the first menu. A maximum of 
six desk accessories can be activated. A desk accessory is a utility program, 
such as the desktop control panel. 

control (0) 35 
control (1) 1 
control(2) 1 
control (3) 1 
control (4) 0 

intin(O) = me_rapid 

addrin(O) = me_rpstring 

Output 

intout (0) me rmenuid 

me_rapid: the identification number of the process which the desk 
accessory represents. This involves the value apid, which the function 
APPL _ INIT outputs, as soon as this is called from the desk accessory. 

me_rpstring: pointer to the name of the desk accessory (must be 
terminated with a zero byte). 

me_rmenuid: number of the desk accessory (from 0 to 5); -1 ($FFFF) 
means that no more space is available for another desk accessory. 

C function call 

me rmenuid menu_register (me_rapid, me rpst ring ); 

368 



Abacus Software GEM Programmer's Reference 

4.2.8 Graphics library 

The graphics library is comprised of routines which perform the following 
tasks: 

-superving of user manipulations with rectangular surfaces 
-changing the mouse shape 
-determining the VDI handle (described in 4.2.2) 
-determining the keyboard and mouse button status 

The following functions are implemented: 

369 



Abacus Software GEM Programmer's Reference 

GRAF RUBBERBOX Opcode = 70 

Function 

Draw a box whose upper left comer is set. The lower right comer follows 
the movements of the mouse. As soon as the mouse button (left) is released, 
the function is ended (it should therefore be called only when the button is 
pressed). The size of the rectangle is returned as a parameter. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin(l) 
intin(2) 
intin(3) 

Output 

70 
4 
3 
o 
o 

gr_rx 
gr ry 
gr-rminwidth 
gr=rminheight 

intout (0) 
intout(l) 
intout(2) 

gr rreturn 
gr-rlastwidth 
gr=rlastheight 

gr _ rx: X-coordinate of the rectangle 

gr _ ry: Y-coordinate of the rectangle 

gr _ rminwidth: smallest possible width of the rectangle 

gr _ rminheight: smallest possible height of the rectangle 

gr lastwidth: width of the rectangle when the user let go of the button 

gr lastheight: height of the rectangle when the user let go of the 
button 

370 



Abacus Software GEM Programmer's Reference 

gr rreturn: O=an error occurred 
- n (positive number)=no error occurred 

C function call 

gr rreturn = graf rubberbox(gr rx, gr ry, 
gr-rminwidth, gr rminheight , &gr rlastwidth, 
&gr_rlastheight); -

371 



Abacus Software GEM Programmer's Reference 

GRAF DRAGBOX Opcode = 71 

Function 

Move a rectangle within another rectangle with the mouse pointer. 

control (0) 
control (1) 
control(2) 
control (3) 
control(4) 

intin (0) 
intin (1) 
intin(2) 
intin(3) 
intin (4) 
intin (5) 
intin(6) 
intin(7) 

Output 

71 
8 
3 
o 
o 

gr dwidth 
gr=dheight 
gr_dstartx 
gr_dstarty 
gr_dboundx 
gr_dboundy 
gr_dboundw 
gr_dboundh 

intout (0) 
intout (1) 
intout(2) 

gr dreturn 
gr=dfinishx 
gr_dfinishy 

gr _ dwidth: the width of the moveable rectangle 

gr _ dhe i g h t : the height of the moveable rectangle 

gr _ dstartx: the starting X-coordinate of the moveable rectangle 

gr _ dstarty: the starting Y-coordinate of the moveable rectangle 

gr _ dboundx: the X-coordinate of the bordering rectangle 

gr _ dboundy: the Y -coordinate of the bordering rectangle 

372 



Abacus Software GEM Programmer's Reference 

gr _ dboundw: the width of the bordering rectangle 

gr _ dboundh: the height of the bordering rectangle 

gr dfinishx: the X-coordinate of the moveable rectangle at the time the 
button was released. 

gr dfinishy: the Y-coordinate of the moveable rectangle at the time the 
button was released. 

gr _ dret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

gr dreturn = graf_dragbox(gr_dwidth, gr_dheight, 
gr dstartx, gr dstarty, gr dboundx, gr dboundy, 
gr-dboundw, gr-dboundh, &gr dfinishx, -
&gr_ dfinishy) i- -

373 



Abacus Software GEM Programmer's Reference 

GRAF MOVEBOX Opcode = 72 

Function 

Draws a rectangle (with constant size) which can be moved from one screen 
position to another. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin (1) 
intin(2) 
intin(3) 
intin(4) 
intin (5) 

Output 

72 
6 
1 
o 
o 

gr mwidth 
gr=mheight 
gr_msourcex 
gr_msourcey 
gr_mdestx 
gr_mdesty 

intout(O) = gr_mreturn 

gr _ mwidth: the width of the rectangle 

gr_ mheight: the height of the rectangle 

gr _ msourcex: the X-coordinate of the starting position 

gr _ msourcey: the Y -coordinate of the starting position 

gr _ mde st x: the X-coordinate of the destination position 

gr _ mde st y: the Y -coordinate of the destination position 

gr mreturn: O=an error occurred 
- n (positive number)=no error occurred 

374 



Abacus Software GEM Programmer's Reference 

C function call 

gr_mreturn graf_movebox(gr_mwidth, gr_mheight, 
gr_msourcex, gr_msourcey, gr_mdestx, gr_mdesty); 

375 



Abacus Software GEM Programmer's Reference 

GRAF GROWBOX 

Function 

Draws an expanding rectangle. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin (1) 
intin(2) 
intin(3) 
intin(4) 
intin(5) 
intin(6) 
intin(7) 

Output 

73 
8 
1 
o 
o 

gr_gstx 
gr gsty 
gr- gstwidth 
gr- gstheight 
gr- gfinx 
gr- gfiny 
gr- gfinwidth 
gr= gfinheight 

intout(O) = gr_greturn 

gr _gstx: the X-coordinate of the starting rectangle 

9 r _ 9 sty: the Y -coordinate of the starting rectangle 

gr_gstwidth: the width of the starting rectangle 

gr _gstheight: the height of the starting rectangle 

gr _gf inx: the X-coordinate of the ending rectangle 

gr _gfiny: the Y-coordinate of the ending rectangle 

gr _gf inwidth: the width of the ending rectangle 

376 

Opcode = 73 



Abacus Software GEM Programmer's Reference 

gr _gf inheight: the height of the ending rectangle 

gr gret urn: O=an error occurred 
- n (positive nurnber)=no error occurred 

C function call 

gr greturn = graf growbox(gr gstx, gr gsty, 
gr-gstwidth, gr gstheight, gr gfinx, gr gfiny, 
gr=gfinwidth, gr_gfinheight);- -

377 



Abacus Software GEM Programmer's Reference 

GRAF SHRINKBOX 

Function 

Draw a shrinking rectangle. 

control (0) 
control(l) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin (1) 
intin (2) 
intin(3) 
intin (4) 
intin(5) 
intin(6) 
intin (7) 

Output 

74 
8 
1 
o 
o 

gr sfinx 
gr-sfiny 
gr-sfinwidth 
gr=sfinheight 
gr_sstx 
gr ssty 
gr-sstwidth 
gr=sstheight 

intout(O) = gr_sreturn 

gr _sf inx: the X-coordinate of the ending rectangle 

g r _sf in y: the Y -coordinate of the ending rectangle 

gr_sfinwidth: the width of the ending rectangle 

gr_sfinheight: the height of the ending rectangle 

gr _ s stx: the X-coordinate of the starting rectangle 

gr _ sst y: the Y -coordinate of the starting rectangle 

gr _ sstwidth: the width of the starting rectangle 

378 

Opcode = 74 



Abacus Software GEM Programmer's Reference 

gr _ sstheight: the height of the starting rectangle 

gr sreturn: O=anerroroccurred 
- n (positive nurnber)=no error occurred 

C function call 

gr sreturn = graf shrinkbox(gr sfinx, gr_finy, 
gr-sfinwidth, gr sfinheight, gr sstx, gr_ssty, 
gr= sstwidth, gr_sstheight); -

379 



Abacus Software GEM Programmer's Reference 

GRAF WATCHBOX Opcode = 75 

Function 

Detennine if the mouse pointer encounters or exits a rectangular field. If so, 
this field changes its state depending on the mouse pointer. The function is 
done as soon as the user releases the mouse button. The rectangle must be 
part of an object tree (see section 3.2.2.5 for variable definitions). 

contro l (0) 
contro l (1) 
control (2) 
control (3) 
control (4) 

intin(O) 
intin(l) 
intin(2) 
intin(3) 

75 
4 
1 
1 
o 

reserved 
gr wobject 
gr=winstate 
gr_woutstate 

addrin(O) =gr_wptree 

Output 

intout(O) = gr_wreturn 

gr_wobject: the index of the object 

gr winstate: the status of the object when encountered by the mouse 
pointer (with button pressed) 

o =NORMAL 
1 =SELECTED 
2 =CROSSED 
4 =CHECKED 
8 =DISABLED 
16 =OUTLINED 
32 =SHADOWED 

380 



Abacus Software GEM Programmer's Reference 

gr woutstate: the status of the object when exited by the mouse 
pointer (with pressed button) 

o =NORMAL 
1 =SELECIED 
2 =CROSSED 
4 =CHECKED 
8 =DISABLED 
16 =OUTLINED 
32 =SHADOWED 

gr _ wpt ree : the address of the object tree 

gr_ wreturn: position of the mouse pointer when the button was 
released: 

o = outside the rectangle 
1 = inside the rectangle 

C function call 

gr_ wreturn graf_watchbox (gr_wptree, g r_wobject, 
gr_winstate, gr_ woutstatel; 

381 



Abacus Software GEM Programmer's Reference 

GRAF SLiDEBOX Opcode = 76 

Function 

Move a rectangle within another rectangle with the mouse pointer. The 
direction may be only vertical or horizontal. The surrounding rectangle must 
be the parent object of the moveable rectangle in an object tree. The function 
should be called only when the mouse button is pressed, and is ended when 
the user releases the button again. 

control (0) 
control (1) 
control (2) 
control (3) 
control (4) 

intin (0) 
intin(l) 
intin(2) 

76 
3 
1 
1 
o 

gr slparent 
gr=slobject 
gr_slvh 

addrin(O) = gr_slptree 

Output 

intout(O) = gr_slreturn 

gr _ s lparent: the index of the surrounding rectangle in the object tree 

gr _slob j ect: the index of the moveable object in the object tree 

gr _ s 1 vh: flag for determining the possible movement direction: 

o = horizontal 
1 = vertical 

gr _ slptree: the address of the object tree 

382 



Abacus Software GEM Programmer's Reference 

g r _ S 1 ret urn: the position of the center of the moveable rectangle 
relative to the surrounding rectangle: 

0= far left 
1 = far right 

0= top 
1 = bottom 

C function call 

gr slreturn = graf slidebox(gr slptree, 
gr=slparent, gr_slobject, gr_sTvh); 

383 



Abacus Software GEM Programmer's Reference 

GRAF MOUSE Opcode = 78 

Function 

Change the shape of the mouse. You can choose from among various 
symbols or if desired define your own symbols (for bit layout see VDI 
chapter). The mouse shape should deviate from the arrow shape only within 
program-controlled areas. As soon as the mouse pointer leaves such an 
area, the arrow shape must be activated again. 

control (0) 78 
control (1) 1 
control (2) 1 
control (3) 1 
control (4) 0 

intin(O) = gr_monumber 

addrin(O) = mofaddr 

Output 

intout (0) 

gr _ monumber: specifies which mouse shape is desired: 

0: arrow 
1: cursor 
2: bee 
3: hand with index finger 
4: open hand 
5: thin crosshair 
6: thick crosshair 
7: crosshair as outline 
255: definable mouse shape, address of the 

definition block in gr~ofaddr 
256: disable mouse shape 
257: enable mouse shape 

384 



Abacus Software GEM Programmer's Reference 

gr _ moret urn: O=an error occurred 
n (positive number)=no error occurred 

C function call 

gr_moreturn 

385 



Abacus Software GEM Programmer's Reference 

GRAF MKSTATE Opcode = 79 

Function 

Determine the position of the mouse pointer, the status of the mouse 
buttons, and the status of the keyboard. 

control (0) 79 
control(l) 0 
control (2) 5 
control (3) 0 
control(4) 0 

Output 

intout (0) 
intout (1) 
intout (2) 
intout (3) 
intout (4) 

gr_mkresvd 
gr_mkmx 
gr_mkmy 
gr_ mkmstate 
gr_mkkstate 

gr _ mkre svd: reserved, this value is always set to 1 

gr _ mkmx: X-position of the mouse pointer 

gr _ mkmy: Y-position of the mouse pointer 

gr _ mkmstate: status of the mouse buttons: 

bit 0 = left button 
bit 1 = right button 

bit set: button is pressed 
bit cleared: button not pressed 

386 



Abacus Software GEM Programmer's Reference 

gr _ mkkstate: status of the following buttons: 

bit 0 = shift right 
bit 1 = shift left 
bit 2 = control 
bit 3 = alternate 

bit set: button is pressed 
bit cleared: button is not pressed 

C function call 

gr_ mkre s vd = graf_mkstate(&gr_ mkmx, &gr_ mkmy, 
&gr_ mkms tate, &gr_mkkstate); 

387 



Abacus Software GEM Programmer's Reference 

4.3 Sample programs using the AES 

/********************************/ 
/* Display one window with */ 
/* wind open */ 
/********************************/ 

#include "gemdefs.h" 

int contrl [12] , 
intin[128], 
ptsin[128], 
intout[128], 
ptsout[128]; 

int work out[57], 
work-in [12]; 

int handle; 
int phys_handle; 
int wi handle; 

int gl_hhbox, gl hwbox; 

388 



Abacus Software GEM Programmer's Reference 

int xdesk, ydesk, wdesk, hdesk; 

int gl_hhchar, gl hwchar; 

/******************************/ 
/* OPEN WORK */ 
/******************************/ 

int i; 

handle = phys handle; 
for(i=O;i<lO;work_in[i++]=l) ; 
work in[lO] = 2; 
v_opnvwk(work_in, &handle, work_out) 

/******************************/ 
/* CLOSE WORK */ 
/******************************/ 

gemdos (Oxl) ; 
v clsvwk(handle); 
appl_exit () ; 

/******************************/ 
/* OUTPUT */ 
/******************************/ 

open _window ( ) 

wi handle = wind create 
(33, xdesk, ydesk, wdesk, hdesk); 

wind set 
(wi handle, WF NAME, "Untitled", 0, 0) ; 

wind_open 
(wi_handle, xdesk,ydesk,wdesk,hdesk); 

389 



Abacus Software GEM Programmer's Reference 

/******************************/ 
/* MAIN PROGRAM */ 
/******************************/ 

main () 
{ 

appl init(); 
phys_handle = graf_handle 

(&gl hwchar,&gl hhchar,&gl hwbox,&gl_hhbox); 
wind get - -

(O,WF_WORKXYWH,&xdesk,&ydesk,&wdesk,&hdesk) ; 
open_work () ; 
vq extnd(handle, 1, work_out); 
open_window() ; 
close_work () ; 

390 



Abacus Software GEM Programmer's Reference 

*************************************** 
* Assembler example * 
* Display a window which comprises * 
* the entire screen (except for the * 
* MENU bar). Remember to include * 
* the initialization routines for the * 
* ~s * 
*************************************** 

move #104,opcode * determine work storage 
move #2,sintin * of the 
move #5,sintout * Desktop-window 
move #O,saddrin 
move #O,saddrout 

move #O,intin 
move #4,intin+2 
jsr aes 

move intout+2,xpos 
move intout+4,ypos 
move intout+6,width 
move intout+8,hoehe 

move #100,contrl *wind create 
move #5,contrl+2 
move #1,contrl+4 
move #0,contrl+6 
move #0,contrl+8 

move #33, intin *Title line & 
move xpos, intin+2 *size box 
move ypos, intin+4 
move width,intin+6 
move hoehe, intin+8 
jsr aes 

move intout,wihandle 

move #105,contrl wind set 
move # 6, contrl+2 
move # 1, contrl+4 
move #0, contrl+6 

391 



Abacus Software 

move #0, contrl+8 

move wihandle, intin 
move #2, intin+2 
move.l #windowname,intin+4 
jsr aes 

GEM Programmer's Reference 

move #lOl,contrl 
move #5,contrl+2 
move #1,contrl+4 
move #0,contrl+6 
move #0,contrl+8 

*wind_open 

move wihandle,intin 
move xpos, intin+2 
move ypos, intin+4 
move width, intin+6 
move hoehe, intin+8 
jsr aes 

rts 

xpos: .ds.w 1 
ypos: .ds.w 1 
width: .ds.w 1 
hoehe: .ds.w 1 

wihandle: .ds.w 1 

windowname: .dc.b "Untitled" 
.dc.b 0,0 

392 



Abacus Software GEM Programmer's Reference 

/*****************************/ 
/* Display a warning box with*/ 
/* form alert */ 
/*****************************/ 

#include "gemdefs.h" 

int contrl[12], 
intin[128], 
ptsin [128], 
intout[128], 
ptsout[128]; 

int handle; 

int work out [57], 
work=in [12]; 

int phys_handle; 
int handle; 

int gl_ hhbox, gl_hwbox; 
int gl_ hhchar, gl_hwchar; 

int fo_ aexbttn; 

393 



Abacus Software GEM Programmer's Reference 

char fo_ astring[] 
a I Key b]"; 

"[1] [Warning box in C] [Key 

/******************************/ 
/* OPEN WORK */ 
/******************************/ 

open_work () 
{ 

int i; 

for(i=0;i<10;work in[i++]=l); 
work_in [10] = 2; -
handle = phys handle; 
v_ opnvwk(work=in, &handle, work out); 

/******************************/ 
/* CLOSE WORK */ 
/******************************/ 

close_ work () 
{ 

gemdos(Ox1); 
v_clsvwk(handle) ; 
appl_ exit () ; 

/******************************/ 
/* output */ 
/******************************/ 

alarmbox () 
{ 
fo aexbttn 
} 

form_alert(l,fo_astring); 

/******************************/ 
/ * MAIN PROGRAM */ 
/******************************/ 

main () 

394 



Abacus Software GEM Programmer's Reference 

appl_init () ; 
phys_ handle = graf handle 

(&gl_hwchar,&gl_hhchar,&gl_hwbox,&gl_hhbox) ; 
open_work () ; 
vq_extnd(handle, 1, work_out); 
alarmbox() ; 
close_work () ; 

395 



Abacus Software GEM Programmer's Reference 

******************************************* 
* Assembler example 2 
* Display a menu bar. To avoid defining 
* a new menu bar the menu bar from LOGO 
* is used. The data is contained on 
* the LOGO disk in the file LOGO.RSC 
* Copy this file to your work disk. The 
* The example program returns to the 
* desktop as soon as you encounter a 
* menu selection. Remember to include 
* the initialization routines for the 
* AES 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

******************************************* 

move #110,contrl *rsrc 
move #0, contrl+2 
move #1, contrl+4 
move # 1, contrl+6 
move #0, contrl+8 

move.l #resourcename,addrin 
jsr aes 

load 

396 



Abacus Software 

move #112,contrl 
move #2,contrl+2 
move #1,contrl+4 
move #O,contrl+6 
move #1,contrl+8 

move #O,intin 
move #O,intin+2 
jsr aes 

move #30,contrl 
move #1,contrl+2 
move #1,contrl+4 
move #1,contrl+6 
move #O,contrl+8 

move #l,intin 

move.l addrout,addrin 
jsr aes 

move #23,contrl 
move #O,contrl+2 
move #1,contrl+4 
move #1,contrl+6 
move #O,contrl+8 

move.l #buffer,addrin 
jsr aes 

rts 

GEM Programmer's Reference 

*menu bar 

resourcename: .dc.b "logo.rsc",O,O 

buffer: .ds.w 16 

397 



Abacus Software 

is 
a Warning 

***************************** 
* Assembler example 3 
* Display a Warning box. 
* Remember to include 
* the initialization 
* routines for the AES 

* 
* 
* 
* 
* 

***************************** 

move #52,contrl 
*form alert 

move #1,contrl+2 
move #1,contrl+4 
move #1,contrl+6 
move #0,contrl+8 

move #l,intin 

move.l #alarmtext,addrin 
jsr aes 

rts 

alarmtext: 
. dc. b "[ 1] [this I is I a Warning" 
.dc.b" ............ ]" 

GEM Programmer's Reference 

.dc.b "[Key llKey 21Key 3]",0,0 

398 



(APPENDICES] 

APPENDIX A: Overview of the VDI functions 
APPENDIX B: Overview of the AES functions 
APPENDIX C: 68000 Instructions 





Abacus Software GEM Programmer's Reference 

APPENDIX A: Overview of the VDI functions 

Opcode Function Page 
1 v_opnwk 61 
2 v clswk 66 

100 v_opnvwk 67 
101 v clsvwk 70 

3 v clrwk 71 
4 v_updwk 72 

119 vst load fonts 73 
120 vst unload fonts 75 
129 vs clip 77 

6 v_pline 79 
7 v_ pmarker 81 
8 v_gtext 83 
9 v fillarea 85 

10 v cellar ray 87 
103 v-contourfill 89 
114 vr recfl 91 

11-1 v bar 94 
11- 2 v arc 96 
11-3 v- pieslice 98 
11-4 v- circle 100 
11-6 v ellarc 102 
11- 7 v- ellpie 104 
11-5 v= ellipse 106 
11-8 v rbox 108 

-
11-9 v rfbox 110 

-
11-10 v justified 111 
32 vswr mode 113 
14 vs color 116 
17 vsl color 118 
15 vsl_type 120 

113 vsl_udsty 122 
16 vsl width 123 

108 vsl ends 125 
-

18 vsm type 127 
19 vsm=height 129 
20 vsm color 131 
12 vst-height 133 

107 vst=point 135 
13 vst rotation 137 

-
21 vst font 139 
22 vst color 141 

401 



Abacus Software 

106 
39 
23 
24 
25 

104 
112 
109 
121 
110 
105 

33 
28 
28 
29 
29 
30 
30 
31 
31 

111 
118 
122 
123 
124 
125 
126 
127 
128 
102 

26 
35 
36 
37 
38 

116 
117 
115 

vst effects 
vst alignment 
vsf-interior 
vsf style 
vsf color 
vsf_perimeter 
vsf_updat 
vro_cpyform 
vro cpyfm 
vr trnfm 
v get pixel 
vsin mode 
vrq_locator 
vsm locator 
vrq_va1uator 
vsm valuator 
vrq_choice 
vsm choice 
vrq_string 
vsm_string 
vsc form 
vex time 
v show c 
v-hide-c 
vq_mouse 
vex butv 
vex motv 
vex curv 
vq_key_s 
vq_extnd 
vq_color 
vql attributes 
vqm=attributes 
vqf_attributes 
vqt_attributes 
vqt extent 
vqt-width 
vq i n_mode 

402 

GEM Programmer's Reference 

143 
145 
147 
149 
151 
153 
155 
159 
162 
165 
167 
170 
172 
175 
178 
180 
182 
184 
186 
189 
192 
194 
196 
198 
199 
201 
203 
205 
207 
210 
214 
216 
218 
220 
222 
224 
226 
228 



Abacus Software GEM Programmer's Reference 

Appendix B: Overview of AES functions 

Opcode Function Page 
10 appl init 280 
77 graf_handle 281 
104 wind_get 286 
100 wind create 292 
101 wind open 294 
102 wind- close 295 
103 wind- delete 296 
105 wind set 297 
106 wind-find 300 
107 wind- update 301 
108 wind-calc 303 

20 evnt keybd 312 
21 evnt button 313 
22 evnt mouse 315 

-
24 evnt timer 317 -
23 evnt mesag 318 
25 evnt- multi 319 

-
11 appl read 321 
12 appl_ write 322 

42 objc_draw 335 
43 objc find 337 
44 objc=offset 339 
46 objc_ edit 340 
47 objc change 342 -

110 rsrc load 347 
111 rsrc free 348 
112 rsrc_gaddr 349 
113 rsrc saddr 351 
50 form do 352 
51 form dial 353 
54 form center 355 
52 form alert 358 
53 form error 360 

30 menu bar 363 
31 menu icheck 364 
32 menu ienable 365 
33 menu tnormal 366 

403 



Abacus Software 

34 
35 

70 
71 
72 
73 
74 
75 
76 
78 
79 

menu text 
menu_register 

graf_rubberbox 
graf_dragbox 
graf_movebox 
graf growbox 
graf=shrinkbox 
graf_watchbox 
graf_slidebox 
graf_mouse 
graf_mkstate 

404 

GEM Programmer's Reference 

367 
368 

370 
372 
374 
376 
370 
380 
382 
384 
386 



Abacus Software GEM Programmer's Reference 

Appendix C: 68000 Instruction overview 

Instruction: 

ABCD 
ADD 
ADDA 
ADDI 
ADDQ 
ADDX 

AND 
ANDI 

ASL 
ASR 

Bcc 
BCRG 
BCLR 
BSET 

BRA 

BSR 

BTST 

CHK 

CLR 

CMP 
CMPA 
CMPI 
CMPM 

DBcc 

DIVS 
DIVU 

EOR 
EORI 

Function: 

Add Decimal with Extend 
Add Binary 
Add Address 
Add Immediate 
Add Quick 
Add with Extend 

AND Logical 
AND Immediate 

Arithmetic Shift Left 
Arithmetic Shift Right 

Branch Conditionally 
Test a Bit and Change 
Test a Bit and Clear 
Test a Bit and Set 

Branch Always 

Branch to Subroutine 

Test a Bit 

Check Register against Bounds 

Clear an Operand 

Compare 
Compare Adress 
Compare Immediate 
Compare Memory 

Test Condition, Decrement and Branch 

Signed Divide 
Unsigned Divide 

Exclusive OR Logical 
Exclusive OR Immediate 

405 



Abacus Software 

EXG 

EXT 

JMP 

JSR 

LEA 

LINK 

LSL 
LSR 

MOVE 

MOVE to CCR 
MOVE to SR 
MOVE from 
MOVE USP 

MOVEA 
MOVEM 
MOVEP 
MOVEQ 

MULS 
MULU 

NBCD 
NEG 
NEGX 

NOP 

NOT 
OR 
ORI 

PEA 

RESET 

ROL 

SR 

GEM Programmer's Reference 

Exchange Register 

Sign Extend 

Jump 

Jump to Subroutine 

Load Effective Address 

Link and Allocate 

Logical Shift Left 
Logical Shift Right 

Move Data 

Move to Condition Code 
Move to the Status Register 
Move from the Status Register 
Move User Stackpointer 

Move Address 
Move Multip l e Registers 
Move Peripheral Data 
Move Quick 

Signed Multiply 
Unsigned Multiply 

Negate Decimal with Extend 
Negate 
Negate with Extend 

No Operation 

Logical Complement 
Inclusive OR Logical 
Inclusive OR Immediate 

Push Effective Adress 

Reset External Devices 

Rotate Left 

406 



Abacus Software 

ROR 
ROXL 
ROXR 

RTE 
RTR 
RTS 

SBCD 

Scc 

STOP 

SUB 
SUBA 
SUBI 
SUBQ 
SUBX 

SWAP 
TAS 

TRAP 
TRAPV 

TST 

UNLK 

TRAP 
TRAPV 
TST 

GEM Programmer's Reference 

Rotate Right 
Rotate Left with Exten d 
Rotate Right with Extend 

Return from Exceptio n 
Return and Restore Condition Codes 
Return from Subroutine 

Subtract Decimal with Ext end 

Set According to Condition 

Load Status Register and St op 

Subtract Binary 
Subtract Address 
Subtract Immediate 
Subtract Quick 
Subtract with Extend 

Swap Register Halves 
Test and Set an Operand 

Trap 
Trap on Overflow 

Test an Operand 

Unlink 
Test and Set an Operand 

Trap 
Trap on Overflow 
Test an Address 

407 





Abacus Software 

ADD 
address registers (68000) 
addressing modes (68000) 
applications 
appl_init (AES function) 
APPLBLK 

Index 

GEM Programmer's Reference 

27 
25 
31 

277 
280 
331 

Applications Environment Services (AES) 8,257 
8 

182, 184 
13,40 

42 
31 

architecture 
ASCII code 
Assembler (68000) 
assembler directives (68000) 

addressing modes 
assembler instructions 
branch instructions (68000) 
break conditions 
data registers (68000) 

assembly language 
assembler source file (C) 
assignment statements (C) 
AtariST 
attribute functions (VDI) 

BASIC 
BITBLK 
branch instructions (68000) 
break conditions (68000) 
buffer (AES Desk Accesory) 

C language 
compiling 
comments 
conditions 
data types 
functions 
introduction 
introductory program 
loop structures 
symbolic constants 
variables 
sample program (C) 

cell array 
characters 

409 

26,405 
28 
30 
25 
25 
40 
18 
3 

113 

14 
330 

28 
30 

9 

13 
15 
17 
23 
17 
21 
14 
15 
17 
20 
17 
45 
87 

133 



Abacus Software 

circle 
clipping 
COBOL 
code generator, C compiler 
color 
Compiler 
compiling (C) 
comments (C) 
conditions (C) 
control functions (VDI) 
conventions (AES) 
cursor 

data registers (68000) 
data types (C) 
DBcc 
Desk Accessory Buffer 
dialog box input (AES) 
dialog box management (AES) 
dialog box functions (AES): 

rsrc free 
rsrc-gaddr 
rsrc -load 
rsrc- saddr 

dialog box error messages 
DOS 
drop-down menus (AES) 

Editor 
ellipse 
event functions (AES): 

applJead 
appl_write 
evnt button 
evn(}eybd 
evnt_mesag 
evnt mouse 
evnt- multi 
evnt timer 

event handler 
event timer 

fill (VDI) 
form functions (AES): 

form alert 

410 

GEM Programmer's Reference 

100 
77 
14 
39 

116 
38 
15 
17 
23 
61 

269 
196 

25 
17 
29 

9 
262 
344 

348 
349 
347 
351 
356 

5 
361 

37 
106 

321 
322 
313 
312 
318 
315 
319 
317 
305 
268 

85 

358 



Abacus Software 

form functions (AES)-cont. 
form center 
form- dial 
form- do 
form- error 

fonts -
functions (ABS) 
functions (C) 
functions (VDI) 

GEM 
requirements 
architecture 

GDOS 
Normalized Device Coordinates 
Raster coordinates 

GEMDOS 
GEM WRITE 
GEM DRAW 
GIOS 
global array 
graf handle function (ABS) 
graphic functions (VDI) 
graphic functions (ABS): 

graf _ drag box 
graf _growbox 
graf_mouse 
graf _ movebox 
graf _ mkstate 
graf Jubberbox 
graf _ shrinkbox 
graf _slidebox 
graf _ watchbox 

graphics library (ABS) 
graphics matrix 

IBM PC 
ICONBLK 
icon 
icon output (ABS) 
icon selection (AES) 
initializing applications (ABS) 
initializing GEM programs 
input functions (VDI) 
instructions (68000) 

411 

GEM Programmer's Reference 

355 
353 
352 
360 

73 
403 

21 
57, 401 

3 
3 
5 
6 
6 
6 

19 
7 
7 
7 

276 
281 

93 

372 
376 
384 
374 
386 
370 
370 
382 
380 
369 

4 

13 
328 
260 
260 
263 
257 
269 
169 
405 



Abacus Software 

introduction (C) 
introductory program (C) 
introduction (ABS) 
introduction (VDl) 
inquiry functions (VDl) 

J1v1P (68000) 
JSR (68000) 
Justified graphics text 

KERMIT 
keyboard status 

languages 
libraries (AES) 
library (VDl) 
line type 
Linker 

accessory batch 
application batch 
TOS batch 

main memory (68000) 
MetafIle 
Memory Form Definition Block 
memory, working (AES) 
menu bar display (AES) 
menu functions (AES): 

menu bar 
menu -icheck 
menu -ienable 
menu - tnormal 
menu text 
menu register 

menu seiection (AES) 
MFDB 
MINCE commands 
Motorola 68000 Processor 
mouse button 
mouse form 
MOVE 
multi-tasking (ABS) 

object functions (ABS): 
objc _change 

412 

GEM Programmer's Reference 

14 
15 

257 
57 

209 

30 
30 

111 

230 
207 

13 
269 

61 
120 
43 
44 
44 
44 

4 
7 

158 
264 
259 

363 
364 
365 
366 
367 
368 
261 
158 

15 
3,25 

199 
192,384 

26 
8,268 

342 



Abacus Software 

object functions (AES)--cont. 
objc_draw 
objc_edit 
objcjind 
objc _offset 

object representation 
data structure 
status 
types 

Opcodes (VDI) 
operands (68000) 
output functions (VDI) 

parameter block 
parameters (VDI) 
parser, C compiler 
polygon 
polyline 
poly marker 
portability 
preprocessor, C compiler 
processor (6502) 
processor (68000) 

raster operations (VDI) 
recreating working storage CABS) 
resource files (ABS) 
Resource Construction Set 

rsrc free 
rsrc::::gaddr 
rsrc load 
rsrc- saddr 

reverse-transparent mode 
routine library (ABS) 
RTS (68000) 

sample programJC 
sampleprogramJassembler 
sample programs/ ABS 
sample programslVDI 
screen resolution 
SHELL 
status registers (68000) 
ST Development Package 

C compiler 

413 

GEM Programmer's Reference 

335 
340 
337 
339 
323 
326 
332 
325 

58 
26 
79 

274 
59 
39 
85 
79 
81 
13 
39 

3 
3,25 

157 
267 
259 
344 
348 
349 
347 
351 
114 

8 
30 

45 
47 

388 
230 

4, 258 
9 

26,27 
34 
38 



Abacus Software 

ST Development Package-cont. 
editor 
introduction 
linker 
sample programlC 
sample programlassembler 

symbolic constants (C) 
text output (C) 
TOS error messages 
TRAP 

UNIX 
user byte (68000) 
user input (AES) 

variables (C) 
Virtual Device Interface (VDI) 

architecture 

window 
creation (AES) 
manipulation (AES) 
technique (AES) 

window functions (AES): 
wind calc 
wind-close 
wind-create 
wind-delete 
wind-find 
wind=:get 
wind_open 
wind set 
wind=: update 

working memory control 
working storage 

XORmode 

414 

GEM Programmer's Reference 

37 
25 
43 
45 
47 
20 
83 

359 
31 

14 
27 

260 

17 
57 

6 

77 
263 
265 
284 

303 
295 
292 
296 
300 
286 
294 
297 
301 
264 
267 

114 



Optional Diskette 

ATARIST 

GEM 
Programmer's Reference 

Optional Diskette 

For your convenience, the program listings contained in this book are 

available on an SF354 formatted floppy disk. You should order the diskette 

if you want to use the programs, but don't want to type them in from the 

listings in the book. 

All programs on the diskette have been fully tested. You can change the 

programs for your particular needs. The diskette is available for $14.95 pl us 

$2.00 ($5.00 foreign) for postage and handling. 

When ordering, please give your name and shipping address. Enclose a 

check, money order or credit card information. Mail your order to: 

Abacus Software 
P.O. Box 7219 

Grand Rapids, MI 49510 

Or for fast service, call 1- 616 / 241-5510. 



REFERENCE LIBRARY 
The authoritative Insider's guide 

Essential guide to learning 
the inside information on the 
ATARI ST. Written for the 
user who wants thorough 
and complete descriptions of 
the inner workings of the ST. 
Detailed descriptions of the 
sound and graphics chips , 
the internal hardware, the 
Centronics and RS-232 
ports, GEM, important system 
addresses and plenty more. 
Also included is a complete 
documented BIOS assembly 
listing . This indispensible 
reference is a required 
addition to your ATARI ST 
library. 450 pages. $19.95 

ADeI<II""",_"".,,_,,, 
Abacus iii Sofiware 

MACHINE LANGUAGE 
Program in the fastest 
language for your Alari 
ST. Learn the 68000 
assembly language, its 
numbering system, use 
of registers, the structure 
& important details of the 
instruction set, and usa of 
the internal system 
routines. 280pp $19,95 

TRICKS & TIPS 
Treasure trove of fascin
ating tips and tricks 
allows you to make full 
use of your ATARI ST. 
Fantastic graphics, refin
ing programs in BASIC, 
assemb ler, and C. 
Includes program 'listings 
for RAM disk, printer 
spooler and more. $19.95 

GRAPHICS & SOUND 
A comprehensive hand
boQk showing you now to. 
create fascinating graph
ics and suprising music 
and sound from the 
ATAR' ST. See and hear 
what sights and sounds 
that you're capable 01 
producing from your 
ATARI ST. $19.95 

ft\1rM~~ 

For the serious programmer 
in need of detailed inform
ation on the GEM operating 
system. Written especially for 
the Atari ST with an easy-to
understand format that even 
beginners will be able to 
follow. All GEM routines and 
examples are written in C 
and 68000 assemb ly 
language. Covers working 
with the mouse, icons, Virtual 
Device Interface (VOl), 
App lication Environment 
Services (AES) and the 
Graphics Device Operating 
System. Required reading for 
the serious programmer 
intrested in understanding 
the ST. 450 pages. $19.95 

GEM Programmers' Reference 
A complete guide to~ 
programming the ST 
using the Graphics 

Environment 
Manager 

lifiiiil 
AtMIIO I..:ur_" u __ ", 

Abacus l1li Software 

LOGO 
Take control of your 
ATARI ST by-learning 
LOGO-the easy-Io-use, 
yet powerful language . 
Toplcs covered include 
structured programming, 
graphic movement, file 
handling and more. An 
excellent book for kids as 
we" as aduns. $19.95 

PEEKS & POKES 
Enhance your programs 
with the examples found 
within this book. Explores 
using the dille rent lang
uages BAS'C, C, LOGO 
and machine language, 
using various interfaces, 
memory usage, reading 
and saving from and to 
disk, more. $19.95 

PRESENTING THE ST 
Gives you an in-depth 
look at this sensational 
new computer. Discusses 
the architecture of the 
ST, working with GEM, 
the mouse, operating 
system, all the various 
interfaces, the 68000 
chip and its instructions, 
LOOO. $16.95 

AbacuslUumuw Software 
P.o. Box 7219 Grand Rapids, M149510· Telex709-101· Phone (616) 241·5510 
Optional dis-kettes are available for all book titles at $14.95 
Call now for the name of your nearest dealer. Or order direclly from ABACUS with your MasterCard, VISA, or 
Amex card. Add $4.00 per order for postage and handling. Foreign add $8.00 per item. Other software and 
books coming soon. Call or write for free catalog. Dealer inquiries welcome-over 1200 dealers nationwide. 



GEM~Programmer's Reference 
Here's the complete programming handbook for all ST users. The GEM 
Programmer's Reference presents detailed information on GEM, the ST's 
user friendly operating system. It's written especially for the ST and has 
an easy-to-follow format. The GEM routines are explained with examples 
written in both C and 68000 assembly language. 

Here's just a few of the topics covered: 

• overview of GEM - VDI, AES, GDOS, GIOS 
• introduction to programming with GEM 
• the Development System 
• using the Editor, C-compiler, Assembler 

and Linker 
• inside GEM - programming the Virtual 

Device Interface 
• inside GEM - programming the Application 

Environment Services 

About the authors: 
Norbert Szczepanowski, a data-processing specialist with many years of 
programming experience is also a bestselling book author. Bernd 
Gunther a computer graphics specialist also has many years of computer 
experience. 

ATARI and ATARI ST are trademarks of Atari Corp. 
GEM is a trademark of Digital Research Inc. 

ISBN 0-916439-52-6 

A Data Becker book published by 

AOOcu's Ilmmn~1 Software 
P.o. Box 7211 Grand Rapids. MI 49510· Telex 709·101 . Phone 6161241-5510 




