GEM Programmer’s Reference :

- complete guide o programming the ST
, ;usmg the Graphics Environment Manager

A Data Becker book published by

You Can Count On

i Abacus S e

AIARIASSTr

GEM

Programmer's Reference

The complete guide to programming the ST
using the Graphics Environment Manager

By Norbert Szczepanowski
and Bernd Gunther

A Data Becker Book

Published by
Abacus i Software

Second Printing, March 1986
Printed in U.S.A.

Copyright © 1985 Data Becker GmbH
Merowingerstr.30
4000 Dusseldorf, West Germany
Copyright © 1985 ABACUS Software, Inc.
P.O. Box 7219

Grand Rapids, MI 49510

This book is copyrighted.No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise without the prior written
permission of ABACUS Software or Data Becker, GmbH.

Every effort has been made to insure complete and accurate information
concerning the material presented in this book. However Abacus Software
can neither guarantee nor be held legally responsible for any mistakes in
printing or faulty instructions contained in this book. The authors will
always appreciate receiving notice of subsequent mistakes.

ATARI, 520ST, ST, TOS, ST BASIC and ST LOGO are trademarks or
registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered trademarks
of Digital Research Inc.

IBM is a registered trademark of International Business Machines.

ISBN 0-916439-52-6

Preface

GEM is an easy-to-use, visually oriented operating system. It was
developed by Digital Research as an addition to the more traditional
command-oriented operating systems, such as MS-DOS. In fact, the GEM
literature from Digital Research refers to MS-DOS computers, and does not
mention the ST's system. Some find the standard GEM literature very
difficult to follow when they are trying to program the ST.

It was with these facts in mind that we wrote this book. We cover many
topics: the Atari Development Package; working with the editor and linker;
using the C language compiler and the 63000 assembler; and finally, using
the facilities of GEM. In short, the GEM Programmers Reference is an
invaluable book for all ST programmers and developers.

Chapter 1 describes the basic structure of the GEM components—the
Virtual Device Interface (VDI) and the Application Environment Services
(AES).

Chapter 2 describes the different programming considerations using the
high-level C language and 68000 assembly language. We introduce you to
the features of the the Development Package and present a sample GEM
program.

Chapter 3 focuses on the Virtual Device Interface, and Chapter 4 on the the
Application Environment Services. Each function of the VDI and AES is
thoroughly described so that you can use the enormous power of the GEM
library routines. For every function we list the required parameters and any
peculiarities to make your programming task easier.

At the end of Chapters 3 and 4 we present several sample programs. This is
the most effective way of showing you how to use the GEM facilities. We
hope that you will tailor these programs to you own needs.

In closing, we realize that GEM is a very complex system. Because of this,
we've tried to carefully define our subject matter in as much detail as
possible. Our goal is to pass onto you all the information that we've learned
about the ST's GEM operating system.

Best wishes—
Norbert Szczepanowski

Bernd Gunther
December, 1985

' m__';;uw "
: - -‘l{lpf%‘??ﬂ‘ o
| 20 .|r| AR Sf_i;@"‘fr?-ff.t_—ﬂ]ﬂb_ s : _ § AT ;r--{.‘_.'.':f& .
| : e HAGRY Lk : 4] f'““m""‘
- e e -,. R Y CR el Hicks esﬂ‘-

% zzﬁaﬁﬁﬁi“’@ﬁ' A W RO e
| " es ‘i r s B
| hA| s L . '___ s'_| l; 7) -
| S A .ﬂ@‘g : o ‘HJ 7‘“'“ %‘“’ ﬁ =

m# vl ,.tq‘-"ﬂ !

%z sl g
-' '*‘iﬁ-".-.. - ’&Fﬁ'
{i‘. ! ina_l |4.~15’ .

| s s ,1.'—-':’.- sl S ioERrT e
S _ el g Aeots i %‘Eﬂ&:ﬁz :

FERg 1 aE bﬂﬁéa;

. vl .
, ATl ﬁ“’a

c s - !
- o ..11. ui iu“ﬂ

ES

-_h@a 1_ 5 '%f—@

Ny .
¥, . 7&‘4'\5
goe = 5 3 h'r.wn_m_."!"'i{fg 1’15-

GO
et es (O pliic wobed Tt ¥
. SRR S R TL R Le

.-_I 5 Z}.?Qﬁ o el l._-!‘l_‘:__'!
5 hﬂé{ .\l ﬂ)" I"?:;L:q

- - :Ji},n‘*‘gﬁﬁ TSI y
= S AL s N

. Pn gy e e dumese Bty s

)

!

':

l

]

3 - - o -

i . v, LRI AS B el

1 ol

. i, l' EROTERTRE Ly PP Jﬂ_ﬂhlzﬁgﬂﬁl .‘ -.I > 3 ¥ = 1' - ij" J“‘-hm

y LT e nﬂrfuqi‘?hﬁﬁia;@‘m 52 ARG . rﬁ.“""‘ ”m"’

. “5};?;' S T ﬁmwarm TRt
' _=!.. _ .;Aﬁ... .

I*’_ |__._!'A 1
- g 3. Te L din z-.bg,ua?%}“’%%

. .", ..)L,..,) ,.aa::ﬂé‘ E

,{"%33{3",1?' g

'Pﬁ#.(\‘r‘!ﬂ.ﬂ) O
It}'(ﬁl’.‘fi@" L ertty it

§< -

e =
-4

T S < l'_".l ke H'_..,J"?z.f@{ g"grr :A. V f‘ o F’
- we bp s T 3Rl OB Lr by 3 ,234 13?:1, 24 et .'
. . . Ly ‘Hu Fv il 'Hf,ﬁ:'ﬂ;h gy ‘$€ ?@“ﬁ’ﬁ _
' 1%‘*‘3“9'1.-
5 . r)
1
o ' - I‘
N - - R . '(_}'\ "' ’ft'a N
- ! Ay R
B - .sr*—u. J,
' B -s-._w \
B I - ij 'F"'vfcl'c 1;3!"
. = i - II .

o F

I

%ﬂql‘u‘ u-&,c.cﬂ4 . ';"": ‘

A=

W N =

Y Y Y N
MBEAWNR RWN -

CHAPTER 2

W N = AN bW

NN O R N N S
AW =

AUusRERERLLLLINIDNDN DD -

Table of Contents

CHAPTER 1 GEM ORGANIZATION IN THE ATARI ST
The Atari ST—An Ideal GEM Computer

The Processor—Fast as Lightning
The Main Memory—Plenty of Room
Graphics—A Huge Matrix

GEM Structure

GEM—VDI

VDI Architecture

GDOS (Graphic Device Operating System)

GIOS (Graphic Input/Output System)
The Metafile

GEM—AES

AES Architecture

The Routine Library

Multi-tasking

The SHELL

The Buffer

PROGRAMMING WITH GEM

Programming Languages

A Short Introduction to C

A Simple C Program

Compiling a Simple Program

Variables and Loop Structures

Symbolic Constants

Functions

Conditions

A Short Introduction to the Assembler

The 68000 Processor

Important Assembler Commands

Addressing Modes on the 68000

The ST Development Package

The Editor

The C Compiler

The 68000 Assembler

The Linker

A Sample Program in C

A Sample Program in Assembler
iii

[,

[—

OO0 IITAANAAN D DWW

11

CHAPTER 3 INSIDE GEM—THE VDI 55

3.1 The Virtual Device Interface 57
3.1.1 Introduction to VDI Programming 57
3.1.1.1 VDI Functions 57
3.1.1.2 VDI Opcodes 58
3.LE3 VDI Parameters a9
3.2 The VDI Library 61
3.2.1 The Control Functions 61
5.2.2 The Output Functions 79
3.2.3 Basic Graphic Functions 93
3.2.4 The Attribute Functions 113
3.2.5 The Raster Operations 157
3.2.6 The Input Functions 169
3.7 The Inquiry Functions 209
3.3 Sample Programs using the VDI 230
CHAPTER 4 INSIDE GEM—THE AES 255
4.1 Fundamentals of AES Use 237
4.1.1 Initializing an Application 257
4.1.2 Determining the Screen Resolution 258
4.1.3 Resource Files 259
4.1.4 Displaying the Menu Bar 259
4.1.5 Output of the Desktop Icons 260
4.1.6 Handling User Input 260
4.1.7 Menu Selection 261
4.1.8 Dialog via Dialog Boxes 262
4.1.9 Selecting an Icon 263
4.1.10 Creating a Window 263
4.1.11 Controllling the Working Memory 264
4.1.12 Manipulating the Windows 265
4.1.13 Recreating the Working Storage 267
4.1.14 Multi-tasking 268
4.2 The AES Libraries 269
4.2.1 Conventions 269
4.2.2 Initialization of GEM Programs 269
4.2.3 Window Technique 284
4.2.4 Event Handler 305
425 Object Representation 323
4.2.6 Dialog Box Management 344
4.2.7 Drop-Down Menus 361
4.2.8 Graphics Library 369
4.3 Sample Programs using the AES 388

iv

Appendix A:
Appendix B:
Appendix C:
Index

Overview of the VDI Functions
Overview of the AES Functions

68000 Instructions

401
403
405
409

| :)
)
I . -
|
I 1 o
|
.
.)
.
. K
| : . -
. - .
- i _
IS . 1 &%-, : B
B A 5! - - e
5 .l .U?W" ?m& Mﬁ' "'ﬂi‘-e"r 5 S S T
-
1-- N
. . ;rﬁan:'erd RIS L T
o | ‘ N N) - :I_ _:r.
Sz s . .
! Sl . ' £ L E “1“{1: 1__
. L Lo]
s ~ i
< ' - B
o 3 . ’-
b]
1 .) . . w
¥l - . -
i‘ . : i - :
I B o \ - K
\‘ I o .
' : IS I - '_“I III
N . -
\ . . " .
| = -
. 2 . N
- =
‘ o o
‘\ - = = 1 -
| ll = T ll -
'i - v _ . _
. N a o N
\ : <L - . - .
J : f . i
.
- o o B
EN S Bt e A
- E) "
| w o
.
" - = - II . o
o 4 - A [.
) L R o - =)
- J Bl = . P Y -a ' K -
f } g T T
i . -1 o
.)
i . I . < T -
. 1
: . - ><I. 1 I
.) , N .
- A B - _
o - 1 . - . LI
| P .. R
__ ‘III 1 -
- = T
= L ‘% - - '
L. i =
. . I L o ')
B n 1
1 . -
o 1
- 1 .
. -
. B .
- . HI i 1R o o II_ .
o~ 1 - B . N
o W Fan i
) e
‘o |
N I = % = o
)
I 1 1
- o = B
o
B . o))
1 - . - 1 L - 1
- - I
- I
. - .
F = e r L
. - “' . !
s . = 1 . !
N . -1 1 -
_L - . : 1 -
II
.
. 1 1
. , = = et 2’ ' o =
B e - . i e L . o o Caaige Jolhbemen st et @m. Y L - | e L

(CHAPTER 1]

GEM ORGANIZATION IN THE ATARI ST

1.1 The Atari ST—An Ideal GEM Computer
1.1.1 The Processor—Fast as Lightning

1.1.2 The Main Memory—Plenty of Room
1.1.3 Graphics—A Huge Matrix

1.2 GEM Structure

1.2.1 GEM—VDI

1.2.1.1 VDI Architecture

1.2.1.2 GDOS (Graphic Device Operating System)
1.2.1.3 GIOS (Graphic Input/Output System)
1.2.1.4 The Metafile

1.2.2 GEM—AES

1.2.2.1 AES Architecture

1.2.2.2 The Routine Library

1.2.2.3 Multi-tasking

1.2.2.4 The SHELL

1.2.2.5 The Buffer

i o b
| e
F o U

= B r',x;lf.“_; B ’.'

‘f ﬂxéem

LR

.-

! 2z
w3,
ca M
b
e
.
B
LA
'

Abacus Software GEM Programmer's Reference

GEM ORGANIZATION IN THE ATARI ST

1.1 The Atari ST—An Ideal GEM Computer

GEM, or Graphics Environment Manager, is a graphics oriented operating
system. Components are represented on the screens as small pictures
known as icons. These icons can be manipulated to perform operating
system functions such as displaying a disk directory, copying files or
executing a program.

To handle all of these tasks, GEM requires a large amount of memory. To
perform efficiently, GEM also requires a fast processor. The ST has both,
making it a good candidate for the GEM operating system.

1.1.1 The Processor—Fast as Lightning

The Atari ST is a member of the 16-bit computer fraternity. The 68000
microprocessor, developed by Motorola in the late 70s, can put the earlier
8-bit microprocessor to shame. The 68000 microprocessor has a
16-bit-wide data bus, operates at a speed of 8 mHz, and has an addressable
memory range of up to 16 megabytes. The 68000 instructions are very
powerful, since 32-bit-register operations can be performed. As an
example, the 8-bit 6502 chip transfers 4096 bytes in memory in about 65
milliseconds—but the 68000 only needs 6 milliseconds (that's 11 times
faster).

So, the 68000 is extremely well-suited to GEM. GEM is often responsible
for handling up to several thousand graphics points on screen, and the ST is
capable of doing this task quickly.

Abacus Software GEM Programmer's Reference

1.1.2 The Main Memory—Plenty of Room

The Atari ST has an enormous amount of working memory—S512K. As we
mentioned earlier, GEM is a graphics-oriented operating system, and as
such, needs a lot of memory. One graphic "page" requires 32K, and that's
not even counting the program used to produce the page.

Another advantage of this large memory is the ability to hold several large

data buffers, which lets you access several files concurrently and speed up
the file access.

Last, but not least, the ST allows you to perform multi-tasking (running
several programs at once).

1.1.3 Graphics—A Huge Matrix

GEM is invariably associated with graphics. Without high-resolution
graphic capabilities, GEM is worthless. The ST, of course, has three modes
of operation:

e 320 X 200 screen points, 16 colors
* 640 X 200 screen points, 4 colors
* 640 X 400 screen points, monochrome

The colors can be chosen from a palette consisting of 512 colors. The colors
black and white are included in the 4- and 16-color modes.

GEM works in both 640 X 200 and 640 X 400 resolutions. The latter can
only be used with a monochrome monitor, though.

Abacus Software GEM Programmer's Reference

1.2 GEM Structure

A general introduction to GEM is in order, before we do any programming.
GEM is made up of two major subsystems:

o VDI (Virtual Device Interface)

« AES (Application Environment System)
AES and VDI are nothing more than libraries (along the lines of the Library
of Congress) of functions and program routines. These routines are
integrated into your programs, and connected to it when compiling or
assembling. We'll discuss usage of these functions later, in the section on
programming in the C language.

The VDI contains all the essential graphic functions (drawing lines, circles,
etc.).

The functions for windows, boxes and such are contained in the AES
section. AES has a lower priority than the VDI, and VDI has a lower
priority than the DOS. This hierarchy is:

« DOS (Disk Operating System)

« VDI (Virtual Device Interface)

« AES (Application Environment System)

Abacus Software GEM Programmer's Reference

1.2.1 GEM—VDI

1.2.1.1 VDI Architecture

The purpose of the VDI is to make graphic programming simpler for the
user. The trick used here is to make the use of the graphic functions
independent of the graphic output device. A VDI component, the device
driver, concerns itself with device-specific operations. VDI has the
following logical components:

* GDOS (Graphic Device Operating System)
» GIOS (Graphics Input/Output System) w/ device driver
» Metafiles

VDI also allows for different hardware configurations within GDOS. This
has valuable advantages, as we'll soon find out.

1.2.1.2 GDOS (Graphic Device Operating System)

The GDOS contains all device-independent functions. This means that a
programmer can write a C program on one computer (for example an IBM
PC) that will run on the ST. Furthermore, the programmer can use the
GDOS to access virtually any type of disk drive, regardless of brand.

With the GDOS, the device-independent functions provide for two types of
coordinates:

« NDC (Normalized Device Coordinates)
* RC (Raster Coordinates)

The normal device coordinates range from 0,0 (lower left-hand corner)
to 32767,32767 (upper right-hand corner). While not all of these points are
usable on present devices, GEM is designed for the future with upward
compatibility to more advanced graphic capabilities.

Abacus Software GEM Programmer's Reference

The raster coordinates begin in the upper left-hand corner (0,0) and end
in the lower right-hand corner, which is (640,400) in the maximum
(monochrome) graphic mode.

1.2.1.3 GIOS (Graphic Input/Qutput System)

As the title says, the GIOS is GEM's input/output system, containing all
device-specific I/O functions for devices connected with the ST. The
programmer does not talk directly to the GIOS. All graphic functions are
routed by GDOS to the GIOS which then performs the appropriate function.

GIOS is the interface between GDOS and input/output devices.

For each device connected, the GIOS has a device driver. A graphic
application can be adapted easily for a new input/output device by supplying
a new device driver.

GDOS loads the needed device driver into memory. The application can
work with every device that has a driver residing in memory.

1.2.1.4 The Metafile

All graphic output can be written as a standardized file called a Metafile. A
Metafile can be read and updated by any application. With Metafiles, it's
possible to combine graphics from GEM DRAW with text from the word
processor GEM WRITE. In short, you have the ability to move graphics to
any other application.

Abacus Software GEM Programmer's Reference

1.2.2 GEM—AES

1.2.2.1 AES Architecture

AES stands for Application Environment System. This "environment" is
graphic-oriented in GEM. Communication between user and computer is
performed by "manipulating" graphic elements (e.g., windows and icons).
The graphic environment is an especially powerful operating system, made
up of several components.

The Routine Library can be used to access all elements of the AES.
Multi-tasking makes it possible to run several applications simultaneously.
The Shell represents the operating system itself (TOS). Choice of screen
elements makes it possible to temporarily store graphic pages.

1.2.2.2 The Routine Library

The routine library contains all of the AES function calls, such as those that
move graphic objects, read the mouse, monitor windows, etc.

The library is stored in ROM in the Atari ST (early versions of the ST may
not have a ROM-based library). The Atari Development Package also

contains a set of C routines. A proposed set of Pascal routines may soon be
available.

1.2.2.3 Multi-tasking

Multi-tasking allows processes to run simultaneously. The Atari ST is
limited to the following processes:

* one application

» three desk-accessory programs with a maximum of
six desk accessories (utilities, such as a calculator)
or six background processes

* AES screen manager

Abacus Software GEM Programmer's Reference

1.2.2.4 The SHELL

The Shell switches between graphic applications and text applications. It
also acts as an interface to the operating system. It can activate the TOS
command set and supply commands.

1.2.2.5 The Buffer

The Desk Accessory Buffer contains the program codes of the desk
accessories, which are permanently available. It includes a buffer that
‘supports the graphic functions. For example, as soon as the user picks an
area containing a menu screen, the menu is saved into a buffer. If the menu
is needed again, the AES can automatically reconstruct the screen from this
buffer.

J;L . 'Hn,u.' msag*fa LT

2 © R S efovdae rr—sgs ',

D D e Hrd
. e, ?Lﬁ"’f ?f
. B 7 Sl s

L 7 Bk Ty .-M‘ﬁsﬁm

k ' .‘ . o - =i ‘ -
o M el ey plhs = UM T §11

] N _v‘_l'-:r’"_:i‘..‘ P
\) i :
b
I -

-
T

0 -)
‘l LI N

=
\5:
p .

s

'
"

[CHAPTER 2)

Programming with GEM

Programming Languages

A Short Introduction to C

A Simple C Program

Compiling a Simple Program
Variables and Loop Structures
Symbolic Constants

Functions

Conditions

A Short Introduction to the Assembler
The 68000 Processor

Important Assembler Commands
Addressing Modes on the 68000
The ST Development Package
The Editor

The C Compiler

The 68000 Assembler

The Linker

An Sample Program in C

An Sample Program in Assembler

NRNNRNNNRRNRDRERENRNNN DN
AP LRRPRLWLLNRNRNNNN =
'BE».N"‘ W DN = AU R W=

e
'

B — . S TP R

e et e 8- gt o Sk T T s,

.‘ Lo . . “". B _'El] s ‘.-'.)
o . i e : e

15t pe T RS e

iz b1 oWt Bbo

.-
.
. = 1 =ona2s' 1t
Lo : ., ¢ s T WA
1o

it imee b, gy o

['

e

e o,

Fralieily, .

T Az

T M

Bz
m- Pl

i

'n. Sl
Rrsy

Y

5 ar
wkk

o "_l‘ %

Abacus Software GEM Programmer's Reference

Programming with GEM

2.1 Programming Languages

GEM lets you work with either of two main programming languages: C or
Assembler. Both languages have advantages and disadvantages. Here is a
short overview:

C Assembler
Execution Speed — -
Program Length — +
Readability + —
Error Checking + —
Portability = —

Choosing a language is really up to you; have a good look at the criteria,
and decide which one would best fit your applications. For example, a fast
graphics program would be best written in assembly language. The
disadvantage here is that this program will only run quickly on another
system using the same processor. Such a program might be comparable to
an IBM's. But a program written in C would be compatible and easily
transportable to an IBM PC, for example.

Then again, most C compilers can produce efficient assembler code.

GEM itself is written in C.

13

Abacus Software GEM Programmer's Reference

2.2 A Short Introduction to C

C is an all-purpose programming language, with speed that compares
favorably to the speed of machine language. C was originally used for
operating system program development. The UNIX operating system was
written in C. However, C is also a fine language for writing databases and
word processing applications.

C is like machine code in the sense that characters, numbers and addresses
are used, but it has no parallels with BASIC or COBOL. Because of its
relatively concise set of statements, it is difficult to work with complete
character strings or arrays in C.

The standard set of C statements has no I/O operations like READ or
WRITE. These operations have to be implemented through the function
library (a collection of computer dependent routines with standard calls).

The omission of these language elements really puts C at a great
disadvantage. But this is an advantage for many programmers—thanks to
its small command set, C is a relatively simple language to learn. Also, and
perhaps more importantly, most computers have compatible versions of C,
so the language is extremely portable.

C has all the important control structures like subroutines, loops and
interrupt criteria. Furthermore, it uses address arithmetic and pointer values.
Functions that cannot be changed are given as arguments. Like Pascal, C
also has recursive functions that can be recalled at any time. C is a highly
effective language for a huge spectrum of applications. The following
section will introduce the fundamentals of the C language.

14

Abacus Software GEM Programmer's Reference

2.2.1 A Simple C Program

Learning a language requires you to learn its elements, as well as the proper
and most efficient "grammar". This short program will illustrate the
fundamentals of C. It prints the word ATARI on the screen:

/* Program Name: FIRST.C */
main ()

{

printf ("ATARI\n") ;

}

C programs are basically composed of one or more functions. The function
main () is, as its name implies, the main function. It must be included in
every C program. Parameters may be paired to all functions by enclosing
them in parentheses. Function identifiers must be followed by a set of
parentheses even if no parameters are required.

A function is composed of one or more statements. These statements are
delimited by brackets ({}). The brackets are equivalent to Pascal's BEGIN
and END commands. Outputting text is performed by the standard C
function print£, which is not in the normal C language set. Instead,
printf£ is in the standard I/O (Input/Output) library.

The function argument for print£ is "ATARI\n" in our example. The
characters \n are C's way of saying <RETURN>.

Every statement is ended with a semicolon.

2.2.2 Compiling a Simple Program

Try the following examples out on your ST. To make the transition to C
easier for you, detailed comments will accompany every example.

The diskettes in your development package should include the EDITOR
diskette, the COMPILER diskette, and the LINKER diskette. The program
is written using the EDITOR.

The Mince editor program was used for all the examples in this book. The

most important editing commands of the Mince editor are:

15

Abacus Software GEM Programmer's Reference

CONTROL-X CONTROL-R Read a file

CONTROL-X CONTROL-W Save file, enter file name
CONTROL-X CONTROL-S Save current file
CONTROL-X CONTROL-C Exit editor

When you save a C source file, be sure to add a .C extension (e.g.
FIRSTC.C).

On a one drive system, save the source program (FIRSTC . C) directly to
the compiler disk. To start the compiler select the program BATCH. TTP.
An input box appears, and you should enter:

C filename
For example, typing in C FIRSTC compiles the file FIRSTC. C. Notice
that you do not enter the . C extension of the filename. After compiling, the
temporary work files are erased, and an object module is written to the disk.
This module has the extension .0 (e.g. FIRSTC. 0), and is then copied to
the linker diskette (with a single drive system).

Check to see if the file LINKTOS . BAT is on the linker disk. If not, type
in the following general-purpose batch file with the editor, and save it with
the name LINKGEN.BAT:

1ink68 [u] %1.68k=gemstart,%1,vdibind, osbind, aesbind, 1libf, gemlib
relmod %1

rm %1.68k

wait

Start the linker by selecting the BATCH. TTP program from the linker
disk. At the input window enter:

LINKGEN filename
To link FIRSTC. O, type FIRSTC for the filename. Don't include the

extension . O. The linking procedure will start, and produce an executable

program with the extension .PRG. See Chapter 2.5 for details on these
items.

16

Abacus Software GEM Programmer's Reference

2.2.3 Variables and Loop Structures

The next sample C program gives the sum of the numbers from 1 to 100.

/* Output of sum of numbers from 1 to 100 */
/* Program Name: SUMC.C */

main ()

{

int number, sum;

number = 1;
sum = 0;

while (number <= 100)
{
sum = sum + number;
number = number + 1;

}
printf ("%d\n", sum);
gemdos (0x1); /* wait for keypress */

}
Note the presence of main (), as well as our opening comments (always
written between /* */). Comments can be placed almost
anywhere in a program. A good place is after the semicolon at the end of the
line described. Comments make programs much more readable and
informative.
Note that within the first set of brackets, the local variables are defined. The
declaration int specifies a 16-bit integer number between -32768 and
+32767. Both number and sum are declared as 16-bit integers.
Along with int are the other C data types:

float floating-point variables with mantissa and exponents

char a single character

short an 8-bit whole number

long a 32-bit whole number

double afloating-point number with doubled accuracy

17

Abacus Software GEM Programmer's Reference

After variable definition follows the assignment statements. This assigns a
starting value to each variable:

number = 1;
sum = 0;

Variables aren't automatically set to zero, and may contain a random
number.

The while statement is used to calculate the sums. An expression
following a while statement is enclosed in parentheses. The while
statement loops until the expression becomes false or zero.

The statements within a while loop will normally be the program itself

(this is good to know). During every iteration of the loop, the value of

number is added to sum and the value of number is raised by one.

Incrementing numbexr can also be accomplished in C like this:
number++;

Double plus-signs (++) raise the value of the variable by one. Both loop
statements can be used:

sum = sum + number;
number++;

Simpler still:
sum = sum + number++;

The above statement will increment number after the addition. The
statement:

sum = sum + ++number
increments number before adding it to sum.

Decrementing numbers (decreasing the variable by one) is just as simple as
incrementing:

number-- or —--number

This is identical to number = number - 1.

18

Abacus Software GEM Programmer's Reference

Finally the program prints the final sum to the screen. The function to do
this is print£. The character sequence %d is a format specification and
means that the variable to be printed is a whole decimal number (integer). C
gives us other format specifications as well:

$£ print floating point number

$x print unsigned hexadecimal number
%o print unsigned octal number

$c print a single character

$s print a character string

Floating-point variables allow us to represent numbers with decimal points
and digits to the right of that point. The format element $4 . 2f describes a
number with four digits, with two decimal places (e.g. 34.45, 23.76).

The function gemdos (0x1) is a GEMDOS call. This function waits for
input from the keyboard.

Besides while, the C language has another loop structure. It contains the
starting number, loop operation and condition all on the same line. Here's a
sample program for this type of loop:

/*Output of the sum of numbers between 1 and 100 */
/* Program name: SUM2.C */

main ()
{
int number, sum;
for (number=1l; number <= 100; number++)
sum = sum + number;
printf ("%d\n", sum);
gemdos (0x1) ;
}

The for loop contains three arguments, each separated by a semicolon.
The first argument is executed once, and is the initial setting of the control
variable:

number=0

The second argument is the condition that controls the end of the loop:

19

Abacus Software GEM Programmer's Reference

number <= 100

The last argument is the repeating assignment that is performed during each
iteration of the loop body:

number++

The addition sum = sum + number can also be put in the third
argument in a for loop:

/* Output of the sum of numbers from 1 to 100 */
/* Program name: SUM3.C */

main ()
{

int number, sum;

for (number=1l;number <= 100;
sum = sum + number++) ;

printf ("%d\n",sum);
gemdos (0x1) ;
}

The loop structure used depends on the situation.

2.2.4 Symbolic Constants

Constants can be defined symbolically and given values. To assign a value
to the symbol, the #define statement is used. All symbolic definitions

are placed at the beginning of the program. Let's revise our original
program slightly:

/* Output of the sum of numbers from 1 to 100 */
/* Program name: SUM4.C */

main ()

#define MAX 100

{
int number, sum;
for (number=1;number <= MAX;
sum = sum + number++) ;

20

Abacus Software GEM Programmer's Reference

printf ("%d\n",sum) ;
gemdos (0x1) ;
}

You aren't limited to defining numerical constants—you can even define
character strings:

/* Output of sums of numbers from 1 to 100 */
/* Program name: SUM5.C */

main ()

#define MAX 100

#define RET \n

{

int number, sum;

for (number=1;number <= MAX;
sum = sum + number++) ;

printf ("$d'RET'", sum) ;
gemdos (0x1) ;
}
Now the carriage return (\n) is represented by the symbolic name RET.

Notice that a semicolon does not follow the #define statement.

2.2.5 Functions

A function in C is equivalent to a subroutine in BASIC, a function in
Fortran, and procedures in COBOL, PL/I or Pascal. Function calls are the
best method of arranging complex programs. In general, the more functions
in a program, the more clearly it is arranged. The statement main () is
basically just a function call.

The following program prints the third power for the numbers 1 to 100:

21

Abacus Software GEM Programmer's Reference

/* Third power of numbers 1 to 100 */
/* Program name: THIRDC.C */

main () /*main program which calls pot function*/
{

int 1i;

long pot ();

for (i=1; i <= 100; i++)
printf ("%$d %1d\n",i,pot (1))

gemdos (0x1) ;
}

long pot(n) /* n to third power function */
int nj;
{

long x;

x=n *n * n;

return (x);

}

This program can be stated a bit more eloquently, we used this sample only
to give you a general demonstration of a function.

All functions are built on the same principle:

Name (parameter list)

Parameter declarations

{ /*function body starts here*/
Declarations
Statements

}

The parameter list can be skipped when a function has no parameters. The
parameter declaration (variable definition) is given before the body of the
function.

The argument used by the function must be declared within the function
definition to indicate the function's data type. The function itself occurs
within brackets. Next, the local variables of the function are declared.

Note: In contrast with other languages, the function called cannot alter the
variables of the calling function called.

22

Abacus Software GEM Programmer's Reference

The function can return a result to the called function. This result can be
placed in the variables by using the return () command, and must have
been declared in the function as a local variable. Our example uses the
variable x. If no result is given, return () would be used.

2.2.6 Conditions

One of the fundamental structures of a programming language is the
condition. For example:

/* Print primary numbers from 2 to 10000 */
/* Runtime: approx. 3 minutes 45 seconds*/
/* Program name: PRIMEC.C %/

main ()
{
int di,n;
for (n = 2; n <= 10000; ++n)
{

for (1 = 2; i < n; ++1i)

if (n % 1 == 0)

break; /* no prime number */
if (1 == n)

printf ("%d\n",n); /* output */
}

gemdos (0x1) ;

}

The first loop declares the starting and ending point of the loop (2 to 1000).
The second loop tests for the existence of a prime number at the
moment—if (n % i == 0). A conditional must be enclosed in
parentheses. The two equal signs set up equality between one and the other
condition. The operation n % i finds the integer remainder of both
variables after division. When the remainder is 0, then it is not handled as a
prime number. The loop is left with the break statement.

The next conditional (i==n) tests only whether all the numbers are
smaller than the number in the first condition. If so, the number is displayed
with the print £ function.

23

Abacus Software GEM Programmer's Reference

Here are all the comparative operations:

less ‘than

less than/equal to
greater than

greater than/equal to
equal

unequal

-llV'V‘}A

Congratulations—you've just learned the essentials of C. There are many
books on the C language. We recommend that you get one to find out more
details of C, while we move on to other topics.

24

Abacus Software GEM Programmer's Reference

2.3 A Short Introduction to the Assembler

This chapter will briefly explore assembly language on the ST, and includes
several sample programs.

The advantages of assembly language over a higher-level language are that
assembly language programs execute at a higher speed and use less
memory. Its disadvantages are that it is tedious work, difficult to read and
debug, and very seldom transportable (easily moved from computer to
computer). With the ST's 512K of memory, the fast disk drive, and the
overlay techniques available, your life might be a little simpler if you
avoided assembly language (also called machine language) programming.

For all its drawbacks, machine code is the most efficient language to use.
And, in the long run, 68000 assembly language really isn't that much harder
to use than C.

2.3.1 The 68000 Processor

The 68000 has 8 data registers that contain the operands for the different
operations. Each register is 32 bits (4 bytes) wide. The diagram below
illustrates the layout of a data register, where the the most significant bit is
leftmost. The - data registers are numbered from DO to D7.

DATA REGISTER

WORD : WORD—
byte 3 byte 2 byte 1 byte 0
bit 31 24 23 16 15 8 7 0
most significant least significant

The 68000 has 8 address registers numbered from 20 to A7. It is possible
to access memory locations directly with the address register, but you're not
limited to this. We shall discuss the different types of addresses later. Each
address register is 32 bits long, but only 24 bits of each are used for
addressing. In addition, every address register can be used as a stack

pointer. Address register A7 is the stack pointer used by the processor in
subroutine calls.

25

Abacus Software GEM Programmer's Reference

The 68000 has two working modes: user mode (normally on) and
supervisor mode. Supervisor mode has its own stack pointer.

Like any other microprocessor, the 68000 has a status register, which
informs you of what the system is up to. The most significant byte of the
16-bit-wide registers contains system information, while the least significant
byte stores program conditions (e.g. overflows).

2.3.2 Important Assembler Instructions

We will only touch on the most important of the assembler's large
instruction set. Almost all the instructions used in 8-bit programming are
used here. If you've done machine language programming before, most of
this will be review material.

On the 68000, almost all instructions can have 32-bit-long operands,
although you can still use 16- or even 8-bit operands. Sometimes operand
lengths are variable in an instruction. There are three identifiers used to tell
the assembler the instruction length:

.B = 8 bits (byte)

.W = 16 bits (word)

L:="32 bits (longword)
If no identifier is used, the assembler assumes the operand is 16 bits long.
The most-used instruction is MOVE:
MOVE Operandl, Operand2

Operandl and Operand2 refer to specific registers or memory locations.
The instruction moves the contents of Operandl to Operand?2.

MOVE.W DO,D1
The above example moves the least significant 16 bits from data register DO

to data register D1. The first operand is the source, the second the
destination. This sequence is used for all instructions.

26

Abacus Software GEM Programmer's Reference

Another useful instruction is the addition instruction:

ADD.W DO,D1
The contents of DO and D1 are added together, and the result is placed in
D1. What happens, though, if we add $FEFF and $0001 (both 16-bit
numbers)? The result would be $10000, and is 1 bit longer than ADD . W can
handle. The processor sets an additional bit when this happens; which bit

set depends on the situation and conditions. This bit is found (among
others) in the user byte of the status register.

User-Byte of Status Register
Bit:

76543210
===XNZVE

C-Flag (Carry)

If a carry occurs as a result of an arithmetic operation, this bit is
set. SHIFT and ROTATE instructions use this bit as temporary
storage space.

V-Flag (Overflow)

The V-flag is set when an overflow occurs.

Z-Flag (Zero)

The Z-flag is set when an arithmetic operation has a zero input.
This happens when memory locations and/or registers beneath
one another are compared and found equal.

N-Flag (Negative

A negative result sets this bit. It, too, is used in comparisons.

A

Abacus Software GEM Programmer's Reference

X-Flag (Extend)

This has the same function in principlc as the C-flag, but this
bit affects fewer instructions.

The main purpose of the flags is to alter the sequence of program execution
according to the current status of the processor. The branch instruction is
used to alter the sequence of program execution.

Branch instructions can be divided into three categories:

1) Branches depending on flag status

BCC/ carry cleared
BCS/ carry set

BNE/ zero cleared
BEQ/ zero set

BVC/ overflow cleared
BVS/ overflow set
BPL/ negative cleared
BMI/ negative set

2) Branches after unsigned comparison

BHI/ greater than

BHS/ greater than or equal to
BLO/ less than

BLS/ less than or equal to
BEQ/ equal

BNE/ unequal

3) Branches after signed comparison

BGT/ greater than

BGE/ greater than or equal to
BLT/ less than

BLE/ less than or equal to
BEQ/ equal

BNE/ unequal

Categories 2 and 3 are branches that follow comparisons. For the moment,
we'll concentrate on the first group.

28

Abacus Software GEM Programmer's Reference

In practice, using branch instructions would look like this:

ADD DO,D1
BCS label 1 **If result too large, goto label 1

Label 1 **e.g., error output

When two values are compared, the system distinguishes between numbers
with leading characters and those without (e.g. 3000 and -3000). This
comparison is accomplished by the CMP instruction:

CMP DO,D1
BHI label 2 **branch if D1 is more than DO

Label 1

The second (destination) operand is compared with the first (source)
operand; the sequence of operands is very important. There is also another
branch instruction—BRA (Branch Always). The BRA instruction will branch
regardless of flag conditions or the results of comparisons.

If you're accustomed to programming in high-level languages, you already
know about loop programming. Thanks to the DB command, you can use

loops in assembly language. DB will cause a jump to a loop under certain
conditions.

MOVE #7,D0 * eight iterations
Loop. **This section will be repeatedly executed

DBF DO, Loop

29

Abacus Software

GEM Programmer's Reference

Break conditions can be given using the branch instructions. In addition,
you have available the instructions DBF (no break) and DBT (always break):

DBT/
DRBRF/
DBHI/
DBLS/
DBCC/
DBCS/
DBNE /
DBEQ/
DBVC/
DBVS/
DBPL/
DBMI/
DBGE/
DBLT/
DBGT/
DBLE/

always break

no break

greater than

less than or equal to
carry cleared
capryiset

unequal

equal

overflow cleared
overflow set

positive result
negative result
greater than or equal to
less than

greater than

less than or equal to

We mentioned the unconditional branch instruction BRA a few paragraphs
ago. This instruction can only branch within about 32000 bytes in either
direction. Larger branches must be accomplished using JMP (jump):

JMP Label 3 ** goto Label 3

Frequently used program sections can be separated into subprograms or
subroutines. Each time the subroutine is needed, a JSR (jump to
subroutine) is called. On reaching the RTS instruction in the subroutine
(return from subroutine), the main program picks up where it left off.

JSR subprogram ** call subroutine
*the main program will
*executing here once the
*subroutine is finished

JSR subprogram ** call it again

subprogram
*instructions of

*the subroutine here

RTS ** go back to main program section

30

Abacus Software GEM Programmer's Reference

Another useful instruction in GEM is the TRAP instruction. The operand
of the TRAP instruction should have a number between 0 and 15; this
number selects a certain routine, rather than an address.

TRAP #1 **call for GEM handler

2.3.3 Addressing Modes on the 68000

The 68000 has a variety of addressing modes. An addressing mode is the

means by which the address of one of the operands is calculated in that

instruction's operand. Below are the different addressing modes:

1) Immediate addressing

In this addressing mode, the data is specified as part of the instruction:
MOVE #30,D6

The above instruction immediately loads the decimal number 30 into data

register 6.

2) Absolute long/short addressing

In this addressing mode, the memory location containing the data is
specified as part of the instruction:

MOVE SFF7795,D6
The contents of memory location $FF7795 are transferred to data register 6.
If the memory location lies in the range $000000-$07FFFF or
$FF8000-$FFFFFF, then a special form of the instruction called short
addressing is used. The advantage is that the length of the instruction is
reduced by two bytes.

The assembler can distinguish between the two addressing modes, and will
act accordingly.

31

Abacus Software GEM Programmer's Reference

3) Indirect addressing
In this addressing mode, the address of the data is specified in a register:
MOVE (AO),D5

The contents of memory location contained in address register AQ are copied
into data register D5.

4) Indirect addressing with displacement

In this addressing mode, a constant value (displacement) is added to the
contents of the register. The sum of these is the effective address of the data:

MOVE D1,10 (A5)
The contents of data register D1 are copied to the memory location whose
address is the sum of 10 and the contents of address register A5.
5) Indirect indexed addressing with displacement
One disadvantage of indirect addressing with displacement is that the
displacement is always a constant value. In this addressing mode, we can
get around this limitation by adding the contents of an additonal data or
address register to produce the effective address:
MOVE DO, 20 (A2,DO0)
If A2=500 and DO=100, DO results in the following:
500
+100
+.20
620

In simple indexed addressing (without offset), the displacement is zero.
6) Pre-decrement addressing

This addressing mode is similar to indirect addressing, only the value of the
given address registers includes a decrement value (1, 2 or 4 bytes):

32

Abacus Software GEM Programmer's Reference

MOVE D2,- (A7)
The contents of data register D2 are copied to the memory location specified
by address register A7 before address register A7 is decremented by one.
7) Post-increment addressing
This addressing mode performs the exact opposite operation of
pre-decrement addressing. The value of a register's contents are
incremented by 1 after the operation is performed.
The two addressing modes (pre-decrement and post-increment) are useful
for maintaining stacks. A stack is created with pre-decrement mode, and
can be accessed with post-increment mode.
MODE DO,- (A7) **put 2 values on the stack
MOVE D1,- (A7)

MOVE (A7)+,D1 ** get values from stack
MOVE (A7) +,D0
8) Relative program counter addressing with offset

In this addressing mode, adisplacement is added to the contents of the
program counter (PC) to produce an effective address:

CLR 10 (PC)
The constant value 10 is added to the contents of the program counter to
yield an effective address. This memory location is cleared (zeroed).
9) Relative program counter addressing
with indexing and offset
This addressing mode is rarely used. It is similar to §) Indirect indexed

addressing with displacement, except that the PC is substituted for the
address register.

33

Abacus Software GEM Programmer's Reference

2.4 The ST Development Package

The ST Development Package consists of 7 diskettes and 2000 pages of
documentation. This serves as a starting place for developing GEM
applications. The diskettes contain the following:

The TOS Disk

TOS.IMG GEM Desktop, AES, VDI, GEMDOS
and BIOS

DESK1.ACC VT52 Terminal Emulator

DESK2.ACC Control panel

The Language Disk

LOGO.PRG LOGO-Interpreter

LOGO.RSC LOGO-resource file

ANIMAL.LOG Example program

KNOWN.LOG Data for ANIMAL.LOG

T'he MINCE Editor Disk*

PRGINTRO.DOC Introduction to MINCE editor
LESSON4.DOC
LESSONG6.DOC
LESSON8.DOC

MINCE.PRG the editor
MINCE.SWP MINCE overlay
CONFIG.PRG

*New versions of the package may have a different editor

34

Abacus Software

GEM Programmer's Reference

Th mpiler Disk

CP68.PRG
CO68.PRG
C168.PRG

'/AS68.prg
VASB8INIT
"AS68SYMB.DAT

"BATCH.TTP
RM.PRG

WAIT.PRG
C.BAT

DEFINE.H
GEMBIND.H
GEMDEFS.H
“VDIBIND.H
“TOSDEFS.H

“OBDEFS.H
‘OSBIND.H
'PORTAB.H
MACHINE.H
“TADDR.H

The Linker disk

'LINK68.PRG
*“RELMOD.PRG
“BATCH.TTP
"BRM.PRG

VWAIT.PRG
LINKAP.BAT
LINKACC.BAT

3-pass C-compiler

68000 Assembler

Batch processing program
Program to delete files

Return to desktop program
Compile batch file

Type definitions

Gem binding kit

Common GEM definitions

External VDI functions

TOS file attributes / error definitions

GEM object definitions
For binding GEM and BIOS
Files for porting IBM applications

Linker program
Relocation program
Program for batch files
Program to delete files

Return to desktop program
Linker batch file for applications
Linker batch file for accessories

35

Abacus Software

GEM Programmer's Reference

‘ACCSTART.O
APSTART.O
/GEMS.O
“GEMSTART.O
AESBIND
/VDIBIND
GEMLIB
vLIBF

I'he Utility Disk

COMMAND.PRG
DUMP.PRG
FIND.PRG
HIGH.PRG
LOW.PRG
KERMIT.PRG
NM68.PRG
AR68.PRG
SID.PRG
SIZE.PRG
APSTART.S
ACCSTART.S
ACSKEL.C
APSKEL.C

he R T n

RCS.PRG
RCS.RSC
DOODLE.PRG
DOODLE.RSC
DOODLE.C
DOODLE.H
DOODLE.DEF

GEM accessory start file

Gem application start file

C library start file

C, VDI, AES library start files
AES library

VDI library

C library

Floating point library

Command line interpreter
Hex-file print

find string

Medium res. program
Low-res program

file transfer program
symbol table print program
Library creation utility
Debugger

Program segment size utility
Source to application start routine
Source to accessory start
Example accessory

Example application

ruction Di

Resource Construction Set
RCS resource file
Example application
Doodle resource

Doodle C definitions
Doodle header file
Resource definitions

The following pages contain an overview of the development package
needed for GEM program development.

36

Abacus Software GEM Programmer's Reference

2.4.1 The Editor

The editor is the program that allows you to write and edit source programs
to be compiled. You can also create batch files with this editor.

The editor included in the development package is MINCE (later versions of
the development package may contain a different editor).

MINCE.PRG is the editor program itself. It is started like all other
applications, but it isn't a GEM application; it runs under the TOS
applications (Menu Options). On every boot-up, it's wise to install it as a
TOS application. Thus, you install the MINCE . PRG from the menu
OPTIONS with TOS-takes parameters (TTP) or youcan rename
the program to MINCE . TTP from the FILE menu with SHOW Info...

CONFIG.PRG is a program for adapting the editor to the computer. All
details of the keyboard, screen and other compatability factors are kept here,
but is redundant, since MINCE is adapted specifically for the ST.
MINCE. SWP is the Atari ST configuration data.

LESSONS are text files that can be read into the editor. They give
instructions on use of the MINCE editor.

Here are some editor basics. Start the editor; you can now input a program.

To save the program as a file, press the key combination
Control-X/Control-W after you give it a name. If the program file
is to be compiled with the C compiler, add the suffix .C (e.g. TEST.C).

To read a previously created file, press the key combination
Control-X/Control-R). After making any changes to this file,
you can resave the file without entering a new filename by pressing
Control-X/Control-S.

To exit the MINCE editor, press Control-X/Control-C.

The list below gives your the most important MINCE commands. The
Control key is represented by the character ©.

©-A Start-of-line ©-X ©-C Exit editor

©-D Delete line ©-E Goto end-of-line
©-J New line ©-K Delete line

©-T Exchange character ©-X ©-R Read file

©-X ©-5 Save file ©-X ©-W Rename & save file

Abacus Software GEM Programmer's Reference

2.4.2 The Compiler

The development package contains a C-compiler from Digital Research. In

addition to the compiler program, there are several other programs on the
compiler disk:

CP68.PRG,C068.PRG and C168.PRG are part of the three-pass
compiler. Sourcefiles are compiled in three steps. Programs are compiled by
calling the C.BAT file, which is called from the BATCH. TTP program.
(TTP means TOS Takes Parameters, and allows you to input the filename).

The compiler steps cannot be executed individually. The batch program
C.BAT automatically runs them. If this batch file isn't on your compiler
disk, type the following lines using the editor, and save it on your compiler
disk with the name C.BAT:

cpe8ipl se Flnd

cob8 ialua SUMUNSNIL2T SlERe<F
cl68 %1.1 %1.2 %1.s

rm $1.1

B Es 2

as68 -1 -u %1.s

rm %$1.s

wait.prg

The program rm is necessary to delete the work files. The temporary work
files are deleted so they do not clutter the disk. If the assembler source file is
needed, remove the line rm %1.s from the C.BAT file.

The wait .prg program waits after the compiling procedure, until
<RETURN> is pressed. This allows you to read any error messages on the
screen.

The BATCH.TTP program starts a procedure which brings up the batch
files to be run. On the OPEN APPLICATION command line enter:

C name
C is the name of the batch file to be called, and name is the program to
be compiled. Do not enter the .C suffix, because it's included in the

C.BAT file. The %1 in the C.BAT file is the place-holder for the filename
parameter.

38

Abacus Software GEM Programmer's Reference

The actual programs of the C compiler are described below:

1) The cpP68 Preprocessor

The preprocessor connects the source file to any header file
specified by #include, and sets up needed symbols
specified by #define. The preprocessor is called as follows:

CP68 file.C file.i

file.C is the source file and file.i the new resulting
source file.

2) The c068 Parser

The parser produces an "intermediate compiled code" from the
file created by the preprocessor. The parser is called with:

C068 file.i file.l file.2 file.3 -£

3) The c168 Code Generator

The code generator creates an assembler source file from the
intermediate file.

Cl68 file.l file.2 file.s

File. s is the assembler source file. File.l and file.2
are work files.

The compiler does not create "ready-to-run" object files.
Instead it creates assembler source files. This has advantages:
it's easier to find errors, and makes programs more efficient
using assembler files. The assembler source file contains the
corresponding C source lines, as described on the next page.

39

Abacus Software ' GEM Programmer's Reference

The Assembler Source File

The assembler source file is processed with the assembler found on the
compiler disk. It is called like this:

AS68 -1 -u file.s

The parameter -1 states that all addresses will be handled in 32-bit form.

The parameter -u declares that all unknown symbols are to be treated as
external variables.

The assembler produces the object file, £ile .o, which has to be linked

together with the various operating system files using the linker disk at a
later time.

Next we'll describe the assembler, and then discuss the linker.

2.4.3 The 68000 Assembler

If you want to run the assembler seperately fromthe C compiler, you'll have
to install the application AS68 to TOS-takes parameters from the
desktop menus Options/Install Applications. Asthe AS68
starts with a double-click on the mouse, you enter the following options in
the OPEN APPLICATION window's command line:

[=F gl =] [m8d il =0T el s il =4
[-O Object- filename] Sourcecode-filename
[>Listing—-Filename]

Characters in brackets are optional and are not required for assembly. Their
meanings are described here:

-F d: During the assembly of AS68 files, the work files will
automatically be deleted. The —F option lets you state on which
disk drive these files will be generated. d: is the character
code of the disk drive, followed by a colon. If you skip this
option, the disk drive which is active at the time is used.

-I The —-I option initializes the assembler. This has already been

done for the ST, and need not be repeated. This creates the file
AS68SYMB.DAT.

40

Abacus Software GEM Programmer's Reference

T

This option outputs a listing of the assembler program.
Normally, the list will appear on screen. When the
Listing-Filename is given the extension . I, the system
will write the listing to the diskette. If no listing is desired, the
error messages will be output to the screen from the AS68.

This option declares which disk drive contains the file
AS68SYMB.DAT . The value d: is the drive identifier. Like
-F d:, the default will be the currently active drive if d: is left
unused.

All undefined labels will be handled as global values, i.e., they
can be used in linking other programs.

This option will set-up all constants as longwords. Although
programs don't run in the first 64K of the Atari ST, this option
is mandatory.

This option causes the JSR command to no longer be
automatically converted into the BSR command. The 4-byte
BSR commands aren't converted into 2-byte BSR commands.

This option allows the assembler to accept 68010 opcodes.

Sourcecode-Filename

This is the filename of the program to be assembled. It's
standard practice to end this filename with . S.

Listing-Filename

When the —P option is on, the listing of the given file is active.
If the —P option is off, only the error messages will be stored
on disk. It's standard to end this filename with . L.

41

Abacus Software GEM Programmer's Reference

Assembler Directives

Directives are instructions to the assembler. They are "imbedded" as part of
the assembler source file. Here is a list of the most important AS68
assembler directives:

.data
The assembly will be done in DATA segments.

.bss
Assembly is performed in block storage segments.

.text
Assembly done in TEXT segments.

.end

Assembly ended. After this command, a <RETURN> will output
the error messages.

.de NR[,NR,...]

Sets a number or a set of numbers in memory. You have three
sub-options:

.dc.b Handles the numbers as byte-values. An
uneven number of byte-values will cause an
appended extra zero (if no more .dc.b
directives follow).

.dc.w Handles them as 2-byte constants (words).
When text is given containing an uneven
number of characters, a zero is inserted.

.dc .1l 4-byte constants (longwords). If the numbers
of bytes doesn't fit into a multiple of 4, the
last longword will be filled in with zeroes.

.ds number of values
Memory is reserved without the number being initialized:

.ds.b bytes reserved

.ds.w words reserved
.ds.1 longwords reserved

42

Abacus Software GEM Programmer's Reference

label .equ value
A label will have a value associated with it. A label can be defined
only once. If the value itself is a label, it must be previously
defined in the program.

.even

Sets the internal program counter to the next address. This
directive is used when working with assembler segments with
.text, .data or .bss.

The 68000 Assembler can assemble several segments, under these
conditions:

The text segments are contained in program text;
*The data segments are stored as block segments of data.

Program comments are preceded by asterisks ("*"). Text can be enclosed in
single or double quotation marks (' or "). Register names can be presented
in upper- or lowercase letters—e.g. d0 is the same as DO.

2.4.4 The Linker

The linker converts several object programs into a single executable
program. It determines which modules are needed from its library in order

to produce an executable program. These fall into three different
applications:

*Desk Accessory: A GEM application that's called from the
Desk menu.

*GEM-Application: started with the double-click of the mouse.

*TOS-Utility: TOS routines, rather than GEM routines.
SID is a TOS utility.

Each of these choices has its own linking procedure. On the next page are
the required batch files for each of the procedures in case these aren't
already on the Development Package diskette:

43

Abacus Software GEM Programmer's Reference

Accessory Batch
LINKACC.BAT

1ink68 [u] %1.68k=accstart,%1l,vdibind,
aesbind, osbind, 1ibf

relmod %1

rm %$1.68k

wait

Application Batch
LINKAPP.BAT

1ink68 [u] %1.68k=apstart,%1l,vdibind,
aesbind, osbind, 1ibf

relmod %1

rm %1.68k

wait

TOS Batch
LINKTOS.BAT

1ink68 [u] %1.68k=gemstart,%1l, osbind, gemlib,libf
relmod %1

rm %$1.68k

wailt

If you have a single disk drive system, the object programs from the
compiler (file.o) must be copied to the linker disk before you can use
these procedures. The BATCH. TTP will then call one of the three batch
files:

LINKACC file
LINKAPP file
LINKTOS file

The RELMOD program converts the relocatable command file produced by

LINK68 into a file that is executable by GEMDOS. When the linker batch
file is finished a running program with the extension .PRG is created.

44

Abacus Software GEM Programmer's Reference

2.5 A Sample Program in C

We have already discussed using TOS applications in C. This chapter will
illustrate GEM applications with VDI (Virtual Device Interface) calls. This
program draws a square on the outer edges of the high-resolution screen.
Type this program in using the editor, and save it with the name
SAMPLEC.C.

/* Draw one rectangle */
/* in 600X400 resolution */
/* Program Name : SAMPLEC.C */

#include "gemdefs.h"

int eontxl [12]y
intin [128],
ptsin [1287,
intout[128],
ptsout [128];

int handle;

int work in([12],
work out[57],
pxarray([10];

main ()

{

int.i,;

appl. imit ()3

for (i=0;1i<10;work in[i++]=1);

work in[10] = 0;

v_opnvwk (work in, &handle, work out);

pxarray[0] = 1;

pxarray[l] = 1;

pxarray([2] = 638;

pxarray([3] = 1;

pxarray[4] = 638;

pxarray[5] = 398; /* 198 for color monitor */

1; /* in medium res. mode */
198 for color monitor */

pxarray|[6]
pxarray[7]
pxarray[8]

(.

= W

e \o\
[e¢]
e
s
*

45

Abacus Software GEM Programmer's Reference

pxarray([9] = 1;

v_pline (handle, 5, pxarray);
gemdos (0x1) ;

v_clsvwk (handle) ;

appds exdt ():;

Now copy this program from the editor diskette to the compiler diskette.

Start the program BATCH. TTP with a double click of the mouse and enter
the following on the command line:

C SAMPLEC

The batch file C.BAT starts and documents its progress on screen. At the
end of the procedure, copy the file SAMPLEC . O from the compiler to the
linker diskette. Any errors that occur are displayed on screen. Correct any
errors in the program with the editor and recompile if necessary.

Now we are ready to link the assembled object program SAMPLEC . O with
the necessary libraries. Start the linker batch file processing program
BATCH.TTP and call the batch file LINKGEN.BAT (from Section
2.2.2) by entering the following on the command line:

LINKGEN SAMPLEC

The linker runs, and creates the program SAMPLEC.PRG. This can be
started with the double-click of the mouse. It's possible to call TOS
applications directly from the GEM screen, which will cause a white screen
to appear. This is accomplished by installing the program, from the menu
OPTIONS/Install Applications, asa TOS program. It can also
be accomplished by renaming the file name extension .PRG to .TOS from
the FILE/Show Info menu.

Follow the above procedures with the C examples that are presented later in
this book. Keep in mind that on single drive systems you'll only have room
for one program to work on per diskette. When you're finished, copy
source files and program files from the compiler and linker diskettes onto
another diskette. Then delete the old ones from the compiler and linker
diskettes.

46

Abacus Software GEM Programmer's Reference

2.6 A Sample Program in Assembler

Now we're ready to proceed with an assembler program example by

following specific procedures, as we did with a C program in the previous
section.

Since we're not using a "how-to" cookbook format ("'step 3: add LINKTOS
and mix thoroughly"...), we assume that you've taken at least a little time to
work with the utility programs in C. If you haven't done any programming

in C, don't read this chapter yet—go back to Chapter 2.2, A Short
Introduction to C.

Four basic working steps are needed when you write an assembler
program:

1) Type in the source program text with of the editor, and save the
text on diskette. You'll need this program text (source file) for
later steps in development (assembly, linking, relocation).

2) Call the AS68 assembler. This produces a machine code
object file, which can't be run just yet. If your program is
composed of several modules, each module must be assembled
separately.

3) Call the linker. This program chains together separate program
sections into one program, and will change labels and symbols
to consistent values.

4) The linked program can then be executed. The linker adds
information that indicates which commands and addresses are
relative values. To convert a relative program into an absolute
program (shorter and faster than a relative program), the
relocating modifier RELMOD is used.

The sequence in which the last three steps are called is particularly
important. But another way to accomplish these steps is to automate the
operation. This can be done by using a batch file.

A batch file is simply a list of commands to be executed in a particular

sequence. Instead of typing these commands at the keyboard, the
commands are read from a file contained on diskette.

47

Abacus Software GEM Programmer's Reference

The batch file initiator is called BATCH. TTP. It takes as its parameter the
name of the batch file to be used for a particular sequence of events—for
example, compiling a C source file to an executable program.

A batch file has a name with a .BAT extension. A batch file to assemble a
68000 source file is called AS.BAT. This batch file contains all the
commands to convert an assembler source file into an executable program.

Before we take a closer look at this batch file, we must first make a work
diskette containing all of the programs used by the batch file.

Format a diskette. Next copy the following from the editor diskette to the
newly formatted diskette:

a) MINCE.SWP
b) MINCE.PRG

The second program (program b), the editor itself, has a small drawback.
Every time you start the program, you have to install it as a TOS application
instead of a GEM application. The reason for this is that a GEM application
chooses a mouse pointer, but drops the cursor. Obviously, an editor
without a cursor makes for difficult editing. So instead of calling the editor
directly, we install the application so that TOS-takes parameters
(from the Options menu). This gives us the cursor and loads the editor
automatically. Change the Document type in the information box if all
your files will use the extension . S. You can also rename the MINCE . PRG
to MINCE . TTP (Tos Takes Parameters) from the FILE menu.

Next copy the following to the newly formatted diskette from the compiler
diskette:

c) MBATCHTTP

d) AS68.PRG

e) AS68INIT

f) AS68SYMB.DAT

Finally, copy these programs from the linker diskette to your work diskette:
g) LINK68.PRG
h) RELMOD.PRG

i) RM.PRG
j) WAIT.PRG

48

Abacus Software GEM Programmer's Reference

Now we can create a batch file necessary for assembly language
programming. Put your newly-created work disk into the drive. You won't
need any other disks from the development package if you program in
assembly language only.

Run the editor (MINCE . PRG) and type in the following text:

as68 -1 -u %1.s
1link68 [co[%1.inp]]
relmod %1.68k %1.prg
rm %1.68k

wait

The expression %1 is the placeholder for a filename. The filename will be
input later from the OPEN APPLICATION box. Before you do that,
though, you'll have to save the batch file. Type in the commands
control-x and control-w, and input the file name AS.BAT to
save the batch file. The batch file is now ready.

In the second line of the batch file is the label "co". This means that as soon
as the batch program is started, its commands come from one of its own
files. The filename is the same as the assembler program name, but with the
suffix . INP . Clear the text of the AS . BAT batch file from the editor, and
type this in:

[ul] test.68k=test.o

This line is the command for the linker. Save this (control-x/
control-w) under the name TEST.INP .

Your assembler work disk is now completed. Remember to make a backup
copy before proceeding, just to play it safe. As long as you keep using the
file name TEST . S for your source program, you won't need to make any
changes to this disk. Any new file names will require changing the
command line for the linker.

The routine in Chapter 2.5 that draws a box on the high-resolution screen
will serve as a good assembler sample program. If you can understand that
program, you should have a general understanding of GEM. You'll want to
read the next section carefully, to get a thorough understanding.

Using the editor, type in the machine language source code listing that
begins on the next page.

49

Abacus Software GEM Programmer's Reference

move.l a7,a5 Ak kkhkkkkkkkhkhkkkkkkkkhkkhkkkkxk
move.l #nstapel,a’ *Sample 68000 assembly *
move.l 4 (ad) ,abd *language program that *
move. 1l Sc(ab5),d0 * draws a box on the *
add.l $14 (a5),do0 *high resolution screen%*
add.1l $1c(a5),d0 Ak kA K AKKKAKKKA KA KK K* K * KKK
add.1l #$100,d0

move.l do, - (sp)

move.l a5, - (sp)

move d0, - (sp)

move #S4a, - (sp)

trap #1

add.1l #12, sp

jsr main

move #1,-(sp)

trap #1

add.l #2,sp
move.l #0, (a7)

trap #1

aes:

move.l #aespb,dl
move #$c8,d0
trap #2

rEs

vdi:

move.l #vdipb,dl
moveq.l #$73,d0

trap #2

rts

main:

move.l #0,aplresv
move.l #0,ap2resv
move.l #0,ap3resv
move.1l #0,apdresv
move #10, opcode *appliandt
move #0, sintin
move #1, sintout
move #0, saddrin
move #0, saddrout
jsr aes

50

Abacus Software

GEM Programmer's Reference

move
move
move
move
move
jsr

move

move
move
move
move

move
move
move
move
move
move
move
move
move
move
move
jsr

move
screen
move
move
move
jsr

move
move
move
move

move
jsr

move
move
move

#77, opcode
#0, sintin
#5, sintout
#0, saddrin
#0, saddrout
aes

intout, grhandle

#100, opcode

#0, contrl+2
#11,contrl+6
grhandle, contrl+12

#1,intin
#1,intin+2
#1,intin+4
#1,intin+6
#1,intin+8
#1,intin+10
#1,intin+12
#1,intin+14
#1,intin+16
#1,intin+18
#2,1intin+20
vdi

#3,contrl

#0,contrl+2
#0,contrl+6
grhandle, contrl+12
vdi

#17,contrl
#0,contrl+2
#1,contrl+6
grhandle,contrl+12

#1,intin
vdi

#6,contrl

#5,contrl+2
#0,contrl+6

51

*graph handle

*open_ vwork

*clear workstation/erase

*Polyline-color = black

Abacus Software

GEM Programmer's Reference

move grhandle,contrl+12
move #1, ptsin

move #1, ptsin+t2

move #638,ptsint4

move #1, ptsin+t6

move #638,ptsin+8

move #398,ptsin+l0 *198 for color monitor
move #1, ptsin+l2

move #398,ptsin+l4 * 198 for color monitor
move #1, ptsin+l6
move #1, ptsin+l8

jsr vdi

rts

.data

.even

aespb:

.dc.l contrl,global,intin, intout,addrin,addrout
contrl:

opcode: .ds.w 1

sintin: .ds.w 1

sintout: .ds.w 1

saddrin: » «ds.w: 1l

saddrout s .ds.l:l

.ds.w 5

global:

apversion: .ds.w 1
apcount: .ds.w 1

apid: .ds.w 1
apprivate: .ds.1l 1
apptree: sdsadl 1
aplresv: o 0 (I
ap2resv: ads#l=1
ap3resv: Jdsal 1
ap4resv: .ds.1l 1

intdins:

.ds.w 128

ptsin:

52

Abacus Software GEM Programmer's Reference

.ds.w 128

intout:
.ds.w 128

ptsout:
.ds.w 128

addrin:
.ds.w 128

addrout :
.ds.w 128

vdipb: .dc.1l contrl,intin,ptsin,intout, ptsout
grhandle: .ds.w 1

.bss
.even
.ds.1l 300
nstapel:
.ds.1l 1
.ds.w 10

.end

Save this program under the name TEST . S. Now call the batch program
initiator BATCH. TTP with a double-click of the mouse. BATCH . TTP
displays a dialog box—it's asking you to enter the name of a batch file.
Type:

AS TEST

Pressing <RETURN> results in automatic assembly, linking and relocation
of the source file. The word AS is the batch file name, TEST is the name of
the assembler source code. When the conversion of the program to machine
language is over, you'll find a new file on diskette called TEST . PRG. This
is an executable program, which you can now start with a double click of
the mouse. If any errors occur in your typing in of the source program, the
system will find them during assembly or linking, and list the line number
of the error. You'll then have to correct the problem, and restart the batch
processing program (BATCH.TTP).

In rare cases, we found that the batch program crashes due to errors. If this
happens, all you can do is start from scratch (RESET button).

53

T }H- w-l';-: PP S
Lo vt moem - = gy -7 £ B =iy x EEREEE i
£ _.\Lr_ f RA R TG 11'!. “ - oA 5_ 3.,);‘_ll_: . *A' e _N.!-‘”-
i e n e g g pRilemipmdss et o0 oo mwenrwe memleces o0
I B B a B ‘_ 'ILr - I‘T ‘ o Ve " : : ‘_JLI o _.ll:“'?lll: -'u"-;..ﬂ-'
. o B Ly e et
- " i D NS
o - ‘-E F "
' . EETTRIY S TCE
: B3 Wedan aT R
i AL o
"Bl . W
-) ._ 1%—%}!<: :E_'. : .‘
o ‘E..< E
. I't_ -F - -
..‘g ”ubﬁﬁm‘“ f
_ . : - e wkl Sals
) v E i E A, . § T
A TR - Feiehn S
_ o TR - EEE R TN
. N - = i -
L il < .
R B o
Sao JLu.'p f‘i:-ﬂ' B ﬁﬁ‘ﬁ “"
- . SN 4 o '5 f’ﬂ;
. v T —u !
"
1 I I
. S
o
- . 2 s Da
i SEFALIP € B TR 1

S R *ufmﬁ‘
= I 0= ,x.~§u SAYER R

- 'I,-. T W H ’g’nrﬁ;ﬁ&w
130 \at '*33‘?3 A "L.z'f
S Lo ‘%‘F

-!j .'1_| ‘ﬁ-““ Frot

f] - 3D
e A

BT L.,At?fﬁ!’h.hﬁ.g

DL TR TR . r_-:gjo ;s._i :u

BTSRRI g, 3 ‘,’r
fald e m;ﬁwm{.: o

: s H:

AT 1 paide. #'ﬂ.»*.
LWJ.“H‘#

(CHAPTER 3]

Inside GEM—the VDI

The Virtual Device Interface
Introduction to VDI Programming
VDI Functions

VDI Opcodes

VDI Parameters

The VDI Library

The Control Functions

The Output Functions

Basic Graphic Functions

The Attribute Functions

The Raster Operations

The Input Functions

The Inquiry Functions

Sample Programs using the VDI

- o
W b =

WLRLULULULULULWLWUWULWUWLWWW
MNNNNN.NNNHHHHH
U B RN

T

A ?i»"'.uij. |
AR NREAR

“i"",[i:?':.'\rr-.?-f'." ”’ >
: PR

bt :
g
—

4"

e s
o
v Ep

S
1, dv

s

Ei

.p
g

=
#
.

0%, 4=t
. -

w

r
T =

Abacus Software GEM Programmer's Reference

Inside GEM—the VDI

3.1 The Virtual Device Interface

This section of the book presents the Virtual Device Interface (VDI). As
previously mentioned, the VDI is a collection of graphic routines.

By using the facilities of the VDI, the program developer is freed from
having to know and use device-specific codes to create graphics. When the
programmer uses the graphic functions through library routine calls, the
VDI device driver adapts the functions for the particular output device. This
device-independent arrangement makes it fairly easy to move applications to
other computer systems capable of running GEM.

3.1.1 Introduction to VDI Programming

3.1.1.1 VDI Functions

The VDI functions are divided into several groups. Here is a general
overview of these functional groups:

Control Functions

These functions initialize the graphic workstation and set defaults for use
with the applications.

Qutput Functions

Output functions produce the graphic primitives such as lines, circles, etc.
Attribute Functions

These functions set up for the output functions for color, type and style.

Raster Functions

These functions control the operation of rectangular bit blocks in memory
and device-specific point blocks.

57

Abacus Software GEM Programmer's Reference

In F i

These functions allow input for a user program.
Inqui n

These functions transmit the actual set-ups for device-specific attributes
such as color, type, etc.

Escape Functions

These functions handle screen controls (e.g. cursor position).

3.1.1.2 VDI Opcodes

The different functions of the VDI are identified by a distinct numerical
value called an opcode. All functions of the VDI are invoked by calling a
single routine (entry point) in the library. The opcode enables the routine to
determine the desired function.

The individual VDI functions require one or several parameters. A call to the
entry point requires that the parameters be passed in the form of five arrays.
Calis to the VDI maybe made from applications written in assembly
language or C. The opcode for the VDI function is passed in the variable
Contrl (0).

58

Abacus Software GEM Programmer's Reference

3.1.1.3 VDI Parameters

The following pages describe the parameters of VDI calls.

Input Parameters

contrl (0) Function opcode

contrl (1) Number of points in array ptsin
contrl (3) Length of array intin

contrl (5) Identification of subfunction
contrl (6) Device identifier handle
contrl (7-n) Opcode-dependent information
intin Integer input parameter array
ptsin Input coordinate array

Qutput Parameters

contrl (2) Number of points in array ptsout
contrl (4) Length of array intout

contrl (6) Device handle

contrl (7-n) Opcode-dependent information
intout Integer output parameter array
ptsout Output coordinate array

The parameters contrl (1) and contrl (2) must be set correctly.
Each coordinate point in the arrays ptsout and ptsin consist of two
entries, the coordinate pair x and y. If no coordinates are used,
contrl (1) and contrl (2) must be set to 0.

The parameters contrl (3) and contrl (4) must always be set. If
they are defaulted, intin and intout cannot contain integer variables.

If calling the VDI from an assembly language program, you must place the

addresses of the five array parameters in a parameter block (PB) in
longword size (4-byte).

39

Abacus Software GEM Programmer's Reference

Address Contents

PB Control array (contrl)

PB + 4 Input array (intin)

PB + 8 Input coordinate array (ptsin)
PB + 12 Output array (intout)

PB + 16 Output coordinate array (ptsout)

Before calling VDI, the address of PB will be stored in the 32-bit register
D1. In addition, the library ID is placed into register DO (73h=VDT,
C8h=AES). Next, the interrupt function TRAP 2 is called, the address of
which is contained in GDOS.

C language programmers need not be concerned about the PB. Your
parameters are defined in your C program, before the main () function.
This makes the variables accessible to GDOS. Therefore, you can name
external variables:

int contrlf[l2],
intinfl128]1;
ptsin[128],
intout [128],
ptsout [128];

60

Abacus Software GEM Programmer's Reference

3.2 The VDI Library

3.2.1 The Control Functions

The control functions initialize the graphic workstation and take instructions
for user programs.

OPEN WORKSTATION Opcode = 1

This function loads the device driver for a specific input/output device. The
ST has no driver for some devices like a plotter or a graphics tablet.
Nevertheless, we'll briefly talk about these devices.

The I/O device is initialized by the parameters for the input array. The output
array transmits similar information to the device. In addition, these
functions can be controlled within a program in contrl (6) .

If the device can't be opened, the device identifier is zero. If cont rl (6)
is not equal to 0, the function continues.

Input Parameters

contrl (0)

contrl (1)

contrl (3)

intin (0) = work in(0)
intin (10) = work in(10)

61

Abacus Software GEM Programmer's Reference

Qutput Parameters

contrl (2)

contrl (4)

contrl(6) = handle
intout Q) = work out (0)
intout (44) = workout (44)
ptsout (0) =

work out (45)

ptsout (11) = work_out (56)

Parameter ription
contrl (0) Opcode (1)
contrl (1) Number of ptsin points (0)
contrl (3) Length of intin array (11)
intin (0) Device identification, given on
loading Device driver
intin (1) Line type
intin(2) Color for Line operation
intin (3) Type of marking
intin (4) Color of marking
intin (5) Character set
intin (6) Text color
intin (7) Fill type
intin (8) Fill pattern index
intin (9) Fill color
intin (10) Coordinate flag
0 = Normal coordinates
1 = reserved
2 = Raster coordinates
contrl (2) Number of ptsout arrays (arrays/2)=6
contrl (4) Length of intout arrays (45)
contrl (6) Device identifier
intout (0) Raster width of devices in points or

steps (e.g. monochrome screen = 639)

62

Abacus Software

GEM Programmer's Reference

intout (1)

intout (2)
intout (3)
intout (4)

intout (5)

intout (6)
intout (7)

intout (8)
intout (9)

intout (10)
intout (11)
intout (12)
intout (13)

intout (14)
intout (15)

to
intout (24)

Raster height of device in points or
steps (e.g. monochrome screen = 399)
Not applicable to ST (0)

Point or plotter step-width in mm/1000
Point or plotter step-height in
mm/1000

Number of different text sizes

0 = changeable

Number of line types
Number of line widths

0 = changeable

Number of marking types
Number of marking sizes

0 = changeable

Number of character sets on device
Number of patterns

Number of Hatch types

Number of colors (2 for monochrome
monitor)

Number of graphic basic functions

Sequential list of basic graphic
functions supported. -1 indicates
the end of the list

= Block

Curve

Circle segment

Circle

Ellipse

Elliptical Arc

Ellipse segment

Rounded rectangle

Filled-in rounded rectangle
0= Justified graphic text

I

HWOoOoJdoo b W
Il

63

Abacus Software GEM Programmer's Reference

intout (25)

to
intout (34) Sequential list of basic function
attributes

0 = Line operation
1 = Marking operation
2 = Text
3 = Filled out range
4 = No attribute

intout (35) Flag color represntation

0 = not available
1 = available

intout (36) Flag for text rotation
0 = not available
1 = available

intout (37) Flag fill-out range
0 = not available
1 = available

intout (38) Flag function cell array
0 = not available
1 = available

intout (39) Number of available colors
0 = more than 32767 colors
1 = monochrome
>2 = Number of color

intout (40) Graphic cursor-control
1 = only on keyboard
2 = on keyboard and another device
(Mouse)

intout (41) number—-changeable inputs
1 = on keyboard
2 = other device

intout (42) Key choice

1 = Function keys
2 = other key field

64

Abacus Software GEM Programmer's Reference

intout (43) alphanumeric input

1 = keyboard
intout (44) Type of work device

0 = output device

1 = input device

2 = In/Output device

3 = reserved

4 = Metafile-output
ptsout (0) minimum character width
ptsout (1) minimum character height
ptsout (2) maximum character width
ptsout (3) maximum character height
ptsout (4) minimum character width
ptsout (5) 0
ptsout (6) maximum character width
ptsout (7) 0
ptsout (8) minimum marking width
ptsout (9) minimum marking height
ptsout (10) maximum marking width
ptsout (11) maximum marking height

C-Definitions

int work in[12];
int work out([57];
int handle;

C-Function Call

v_opnwk (work in, &handle, work out) ;

Remarks
The Open Workstation function is not available for the ST, and tends to

crash. The reason for this is the same as for the missing device drivers (as
explained above).

The standard method of opening the ST workspace is accomplished with the
function open virtual screen workstation.

65

Abacus Software GEM Programmer's Reference

CLOSE WORKSTATION Opcode = 2

This function closes the workstation opened by open workstation.
Before closing a device opened in this way, all virtual devices (open
virtual screen workstation) mustbe closed. This function, like
open workstation, is notset up on the ST.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle

OQutput parameters
contrl (2)
contrl (4)
Parameter ription
contrl (0) Opcode (2)
contrl (1) Number of ptsin points (0)
contrl (3) Length of intin arrays (0)

contrl (6) Device identifier

contrl (2) Number of ptsout points (0)
contrl (4) Length of intout arrays (0)

C-Definition
int handle;
C-Function Call

v_clswk (handle) ;

66

Abacus Software GEM Programmer's Reference

OPEN VIRTUAL SCREEN WORKSTATION
Opcode = 100

This function is necessary in all applications using the screen. The ST
screen cannot be opened with open workstation.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle

intin (0) = work in(0)
intin(10) = work in(10)

Output Parameters

contrl (2)

contrl (4)

contrl(6) = handle
intout (0) = work out (0)
intout (44) = work out (44)
ptsout (0) = work out (45)
ptsout (11) = work out (56)

Parameter Descriptions

contrl(0) Opcode (100)
contrl (6) Device identifier on function

The rest of the parameters are identical with those in the open
workstation (v_opnwk) call

67

Abacus Software GEM Programmer's Reference

The following is a list of established device parameters used in connection

with a monochrome monitor:

intout (0) work out [0] 639
intout (1) work out[1] 399
intout (2) work out[2] escape
intout (3) work out [3] 22
intout (4) work out [4] 372
intout (5) work out[5] 3
intout (6) work out [6] 7
intout (7) work out [7] 0
intout (8) work out [8] 6
intout {9) work out [9] 8
intout (109 work out[10] 1
intout (11) work out[11] 24
intout (12) work out[12] 12
intout (13) work out[13] 2
intout (14) work out([14] 10
intout (15) work out [15]

to

intout (24)

work out [24]

1;2;3,4:5;8,1+8:9,10

intout (25) work out [25]

to
intoeut (34) work out [34] 30538, 370,35:0,3 , 2
intout (35) work out [35] 0
intout (36) work out [36] L
intout (37) work out [37] 1
intout (38) work out [38] 0
intout(39) work out [39] 2
intout (40) work out [40] 2
intout (41) work out[41] ik
intout (42) work out[42] i)
intout (43) work out [43] 1
intout (44) work out [44] 2
ptsout (0) work out [45] 5
ptsout (1) work out [46] 4
ptsout (2) work out [47] il
ptsout (3) work out [48] 13
ptsout (4) work out [49] ik
ptsout (5) work out [50] 0
ptsout (6) work out [51] 40
ptsout (7) work out [52] 0

68

Abacus Software GEM Programmer's Reference

ptsout (8) work out [53] 15
ptsout (9) work out [54] 11
ptsout (10) work out [55] 120
ptsout (11) work out [56] 88

C-Definition

int work in[12];
int work out[57];
int handle;

C-Function Call

v_opnvwk (work_in, &handle, work out);

Remarks

The peculiarity of this function is that contrl (6), i.e., the device
identifier, is included in both the input and the output parameters. The
reason is the entry to the screen as a multi-work station. The established
device identifier open workstation is given in this function. Another
possibility is the transfer with the AES-function graf_handle.

The ST doesn't allow parameters to be passed with this function. It does not
respond. The attribute must be passed through the attribute functions.

On the ST, it is necessary to set the AES call appl_init () before

v_opnvwk. By the same token, closing a work device must be followed
by an appl_exit ().

69

Abacus Software GEM Programmer's Reference

CLOSE VIRTUAL SCREEN WORKSTATION
Opcode =101

This function closes the virtual workspace. Output to this device is then
prevented.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle

Qutput parameters

contrl (2)
contrl (4)

Parameter description

contrl (0) Opcode (101)

contrl (1) Number of ptsin points (0)
contrl (3) Length of intin arrays (0)
contrl (6) Device identifier

contrl (2) Number of ptsout points (0)
contrl (4) Length of intout arrays (0)

int handle;

C-Function Call

v_clsvwk(handle);

Remarks

This function closes the virtual workstation. It should be followed by the
standard AES call to end (appl_exit).

70

Abacus Software GEM Programmer's Reference

CLEAR WORKSTATION Opcode = 3

The call to clear workstation erases the screen and sets the
screen to the background color. If the device is a printer or plotter, a new
page occurs. For a Metafile the opcode is output.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle

Output Parameters

contrl (2)
contrl (4)

Parameter description

contrl (0) Opcode (3)
contrl (1) Number of ptsin points (0)
contrl (3) Length of intin arrays (0)
contrl (6) Device identifier
contrl (2) Number of ptsout points (0)
contrl (4) Length of intout arrays (0)
C Definition

int handle;
C Function Call

v_clrwk (handle) ;
Remarks

After opening the workstation, the function clear workstation is
executed automatically.

71

Abacus Software GEM Programmer's Reference

UPDATE WORKSTATION Opcode = 4

Graphic commands aren't immediately performed by printers or plotters.
Instead, they are put into a buffer. The function update workstation
executes the commands in the buffer. This call is unneccessary for screen
work, because all graphic commands are executed on request.

Input Parameters
contrl (0)
contxrl (1)

contrl (3)
contrl(6) = handle

Output Parameters

contrl (2)

contrl (4)
Parameter Description
contrl (0) Opcode (4)
contrl (l) Number of points in ptsin array (0)
contrl (3) Length of intin arrays (0)
contrl (6) Device Identifer
contrl (2) Number of points in ptsout arrays (0)
contrl (4) Length of intout arrays (0)
C Definition

int handle;

-Function Call
v_updwk (handle) ;
Remarks

The function update workstation cannot manage a page feed. In this
case, the function clear workstation should be used.

72

Abacus Software GEM Programmer's Reference

LOAD FONTS Opcode = 119

Every device driver contains information that states how many character sets
the device has available. This function provides this information and loads
the character sets available. When the character sets have already been
called, or no other character sets exist, zero is returned.

Input Parameters
contrl (0)
contrl (1)
contrl (3)
contrl (6) = handle
intin (0) = select
Output Parameters
contrl (2)
contrl (4)
intout (0) = additional
Parameter Descriptions
contrl (0) Opcode (119)
contrl (1) Number of points in ptsin array (0)
contrl (3) Length of intin arrays (1)
contrl (6) Device Identifer
intin (0) Reserved for future use (1)
contrl (2) Number of points in ptsout arrays (0)
contrl (4) Length of intout arrays (1)
intout (0) Number of addition character sets

C Definition
int handle;

int additional;
int select;

49

Abacus Software GEM Programmer's Reference

C Function Call

additional=vst load fonts(handle, select):;

Remarks

This function give a null value for the ST's screen. This means that no other
character sets are available.

74

Abacus Software GEM Programmer's Reference

UNLOAD FONTS Opcode = 120

This function frees up the memory occupied by alternate character sets.
When the character sets are available to all virtual devices with the same
device identifier, then all virtual devices must be closed, or the function
unloads fonts for each virtual device. The standard character set remains
behind.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle
intin (0) = sgselect
Output Parameters
contrl (2)
contrl (4)
Parameter Descriptions
contrl (0) Opcode (120)
contrl (1) Number of points in ptsin array (0)
contrl (3) Length of intin array (1)
contrl (6) Device Ident.
intin (0) reserved
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of intout array (0)
C Definition

int handle;
int select;

75

Abacus Software GEM Programmer's Reference

C Function Call

vst_unload fonts (handle, select);

76

Abacus Software GEM Programmer's Reference

SET CLIPPING RECTANGLE Opcode = 129

Under GEM, all graphic operations may be clipped—confined to a defined
portion of the screen called a window. This area is specified as a pair of
diagonal coordinates that represent the opposing corners of the window.
Clipping can also be switched off with this function.

Input Parameters

contrl (0)

contrl (1)

contrl (3)

contrl (6) = handle

intin (0) = clip flag

ptsin (0) = pxyarray(0)

ptsin (1) = pxyarray(l)

ptsin(2) = pxyarray(2)

ptsin (3) = pxyarray (3)
Parameter Descriptions
contrl (0) Opcode (129)
contrl(l) Number of points in ptsin array (2)
contrl (3) Length of intin array (1)
contrl (6) Device Ident.

intin (0) Flag
0 = Clipping off
1 = Clipping on

ptsin (0) x—coordinate of corner point

ptsin (1) y—coordinate of corner point

ptsin(2) x—coordinate of opposite diagonal
corner point

ptsin (3) y—coordinate of opposite diagonal

corner point
C Definition
int handle;

int clip flag;
int pxyarray([4];

77

Abacus Software GEM Programmer's Reference

C Function Call

vs_clip (handle, clip flag, pxyarray);

Remark:

Clipping is normally switched off after opening the workspace.

78

Abacus Software GEM Programmer's Reference

3.2.2 The Output Functions

All graphic functions such as circles, ellipses, etc., are output functions.

POLYLINE Opcode = 6

Polylines are screen coordinates joined to one another. A polygon, for
example, is a series of connected points, wherein the starting point is the
same as the endpoint. The VDI's ability to draw multi-sided objects is a
convenient one. Note, however, that this routine cannot draw individual
points.

The lines can be any form. The attribute functions that determine the
following items must be supplied:

*Color

Line type

*Line width
*End appearance
*Character mode

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle

ptsin (0)
ptsin (1)

pxyarray (0)
pxyarray (1)

ptsin(2n-2)= pxyarray(2n-2)
ptsin(2n-1)= pxyarray(2n-1)

Output Parameters

contrl (2)
contrl (4)

79

Abacus Software GEM Programmer's Reference

Parameter Descriptions

contrl (0) Opcode (6)

contxl (1) Number of points in ptsin array (n)
contrl (3) Length of intin array (0)

contrl (6) Device Identifer

ptsin (0) x—-coordinate of 1lst point

ptsin (1) y—coordinate of 1lst point

ptsin (2) x—coordinate of 2nd point

ptsin (3) y—coordinate of 2nd. peint

ptesin(2n~2) x-coordinate of last point
ptsin(2n-1) y-coordinate of last point

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of intout array (0)
C Definition

int handle;
int count.;
int pxyarray[2 * count];

C Function Call

v_pline (handle, count, pxyarray);

Remarks

See Chapter 2.5 for an example of this function.

80

Abacus Software GEM Programmer's Reference

POLYMARKER Opcode = 7

This function places several pt sin array-defined markers on the screen at
the same time. These markers can be of different types—in their simplest
form, as screen points. The marker type, as well as other details, are
specified by the attribute functions:

*Marker color
*Marker size
*Marker type
*Character mode

These parameters must be specified before calling the function.

Input Parameters

contrl (0)
contrl (1)
contrl (3)

contrl (6) handle

ptsin (0)
ptsin (1)

pxyarray (0)
pxyarray (1)

ptsin(2n-2)= pxyarray(2n-2)
ptsin(2n-1)= pxyarray(2n-1)

Output Parameters

contrl (2)
contrl (4)

81

Abacus Software GEM Programmer's Reference

Parameter ription

contrl (0) Opcode (7)

contrl (1) Number of points in ptsin array (n)
contxl (3) Length “of intin. array (0)

contrl (6) Device Identifer

ptsin (0) x—-coordinate of 1lst marker

ptsin(1) y—-coordinate of 1lst marker

ptsin(2) x-coordinate of 2nd marker

ptsin (3) y—-coordinate of 2nd marker

ptsin(2n-2) x-coordinate of last ‘marker
ptsin(2n-1) .. y—-céordinate: of .lagt marker

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of intout array (0)
C Definition

int handle;

int count;
int pxyarvay[2 * countl]:;

C Function Call

v_pmarker (handle, count, pxyarray) ;

82

Abacus Software GEM Programmer's Reference

TEXT Opcode = 8

You cannot use the print£ for putting text on the graphic screen in C.
There is a special function for that.

This function specifies the x and y coordinates at which the text is to be
displayed on the screen (left-centered). The baseline for the text is specified
by the x-coordinate. Additionally, attribute functions, described later, can be
used to change text formats (centered, right-justified, etc.).

The intin array contains the string to be printed. The character code is
contained in the least significant byte of each element of intin. If a
character doesn't belong to the character set, a special character signalling
this fact is sent. The C-programmer has it a little easier here—there's no
need to fill in the intin array character-for-character. Just call the function
for the string to be output. This string must end with the ASCII value 0,
which is always the case in C. The VDI library function then sets this string
into the LSBs of the intin array.

Input Parameters

contrl (0)

contrl (1)

contrl (3)

contrl (6) = handle
intin = string
ptsin (0) = x
ptsin (1) = vy

Output Parameters

contrl (2)
contrl (4)

83

Abacus Software GEM Programmer's Reference

Parameter Descriptions

contrl (0) Opcode (8)
contxril (1) Number of points in ptsin array (1)
contrl (3) Length of intin array (n)
contrl (6) Device Identifer
intin String in«l6-bit characters
ptsin (0) x—-coordinate of text display
ptsin (1) y-coordinate of text display
contrl (2) Number of points in ptsout array (0)
contrl (4) Length: of intout array (0)
C Definition
int handle;
int x;
int y;

char string[length];

C Function 1

v_gtext (handle, x, Yy, st BAng);

Remarks

The string is automatically transferred to the int in array.

g4

Abacus Software GEM Programmer's Reference

/FILLED AREA Opcode = 9

This function fills in a specified polygon, which is defined by the ptsin
array. The maximum number of polygon corner points must be determined
by the Inquire functions. The following parameters can be set with the
attribute functions:

*Fill color

*Fill type (empty, full, checkered, pattern,
cross-hatched or self-defined)

*Character mode

*Fill pattern

These details must be specified before calling the function.

The filled area is normally framed with the fill color. However, this can be
suppressed with an attribute function.

If the output device is unable to fill in the polygon, the polygon is displayed
in the standard fill color.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl (6)

handle

ptsin (0)
ptsin (1)

pxyarray (0)
pxyarray (1)

ptsin(2n-2) pxyarray (2n-2)

Output Parameters

contrl (2)
contrl (4)

85

Abacus Software GEM Programmer's Reference

Parameter Descriptions

contrl (0) Opcode (9)

contrl: (1) Number of polygon points (Maximum
manageable by Inquire function)

contrl (3) Length of intin array (0)

contrl (6) Device identifier

ptsin (0) x-coordinate of 1lst point

ptsin (1) y-coordinate of 1lst point

ptsin (2) x—-coordinate of 2nd point

ptsin (3) y—-coordinate of 2nd point

ptsin(2n-2) x-coordinate of last point
ptsin(2n-1) y-coordinate of last point

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of intout array (0)
C Definition

int handle;
int count;
int pxyarrayl[2 * count];

C Function Call

v_fillarea(handle, count, pxyarray) ;

86

Abacus Software GEM Programmer's Reference

CELL ARRAY Opcode = 10

This function is complex.

First we'll draw a defined rectangle. This rectangle is logically divided into
a table with any number of rows and columns. Every table element is
arrange a freely definable color of the screen points within that limited table
element. For example, we divide the graphic screen into four equal
sections—giving us four color zones as well. The graphic point displayed
shows the color of the zone in which it lies.

Not every working device (e.g., the monochrome monitor) allows this
function. When this happens, you will have to limit yourself to working in
the current line color and line width.

Input Parameters
contrl (0)
contrl (1)
contrl (3)
contrl(6) = handle
contrl (7) = row length
contrl(8) = el used
contrl(9) = num rows
contrl (10) = wrt mode

intin (0) = colarray(0)
intin (n) = colarray(n)
ptsin (0) = pxyarray(0)
ptsin (1) = pxyarray(l)
ptsin (2) = pxyarray(3)
ptsin (3) = pxyarray(3)

Output Parameters

contrl (2)
contrl (4)

87

Abacus Software

GEM Programmer's Reference

Parameter ion
contrl (0) Opcode (10)
contrl (1) Number of points in ptsin array (2)
contxrl(3) Length of iotin array (n)

(color array)
contrl (6) Device identifier
contxrl(7) Line length in color array dintin
contrl (8) Number of zones in color array lines
contrl (9) Number of lines in color array

contrl (10) Character mode

(see attribute functions)

intin Color array, contains ‘the color of
every table zone (stored linewise)

ptsin (0) x-coordinate of the lower-left corner
of rectangle

ptsin (1) y—-coordinate of the lower left corner
of the rectangle

ptsin(2) x-coordinate of the upper right corner
of the rectangle

ptsin(3) y-coordinate of the upper right corner
of the rectangle

contrl (2) Number of points in ptsout array (O)

contrl (4) Length of the intout array (0)

C Definition

int handle;

int pxyarray([4];

int row_length;

int el used;

int num rows;

int wrt _mode;

int colarray[num rows * el used];

C Function Call

v_cellarray (handle, pxyarray, row_length,
el used, num rows, wrt mode, colarray) i

88

Abacus Software GEM Programmer's Reference

CONTOUR FILL Opcode = 103

This function fills an area until either the edge of the screen or a defined
color is reached. It is the standard fill algorithm found in many graphics
programs. The start point is stored in the pt sin array. This is a point
contained within the surface to be filled.

Input Parameters

contrl (0)
contrl (1)
contrl (3)
contrl (6) = handle

intin (0) = index

ptsin (0) = x
ptsin (1)

Il
<

Output Parameters

contrl (2)
contrl (4)

Parameter Descriptions

contrl (0) Opcode (103)

contrl (1) Number of points in ptsin array (1)
contrl (3) Length of the intin array (1)
contrl (6) Device identifier

intin (0) Color of the surface to be

filled ptsin(0) x-coordinate of the
start point

ptsin (1) y-coordinate of the start point
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

89

Abacus Software GEM Programmer's Reference

C Definition
int handle;
int index;
int X
int y;

C Function call

v_contourfill (handle, x, y, index);

Remarks

This function is not supported by all devices.

90

Abacus Software GEM Programmer's Reference

FILL RECTANGLE Opcode = 114

This function fills a defined rectangle. Here too, the attribute must be set as
for a filled polygon.

Input Parameters

contrl (0)

contrl (1)

contrl (3)

contrl (6) = handle

ptsin (0) = pxyarray(0)

ptsin (3) = pxyarray (3)
Output Parameters

contrl (2)

contrl (4)
Parameter descriptions
contrl (0) Opcode (114)
contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (0)
contrl (6) Device identifier
ptsin (0) x-coordinate of the corner point
ptsin (1) y-coordinate of the corner point
ptsin (2) x-coordinate of the end point

diagonally opposite

ptsin (3) y-coordinate of the end point

diagonally opposite

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

91

Abacus Software GEM Programmer's Reference

C definition

int handle;
int pxyarray;

C function call

vr_recfl (handle, pxyarray) ;

92

Abacus Software GEM Programmer's Reference

3.2.3 Basic Graphic Functions

These functions include a number of basic geometric forms like circles and
ellipses. All of the basic functions have a single opcode (11). Each of the
routines executed under this opcode contains a number for identification
which is passed to the function in contr1 (5). The C programmer can

avoid this structure since a function name is present in the library for each
basic function.

All angles are given in tenths of a degree. The following overview should
clarify this declaration:

900

2700

The upper right quadrant of the circle, for example, stretches from 0 to
900,0r from 0 to 90 degrees.

The following section contains a list of all of the basic graphics functions.
All coordinates can be passed as normal or raster coordinates. It should be
noted however that the ST screen accepts only raster coordinates (see
open virtual screen workstation).

93

Abacus Software GEM Programmer's Reference

BAR Opcode = 11, function ID = 1

The function draws a filled bar. It is intended for creating bar charts. Before
the call, the following settings must be made with the help of the attribute
functions for fill operations:

Fill color
Fill type (empty, full, dotted, pattern
shaded or user-defined)

Draw mode
Fill pattern
Border
Input parameters
contrl (0)
contrl (1)
contrl (3)
contrl (5)
contrl(6) = handle
ptsin(0) = pxyarray(0)
ptsin (1) = pxyarray(l)
ptsin(2) = pryarray (2)
ptsin(3) = pXyarray(3)
Output parameters
contrl (2)
contrl (4)

94

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)

contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (0)

contrl (5) Function ID (1)

contrl (6) Device identifier

ptsin (0) x-coordinate of the corner

ptsin (1) y-coordinate of the corner

ptsin(2) x-coord. of diagonally opposite corner
ptsin (3) y—coord. of diagonally opposite corner
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

C definitions

int handle;
int pxyarray[4];

C function call

v_bar (handle, pxyarray) ;

95

Abacus Software

GEM Programmer's Reference

ARC

Opcode = 11, function ID = 2

The function draws an arc which has starting and ending angles defined in
the initin array.

The following attributes for lines must first be set:

Line color
Line type
Character mode
Line width
End form
Input parameters
contrl (0)
contrl (1)
contrl (3)
contrl (5)
contrl (6) = handle
intin (0) = begang
intin (1) = endang
ptsin (0) = X
ptsin(1) =y
ptsin(2)
ptsin(3)
ptsin(4)
ptsin(5)
ptsin(6) = radius
ptsin(7)
Output parameters
contrl (2)
contrl (4)

96

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)
contrl (1) Number of points in ptsin array (4)
conkril(3) Length of the intin array (2)
contrl (5) Function ID (2)
contrl (6) Device identifier
intin (0) Start angle (0-3600)
intin (1) End angle (0-3600)
ptsin (0) x-coordinate of the center point
ptsin (1) y—-coordinate of the center point
ptsin (2) 0
ptsin (3) 0
ptsin (4) 0
ptsin (5) 0
ptsin (6) Radius
ptsin (7) 0
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)
C definitions

int handle;

int x;

int y;

int radius;

int begang;

int endang;

C function call

v_arc (handle, x,y, radius, begang, endang);
Remarks

This function is not supported by every device. Assembly language
programmers must set unused pt sin variables to 0!

97

Abacus Software GEM Programmer's Reference

PIE Opcode = 11, function ID = 3

This function draws a filled arc which has starting and ending points
connected to the center point. This results in a surface that looks like a piece
of pie. Pie charts can easily be created with the help of this function.

The following fill attributes must be set before the call:

Fill color

Fill type (empty, full, dotted, pattern,
shaded or user-defined)

Character mode

Fill pattern

Border

Input parameters

contrl (0)
contrl (1)
contrl (3)
contrl (5)
contrl (6)

handle

intin (0)
intin (1)

begang
endang

ptsin (0)
ptsin (1)
ptsin(2)
ptsin (3)
ptsin (4)
ptsin (5)
ptsin (6) = radius
ptsin(7)

X
Yy

OQutput parameters

contrl (2)
contrl (4)

98

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)

contrl (1) Number of points in ptsin array (4)
contrl (3) Length of the intin array (2)

contrl (5) Functions ID (3)

contrl (6) Device indentifier

intin (0) Start angle (0-3600)

intin (1) End angle (0-3600)

ptsin (0) x-coordinate of the center point
ptsin (1) y—-coordinate of the center point
ptsin(2) 0

ptsin (3) 0

ptsin (4) 0

ptsin (5) 0

ptsin (6) Radius

ptsin(7) 0

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

C definitions

int handle;
int x;
int y;
int radius;
int begang;
int endang;

C function call

v_pieslice (handle, x, y,radius ,begang,
endang) ;

Remarks

This function is not supported by every device. Assembly language
programmers must be sure to set pt sin variables to 0!

99

Abacus Software GEM Programmer's Reference

CIRCLE Opcode = 11, function ID = 4

This function creates a filled circle. The following fill attributes must first be
set:

Fill color

Fill type (empty, full, dotted, pattern,
shaded or user-defined)

Character mode

Fill pattern

Border

Input parameters

contrl (0)
contrl (i)
contrl (3)
contrl (5)

contrl (6) handle

ptsin (0)
ptsin (1)
ptsin (2)
ptsin (3)
ptsin (4)
ptsin(5)

X
Yy

radius

Output parameters

contrl (2)
contrl (4)

100

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)
contrl (1) Number of points in ptsin array (3)
contrl (3) Length of the intin array (0)
contrl (5) Function ID (4)
contrl (6) Device identifier
ptsin (0) x-coordinate of the center point
ptsin (1) y—coordinate of the center point
ptsin(2) 0
ptsin (3) 0
ptsin (4) radius
ptsin (5) 0
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)
C definitions

int handle;

int x;

int yvi

int radius;
function call
v_circle (handle, x, y, radius);
Remarks

Assembly language programmers must be sure to set the unused ptsin
variables to 0!

101

Abacus Software GEM Programmer's Reference

ELLIPTICAL ARC Opcode = 11, function ID =6

A segment of an ellipse can be drawn with this function, specified by the
center point, x and y radii, and start and end angles. The following line
attributes must be previously set:

Line color
Line type
Character mode
Line width
End form
Input parameters
contrl (0)
contxl (1)
contrl (3)
contrl (5)
contrl(6) = handle
intin (0) = Dbegang
intin (1) = endang
ptsin (0) = X
ptsin (1) =y
ptsin(2) = xradius
ptsin (3) = yradius
QuLput parameters
contrl (2)
contrl (4)

102

Abacus Software GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)
contel(l) Number of points in ptsin array (2)
contzrl (3) Length of the intin array (2)
contxl (5) Function ID (6)
contrl (6) Device indentifier
intin (0) Start angle (0-3600)
intin (1) End angle (0-3600)
ptsin (0) x—coordinate of the center point
ptsin (1) y—coordinate of the center point
ptsin(2) Radius in x-direction
ptsin (3) Radius in y-direction
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)
C definitions

int handle;

int ®;

int y;

int xradius;
int yradius;
int begang;
int endang;

C function call

v_ellarc (handle, x,y, xradius, yradius,
begang, endang);

103

Abacus Software GEM Programmer's Reference

ELLIPTICAL PIE Opcode = 11, function ID = 7

The function described here creates a filled ellipse segment whose start and
end are connected to the center point. This surface is also called an elliptical
pie segment. As with the previous function, the start and end angles, x and
y radii, as well as the center point are spemﬁed The appropriate settings
must first be made with the attribute functions for fill operations:

Fill color
Fill type (empty, full, dotted, pattern,
shaded or user-defined)

Character mode
Fill pattern
Border
Input parameters
contrl (0)
contrl (1)
contrl (3)
contrl (5)
contrl(6) = Thandle
intin(0) = begang
intin (1) = endang
ptsin (0) = X
ptsin (1) =y
ptsin (2) = xradius
ptsin(3) = yradius
Output parameters
contrl (2)
contrl (4)

104

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)

contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (2)

contrl (5) Function ID (7)

contrl (6) Device identifier

intin (0) Start angle (0-3600)

intin (1) End angle (0-3600)

ptsin (0) x-coordinate of the center point
ptsin (1) y—-coordinate of the center pointer
ptsin (2) Radius in x-direction

ptsin (3) Radius in y-direction

contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

C definitions

int handle;
int x;

int y;

int xradius;
int yradius;
int begang;
int endang;

C function call

v_ellpie
begang,

(handle,
endang) ;

X,y, Xradius,

105

yradius,

Abacus Software GEM Programmer's Reference

ELLIPSE Opcode = 11, function ID = 5

In addition to circles, whose X and Y radii are identical, this function can
also draw filled ellipses with different radii. Parameters like X and Y radii
as well as the center point must be passed to the function. In addition, it is
necessary to set the fill attributes:

Fill color

Fill type (empty, full, dotted, pattern,
shaded or user-defined)

Character mode
Fill pattern
Border
Input m
contrl (0)
contrl (1)
contrl (3)
cont¥rl(5)
contrl(6) = handle
ptsin (0) = X
ptsin (1) = vy
ptsin(2) = xradius
ptsin (3) = vyradius
Qutput parameters
contrl (2)
contrl (4)

106

Abacus Software GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)
contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (0)
contrl (5) Function ID (5)
contrl (6) Device identifier
ptsin (0) x—-coordinate of the center point
ptsin (1) y—-coordinate of the center point
ptsin (2) Radius in x-direction
ptsin (3) Radius in y-direction
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)
C definitions

int handle;

int x;

int y;

int xradius;
int yradius;

C function call

v_ellipse (handle, x,y, xradius, yradius);

107

Abacus Software

ROUNDED RECTANGLE

Besides the normal rectangles, rectangles with rounded corners can also be
drawn. This function makes this possible. The two corner points opposite
each other are passed to the function. It is also necessary to set the line

attributes:
Line color
Line type
Character mode
Line width
Input parameters
contrl (0)
contrl (1)
contrl (3)
contrl (5)
contrl(6) = handle
ptsin (0) = pxyarray(0)
ptsin (1) = pxyarray(l)
ptsin (2) = pxyarray(2)
ptsin (3) = pxyarray(3)
Oufput parameters
contrl (2)
contrl (4)

108

GEM Programmer's Reference

Opcode = 11, function ID = 8

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)

contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (0)

contrl (5) Function ID (8)

contrl (6) Device identifier

ptsin (0) x-coordinate of the corner point

ptsin (1) y-coordinate of the corner point

ptsin (2) x—-coord. of diagonally opposite corner
ptsin (3) y—-coord. of diagonally opposite corner
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)

C definitions

int handle;
int pxyarray([4];

C function call

v_rbox

(handle, pxyarray);

109

Abacus Software GEM Programmer's Reference

FILLED ROUNDED RECTANGLE
Opcode = 11, function ID =9

This function is very similar to the previous one. Only the function ID and

the attribute, as well as the function call (v_rfbox), are different. The
function ID is:

contrl (5) Function ID (9)
The fill attributes to be set:

Fill color

Fill type (empty, full, dotted, pattern,
shaded or user-defined)

Character mode

Fill pattern

Border

110

Abacus Software GEM Programmer's Reference

JUSTIFIED GRAPHICS TEXT Opcode =11, func. ID =10

This function allows the output of easily-formatted text on the screen. The
text is left and right justified in which the left setting as well as the text
length is freely selectable. The text is extended to the desired length by

inserting spaces between the characters or words. The padding of characters
and/or words can be turned off.

The text is passed character by character in the int in array at index 2 in
the lower-order bytes. This doesn't concern the C programmer, however.
In C, simply pass a string terminated by the ASCII value zero to the
function. The library function automatically places this in the int in array.
The C string must be terminated with the ASCII byte 0. The text attribute
functions are used for additional formatting of the text:

Text style

Text color

Text height

Text alignment
Angle of the text line
Text effects

Input parameters

contrl (0)
contrl (1)
contrl (3)
contrl (6)

handle

intin (0)
intin (1)
intin (2)
intin (2+n)

word_space
char_ space
string (0)
string (2+n)

[T I |

ptsin (0)
ptsin (1)
ptsin(2)
ptsin (3)

([

X
Yy
length

Output parameters

contrl (2)
contrl (4)

111

Abacus Software

GEM Programmer's Reference

Parameter description

contrl (0) Opcode (11)
contrl (1) Number of points in ptsin array (2)
contrl (3) Length of the intin array (1)
contrl (5) Function ID (10)
contrl (6) Device identifier
intin (0) Flag for word stretching
0 = Word stretch off
1 = Word stretch on
intin (1) Flag for for character stretching
0 = Character stretch off
1 = Character stretch on
intin (2) 1st character of the string

intin (n+2)

Last character of the string

ptsin (0) x—-coordinate of the text alignment
ptsin (1) y-coordinate of the text alignment
ptsin(2) Desired text length in x-direction
contrl (2) Number of points in ptsout array (0)
contrl (4) Length of the intout array (0)
C definitions

int handle;

int %4

int y;

int length;

int word space;
int char_space;
int string[n];

C function call

v_justified (handle, x, y, string,
word space, char_space);

112

length,

Abacus Software GEM Programmer's Reference

3.2.4 The Attribute Functions

The graphics operations of the output functions can be varied in many
ways. The attribute functions allow the line, fill, and text properties to be
set.

SET WRITING MODE Opcode = 32

The drawings created by the graphics operations are normally output
without consideration of the drawings previously contained in the work
area. This means that points are always set where there had been no points
bef