BASIC XL"
“The Go Everywhere Package”

That's Right! The BASIC XL TOOLKIT comes with a copy of the
BASIC XL Runtime package on a Disk. This means that YOUR
BASIC XL programs can go EVERYWHERE. By following a few
simple instructions, YOUR friends, neighbors, or User Group
members, can be running YOUR BASIC XL programs WITHOUT
your BASIC XL cartridge.

If that wasn’t enough, the BASIC XL TOOLKIT also contains
NEW EXTENDED commands to the already packed BASIC XL
cartridge. These NEW commands include: PROCEDURE, CALL,
EXIT, LOCAL, and ascending and descending SORT commands.

To complete the BASIC XL TOOLKIT we've added programs
that will assist you in perfecting your OWN programs. Such
techniques as Keyed File Access, Player/Missile Graphics, direct
disk drive control, and much more. There’s even enough to get
you starfed writing your own games.

Requires an Atari Computer with.40KB Memory, DISk
_Drive, and an BASIC XL SuperCartrdige.

OSS PRECISION SOFTWARE TOOESF
FOR ATARI HOME COMPUTERS

BASIG XL = . SR . . VY. . The most powerful Basic

THE BASICXLTOOLKITc..... ProgrammingAids :
ACTION! pargafillae e Fastest structured language: - -
THE ACTION! TOOLKIT Programming Aids : e
MAGC/GSHINSNES" "W _ gy . T Fastest macro-assembler ="
THE MAC/65 TOOLKIT Programming Aids

E/6EmN. . ¥ AW WA e T A small C language compiler
DESXIA S . . . (I b o o Now with BUG/65

THE WRITER'S TOOL Writing was never so natural

Optimized Systems Software, Inc.
i T e R e R i R S e e A e |
1221B Kentwood Avenue, San Jose, California 95129 (408) 4463099

© 1984 Optimized Systems Software, Inc.

-

T Y weemsoaaeee wes W

qum——

-

e W T TR N T

WA

The

BASIC XL
TOOLKIT

Including the BASIC XL
Runtime Package

Precision
Software Tools
™ T R e T e S R e

‘ ’ch-.!‘

A Reference Manual for the

BASIC XL TOOLKIT

Copyright (c)> 1984, 0.8.S., Inc.

Optimized Systems Software, Inc.
1221-B Kentwood Avenue
San Jose, California, 95129
Phone: (408> 444-308%%

PREFACE

Congratulations on purchasing a copy of the BASIC XL TOOLKIT.

Before you begin your tour through this manual,
we would like to call your attention to a couple of important matters.

RUNTIME BASIC XL

When you purchased this BASIC XL TOOLKIT package, you acquired the
right to use the RunTime version of BASIC XL to distribute programs
you have written in BASIC XL. You may distribute these programs on
either a free basis <(sometimes called “public domain®) or on a

commercial basis, for profit, without paying 0SS any additional
amounts.

However, before distributing a copy of the RunTime program, - you
must return a signed copy of the License Agreement included as part of
this ToolKit package. The License Agreement provides, among other
things, that you must affix a label bearing this copyright and
trademark of 0.S5.8., Inc., to each and every copy which you
distribute. Please read the License Agreement carefully for more
details before signing and returning it to 0.8.8., Inc,

BASIC XL Cartridge Versions

The extended BASIC XL statements described in Chapter 3 of this manual
and the program demonstrating the use thereof described in Chapter 4
will not work on BASIC XL cartridges with wversion numbers 1.88 and
1.81. We are sorry about this, but the extensions "hooK into" so many
places within the cartridge that it is simply not practical to provide
multiple versions of this code.

When you turn on your computer and enter the BASIC XL cartridge, there
is a copyright notice which also specifies the version number of your
cartridge. Check that version number. If it is not version 1.82 or
later, you have two options:

1> Return your BASIC XL ToolKit for a full refund. For our
own peace of mind, you must also return your BASIC XL cartridge
s0 that we may verify that it is indeed either version 1.88 or
1.01,

2> You may purchase an updated version of the BASIC XL
cartidge from 0SS for the postpaid price of $20.80 check or
money order only, please. You must also return your old BASIC
XL cartridge with your check.

Please note that current BASIC XL cartridges with wversion

numbers 1.82 or later are gold-plated (for longer and healthier
life) and are beveled (for a better fit).

START PROGRAMMING!

Table of Contents

-Time BASIC XL

How Does the RUNTIME Package Work?

How Do You Use the RUNTIME Package?

Error Handling

RunTime Restart

n

1

2 g

3 Statements that can NOT be used.
a4

5

3

Incompatibilities

o

mple BASIC XL Programs

MENU

SNAILS trails

PICOADVenture

LEM (lunar lander)

CIRCLES

DISKIO (by sectors)

CONFIGure your disk drive

PHONE diary, a Little Black Book

1
2
3
q
S GTIATEST
é
7
8
?
1

8 MAKEAUTO (AUTORUN.SYS)

Extended Statements of BASIC XL

How to leoad and use extended statements.

e

1

2 Abbreviations used in this text.

3 Procedure Blocks and the Related Statements
3.3.1 PROCEDURE

3.3.2 CALL

3.3.3 LOCAL

3.3.4 EXIT

3.4 Sorting Capabilities

3.4.1 SORTUP

3.4.2 SORTDOWN

X

@

mple BASIC XL Programs with Extended Statements
FACTOR (factorial)

SORTDIR

SORTNUM

GTIATEST

DISKIO

coUlbwNn =

PHONE (Little Black Book)

WUWW NN R =

CHASPTER 1L

THE BASIC XL RUNTIME PARCKAGE

On the labeled side of your BASIC XL Toolkit diskette is a file called
“BASICXL.COM". This file contains the BASIC XL RunTime Program. That
program allows you to run BASIC XL programs without the BASIC XL
cartridge.

1.1 How Does the RUNTIME Package Work?

The BASIC XL RunTime Program contains those portions of the BASIC XL
cartridge which are used when programs are running. The program does
not, however, contain any portions of the cartridge which are used to
write new programs or edit existing programs. Thus, a program running
under the BASIC XL RunTime Package can’t perform such statements as
LIST, ENTER, DEL, etc. Obviously, then, the BASIC XL cartridge is
still required to develop programs.

The RunTime Program itself is just an Atari standard binary file which
may be run under any Atari-compatible DOS, such as DOS XL or Atari
DOS. The program may be run in any of three ways--as an
AUTORUN.SYS file, as a .COM file wunder DOS XL, or as an ordinary
binary file using the "L" option of Atari DO0S. When the RunTime
Program begins, it searches the disk in drive | (D1:) for the file
AUTORUN.BXL. If that file is found, it is loaded into memory and run
as if the command RUN "D:AUTORUN.BXL®" had been issued in response to
the READY prompt. If the file AUTORUN.BXL is not present on the disk,
RunTime will continually try to find it. You should eject your
diskette, shut off power, and try again.

1.2 How Do You Use the RUNTIME Package?
The easiest way to use the BASIC XL RunTime Package is to perform the
following steps:

1. Initialize a new disk and write D0S.SYS to it. You may use
virtually any Atari-compatible DOS for this purpose. Note that
DOSXL.XL ¢after being renamed to DOSXL.SYS) is compatible with
RunTime.

2. Copy the file BASICXL.COM from the BASIC XL Toolkit disk to a file
called AUTORUN.SYS on the newly initialized disk.

3. Copy the BASIC XL program you want to run to the new disk and name
it AUTORUN.BXL.

4. Boot the disk thus created., If you have performed the previous
steps correctly, your BASIC XL program will run automatically.

Whenever the disk you created above is booted, your program will run.
1f you have several programs you want to run with the RunTime Package
and you don’t want to dedicate several disks just to that purpose, you
can simply put (or SAVE) some type of menu program onto the disk as
AUTORUN.BXL and use it to select from other programs when the disk is
booted. You are welcome to use the program MENU.BXL, described in
section 2.1, for this purpose.

BXL ToolKit Page 1

1.3 Statements that can NOT be used with RUNTIME

As we noted above, the BASIC XL RunTime Program does not contain those
portions of the «code <from the BASIC XL cartridge which relate to
program development. Any BASIC XL program which you want to use with
the RunTime Package cannot use program development statements. If the
BASIC XL RunTime Program encounters such a statement in your program,
execution will stop with the message "Unimplemented statement in 1line
XX", and you will be asked to hit the START key for a RunTime Restart
(see below). The following is a list of all BASIC XL statements
illegal when using RunTime BASIC XL:

LIST ENTER
NEW DEL
RENUM TRACE
TRACEOFF ’ LVAR

In addition, the following BASIC XL statements have slightly different
meanings when using the RunTime Package:

DOS -- After this statement returns control to whatever DOS was
booted, you can not return to BASIC XL or your BASIC program.

END -- This statement stops the running program and prompts the
user to hit the START Key to do a RunTime Restart.

STOP -- This statement works exactly like END, but also printe the
line number at which execution was ended.

1.4 Error Handling In RUNTIME BASIC XL

Errors which are TRAPped by the running program are treated exactly
the same way as when using the BASIC XL cartridge. Errors which are
not TRAPped are treated slightly differently, however. If an error is
allowed to happen when no TRAP is active, an error mecssage is
displayed showing the line number where the error occurred, and the
user is prompted to hit the START Key to do a RunTime Restart. The
user is not allowed to view or change the program after an error as he
could with the BASIC XL cartridge.

1.5 RunTime Restart

At various points above, we noted that under certain circumstances you
may receive a message telling you to hit START to do a *“RunTime
Restart® (the message may indicate that RunTime will "Re-Run® a
program). When this occurs, hitting START will cause RunTime to once
again RUN the program file, AUTORUN.BXL. If your particular
AUTORUN.BXL has chained to another program, the subsequent program is
erased and all work not already written to file(s) is lost. (Note
that RUN always closes all files, so at least no files are left
dangling open.)

1.6 Incompatibilities

The only difference between RunTime BASIC XL and the BASIC XL
cartridge which affects program execution is memory usage. Since
RunTime BASIC XL is not in a SuperCartridge, it can’t "save" memory
like cartridge BASIC XL. For this reason, the BASIC XL RunTime
Program takes up about 11 thousand bytes of code rather than 8
thousand bytes. If your BASIC XL program is extremely large, it may
not run under RunTime BASIC XL.

Page 2 BXL ToolKit

CH&aPTER 2

BAaSIC XL Example Programs

Side one of your ToolKit disk contains ten programs written in
standard BASIC XL which will, we hope, give you a feeling for the
capabilities ¢and limitations) of the language.

Although the selection of programs is very broad, we certainly can not
guarantee that you will +find a program which answers all your
questions about BASIC XL. In fact, perhaps we should begin by
discussing some of the things which the example programs do not delve
into. ’

First, we do not worry about the BREAK and RESET keys. These programs
are meant as examples for you, as a programmer or future programmer,
to RUN and try. As such, we think you should be allowed
and encouraged to stop a program at any time, see where it is at and
what it is doing, and (our fervent hope) change it so it works better!

Second, we don‘t try to TRAP all disk errors, etc. The programs here
all work properly if given properly formatted disks with the right
data/programs (if called for). @Again, our philosophy was to allow you
to explore the consequences of disk errors and guard against them in
your own way. ¢And, truthfully, extensive I1/0 trapping in some of
these programs is simply not necessary.)

Third, we do not get into any heavy math. For those of you who are
into analytical geometry and its i1k, we apologize. Unfortunately,
you are in a distinct minority when compared to those who want to use
their machine for simple graphics and/or business applications.

Fourth, the descriptions of the programs <(which follow immediately
after this introduction) wvary considerably in the depth with which
they explore the workings of the code. Again, this is on purpose.

The most complicated of the programs <(e.g., PICOADVENTURE and
BLACK BOOK) are so large that even documenting each group of ten lines
thoroughly would require a book several times the size of this manual.
In these cases, we have tried to explain the principles behind
blocks of code. You are encouraged (there’s that word again) to
explore each and every line for its implications.

On the other hand, some of the programs are dissected in painstaking
detail (e.g., MENU and GTIATEST). In some cases, we have chosen tc e
thorough simply to give beginners a chance to see the full workings of
a program. In other cases, the thoroughness is dictated by the
complexity of the subject. (Perhaps we are using & poorly documented
feature of either BASIC XL or Atari‘s 08 or hardware.) Mainly,
though, we describe a program intimately because we want to get you in
the right “track,"” thinking of properly structured programs, good
error trapping, etc.

So much for the things we do not do in this ToolKit. What do we do?
(We thought you’d never ask.)

BXL ToolKit Page 3

If you are interested in graphics in general and games in particular,
we turn your attention to SNAILS TRAILS, GTIATEST, CIRCLES, and
(especially) LEM.

Into adventure games? Try PICOADVENTURE as a start on writing your
own! (You might want to try playing and solving the game before
reading the description.)

Want to learn more about how to talk to your disk drive? Look at
CONFIG and DISKIO.

Interested in application programs? Want to learn how to construct
random-access and/or Keyed-access files? Look at BLACK BOOK.

Finally, MENU and MAKEAUTO are general utility programs: You will
undoubtedly use them, but you may not need to understand them. But
read about them anyway. The description of MENU, especially, is very
detailed and gives some good hints on programming style.

A Commentary on Case —- In the descriptions which follow, we sometimes
change a Keyword or variable name to all upper case letters, despite
the fact that the program listings will (as is usual in BASIC XL) chow
such names in mixed upper/lower case. This is done on purpose for
emphasis only. You need not use upper case unless you have chosen
Atari BASIC compatibility (via SET 5,8).

Page 4 BXL ToolKit

2.1 MENU,.BXL

In most wars, this is the simplest program we will present in this
section, MENU.BXL is simply a program which presents a menu of avail-
able BASIC XL programs and allows you to choose one of them to RUN.
If you are an experienced Atari BASIC user, you have probably seen
versions of this program floating around in magazines, user groups,
etc., for years. We think, though, that our version has some advan-
tages which are worth discussing.

18670-1880 These lines cet the tone for not only this program but,
where possible, for all programs in this ToolKit. We really
didn’t need to initialize COUNT to zero, since BASIC XL guarantees
that all variables start at 6.8 when a program is first RUN. But
isn‘t this better? We both point out that we are using a variable
named COUNT and that we know what ite starting value should be.

Further, we could have coded line 10888 as

1888 Alpha = 44
but would that have any meaning to you? As we wrote it, the line
clearly shows that ALPHA has a numeric value one less than the
ATASCII value of the letter A.

1100 We chose the dimensions of FILE$ very carefully. There are 26
elements in the array because we won’t allow more than 26
filenames in our menu. (That way we can select any program with a
single letter, A to Z.) And each element has 14 characters
because that is the maximum possible for a filename of the form
“D:filename.ext". If you wish to allow disk drive numbers in your
version of this menu, you will need to increase the second
dimension here to 1S5.

1138 This POKE is documented in many books, including Mapping the
Atari, from COMPUTE! books. A non-zero wvalue turns off the
cursor. A zero value turns it back on.

1248 Did you remember that an OPEN in mode & is actually an OPEN of
the directory? Good. For all intents and purposes, this OPEN
will cause subsequent INPUTs to read the same data you see when
you give a DIR command. Try it. Type in

DIR "D:#.BXL"
and see what is displared. (Yes, yes, the quotes aren’t really
needed. We Know, thanks.)

1258 Sometimes, in our zeal to avoid GOTO statements, we have gone to
great lengths in these example programs. This is a good instance
of such a great length. We read the first file name from the
directory here solely because we want the WHILE loop that follows
to look neat. Ah, don’t knock it. It works.

1260 We begin the promised WHILE loop. Note how we ensure that we
won‘t get more than 26 names. We check the second character for a
space because the only line of the directory where it is pot a
space is the line noting the number of free sectors (which is, not
coincidentally, the last line of the directory).

BXL ToolKit Page S

12786-1318 We develop the name which will be held in the string array,

File$. First, we count this as a valid name. Then we find out
where the first blank after the first letter of the filename is.

Example: for the file "MENU.BXL", the directory listing is
MENU BXL @88

or similar, where the “#’ means the file is PROTECTed and the
‘808" is arbitrary. Here, the FIND function would tell us that
the value of BLANK will become 7, the blank after the ‘U’ of
“MENU’ , Line 1298 is necessary in case the file has 8 letters in
its name (the blank found will then be the one between the
extension and the number of sectors).

In line 1308, we play a trick that works neat and sweet in BASIC
XL ¢and also in Atari BASIC, but we had to brag a little): As
long as you are moving characters "down" in memory (think of that
as moving them left in a printed string)>, you may overlap your
string assignment without error! This line, then, strips off the
first two characters and all characters from the blank en. Bingo.

Finally, in line 1318, we actually put the name into the string
array. Note the form it takes: "D:filename.BXL", where
"filename" may have from 1 to 8 characters.

13280-1348 This is just a bit tricky. Since we want our menu to be

able to hold 26 names, we can’t simply list them straight down our
24 line screen. We must put them two to a line. The expression
COUNT&1 <(where ‘&’ is BASIC XL‘s “‘bitwise and’ operator)
effectively checks whether COUNT is even or odd. If the COUNT is
odd, we will put the name at horizontal (X) position 7. If it s
even, we will put it at X-position 22.

The vertical position is also obtained through a little magic. To
see why it works, try various values for COUNT and observe what
Y value results. We will start you off:

If COUNT is ... Y will be
1 ... 3
2 ... 3
3 ... 4
28 ... 15

Okay? Then line 1348 is easy. We simply POSITION ourselves at
the place we have calculated and print an indicator and the name.
But just what is that indicator? Remember, ALPHA is one less than
the ATASCII value of the letter ‘A‘. So if COUNT is 1, PRINTing
CHR$(Alpha+Count) will produce the letter ‘A” on the screen.
Similarly, a COUNT of 2 will produce a ’B’, etc. Now you Know why
we chose the value for ALPHA which we did.

Page & BXL ToolKit

1358-1378 Here we simply get the next line from the directory and go
back to the top of the WHILE lcop. If it isn”t a name CGlgieg o5 I
it is the free sectors line) or if we already have 26 names, the
loop will halt and fall through to the CLOSE of line 1378. We are
then done with the directory.

This is the best way to get a single Keystroke on an Atari
computer. OPEN up the Keyboard ("K:") and GET a Key ¢as in line
1448). Sure, you can do it with PEEKs and POKEs and whatever, but
why bother? (Exception: if you don’t want to wait for the key,
you will have to use at least one PEEK.)

1420 and 1518 This is an "endless" WHILE loop. We could have

achieved the same thing by eliminating line 1428 and changing 1518
to read GOTO 1438. But that‘s terribly ugly! As well as being
poor structured programming style.

1438-1478 We ask the user to press a Key, get the Kkey from the

Keyboard, and strip it of extraneous bits. Umnmmm..."extraneous
bits"?

By doing a bitwise and (& of KEYPRESSED with $5F (that’e 95
decimal or 981611111 binary), we have removed the uppermost bit
(bit 7--which would indicate inverse video) and also bit 5 <(which
distinguishes upper case letters from lower case)., So no matter
what Kind of letter the wuser pushes, we see an upper case,
non-inverse video character.

Now, if it truly was a letter, subtracting ALPHA from it will
convert it into the range of 1 to 26. Funny thing how the
elements of our string array are numbered from 1| to 2é6. Do you
think that’s a coincidence? (If so, we‘ve got some beachfront
property in Nevada we’d liKe you to invest in.

So, in line 1468, we validate that the letter chosen is in the
range we have filenames for. (I it isn“t, we skip to line 1588,
the ENDIF, and go through the WHILE loop again.) Then we show the
user what filename he/she chose. Just to keep them happy while...

1480~1498 Line 1488 illustrates the proper use of a TRAP in a well

structured BASIC XL program. You should always TRAP to the last
line of a loop or condition. Here, if we get an error in line
1490, we want to go back and ask for another menu selection.
Uoila., (Exception: Sometimes you will want to have a central
routine for handling TRAPped errors. That’s a good idea, but
beware of leaving WHILEs, GOSUBs, etc., sitting on the Run-Time
stack.)

And, at last, we get to use this program as it was intended. We
actually RUN the program requested by the user. Note that <eince
we PRINTed the name in line 14708 it’s hard to make a mistake here.
But a diskette failure <(bad sector, etc.) could trigger the
TRAP when the file doesn’t load properly. We emulate the Boy
Scouts: Be Prepared.

BXL ToolKit Page 7

2.2 SNAILS

If »you read 38 Days to Understanding BASIC XL {or, better yet, worked
your way through it), you will probably remember Chapter XXIX and an
arcade game program called SNAILS’ TRAILS. This Qame can give you a
real feeling of historical perspective!

By today‘s standards, SNAILS’ TRAILS is a simplistic game with
marginal wvideo appeal. A short five or six vears ago, though, a very
similar game called SURROUND was one of the hot sellers in the Atari
26086 UCS market. And, as recently as the time of the Disney movie
“Tron," the "light cycles" playved a variation on the same game .,

Anyway, since this game has been overdone already, why are we
rehashing it on this disk? Truthfully, because the version in our
tutorial was written using only the statements presented in that book,
and we wanted to show you what just a few added statements could do to
BASIC XL program. The result is a well structured and even readable
program.

In the description which follows, we will not explore those parts of
the program which are the same as the wversion shown in the book.
(Note that the 1line numbers do not match those in the book. Sorry
about that, but there are enough differences that they couldn’t have
been identical, anyway.)

188 In the book, we had two variables (SCORE® and SCORE1) to Keep
track of the plarvers’ points. Here, we use a two element array.
We’1l show why below.

2686 Isn‘t this easy to understand? You can translate this into
English as fullows: "As long as neither plarer has scored 16
points, Keep playing'"

298 and 348 In the original, the COLORs are different. We changed
them because it makes it easier to flash one of the slime trails
(line 808).

498-500 The main movement 1loop translates to English pretty well,
also: "While neither player has hit anything." Then, since we
aren’t driving this loop with FOR MOVE.. anymore, we have to bump
the MOVE number. The only place MOVE is used, though, is in line
690, as the frequency value in a SOUND statement. But SOUND won’t
let us use a wvalue greater than 255 for frequency, so after
bumping MOVE we limit it to an 8-bit value.

You say you don’t wunderstand how bitwise-and (&) works after
reading the brief description in the reference manual (section
2.2.1>? We won’t go into a lot of detail here, but let’s show
what happens in line 580 as the value of MOVE increases. (In the
binary notations below, we show only 12 bits instead of the 16
bits which BASIC XL always works with. The upper four bits are
always zero in this example, though, so they can be ignored.)

Page 8 BXL ToolKit

MOVE = 3 decimal, binary 00006 0000 80611
bitwise and with 0868 1111 11114
binary result 6006 060060 6011

(decimal value of 3)

MOVE = 243 decimal, binary 0660 1111 86ai1
bitwise and with 908066 1111 1111
binary result 0068 1111 @611

(decimal value of 243>
MOVE 258 decimal, binary 060! 0066 0810
bitwise and with 8@@@ 1111 1111
binary recult 6000 6000 0610

(decimal value of 2)

(]

Do you see what happens? When the value of MOVE becomes greater than
255, the bitwise-and effectively subtracts 256 from it. In fact, we
could have coded line 568 thus:

500 Let Move=Move+3 : If Move>255 Then Let Move=Move-254
But wusing the bitwise-and is faster yet, once you understand bitwise
operators, just as easy to understand.

And, as long as this explanation is too long already, let us note that
we could have achieved the same effect by using these two lines
instead:

508 Let Move=Move+3

698 Sound 8,Move&255,18,Volume
However, the SOUND statement is inside a tight loop, and placing the
bitwise-and in the loop would slow it down a bit.

4688-458 There’s nothing really very different from the book wversion
here except the order of the statements. We thought this scheme is
more readable. We hope you agree.

768 Why didn’t we just code this line as follows?

768 1f Bang@ <> Bangl
Because the values of BANGB and BANG! could be 1, 2, or 3, depending
on who hit what. Using NOT BANG8 and NOT BANGi conwverts all values to
a boolean (zero or one) condition, which is more easily testable.

1f you prefer positive logic, you could change 748 and all following
references to BANG8 and BANG1 to this:

768 BangB8=Sgn(BangB) : Bangl=Sgn(Bangl)

761 1f BangB<>Bangl
(Recall that SGN()> of any positive number is one, as we want here.)

778 See line 768, above. This line looks strange, so let’s translate
it into English: "Bump the score of the player who did not get banged
by one." Still confused? Then substitute the following for line 770:
778 1f Bangl=6 : Bang(1)=Bang(1)+{
771 Else : Bang(®)>=Bang(@)+1 : Endif

But, if you‘re willing to struggle with the logic a bit, you will

conclude that our original line 778 achieves exactly the same result
with less code.

BXL ToolKit Page ¢

868 Same thing again. Remember, NOT BANG® is a logical expression,
s0 it can only take on numeric values of zero and one. Cute?

898 Another case of a logical expression being used to derive a
numeric value. If SCORE(®) really is less than SCORE(1), then
WINNER will receive a value of one. Otherwise, WINNER will be set
to zero.

Technical note: Most Janguages support the notion of TRUE and
FALSE logical expressions. Unfortunately (?), many restrict their
use to places where a conditional test is being made. However ,
BASIC XL, in common with many, many other (but not all!) dialects
of BASIC, allow you to treat TRUE and FALSE as numeric values. BRe
careful, though, in some Microscft (and other?) B&SICs TRUE s
given a wvalue of minus one (-1) for reasons which are mired in
history. (n.b.: BASIC is not the only language which allows
logical expressions to produce numeric vxlues. C and come
versions of Fortran allow similar usages.)

918 and 938 See how neatly we can use WINNER now that we Know it has
a value of either zero or one?

988 _In English you read this Jline to say: "As long as neither
Joystick trigger is pushed, keep looping."

Page 1@ BXL ToolKit

2.3 PICOADV

In addition to being the 1longest program on the ToolKit disk,
PICO-ADVENTURE is also the oldest. It was one of the first major
programs we wrote for BASIC A+ (back in 1981-82) and is given here
with only minimal modifications, even though it could probably use
many of BASIC XL‘s new statements to advantage. Nevertheless,
PICO-ADVENTURE <(which name was intended to imply that it is smaller
than a Micro-Adventure) is still a reasonably well-written,
well-structured program which deserves more than a cursory glance.

For all of its size, PICO (as we shall call it from now on) only uses
about half of the memory available when you use BASIC XL with DOS XL.
If you feel so inclined, you may retain the structure of the program,
replace room descriptions and object actions, and thus produce vyour
own adventure. Nothing could please us more. In fact, we would love
to see Your results.

One last warning before we start looking at PICO a block at a time:
Why don‘t you RUN and play it before reading this section. In
studying the program, you will of necessity see the secrets of the
game, which will destroy the pleasure you will get from winning (or
losing) gracefully.

Because this program is so large, the best we can do is describe
blocks of lines. We will delve into detail only when we feel that
reading the program lines within the block won’t give you enocugh
understanding of their actions.

Finally, we present this program in execution order (not line number
order), because you need an understanding of some of the subroutines
before the main line code makes a lot of sense.

100-119 We use the question mark (?) abbreviation for PRINT a lot in
this program. It makes the listing smaller and allows all lines
to fit in the bounds of a 120 column printer. If you are going to
list this program to an 8 inch (nominal 8@ column) printer, the
ends of some lines will either wrap or get cut off <(depending on
how your printer works). If your printer has elite (12 characters
per inch) or condensed <(usually about 1é characters per inch)
print available, we recommend that you set it in one of those
modes before listing the program. All program lines will list on
one printer line in condenced mode. Almost all will list properly
in elite mode. <(Note: an easy way to put your printer in one of
these modes which works with most printers is to put its control
or escape code sequence right into a REMark line at the beginning
of the program.)

We also use some imbedded screen control characters in our quoted
strings, something we do not normally do with programs intended to
be listed by you, our customer and reader. Again, we felt
justified using them here (instead of using a CHR$() sequence),
because they save so much room. We apologize in advance iif they
do funny things to your printed listing.

158 We put the initialization code up out of the way as a subroutine
so that the program looks better.

BXL ToolKit Page 11

8868-8188 Primary initialization. Some variables used as constants,
subroutine addresses, or counters are assigned here. Various

strings and arrays are dimensioned. Some sizes are arbitrary
and‘/or could be made bigger for a more complex adventure (one that
understands more nouns or verbs). Ones that are carefully

selected include VUS$ and NS$, which are just long enough to hold a
prefix character and a three-letter verb or noun. (See lines 1288
to 13086 and next paragraph.)

8118-8198 We build up the vocabulary lists for the verbs and nouns.
Each entry in a list consists of a prefix character (CHR$(155),
but any value from 128 to 255 would have worked), a three letter
name, and a single brte which holds the wverb or noun
number associated with this name. Note that the name’s number
corresponds to the last two digits of the DATA statement from
which the name was READ. For example, the first two entries in
NOUNS$, the noun wvocabulary list, would look like this (where a
number in brackets indicates a byte with that value):

[1551 L I C (1]
[1S51 M 0 S I11

Also, as we build the noun vocabulary, we are setting up the
WHERE() and SHOW arrays. A noun’s entry in SHOW() tells the
“visible items" routine whether to show it or not. The entry in
WHERE(> tells where the item (noun) is located, according to the
following table:
If WHEREC(noun—number) is ... noun is located
less than 8 ... gone forever
8 ... with adventurer
1-99 ... in that room number
greater than 99 ... still hidden

88088-8999 The DATA statements which define the verbs (88xx) and nouns
(89xx). In theory, then, you could have up to 99 wverbs and 99
nouns, each with one or more synonyms. Synonyms are simply listed
one after the other on the same DATA line, the last one terminated
by an asterisk. The first synonym is the one shown by the command
line echo, inventory 1list, and visible items list, so it is
spelled out completely. As noted above, nouns also have their
initial WHERE and SHOW values listed here. The last entry in each
table is terminated by a pound sign (#).

168 Getting & Kkey one at a time from the "K:® device is still the
best way. Much easier and more readable than PEEKs and POKEs.

928 This is kind of a cute trick. Rather than print out a special
starting location message, etc., we simply tell our movement
subroutine (starts at line 70608) that we are in room number 7 and
that the wuser just asked us to go West. We also note that room
number 3 is West of the current room. Then we GOSUB to do the
movement and (PRESTO!) everything comes up right for somebody who
Just walked into Room 3! (Much of this will become clearer
later...keep reading.)

ieSe Again, we could have coded the subroutine at line &4@@8 right
in-line here (since it is called only once), but this makes the
program so much more readable. Besides, wait until you see what
that subroutine does.

Page 12 BXL ToolKit

60888-6199 Special actions processing. In many adventure games,
including this one, certain actions must take place at cer@aln
times and/or after a particular number of turns have passed since
some other event. For example, in PICO, the effect of eating the
mushroom wears off after 4 turns. This time period is counted
down in the variable CRAZY, and lines 4818 and 6838 reflect this.
Three other such variables, CHARM, TORCHFIRE, and HUNGRY are
similarly accounted for here. Note that, in lines 6180 to é163,
these counters are never allowed to become less than zero. Qne of
them, HUNGRY, cycles from 26 down to zero, over and over.

1118-1198 Thie is our get-a-command routine. We only allow a few
characters to get through. All others are ignored. Note that the
variable OK is used both as a flag and as a counter to the current
character within RESPONSE$. If the user hits RETURN (line 113@)
we get out of the WHILE loop by simply setting the OK +flag to
zero, Cute.

In 1line 1146, we only allow back spacing to the beginning of the
command typed in so far. And we special case inverse video space
(KEY=148) for safety’s sake. Finally, when we have masked all
characters to be upper case and non-inverse video, we make sure
that the wuser typed an alphabetic character. #And, last but not
least, we limit the user’s response to 15 letters. That’s more
than enough (as we will see).

12081298 We parse the user’s response into verb and noun‘parts. or
at least we try to. Lines 1215 and 1258 strip off leading <spaces
(line 1218 guaranteed that RESPONSE$ would contain at lea;t
something or these lines might generate errors). The ugrb is
presumed to start at the first non-blank character and continue to
the next <following blank. (If there isn't a verb, we go back to
line 1800 and get another response.) The noun is assumed to be
everything after the blank(s) which follocw the verb.

Again, note how the search variables, VS$ and NS$, were careful ly
dimensioned to 4 so that they could hold our separator character
and the three significant letters of a verb or noun. (Do you see
how you could easily increase the number of significant letters in
a PICO vocabulary word?)

Lines 1280 through 1298 allow for the special case of & single
fetter response indicating a direction to take. an you see hqw
easy it would be to add Up and Daown to our list of wvalid
directions?

In any case, we come out of this block with the variaples NOUN and
VERB holding numeric values which represent the action reques?ed
by the user. (See the explanation of lines 80006-9008 for details
on what the numbers mean.)

1368-13386 Pretty simple. If we didn’t find a valid verb, say so.
Ditto for a noun. Do you <cee why we tacked " is.” onto
RESPONSE$ in 1line 12187 1f the user telle us to EAT GORP, the
variable NOUN$ will be set to "GORP is.” Maybe a little too
tricky?

BXL ToolKit Page 13

1486-1514 One of the neatest things about PICO is that it tells you
what it thinks you said., We’ve played adventures where we typed
in "GET SNARE" only to have it tell you "You got it, but it bit
you. You’re dead." How were we supposed to Know that SNA meant
"snake" to that game? In PICO, if you type in "NIB MOS", the game
?;!lktell you that it is trying to "EAT LICHEN". A nice touch: we

ink.

1528 and 2888-21286 There is a bug in BASIC XL which has exicted cince
the earliest wversions of Atari BASIC. We’re afraid to fix it,
because there may be programs which depend on its action! Anyway ,
the bug is simple: if you GOSUB to a non-existent 1line, the
GOSUB is pushed onto the run-time stack before the error is
discovered. Subsequent RETURNs can then end up going back to the
wrong place(s). We avoid the problem here by GOSUBbing toc a Known
good line (20800).

Then, at 1line 2188, we play a little bit of magic. Do you see
what line number we try to go to? 1f the wuser requested verb

number 7 and noun number 2, we will try to GOTO line 1762a.
Suppose, though, that line 17828 doesn’t exist as it doesn’t in
PICO). Then the TRAP 2118 is activated and we GOTO line 17660
instead.

Why? Well, as PICO is written, trying to BURN MUSHROOM will give
us wverb 7 and noun 2. Since line 17828 doesn’t exist, we end up
at line 178088, where OK is set to NO sc that the message, "That
didn“t make sense!" will be displayed. Since most items won”t
BURN, this provides & convenient method of processing all such
non-productive requests the same way.

1468-1418 This ELSE clause was started by the IF of line 1516, The
direction abbreviations (N,E,S,W) produce verb numbers of less
than zero (-1 through =4). Once you understand the rcutine at
line 78606, this part becomes easy.

7688-7858 The variables NORTH, EAST, SOUTH, and WEST are already set
up by the time we get here (we’l) see how in a moment), so all
these lines do is put the proper value into GO. And what’s &
“proper" value? Keep reading...

7188-7198 When we get here, GO can have one of four meanings:

If GO is ... we will

negative ... drown
zero ... do nothing (direction unavailable)
1-99 ... go to that room number
186+ ... do a special action

The ‘“special action” trick is a neat one, uniquely available only

in BASIC XL and its brethren, because GO actually designates the
lTine number of the subroutine to GOSUB to perform the action'

Page 14 BXL ToolKit

7280-739%86 And here is where we get the values that end up in GO!
After we have moved to another room (HERE=GO in 1line 7146), or
even if we haven’t, we RESTORE to the proper room description
(line 7208, also uniquely BASIC XL, etc.>. We READ in the lines
of description (an equal sign on the end of a line indicates more
to follow) and then, in line 7308, READ the four directions,
NORTH, EAST, SOUTH, and WEST.

Isn‘t this neat? Look at lines 30166 to 30165. Just by the line
numbers, we Know that this is the DATA for room number 16
(308080+16%18) . The description is 3 lines (each in quotes) long.
And the connecting rooms are 15 to the NORTH, 12 to the WEST. But
look at the “connections” for SOUTH and EAST: both get a value of
38164. That means that, if the use asks to go SOUTH or EAST from
this location, line 7130 will end up doing a GOSUB 38164. So line
38164 is actual executable code (not more DATA) and the poor guy
gets zapped by a truck.

Examine some of the other DATA statements in this range. Note how
easily we drown adventurers (connecting "room number" of =-1) or
bar them from proceeding (connection wvalues of zerc). It’s
downright easy to add rooms and conditions to this game!

1868 Believe it or not, this is the "end" of the program. Everything
after here is a subroutine. AiIn’t structured programming neat?
Yeah? Then why didn’t we use an endless WHILE loop instead of
this old-fashioned GOTO? Sigh.

With all the main-line code described, we proceed to some of the
subroutines not yet discussed.

7568, 7688, 7780 Three useful little routines, for when the user asks
for something not available (7508), uses something he doesn’t have
(76808), or dies gracefully (7760).

78660 Four entry points provide delays of !, 2, 3, or 4 seconds,
thanks to the clock ticker in location 20.

7988 We display the stuff lying around on the ground. Remember, even
if something is located in this room, we don’t tell the wuser
unless its SHOW() flag 1is true. This little nastiness makes
PICO harder than it would otherwise would be. You could expand
this in your own game(s) as you wished.

Finally, we get to the VERB and VERB/NOUN action routines. Remember,
a VERB/NQUN action starts a line 10000+10880%VERB+18%NOUN. With this
formula (and with line numbers 108068 to 29999 available) you can have
20 different verbs (if they are numbered starting at zero) and 99
nouns. Changing the multipliers <(e.g., make it S508%UERB+28%*NOUN)
could change those ratios and/or make more lines available for
particular actions.

Also recall that a VERB (alone) action starts at 16686+10088%VERB, and
VERB/NOUN actions specified end up at those VERB alone lines.

We do not want to (nor do we feel we need to) devote the space to a

complete description of all the possible actions. Instead, we will
single a few out and leave the rest to you as an exercise.

BXL ToolKit Page 15

13860—13::3 These are the actions taken when the user asks to LOOK at
something. Let’s see what happens when he/sh K
s g p e asks to LOOK

First of all,.if Golem isn’t in the right room (line 131785, how
can we look at it? The rest of the responses depend on the value
of JUNKCNT, which was initialized to 3.

If JUNKCNT is not zero, then we let the user find something.in the
pile. What hes/she finds depends on the value of JUNKCNT (line
13172>. The item(s) thus found (item numbers 9y 3, or 8, in that
order) are made visible by giving them a location in the
UHERE() array (line 13173). Recall that all three of these items
received an initial location of 100 Chidden) in the
DATA statements of lines 8988 to &999. Note that changing
WHEREC() is all that is needed to cause the visible items print
routine (lines 798@-7978) to make it show up.

If JUNKCNT is zero (all three items have been found), then we are
sent off to line 13080, just as if we had typed LOOK BOAT (which
would cause the routine at line 13158 to be executed, if it
existed).

Line 13888 starts with a cute trick: If the user typed in just
LOOK, the program pretends he/she really wanted LOOK PLACE. Line
130a1 is pretty straightforward if you know how to read it: “If
the Golem isn’t carrying the requested object Cif
WHERE(NOUN> isn’t zero) and if the object is not in this room
(WHERE(NOUN) is not the same as HERE), then we can’t look at it,
so ask the dummy HOW we can do it."

Fiqally, line 13882 <cimply gives a nice bland message about the
object. If the user typed just LOOK <(with no noun), then the
message refers to "this place." Not exciting, but it works.

16608016169 Almost every adventure you try will have some sort of
secret word or phrase which you must SAY to unlock the mysteries.
In PICO, we hint at that ability by providing you with a MAGIC
LAMP Cin the junkpile) and putting a message on the billboard
which has a message in quotes, usually a dead giveaway that the
phrZ?e)("A LAD IN BAGHDAD" in this case) is the sought after magic
word(s).

In fact, if you use the command SAY A LAD IN... before you get the
lamp, we even give you a clue (line 18168) that you need something
else before the magic works.

But all of this is in vain. We borrowed a page from Sesame Street
and put the "fix" in: all you get for all your trouble in this
game is a peanut butter sandwich. <(To add insult to injury, it
doesn’t even fill you up! Of course, that‘s because the "I’m
hungry" message is trying to make you eat the mushroom, another
trick cadged from a children’s story.)

Tha?'s about it for PICO. <(Isn’t it enough?) We hope you will turn
it into your game and share it with us all.

Page 14& BXL ToolKit

2.9 LEM

This program is yet another incarnation of the classic lunar lander
game. The principles of this game haven’t changed since people first
started using computers to have fun, even if they were using

time—-sharing on mainframes and mini-computers back in those
prehistoric dars. For example, we have a book (fashioned from clay
tablets, we think) dated 1975 (A.D. !!!)> and called "What to Do After

You Hit RETURN or P.C.C.7s First Book of Computer Games" which
includes no less than two different lunar lander programs. They were
played on H.P. minicomputers with teletypes (you Know...at a maximum
of 18 characters per second, and no graphics).

So what’s different about this program, and why chould we discuse it?
Well, it’s written entirely in BASIC (big deal, so were those 1975
gems). And it uses pretty graphics (that’s a little better)>., And it
runs in ‘real time (whazzat? impossible!).

To play this game, plug a jorstick into soccket number 1 (STICK(®) in
BASIC) and RUN the program from disk. You can play on two levels,
beginner or advanced, but we recommend »ou try it first as beginner,
so simply push the joystick button. You will be presented with a
moonscape, a bar at the left showing your remaining fuel, a landing
pad <(which will blink)>, and an odd-shaped ship <(complete with
antennae, legs, etc.) which you will (try to) control.

To move the ship left or right, simply push the jorstick left or
right. Be careful! The effects of such pushes are cumulative with
time. Gentle taps in the appropriate direction work best.

To fire your retro-rockets, push the Jjoystick button. If you do
nothing further, you will probably crash <(albeit perhaps slowly).
That’s because there are six possible thrust settings on the LEM. You
increase thrust by pushing forward on the Jjoystick, decrease by
pulling back. Need we tell you that greater thrust eats fuel faster?
(If you run out of fuel, you run out of thrust. Need we tell you the
resul ts?)

1f you manage to land (or even crash) on the landing pad, you get
points. Too fast a landing results in a crash. A landing of moderate
speed gives you a bouncing good time. And & near perfect gets you
applause and cheers from the crowd. (Which ignores the fact that
sound doesn’t carry in the wvacuum on the Moon. Oh, well, maybe
they’re back on Earth?) You get 258 points for a great Tlanding, 100
points for a bounce, and credit for remaining fuel. You also get
bonus points for the actual speed of your landing and the narrowness
of the pad you landed on.

It’s a good game. We‘ve played it many, many times, and it’s still a
real challenge to score over 235088 points in five landings (a standard
game) on the Advanced level. Before perusing the explanation of the
workKings which follows, why not try it yourself a few times.

This is a big program, but it is very well self-documented (with both
REMarks and self-explanatory variable names). @As with PICO (section
2.3) we will discuss this game in blocks, concentrating on the
non—-obvious features.

BXL ToolKit Page 17

186866-12%0 After waiting <for the player to let up on the jorstick

button, we present him/her with a menu and some brief 2068-2148 We set up the fuel-remaining indicator. Rather than a
instructions. LEVEL is set to zero for a beginner and one for an solid bar, we liked the pattern that $BDDB produced for a pair of
advanced player. Notice how we position the arrow, basing it on vertically adjacent 1lines within the bar. We replicate the
the wvalue of LEVEL. Also note how, after detecting the fact that pattern wvia the MOVE of line 2698. Note how this trick works and
the joystick has been pushed, we wait for the stick to come back use it in your own programs: If you initialize the first N bytes
to the center before continuing the loop. If we didn’t do this, of an area of memory, you can replicate those bytes via
the arrows would flick back and forth from one level to the other MOVE area,area+N,(# of replicates/N)
almost too fast to see. (Try it yourself. Remove line 1186, and
watch what happens.) Another trick you might steal is our method of moving character
shapes from ROM to a player (lines 2168 to 2138). The wusual
1380-1748 Mostly simply initializing various arrays and strings. We character set starts at $E@08, but we bias it by -$188 because
will show later how these variables are used. Note how we choose screen byte values are not identical with ATASCII values. Recall
one or the other set of DATA in lines 1768 to 1726, depending on that each character in ROM occupies 8 bytes, and you should get an
the level of the plarer. You could have more than two levels idea how this works. After the "fuel line" is ready, we move it
here, if you wished, by adding choices to the initial menu and to the left side of the playfield screen.

DATA for the acceleration values.
2168-2518 We make the playfield look pretty. After picking the size

Speaking of which: The first acceleration number is the force of and width of the landing pad, we draw the moonscape in three
gravity. In other words, the positive attraction inviting you to pieces: From the left edge to the pad (line 2298), the pad itself
crash into the rocky surface. The other six numbers are the (2318 to 2348), and from the pad to the right edge (236@). The
acceleration values produced by the various thrust settings. Note subroutine at line 3988 draws the jagged mountains. (Note how the
that, on advanced level, the lowest thrust doesn’t even cancel the mountains are guaranteed to get no more than 28 units high. If
pull of gravity. You can play with these numbers, but the game ALT gets up to 20, 8.96%ALT immediately drops it back to 19.
works pretty well with the values shown. Cute.)
1888-1838 These are some critical constants used throughout the game. After putting a few distracting stars in the sky, we blink the
We need to discuss them just a little. landing pad (that’s one reason it was drawn using a different
COLOR than the rest of the moonscape) and then give it the same
A POKE of any value to HITCLR clears the collision registers (see color as the rest of the mountains.
“Mapping the Atari"). The YSIZE is the bheight of the active
playing area ¢in pixels) in BRAPHICS 7+16. If you wanted to play 2488, 2778 This WHILE loop constitutes all the actual movement in the
with GRAPHICS 15+16 (availahle only on XL machines), you could game! Do you see how few lines there are here? That’s the
change this. primary reason the game can run so fast, thanks to the extensive
set up which we have done. And what terminates the movement loop?
The lander spaceship (LEM) wuses playver 8. Its flame (from the Look at the five conditions in the WHILE statement: (1) Hitting
thrust) uses player 1. They are offset a bit (from the base the landing pad. (2) Hitting the mountains. (3) Going off the
addresses of their respective players) to account for differences left edge of the playing area. (4) Going off the right edge. (5)
in their sizes. If you changed the appearance of the ship, »you Going off the top of the area.
could adjust Jjust ADRLANDER and ADRFLAME, and all would still
work . 2618-2628 We move both the lander and its thrust flame into position.
For vertical movement, we actually MOVE data from the strings we
LANDER and FLAME are established just to save time in the tight set up (from the hex DATA). We do this because it is faster than
loops later on. PMMOVE, which must move 512 bytes in single line resolution (256
bytes out to a buffer and then back in, to avoid overlap
We display the fuel remaining using player 2. The "+32" and problems). For horizontal movement, PMMOVE is Jjust as fast as
"+159" values are empirical--they match the line to the size of POKE, so we use it.

the playfield nicely.
2638-2730 After adjusting the BURN rate as requested, we set

1898, 3758 The limits of the once-per-landing loop. Big, isn’t it? CURRENTTHRUST to either zero or BURN, depending on whether the
button is being pushed. Since fuel is used at a rate equal to 6.1
1968-2858 Look at all the stuff we have to set up each time! Most of times the thrust, we use an intermediate wvariable (LOSS) to
these variables are self-explanatory or nearly so. Especially if accumulate thrust in units of 18. When the LOSS exceeds 18, we
we tell you that "pos" means ‘"position" and tvelt means use up a unit of fuel and reflect that fact in the fuel line on
"velocity". FUEL is actually fuel remaining, while BURN is the the left side (lines 2718 to 2730).
current rate of burn (thrust). BURN is the number which s
adjusted by moving the Jjoystick back and forth. 2748-2768 The horizontal velocity is easy: we Jjust accumulate the
CURRENTTHRUST matches BURN only if the button is pushed, otherwise horizontal stick pushes in one-twentieth of a unit increments.
it is zero. The vertical velocity is also cumulative, but it uses the elements

Page 18 BXL ToolKit BXL ToolKit Page 19

of the THRUST array for its acceleration wvalues. And, you may
recall, the wvalues in THRUST() depend on whether you are playing
at beginner or advanced level. Finally, after wupdating the
horizontal and vertical positions, we make an appropriate rocket
sound.

28808-3848 For really great landings, we bring out the crowd. Note
the way we assign the bonus points in line 3640.

3876-3256 For so-so landings, we bounce the ship. The number of
bounces depends on how hard the landing was. Note how we choose
the frequency for the plopping sound from the PLOP() array.

3278-3458 A crash landing. We allow pieces of the ship to spew all
over the place. Up to 18 pieces are given independent
positions—-X(> and Y{)--and velocities——-XVEL() and YVEL(). Each
follows the laws of physics until it goes off the plaring field.

3460-3748 We display the score for this landing as well as the
cumulative score so far.

3776-3878 After five landings, we give the grand total. We restart
the game (via a simple RUN) when the joystick button is pushed
(which is why we waited for the button to be released up there at
the beginning).

There it is. A practical real-time game written entirely in BASIC XL.
There are a lot of unnecessary frills <(e.g., the warious types of
landings), but they add to the overall effect of the game. Try this
on your Apple-owning friends. They’11 never believe it was done
entirely in BASIC.

Page 28 BXL ToolKit

2.5 GTIATEST

The earliest Atari computers had a graphics chip called a CTIA. About
two years after their introduction, though, Atari started shipping all
4068 and 888 machines with a newer chip, called a GTIA. (All
XL computers use the GTIA.) The most significant difference be tween
the two chips is the GTIA’s ability to accept commands for three
additional graphics modes, GRAPHICS 9, 18, and 11 in BASIC parlance.

For reasons we at 0SS find hard to understand, little in the way of
commercial software has been produced which uses these three modes.
True, compatibility with older machines is an issue, but the cost of a
CTIA to GTIA upgrade is nominal, at most. And if »ou must maintain
compatibility, why not provide two versions of a program? Well, one
argument for not doing so was that, according to Atari literature,
there was no way for a running program to tell which chip was
installed. Would you believe Atari literature?®

We thought not. It turns out that a workable method is a bit involved
but more than doable. The subroutine from line 9066 up in this
program demonstrates one way which we Know works.

The principle is as follows: I1f you are in a text mode (e.g.,
GRAPHICS @) and you turn on one of the GTIA enable bits (the upper two
bits of GPRIOR), then the collision detection mechanism does not work
between a player and a character displaved in the modified text mode.
As a sidelight, the characters become unreadable under these
conditions, but this in itself is not detectable by a program.

We believe this subroutine ¢(and its sample calling program) are fairly
self-explanatory, but we will make a few comments.

21088 As long as we are testing, we might as well PRINT csomething
which makes sense.

9138-9156 All of this ensures that we will place a black bar (plarer
8) right over the word GTIA.

9148-92186 We turn on the GTIA bits, wait for a clock tick, clear the
collision registers, then wait at least two clock ticks.

9228 1f $D0G4 contains any non-zero bits, it means & collision was
detected and that the machine under test does not have a GTIA.

We hope that some of our users, either of BASIC XL or other languages,
will see fit to produce some programs which take advantage of
GTIA graphic modes when possible.

BXL ToolKit Page 21

2.6 CIRCLES

We at 0SS cannot take credit for discovering the algorithm wused in
this program, but we do think that we have made it a little more
useful.

The program’s workings are certainly self-explanatory up to line 15%98.
It is the subroutine starting at line 16088, which actually draws the
circles, which needs a few comments.

The principle involved is simple in theory: calculate the sine and
cosine of angles which get increasingly larger C(until they reach 45
degrees), and plot a circle by reflecting these values in all octants.

The trouble is, if we use conventional means of generating sine and
cosine values, drawing a circle takes so long we might want to take &
nap. The trick here is an algorithm, involving the wvariable

DELTA which approximates the sine and cosine values so close as to be
indistinguishable when a circle is plotted on an Atari-size screen.

When we enter the subroutine, we assume that XC, YC, and RADIUS are
already set up. Then comes the fun.

1678 This begins the real work. The formula for DELTA is magic.
Don’t question it <(unless your math is a whole lot better than
average). The values for X and Y are more obvious: We begin at
an angle of zero degrees, so the sine is zero and the cosine is
one. We will plot the points where lines parallel to the axes
intersect the circle.

1486 This allows us to get to 45 degrees, where the sine and cosine
values are identical.

1698-1788 We plot the values in all octants. The cute trick we added
here was the TRAP statements. Even if the circle is completely
outside the bounds of the playfield, we can PLOT it in theory, at
least! The beauty of this method is that all of those points
which fall within the playfield will be plotted, no matter how few
or how many they are.

1886-1840 This is the algorithm at work. Again, it‘s partly magic,
but you can sort of see how it works. X is always increased by
one, €0 we never plot the same point twice. Whether or not Y ic
decreased by one depends on the value of DELTA <(which in turn
depends on either X or the difference between X and Y) as its sign
changes. Those of you with & mathematical streak may enjoy
calculating the arc-tangent of X/Y, to see how <close this
algorithm is.

Once again, this subroutine is one You can use in your own programs.
Try ity it works.

Page 22 BXL ToolKit

2,7 DISKIO

This is another program which in and of itself is only marginally
useful. Its main purpose is to present its primary subroutine (lines
9860 and greater), which you may use in your own programs.

As you may or not be aware, when you ask BASIC to do 170
(Input/Output) to or from most devices attached to your computer
(including particularly the disk drive), what actually happens is
qui te complex. BASIC interprets your request into a call to
CI0 (Central Input Output), which in turn determines what device you
are using and vectors to the appropriate driver routine. We assume
here that CIO accesses FMS, the File Management System for the disk,
usually called DOS (Disk Operating System).

Finally, FMS makes a call to SIO (Serial Input Output), the routine
which does the actual physical reading and writing to the device. In
the case of the disk drive, this involves the actual transfer of a
cingle sector of 128 bytes (or 254 bytes in non-1858 double density).

Most BASIC programmers seldom——if ever—-—have need to read or write a
physical disk sector. Writing is dangerous, since disturbing the
format of portions of a sector can destroy DOS‘s ability to manage the
disk for you. Reading a sector, though, can be informative,
especially if you are trying to either understand DOS or find "lost"
information.

However, should you ever feel the need to directly read or write
sectors, the subroutine we provide here will do the work for you.
Just so you can see how it works, we have included an interactive
program which reads selected sectors. (We took our own advice and
didn“t allow it to write sectors.)

The set—up program, all lines except the subroutine starting at line
9000, is fairly self-explanatory. It simply asks the needed questions
before calling the actual read-a-sector code. It then displars the
contents of the sector in an easy to read hex and ATASCII dump format.
Only a couple of points are worth making regarding this part.,

First, we have arbitrarily used $4080 through $&FF as our sector
buffer. This is the infamous "page é" which is so often overused. I¥
you would 1like to avoid conflicts with other routines using page §,
feel free to locate the buffer anywhere else <(e.g., within a
DIMensioned string). Second, note the way we print out the dumps.
The HEX$() function always returns a four-character string; but,
because we want only the 1last two (least significant) digits, we
assign its value to a temporary string from whence we can print out
only the 1last two characters. Also, we avoid problems with the
ATASCII display by prefacing every character with the ATASCII code for
ESCape and ensuring that only seven bits of the characters wvalue are
used in the display. The former mechanism forces E: (the screen
device here) to display what would otherwise be cursor control codes,
etc. The latter "fix" ensures that RETURN ($9B) won’t be sent to the
screen, a desirable feat since it overrides even the ESCape sequence.

And now, before describing the code in the sector access routine, we
need to examine what SIO expects to be where when it is called.

BXL ToolKit Page 23

S$10 and the Device Control Block

The entry point to the SIO calling routine is located at $E459. When
SI0 is called, it does not care what values are in the wvarious CPU
registers (A,X, and Y), but it insists that a block of memory Known as
the Device Control Block (DCB)> be properly set up. There is only one
DCB used in the Atari 0S8, and it begins at location $0388 (748
decimal). Ite contents are as follows:

Location # of bytes Description
$0300 1 Physical Device ID
$0301 1 Device Unit Number
$0302 1 Device Command Character
$0303 1 Data movement control <on call)
SI0 Returns Status (on exit)
$0304 2 Buffer Address
$8384 2 Timeout value
$0388 2 Buffer Length
$030A 2 Auxilliary Information

Some of those brief descriptions need a little explanation: The
physical device ID is something not seen in Atari’s 0S outside of SIO.
Atari has assigned each standard serial peripheral type a wunique IDj
disk drives have an ID of $31 (‘/1“, not to be confused with $81). The
device wunit number is more familiar as, for example, the drive number
(‘n’ in ‘Dn:’).

The device command is again unique to SI0. As we shall see in the
next section of this manual, there are many possible command
characters, though they tend to be normal ATASCII letters. For
example, the command to read a sector is ‘R’ while write is ‘W’. Note
that for versatility disk drives support a second write command, ‘P,
which means write sector without verify.

The byte at $303 has two uses. When you call SIO, it must contain $48
if You wish to obtain data from a device or $88 if you need to send
data. A few device control commands need to neither read nor write
data, so they use a value of $88 here. On return from SIO, the error
code value (if any) is placed in this location.

Buffer address and buffer length are similar, if not identical, to
their CIO counterparts. They simply tell SIO where the data 1s and
how much of it there is. One unfortunate point: ATARI did not choose
to include the data length in the packet sent out over the serial bus.
This means that the device and SIO must agree on the length of data
being sent. <(Example of the consequence: Atari‘s 0S5 always sends
data to a printer in 40 byte hunks. Wouldn’t it have been simpler if
0S could have sent any number of bytes, from 1 to say 255, to the
printers?)

Finally, the auxilliary information is sent unmodified to the device,
along with the command. Each device chooses what the auxilliary info
implies, but for disk drives it is always the sector number.

The Sector Access Routine

Actually, now that you have seen what SIO requires, this subroutine
(lines 9888 up) is almost self-explanatory. Once again, though, a few
things need clarifying.

Page 24 BXL ToolKit

9238 No real reason for this, except that the resultant listing looks
so much neater.

9240 We use ASC("1") to emphasize the fact that Atari, for some
reason, used printable characters for most of the SIO control
information. (As a guess, we would say that they did this to make
debugging using a serial data analyzer easier.)

9276-9328 We only allow the values we said we would. Everything else
is fatal. Not fancy, but safe.

9336 A little sneaky, but we have already verified that OCMD equals
either 1 or 2, so only a legal value is possible here.

9358 The timeout value is arbitrarily large.

?366-94186 Again, we allow only legal density values. Note that 1050
density—-and-a-half is considered Single density by this routine.

9428-9478 Validating the sector number. If you are using a 1858 in
density-and-a-half mode, you obviously need change the 728 value
to 1848, instead.

9486-9498 This is such a neat trick! Because BASIC XL allows us to
specify that the count of parameters will pot be pushed on the
stack, we can call machine language routines which do not expect
values in registers without any need for an intermediate routine!
So simple it’s almost hard to believe.

9588 As advertised.

9518 Just in case the caller is using a routine where he wants the
count of parameters pushed!

Technical Sidelight

There are two sectors on a standard Atari DOS disk (version 2.6s and
its derivatives, including 0S/A+ and DOS XL versions 2) which you max
read or write at will, since they are "invigible" to DOS: sector 3
and sector 720.

Sector 728’s availability has been documented before: DOS ™“manages"
sector numbers @ to 719, but the disk drive understands only sectors 1
to 720. DOS has been "fixed" to think that sector @ is always in use,
but sector 720 remains outside its Ken. Sector 3 is a quirk: it is
the last sector of the traditional 3-sector boot process. But, for
some reason lost in programming legend, it turns out that none of the
disk boot code used by DOS is present in sector 3: sectors | and 2
contain all the boot that is needed!

A word of warning, though: if you erase, write, modify, or rename the
D0S.8YS file, sector 3 will automatically be rewritten by DOS (it
thinks it needs to reestablish the boot code). So, if you choose to
use sector 3 for your own purposes, be sure to do so on a disk which
either never receives a DOS.SYS file or which has one which you feel
is reasonably permanent.

BXL ToolKit Page 25

2.8 CONFIG

This program was written in response to all of our users who
wanted to Know how to read and/or change the configuration
information which all true double density drives utilize. The
configuration scheme, often called the config block, was
developed by Percom Data Corporation, the producers of the first
commercijally available double density disk drive for Atari
computers. Since that time, all other manufacturers except Atari
have followed the Percom lead. Strangely enough, the Percom
scheme was in turn developed from the ill-fated Atari 815, a
double density drive which never saw retailers’ shelves.

In any case, the degree of double density compatibility between
drives of rival manufacturers in the Atari market 1is nothing
short of amazing. 1In those instances where one drive cannot read
a diskette written by another make of drive, the problem is
almost always related to the rotaticnal speed of the motor
turning the disk. Adjusting that speed can often work wonders
with a diskette which otherwise produces only ERROR 144.

0Of course, when Atari finally came out with their own “double
density" drive, naturally they had to invent a new standard. (It
wouldn‘t do to accept one begun by a rival-—-that would be an
insult to Atari’s dignity.> As a result we now have three
important diskette <configurations in the Atari world, which are
summarized in the chart below.

Sectors Bytes per Total

Our Name Style per Track Sector K Brtes

Single Density 810 18 128 28

1858 Density 1850 28 128 138

Double Density Percom 18 256 186

A1l drives use 48 tracks per dicskette. In addition to those

shown, wvarious manufacturers have also made drives with 88
tracks, two heads <(i.e., 48 tracks per <cide of the dick),
double-headed with 88 tracks per side, and even 8" disks with
other strange and wondrous configurations. Since only O0S/A+
version 4 (of all 0SS DOS’s) supports other than ordinary single
and double density drives; we will not go into detail about these
drives here.

As of this writing, the following drives are known to be capable
of understanding Percom-standard double density mode:

Indus Trak
Astra Rana
SWP NCT Turbo

and, of course, Percom

In addition, Amdek conforms to the software standard even though
their diskettes are 3.5" (instead of the usual 5.25"). If you
hook a 5.25" drive up to an Amdek controller (e.g., as a second
or third drive on the controller), then its diskettes will be
hardware compatible as well.

Now that we have all that out of the way, marbe we ought to find

out just what the "Percom standard" is.

BXL ToolKit Page 28

The Percom Standard

For a drive to qualify for that title, we at 0SS feel that it must be

capable of all the following:

1. Read and write standard Atari 8186 single dencity diskettes.

2. Read and write double density diskettes with 48 tracks, 18 sectors
per track, 256 bytes per sector. Peculiarity: because of the way
Atari’s 0S wants to boot, the first three sectors of a double
density disk will hold only 128 bytes of data (excess is ignored)
and transfer only those 128 bytes on a&ll1 S£I10 reads and writes to
sectors 1 through 3.

3. Be able to transfer an internal configuration block to the host
computer on request.

4. Be able to accept changes in that same configuration block
sufficient to at 1least allow the drive to be changed back and
forth between single and double density.

5. Have that configuration block be read/written by SIO commands ‘N’
and ‘0“7 <(respectively) and consist of 12 brtes conforming to the
following table:

Brte # # of Brtes Description

1 Number of Tracks

Step Rate

of Sectors per Track

of Sides (heads)

Density (8=Single, 4=Double)

of Bytes per Sector

Drive Selected?

Serial Rate Value

Miscellaneous (reserved)

SVOoULN—-®
N N S

[

Once again, a little explanation of some of those items is necessary:
First of all, note that all double byte values are not in standard
6562 low/high order. The reason is historical: Percom uses a é80x
CPU chip in their disk controller, and all &80x chips do double brte
work in reverse of the 4562 manner.

"Step Rate" is not a meaningful number from one manufacturer to
another. Step rate 1| might mean & millicseconds per track to one
manufacturer and 20 milliseconds each to another.

“Mumber of sides" is & misnomer: it is actually the number of sides
minus one. Thus most drives will show a zero here. Note that, in
theory, this number could have any value. For example, a hard disk
drive might show a 4 here (five heads).

The only agreed upon values for “Density" are @ ("FM" recording mode)
and 4 ("MFM") recording mode. Other values are possible for strange
circumstances.

Some drives can actually be turned "off-line" by an appropriate value
in "Drive selected." There seems little value in this, since they can
only be brought back into the system by turning them off and back on
again.

The “Serial Rate Value" has not found any compatible acceptance. As
originally conceived by Percom, it would inform the drive what baud
rate the computer would use for high speed data transfer. So far,
those manufacturers offering higher speed transfers have not used this
byte in any meaningful way.

BXL ToolKit Page 27

Finally, the "Miscellaneous" wvalue is not--to the best of our
Knowledge--being used by anyone for any purpose.

Now that you Kknow what a Config Block looke like, how can you tell,
from software running in the Atari computer, whether a particular disk
drive is set up for a particular density of diskette? Equally
important, how can you <change a drive’s set up? If you want the
answers to these questions, read on. .

Reading and Writing the Confiq Block

As noted in Section 2.7, SIO is a means of transferring contrel and/or
data between an Atari computer and a peripheral device wvia the
standard <serial bus. Although the most common operations on the bus
involve reading (command ‘R‘) and writing (commands ‘W’ or ‘P’), other
commands are certainly possible. In fact, all devices are required to
support a status (’S’) command, if for no other reason than so that
the computer can tell whether they exist on a given bus or not.

When Percom invented their double density disk drive, they invented
their Config Block and, quite naturally, a pair of commands to pass
such a block between the computer and the drive.

The command to read a Config Block from the drive into the computer’s
memory is ‘N’ (think of it as iNto the computer). The command to
write a Config Block to a drive is 70’ (think of it as Out of the
computer). Aside from the need to use these command characters, the
only differences between making an SIO call to read/write a sector and
making one to read/write a Config Block are (1) the length of the
data, which is always 12 bytes (instead of the 128 or 256 for a
sector) and (2) the auxillary bytes (used for sector number) have no
effect.

For example, then, to read a configuration block from drive 1 into a
buffer at location $488 <(page &) you would need to set up the
following values in the DCB at the locations shown:

$300 %31 Unit ID

$381 $01 Drive 1

$302 $4E ’N’, read Config Block

$303 #40 see Section 2.7
$304 $00

$04 $600, LSB first, buffer address
$306 $0OF

$00 15, an arbitrary timeout value
%388 $8C

+00 12, length of the Config Block

And that’s it! A JSR C(or USR) to location $E45% will read that block
right into memory. 1f, of course, the drive is capable of
reading/writing Config Blocks. Atari drives, for example, will return
an error 138 (NAK), because they do not understand the command. A
command given to a drive not on the serial bus will result in &
time-out error.

Page 28 BXL ToolKit

Our Program

The CONFIG.BXL program on your ToolKit disk is very long and seemingly
complex. Actually, the real work is done in a couple of simple
subroutines and the rest of the program is simply there to convert the
raw numbers in the Config Block into readable information and/or to
allow the user to easily «change information in the block. Once
again, then, we will resort to a description of only those parts of a
program which we don’t feel are self-explanatory.

18068-1288 Mostly just simple constants. Note that we will read the
configuration table into the string, Configtable$, rather than
using valuable page six memory. Also note in line 1280 the way we
produce screen control characters which will list on any printer.

1248 This allows us to call system routines via USR() directly. See
section 2.7.

1278-1298 We will discuss these DATA statements later. For now, note
that each line has 12 values (funny how that matches the size of a
Config Block). Negative values indicate brtes we won’t change.

1338, 1928 Look at the size of this endless loop. We think that, in
a well structured program, a loop really shouldn’t get any bigger.

1348 Two ways to use screen controls in BASIC XL, thanks to the fact
that you can PUT to channel zero.

1438 This is one way to ensure that all the configuration games we
are playing here will take effect. When you change a drive’s
configuration, DOS needs to Know about it. Usually, one does this
by calling a routine named DOSINI, which will return to you after
reestablishing DOS’s internal drive configuration table. If »ou
don’t need the routine to return to you, simply force a system
reset by a Jump Cof any Kind) to $E474. This is
exactly equivalent to hitting the RESET Key.

1498-15060 See, we can use our SID calling routine to do more than
just read/write Config Blocks. In this case, we simply do a drive
status call.

1488~1738 The status was okay, so read the Config Block. Hmm? Can”’t
do it? Why did you buy an Atari drive?

1756-18%6 Here is where we display and then (optionally) change the
Config Block in a form readable by humans. Note how little of the
code is actually here; it is almost all in subroutines.

1948-2220 Once again, we have a Keyboard access routine which avoids
the wvagaries of the INPUT statement (see PICO.BXL for a fully
commented example of this same thing). In this case, we want only
numbers in the proper range. It’s easy if you step through it.

BXL ToolKit Page 29

2238-2598 Remember what we said about a handful of subroutines which
do the real work? Here’s one of them. If you followed our
discussion of the meaning of each byte of the configuration table
(above), you shouldn’t have any trouble following this code.
That’s primarily thanks to the fact that all the pertinent values
have already been placed in variables with meaningful names by...

2686-2750 A wvery important subroutine. This takes the bytes of the
Config Block and converts them as appropriate. Note how we can
not wuse the DPEEK() function, thanks to the fact that the double
byte values are "backwards" compared to standard 4582 practice.

2768-2918 The opposite of the previous routine. Take the walues in
the wvariables and stuff them into the bytes of the Config Block.
Again, note that we can not use DPOKE.

2928-31280 We really shouldn’t need tc explain this routine, since it
is- virtually identical to its counterpart in DISKIO, described in
Section 2.7.

3138-3388 Here’s where we allow you to play games, if you wish. We
give you a menu. If you choose one of the standard configurations
(Single, 1858, or Double Density), then the appropriate
RESTORE allows us to read the standard configuration information
from our DATA statements. Once again, we note that some bytes are
never changed: Step Rate, Acia, and the Miscellany locations.

33968-3768 Anything goes. You can tell the disk drive’s controller
that it’s connected to a drive with 138 tracks, 204 bytes per
sector, 12 heads, or whatever. Some controllers will believe you
and try to do as you ask. We sincerely hope that you have a blank
or trash diskette in the drive when you give such commands. Other
drives will only accept a limited number of configurations,
ignoring much of the information you send them. For example,
Indus drives allow only the three standard densities.

Note how we re-read the Config Block after writing. This is to
ensure that we haven’t lost control of the drive. (With some
drives, you can de-select them, and they will cease responding to
anything.)

That‘es about it. 1f you are confused, try playing with the program

with a copy of a listing in front of you. It should become a bit
clearer.
Page 30 BXL TeoolKit

2.9 PHONE
PHONE.BXL is a fairly large but well organized program which is a
simple but very efficient phone number 1list organizer. It will

maintain a list of first and last names and phone numbers, Keeping the
list "sorted" by last name. Thanks to the "sort" scheme adopted, it
finds a phone number in less than a second, no matter how many names
there are in the list, when given a last name to work with.

Its other advantage is that it is easily changed and expanded to
provide, for example, a mailing list program. Or perhaps a list of
books in your library. The possibilities are limited mostly by your
willingness to tackle its code and bend it to your purposes.

Again, this program has been provided in response to numerous requests
for a complete explanation of how to do random-access file [/0 under
DosS 2. We hope that this program and its description will satisfy
most of these requests. Before exploring the program, though, there
are several technical considerations which you may enjoy considering.
1f you get lost in all the technical stuff, <kip down to the program
description and come back and try to understand the rest later. (It
is worth understanding.)

Sequential and Other Files

Perhaps the biggest flaw in Atari DOS 2.6s (and all its derivatives,
including 0S/A+ and DOS XL version 2.x> is in the structure of the
files it creates. Atari DOS 2 files are classified as "linked
sequential® types. That means, each sector in the file points to
(links to) then next sector.

Sequential files have a few advantages: (1> File managers which
handle sequential files are generally simpler and smaller than those
for other file types. (2) If a disk is partially “clobbered," »ou can
often still recover much of its data when linked sequential files are
used. This is true even if the disk’s directory is damaged, a
generally fatal condition in other file systems. (3) File manager
disk space overhead is reasonably low.

Unfortunately, there are also several major disadvantages: (1) To
erase a linked sequential file, the file manager must read through
each sector of the file, a very time-consuming process. As disk and
file sizes get larger, this become a major factor in disk I/0 time.
(2) To locate a particular record in a linked sequential file, rou
generally have no choice but to start at the beginning of the file and
read until you come to it. (3) Similarly, to append to a linked
sequential file, you may have to read the entire file.

Now, truthfully, file manager types don’t matter if you are using a
DOS to do nothing but save programs, letters, and other things where
you always load all the information into memory before working on it.
You’re actually using the disk as a slightly smart tape drive in these
circumstances. Where file structure becomes important is when you
need to randomly use bits and pieces of a hunk of data (a file) too
big to fit in memory.

The best of all worlds would be a DOS smart enough that you could say
something like this: *“Give me the address of John Doe." Generally,
the computer world considers convenience like this beyond the scope of
DOS, relegating it to the world of Data Base Managers and their i1k .

BXL ToolKit Page 31

The next step down is usually being able to say, "Give me the 433rd
record in that file." With most file organization schemes, this is a
trivial task if the records are all the same length (and about as hard
as the first request if they are not).

How to Use NOTE and POINT to Advantaqe
But what about those linked sequential files we are stuck with? To

get to the 433rd record, we have to read through the first 432! And
we would be stuck here were it not for the fact that Atari DOS
does provide one added feature: it allows you to find out just

where on the disk you &are as you read or write a file. The magic
statement is NOTE. As ycu may remember from your BASIC XL reference
manual, its format is

NOTE # filenumber, avarl, avar2
where the first avar gets the sector number of the current position
within the file and the second avar gets the byte number within that
sector.

Then, if you once read a file and find out (via NOTE) where its 433rd
record begins, you can later ask DOS to change its file position
marker to that same location (via POINT, which has the same format as
NOTE). Voila, you are then able to read or re-write the record.

How, you may wonder, is this different from those DOS systems which
allow you direct access to any byte (and thus record) in a file?
Don’t they allow you to POINT to any disk location, also? Not really.
Atari DOS allows only what we call Absolute access. That means that
the numbers you use with POINT describe a physical location on the
diskette, Other DOS types allow you to POINT to a location which s
relative to the beginning of the file. (Example: To point to the
22nd record when each record has 208 bytes, you would simply POINT to
relative byte number 448, if records are numbered starting at zero.)

With Atari DOS, Kknowing that record number 22 starts at sector 301,
byte 115, doesn’t tell you anything about where record number 23
starts (unless record 22 is shorter than 10 bytes), because sectors
are not always allocated to a file in order. (lInstead, as a file |is
built it is always given the next unused sector.) To make matters
worse, when a file is appended to, sectors with fewer than 125 byrtes
(253 bytes in double density) may be left in it.

The only real solution, then, is to build a table of pointers, one per
record. This technique has been described often before (among other
places, in Atari’s D0OS 2.8s Reference Manual). In most such
discussions, what is built is a numeric array Cor arrays) of pointers
to records by number. A segment of a typical program is shown:

9?58 NOTE #3, Sector, Byte

948 Sector{Recordnumber) = Sector

978 Byte(Recordnumber) = Byte
This is a lot of overhead: 12 bytes per record.

Let us sidetrack for a moment. Consider this: when you use NOTE, you
are given a sector number and a byte number. But the maximum sector
number is 7280 and the maximum byte number is 253 (double density), so
we can store the sector number in as little as two bytes (remember, a
double byte location can hold values from 8 to 65535) and the byte
number in a single brte. Total: three bytes. Again, a program
fragment to implement this scheme is shown here:

Page 32 BXL TeoolKit

938 NOTE #3, Sector, Brte
948 Temp=Recordnumber#3+1
958 Shi=Int(Sector/258) : Slow=Sector&zS5
968 Pointer$(Temp,Temp+2)=Chr$(Slow),Chr$<(Shi),Chr$(Byte)

Look at the savings when compared to the numeric arrays! But an
additional advantage of using a string to hold cur pointers is that it
can hold any other string as well. Why not & record’s "name*?

I1f you are using 108 byte records, & file with 568 records needs only
1500 bytes worth of pointers, which can easily be held in memory.
Even if you add ‘“record names* (as PHONE.BXL does), the memory
requirement for a set of pointers i3 quite small compared to the
amount of disk space we can access with them.

And, while you could re-build the pointers each time you RUN a
program, isn’t it Jjust as easy to Keep them in another file on the
disk? ‘Yes' And all of this is made so much easier thanks to some
statements in BASIC XL. There is, however, a necezsary caveat:
Recall that the sector and byte numbers given you by NOTE are
absolute. If you copy the data file to another disk, your set of
pointers is no longer valid. You thus have two choices: rebuild the
pointers after copying the data file or duplicate the entire disk
instead (which preserves everything on the disk).

The Concept Behind PHONE.BXL, alias BlackBook

1t’s Kind of funny that, because other DOS systems support random
access files implicitly, you <seldom see programs such as this
published for them. And what’s so special about this program? In it
we give you a complete set of routines for performing what is Known as
an *Indexed"” or “Keyed Sequential Access Method". Remember how we
caid it would be neat to be able to access John Doe’s account
information using just his name? Remember how we said this was in the
domain of Data Base systems? Guess what. PHONE .BXL (or, as we
prefer, "BlackBook") is actually a mini-Data Base. All in all, we
have turned a DOS limitation into a helpful situation.

(Sidelight: Actually, there is no reascn you couldn’t use all the
techniques of this program under any DOoSs. In fact, most random access
DOS systems would make some of the steps in our process—-—-such as
*prebuilding” all data files—--unnecessary.)

BlackBook always works with its files in pairs: a data file and an
index file. The structures of the files are shown below:

BlackBook Data Files
Each record consists of three fields. Each field is a string of up to
24 characters which is written to the file via BASIC XL’s
RPUT statement. Since RPUT uses five bytes of overhead per string (as
a safety measure-—see your reference manual), the total number of
bytes per record is 87 (24+5 is 29; 3 times 29 is 87)., 1lf you were to
look at a record byte by byte, it would look like this:

BXL ToolKit Page 33

Record Structure in BlackBook Data File
Record:
Field 1:
Brte 1
Bytes 2-3
Bytes 4-5
) Bytes 6-2
Field 2:
By te
Bytes
Byrtes
Brtes
Field 3:
By te
Bytes
Bytes
Byrtes

String Field indicator
Dimension of String Field
Length of String Field

® Field data, as a string

30

31-32
33-34
35-58

String Field indicator
Dimension of String Field
Length of String Field
Field data, as a string

59

d0-461
82-43
44-87

String Field indicator
Dimension of String Field
Length of String Field
Field data, string

as a

BlackBook Index Files
Aside from the actual kKey (index) entries, there are two pieces of
information needed when maintaining a kKeyed file as BlackBook does:
(1) We must Know how many records the file is capable of holding.

This number--called MAXREC--is established when the empty file is
pre-built., (2) Out of those MAXREC records, how many are currently in
use? NUMREC tells us.

In BlackBook, MAXREC and NUMREC are placed first in the index file via
RPUT. They are directly followed by all the bytes of the index
string. Since MAXREC describes the size of this string, we chose to
write/read it with BPUT. (There is another advantage to wusing BPUT
here, as we shall see later.) The byrte-by-byte form of an index file

is thus as follows:

Brte 1 Numeric field indicator
Bytes 2-7 MAXREC, a number
Brte 8 Numeric field indicator
Brtes 9-14 NUMREC, a number
Bytes 15-? The index string

Sidelight: the reasons we set up the files for MAXREC records, instead
of just adding space to the file as we need it, are twofold and

related: (1) You can only use POINT on a file which has been OPENed
in update mode. (2) You can’t append to & file when you are in update
mode .

The Index String
The proper structure to the index string is the secret to not only the
success but also the speed of this program. Rather than trying to
explain it as we describe the workings of the program, we will present
it in some detail here.

The <string actually consists of MAXREC “"elements", just as if it were

an array. In BlackBook, we have chosen to use the first four
characters of each person‘e last name as our Key value. This is
arbitrary and could, without a lot of trouble, be changed. ¢In fact

ite size is dependent on the value of the Indexsize variable.)

Page 34 BXL ToolKit

In addition to the 4 character Key, there are 4 bytes of overhead.
Three of them we Know about: two bytes for the sector number, one byte
for the byte number. The last byte is used as a Key separator and

always has a value of 255 ($FF). At this point, you may be wondering
why we went to the trouble of using a long string (with its
complicated subfield addressing) in favor of a string array (where we
could get the entire Key pertinent to a record with a simple record
number). One main reason: BASIC XL‘s FIND(> function works only on a
single string (not an array), and we wanted to use it for speed.

But using FIND() has its own problem. Suppose that, Just by
coincidence, the sector and byte number characters (which is what they
have become, once they are in the string) happen to have values which
make them look like characters in a Key name we are searching for with
FIND(), causing the function to return a false match. We avoid the
problem through the mechanism of the $FF byte field separators: UWhen
we search for a Key name with FIND(), the search string is preceded by
a byte of $FF. A match is thus guaranteed to start on x Key separator
boundary. (We go further for safety: we separate the sector number

into high and low bytes by dividing by 128, instead of the more
conventional 256. This means that the sector number and b)te number
characters can never have & value of 255 either. QOverkill? Perhaps,
but why not when it costs us nothing.)

Got all that? If not, don‘t worry about it. If the description of
the program still doesn’t make it clear, it doesn’t matter. If you
follow our lead, the scheme will always work.

Proaram Description: PHONE.BXL, BlackBook

1f you list this program to a printer (and we sincerely hope you do

before trying to follow this description), you will find that it will
take over 8 pages of paper. Obviously, there is no way we can give
you a line-by-line description of such a program. Instead, we can
only point out the functions of various subroutines, etc. of
necessity, some of the detail about program function, etc., given in
other descriptions will be missing here. We hope and expect that your
programming skills will have been sharpened enough by now to allow you
to work through the details.

As with some of our other programs, we will
the "top down®". That is, we will present
order rather than listing order.

describe this program from
it in roughly execution

1868-1338 The usual constants, both strings and numbers. Note how we

have given "names" to commonly used small numbers such as zero and
one. This saves memory space, not time.

1348-1438 If you adapt BlackBook to your own purposes, you can add
data fields here and/or change the sizes of the ones given. 14
you do so, be sure to adjust Recsize, the number of bytes in each
record. If you choose to change the length of the portion of a
field used as the Key, change Indexsize at your own risk. 1In
theory, everything in the program keys off this variable, but we

have never tested the theory.

15408-1558 One advantage of using BGET with the index string is that
we do not need to make the DIMensin of Index$ match the size in
the file, as we would if we used RGET. This makes building a file
somewhat easier also, as we shall see.

BXL ToolKit Page 35

1576-17180 We have given all major subroutines names in this program.
This makes renumbering and reorganizing & bit more difficult, but
pays off in much more readable code.

1728-1958 Did we mention that BlackBook will even dial your phone for
you? Here, we’re just setting up an array of values for later use
with SOUND.

2800-22980 This monstrous program is all driven from these few lines.
All we do is present a menu and accept only one of five <choices.
1f you are using BlackBook, you have to Create a file before you
can do anything else, so we will now track what happens when »you
ask for that main menu option.

158080-15280 This major routine figures out how big a file you can
have, allows you to specify any size up to that maximum, makes you
choose a name for the file, and creates an empty data file and
correcponding index. Such a lot of work for so little code! It’s
done with mirrors, otherwise called subroutines.

4988-7840 The Calcsize routine. It figures out how big a data file
is possible using a trick or two we hadn’t seen before. First, it
creates a trash file containing 2008 brtes. It does this so that
it can read the sector count for this file in the directory: 200
bytes is guaranteed to require one sector in double density, two
sectors in single density. Then, when it finds out how many free
sectors there are, it Knows how many free bytes there are on the
disk. From this count of free bytes it estimates the maximum
number of records by dividing by the number of byrtes used by each
record, which is in turn the sum of the record size and the index
size. Finally, we never allow ourselves more records than we have
room to point to in the index string.

5688-5248 Our Getline routine is used to avoid the INPUT statement.
We avoid INPUT because we don’t want the user moving the cursor
all over the screen, erasing the screen, etc. Either the ESCape
Key or the RETURN Key terminate a line here (mainly because they
have the same value if you ignore the upper bit). The only
editing Key we allow is Back Space, and then only to the beginning
of the field. We even provide for the use of a flag which changes
lower case into upper case, used by the Getfilenames routine to
avoid lower case in file names. Finally, we will only get as many
characters as the caller asks for (the contents of Maxline on

entry).

5408-5488 Getfilenames is only a little bit smart. The user should
not type the file name extension, and typing the drive specifier
is optional (Dl: is provided automatically if the specifier is
omitted). Two names are returned, alike except for the

extensions, DBF and DBX (Data Base File and indeX).

7500-7488 Most of the work in Create is done by this routine,
Makeindex. Since this is a very important routine, we will
examine it in some detail. Exception: As this routine works, it
Keeps the user informed of where it is. The code for this s
fairly obvious and will not be discussed.

Page 36 BXL ToolKit

We first set up the data fields with some filler bytes ($FF, in
fact). After performing a NOTE (line 7578) to find out where the
beginning of the current record is, we write the filler data to
the data file (line 7418>. As we did that, we built & Key string.
Note its structure (line 7598): first brte is always $FF (2595,
followed by four bytes which match the first four characters in
the last name of the person being indexed, followed by the NOTEd
information. We lengthen the index string (line 76808) by simply
tacking the Key we built onto the end of it.

We perform all those steps for each record in “the file (the
FOR loop). When all data records have been written out, we write
out the new index file (lines 7648-7648). HNote the presence of
the check in line 7638: if the length of the index string doesn’t
correspond to the number of hlank records which were set up,
something went disastrously wrong. When writing your own code,
checks 1like this are a good idea (but see out final comments
also).

After creating a blank BlackBook file, you would presumably want to
put some data in it. In this program, one main routine is used for
all operations on the data in the file: the Edit operations start at
line 100600.

16688-18318 Once again, a major routine devolves to a small loop with
many subroutine calls. And once again its primary purpose is to
present you with a menu of selections and make »you choose one. In
the case of Edit, it first asks you a question and does a little
set up.

7280-7320 Even though BlackBook files on only the first drive are
listed for you, the Showfiles routine will accept a choice of a
pair of files from any on-line drive.

7488-7468 Getindexinfo is & simple routine: it opens the index file,
reads the count of available and in-use records, and gets the
index string in place.

5788-5858 By never using zero as a real record number, we make
Showrec’s job easy: If it sees us trying to display record number
zero, it displays blanks instead. Note that the record number
referred to is actually an 8 byte key entry in the index string,
which may bear no relationship to the record’s position within the
data file. If you modifiy BlackBook to add fields, this routine
must change to fit; but the POSITION and PRINT statements are easy
to modify. To get the data to be displayed, this routine in turn
calls...

63868-4346 GetbyKey simply gets the various fields of the data record
after requesting a POINT to the right spot in the file. Again,
you could add data fields in each record quite easily in this
routine, simply by extending the RGET statement.

4888-4878 Even deeper in the GOSUB queue, Pointbykey extracts the
information about sector and byte from KEY$ and POINTs to the
proper spot in the data file.

BXL TooliKit Page 37

18248-10298 Finally, back in the Edit menu, we demonstrate a neat way
of making menu choices using the FIND()> function. The nice part
about it is that an invalid choice provides an Option value of
zero. WValid choices are vectored to the appropriate routine. For
the sub-commands of Edit, we chose to use line numbers, primarily
so we could renumber this section of the program more easily.
Let’s look at some of those choices in a logical order.

11118-11298 Again, on the assumption that we are setting up a new
BlackBook file, we start by adding records. Since the
Edi tmenu routine at lines 4488 through 47706 simply sets up a set
of blank fields to be filled in, we won’t describe it further
here. The Getline routine does yeoman duty again, ensuring that
we get nice neat data, confined to the proper areas of the screen.

Before bumping the count of records (as well as the current record
number), we call two routines which do the bulk of our work.
Observe how, in line 11258, we built up KEY$. By now, You Know
that an index string entry consists of a separator byte, four
bytes of the record’s name, and three brtes of NOTE info. But
ook where that NOTE info comes from here: from the last possible
index entry in the index string! As you follow the next
subroutine, you will see why.

7800-7938 This is potentially the slowest part of BlackBook when you
are adding to a large file. Using a FOR loop, we search through
the index string looking for a record whose name is equal to or
greater than the one in KEY$. Because we never try to insert into
a full index, we are guaranteed to find one such name: blank
records were given a name of all $FF characters!

When we find the proper position to insert our new entry, we must
make room.- We leave it to you to work out how beautifully the
MOVE of line 7988 works (though we will remind you that a negative
length forces an insertion-type move). The special case shown s
only used if we are putting the last possible name in and it
happens to fall at the end of the list.

Do you see what we have done? If this was the first real name
being inserted into all the dummy names in the index string, its 8
bytes find their way to the beginning of the string. But look
what data record we will use: the last possible one. So what?
That’s why we are using an indexed file, right?

6366-64088 Speaking of which, we now need to Putbykey to get the data
record on the disk. As wi th Ge tbykey, we let the
Pointbykey routine set up the POINT for us and then we simply
RPUT the data fields to the disk. It would be easy to add more
data fields here, to correspond to Getbykey.

Back in the Edit menu: Once you have added some records, you may want

to go forward or backward in the file looking at what you have done.
Or maybe you want to find a particular name.

Page 38 BXL ToolKit

18336-18450 As long as we’re still within the bounds of wvalid data,
we let the wuser go to the Next or Last (previous) name
(alphabetically) in the file. Simple, isn’t it? Thanks to the
fact that the index string is already sorted in alphabetical
order. <(Well, that’s really ATASCII order, but for names the
difference is moot, unless some use upper case and some use lower
case.) Notice that these routines do not need to display any
data, since the main Edit menu loop does that for them.

18476-185%0 This is why we went to all the trouble to set up that
monstrous index string! See how we build our search name in line
16540, with a leading $FF byte. Then all the work is done for us
in line 186558: we simply FIND the first match! Very fast, very
efficient. Again, by “calculating REC as a function of the
position we found the name in the index string, we can let the
Edit menu loop display the data for us.

And the only other things this program allows you to do with your data
is dial a phone number or erase a name from the list.

184060-18950 This only works on touch—-tone phone systems, but it does
work. If you hold your phone’s microphone up to your computer’s
speaker it is actually possible to let the computer dial for you.
Some other things to note: A ‘P’ in a phone number indicates a
short pause (some long distance companies need such pauses during
dialing). You may easily adjust the duration of the pause by
changing line 106780. A ‘W’ causes the dialer to wait until »ou
give it the go—ahead. Once again, our friend the FIND() function
passes through only those values we actually want to handle.

The tone generator uses the special 1é-bit resolution mode of the
Atari sound generators to produce frequencies which are more
accurate in pitch than those available with the SOUND statement.
The subject is too complex for further explanation here. Many
graphic and sound books for the Atari explore this fairly fully.

189466-110986 In most ways, the Erase a Record routine is simply the
reverse of the ADD routine. We first remcve the record pointer
from the index string by simply squeezing up the string (lines
11820 and 11838). But, because we don’t want to Jlose the
NOTE information in that pointer, we fill it in with the standard
dummy name ¢all $FF characters) and tack it onto the end of the
index string <(line 11058). UWe mark the record as deleted in the
data file by zapping just the last character of its PHONE$ siring
(11860 and 11670). Naturally, the number of records is now cne
less than it was before.

Aside from the various edit options, the Edit menu provides an exit
choice and a hidden choice <(note the presence of the underline
character in line 18240).

11366-11378 To exit from the Edit menu, we simply close the data file
and write out a new version of the index file. The next time we
get to the Edit menu, reading the index file will put us right
back where we left off.

9908-9948 In the process of developing this program, we had several

occasions to doubt our sanity¥. Loops would straighten out. GOTOs
wouldn’t. Data would be 1lost. And the index string would get

BXL ToolKit Page 39

mangled unmercifully. To help view what was going on, we would
often write small routines to display certain pieces of data. For
example, we built in this debug routine, which simply displars the
current contents of the index string in a reascnably readable
manner. 1t then waits for a Keypress before going back to the
Edit menu.

Now, truthfully, there is no need for this routine in the final
version of the program. The indexing bugs seem to be gone, data
moves <cmoothly, and loops Keep on looping. But we thought it
might be educational for you to see how we approach the debug
process: carefully and with a lot of extra displayrs.

Well, after we’ve created a BlackBook file and added several records,
we may notice that the file is getting full. Time to expand the file
and make room for more phone numbers, right? Right.

26868-20278 Actually, this Increase file size routine is almost
identical with the Create a BlackBook file routine. The major
difference is that we use the information about file space left on
the disk (and the user’s response to our query) to append a chunk
of file to our existing. The MaKeindex routine, discussed above,
does all the work. Now you may notice why Startrec and Maxrec and
Rec were all set up before the call to Makeindex in ADD. By doing
so, we need only use other appropriate values to properly call the
same routine here in Increase.

The only other possibility provided for here s the case of the
clobbered index file. There are four ways the index file could become
invalid: (1) Power to the computer goes off before the file is Closed
or the disk is somehow damaged. (2) The program crashes with an
error. (3) You erase some records you didn‘t mean to. (4> You
COPY the data file to another disk so that the NOTE pointers are no
longer valid.

No matter what the cause, the Fix/Recreate Index routine will cure all
ills. In the case of deleted records, it gives you a chance to
recover them (so long as you didn’t ADD & name after doing the
accidental ERASE).

256086-25110 #gain, we show the user what BlackBook files are on the
disk and allow him/her to choose one. We prepare the screen for
some messages and fill the index string with #FF characters.

25138, 25540 Don’t you wish BASIC XL had a function which would
detect the end of a file? Well, it doesn’t, but the PEEK() which
controls this loop functions as one just fine.

25146-25188 We simply figure out where we are at in the data base
file, get the record from disk (line 2514@ would have to change if

you add more fields to each record), and create a valid Kkey,
consisting of the separator byte, the record name, and the
NOTE info.

25198-25318 Remember how we zapped the last byte of the PHONE$ string
when we erased a record? Here’s where that pars off. If such a
record is detected, FIX gives you & chance to “un-delete"” it.

Page 48 . BXL ToolKit

25328-25410 1f the user wants to un-delete the record, we change that
magic character in PHONE$ to a space. 1f not, we change all the
fields (and the record’s name in the index string) to filler
brtes. In any case, we write out the modified record. Lines
25399 and 25488 are necessary to avoid a false end-of-file
indicator (produced because of a bug in DOS) when writing the last
record.

25438-25518 This part’s almost easy: If the record found is a filler
(blank) record, we simply add its pointer info to the end nf the
index string. If the found record is a real one, we have to put
its name in the proper place in the index string. Look at that!
A call to our old friend, Insertkey, Jjust exactly as if we were
adding a new record. l

255286-25538 Since we have to count the number of records in the file
anyway, why not give the user something to watch as we work .

2555@-25488 Funny how this code resembles that at the end of the Edit
Menu exit and the end of the Makeindex routine. Maybe we need
another subroutine just to write out the completed index file.

There will be a quiz tomorrow.

Whew! Did you get through all that? If so, then you are ready to
convert BlackBook to your own needs.

Several fairly simple improvements would increase the wusability and
safety of the program dramatically. We leave them as exercises for
you:

1. There’s not a single TRAP in this entire hodgepodge. May we
suggest TRAPping at Jleast the more dangerous sections, such as
where we create file, etc,

2. The Edit Menu is missing one obvious and important choice: Change
Cedit) an existing record. No good reason for the omission other
than the fact that it seemed unnecessary in a demo program.

3. Cut the program up into pieces, chaining between them via RUN, so
that the index string can be bigger.

4. Use a larger key. Change the file to a mailing list file <(add
field info in all the places we noted) and use the zip code plus
first two letters of last name as the record name for the index
string.

5. Use this basic program for something we didn’t think of. Tell us
about your efforts.

BXL ToolKit Page 41

1 KEAUTO

We have received many requests for this program. Its purpose is quite
simple: it creates an AUTORUN.SYS file for use with BASIC XL. More
importantly, it allows you to specify one or more commands or
statements which BASIC XL will execute on power-up.

We will not explain this program on a line-by-line basis, because the
bulk of the program is so simple. It simply allows you to type in one
line after another until you either enter a blank line (RETURN only>
or you run out of room <(you are allowed up to 159 characters,
including RETURNs). It then writes out a new AUTORUN.SYS file by (1)
reading the machine langudge program, including the run address, from
some hex data statements and then (2) writing out your commands in a
format acceptable to DOS’s binary file loader.

Perhaps the only other thing worth mentioning is the fact that your
commands are written out backwards (the FOR loop of lines 770 to 790>
to make the Jjob of the machine language program easier. When
AUTORUN.SYS is loaded by D0OS, your backward commands will start at
location $08481, preceded by a byte containing their total length less
one ¢(line 758). AQain, this is all to make the machine language
program smaller and simpler.

Normally, we use AUTORUN.SYS to just cause BASIC XL to RUN our menu
program. In other words, we respond to this program’s prompt with

RUN ®D:MENU.BXL"

However, you may choose any commands you wish. For example, suppose
you had a wvery large program you wished to run on power up, but you
want the user to know that the loading delay was normal. There are
two solutions to that: (1) Have AUTORUN.SYS run a small program which
simply prints a "please wait" message and then chains to the larger
program. (2) Let AUTORUN.SYS do all the work, by answering its
prompts 1ike this:

GRAPHICS 18:POSITION 4,11
PRINT#é6;"please wait"
RUN °"D:MYPROG.BXL"

Why not? About the only statements you can’t use via AUTORUN.SYS are
those which might affect page six (e.g., POKEs) or the device handler
table (at $031A>. Try it out yourself.

Page 42 BXL ToolKit

CHAaPTER =

BASIC XL Extended Statements

3.1 How to Install the Extended Statements

Because BASIC is wusually an interpreted language, it is no more
flexible than the keywords with which it is endowed. When we at 0SS
designed BASIC XL, we wanted a true interpretive BASIC with & reason-
able amount of power and speed. However, we also wanted a degree of
flexibility unmatched in most wversions of the language. Hence the
ability to add statements to the language was included, even though no
such "extended" statements existed. Until now!

This release of The BASIC XL ToolKit 1ncludes six new extended
statements +or you to use in your own programs. The statements added
fall into two groups: (1> procedure calls and (2> string array
sorting. Beftore describing the new statements (in sections 3.3 and
3.4, respectively), we need to discuss how these extended statements
are added to BASIC XL.

I¥f you request a directory of the reverse ("flip") side of your BASIC

XL ToolKit disk (via BASIC XL‘s DIR command), »ou will find the file
EXTEND .COM

and it is this file which contains the code which implements the

extended statements.

There are several ways to begin using the extended statements. The
easiest way is to simply duplicate that flip side of your ToolKit disk
and boot the resultant copy. (Again, please don‘t use your original
disk for anything other than making duplicates. Thank you.)

The reason booting that +lip side works is that, in addition to
EXTEND.COM, we have provided you with an AUTORUN.SYS program which
incorporates both the extensions <(identical code to that in
EXTEND.COM> and a BASIC XL command invokKer identical to that provided
by MAKEAUTO.BXL <(see section 2.18). In the version on your disk, we
have given this MAKEAUTO equivalent only one command:

RUN "D:EXTEND.BXE"

In turn, EXTEND.BXE is a very, very short program. We list it here in
its entirety:

18 Graphics 18 : Position 2,12

20 Print #é; "...please wait..."

30 Move $570,%C4,4

48 Run "D:MENU.BXL"

The only important line here is line 386, the MOVE statement. NOTE
CAREFULLY: even after the extended statements have been loaded into
memory, they must be made available to BASIC XL. This is accomplished
by placing pointers to their execution and syntax tables in $C4-$C5
and #$C6-%C7. This has to be done after BASIC XL issues the
Ready prompt, because BASIC XL always clears these locations to zero
upon a coldstart (e.g., at power-on). Note the other implication of
this: if, later, you convince BASIC XL to undergo a coldstart (either
by exiting to DOS and performing a LOAD of some Kind or, as some
programs do, by POKEing the warmstart flag off), you must once again

BXL ToolKit Page 43

perform this MOVE or the extended statements will not be available to
YOou. (Actually, if you exit to DOS and LOAD or run some program, the
chances are good that you should then LOAD EXTEND.COM again, since
most disk-based programs will overwrite the memory used by the
extensions.)

Another way to implement the extensions was just hinted at: you may,
from wvirtually any DOS, simply LOAD EXTEND.COM and then enter the
BASIC XL cartridge. If you are using a menu-driven D0OS, choose the
appropriate menu options to do the LOAD and enter the cartridge. If
you are working with 0S/A+ or DOS XL, you may simply type

EXTEND

CARTRIDGE
in response to the Di: prompts (and, in turn, these commands could be
part of a STARTUP.EXC file—-—see your DOS XL manual). If you enter

BASIC XL in either of these ways, you will be presented with the
Ready prompt. 1In order to use the extended statements, you will have
to use a MOVE $570,$C4,4 command as was given above.

The final way to implement the extensions which we will explore here
is a wvariation on the first one. Simply replace the program
EXTEND.BXE with your own program of the same name. If you Kkeep the
MOVE statement in your program, and if it is executed before you use
any extended statements, this will work Jjust great. Probably the

easiest way to customize EXTEND.BXE to your own purposes would be to
simply change the name of the program to RUN in line 48,

Remember: the DOS given you on this disk has neither menu nor command
processor. It is only capable of booting a disk with an
AUTORUN.SYS file present. You may, however, copy all or some of the
files on this disk to another one which has your preferred version of

D0S already on it.

Without further ado, then,
the extended statements.

let us proceed toward the descriptions of

Puge 44 BXL ToolKit

——

3.2 Abbreviations Used in Formal Statement Definitions

are the abbreviations wused in the formal format
the following sections (an abbreviation marked with an

The following
definitions of

asterisk is new; others are consistent with the BASIC XL Reference
Manual):
avar -- arithmetic variable, neither a string nor an array.
" Examples: TOTAL I J Xo ’
svar -- string wvariable, either a string array or simple string,
distinguished from an avar by a trailing dollar sign.
Examples: NAMES$ SA%$
Note that one, two, or three subscripts are often used
between the parentheses following an svar. For the
special case of an svar used to satisfy the requirement
for a pvar or cvar (see below), no parentheses may be
used.
savar -- string array variable, same format, etc., as svar but must
be a properly dimensioned array.
mvar -—- matrix varjable, numeric array, distinguished from an
avar by a trailing left parenthesis.
Examples: VALUES() SCORES(O)
‘ Note that one or two subscripts normally appear between
the parentheses following an mvar. For the special case

of an mvar used to satisfy the requirement for a pvar or
cvar (see below), nothing may appear between the paren-
theses.
aexp —— arithmetic expression, valid combination of numeric
values, operators, etc.

Examples: 33 7+VALUE SCORE(3%J)

any

rparm -- receiving parameter, either an avar or an exclamation point
followed by an svar or mvar.

Examples: TOTAL INAMES® !'VALUESC)

* cparm -~ calling parameter, either an aexp or an exclamation point

followed by an svar or mvar.

Examples: 29#SIN(38) !'TEMP$!AMAX()
slit -- string iiteral, a string of characters enclosed in quotation
marks.

Examples: "TOTALIZE®" "Test-->>"
pname -— procedure pame, used to identify a procedure, always

consists of only an slit.

cname -- calling pame, used to name a procedure to be CAlLlLed, may be
either an slit or svar. If an svar is used, it may not be a
string array and may not use any subscripts.

Remember: words in a format definition which are given in all capital
letters (e.g.; USING) must be entered exactly as shown. Items in
square brackets are optional. Items with ellipses following may be
repeated as desired example: rparm [,rparm, ...] implies that you may
use one or more receiving parameters).

BXL ToolKit Page 45

3.3 Procedure Blocks and Related Statement

Before describing the individual statements, we present an overview of
PROCEDUREs in BASIC XL.

1f you have programmed at all in any dialect of BASIC, you have used
the GOSUB statement and its companion, RETURN. For example, you might
see a program which looks something like that which follows. (This
program is for demonstration purposes only, but it is a fairly amusing
little thing to spring on an unsuspecting friend.)

20 Value=100

30 Min=18 : Max=9%0 :
48 Resul t1=Num

58 Min=18%Value : Max=%0x%Value :
66 Resul t2=Num

78 14 Result2 » Value#Resultl Then 90

80 Print "You appear to be conservative in nature." :
98 Print "You seem ready to take risks." : End

168 Rem THE SUBROUTINE

118 Print : Print "Please give me a number be tween “j; Min
128 Print *® and "j; Max j ’

130 Input ", inclusive > * ,Num

140 If Num>=Min And Num<=Max Then Return

156 Print "Can’t you read? That number is"

168 Print " out of the range I gave you."

178 Goto 108

Gosub 1068

Gosub 100

End

and, in a small program 1ike this one, that usage of GOSUB may be just
fine. As programs get larger, though, lines such as GOSUB 3258 become
less and less meaningful. Atari BASIC (and thus BASIC XL) allows you
to do something like this:

18 Let Getinrange=1080

26 Value=108

30 Min=18 : Max=%0 :
Cetc.)

Gosub Getinrange

Do you see what we did? By giving a name to the subroutine, we can
make our code more readable. A disadvantage to this method is that
BASIC XL ¢in common with Atari BASIC) allows only 128 unique wvariable
names. Using a variable like this to name a subroutine diminishes the
pool of available names. This, then, is the first advantage of BASIC
XL’s new procedures: because we use a literal (quoted) string to name

them, we need waste no variables! For example:

28 Temp=100

38 Call “Get In Range" Using 18,98 To Resul til

58 Call "Get In Range" Using 10%Temp, 98#Temp To Result2
70 1§ Result2 ¢ Temp#Resultl : Type$="conservative”

80 Else : Type$="a risk taker"

96 Endi f

95 Print "You seem to be "; Type$; End

" by nature.” :

[Listing continues on next pagel

Page 46 BXL ToolKit

190 Procedure "Get In Range" Using Min,Max
118 Local Temp : Temp=1E?0
120 While Temp<Min Or Temp>Max

130 1f Temp<>1E®?8 : Print

140 Print "Can’t you read? That number is”

158 Print " out of the range I gave you."

168 Endif

178 Print : Print "Please give me a number between "; Min

186 Print * and "; Max ;

190 Input ", inclusive > ",Temp

208 Endwhile

216 Exit Temp
Confused? Not too surprising. Let’s take a look at the new lines a
step at a time. First, in line 3@, note the CALL to the
PROCEDURE named "Get In Range" (which starts at line 16@). Note how
clear that CALL is, since we can use any characters we like in the
string: That’s pretty easy, right?
But what about that USING which appears in both the CALL and

PROCEDURE statements? In line 38, we are “Using” values of 1@ and 96.
But in line 180, we are "Using" the variables Min and Max. Isn’t that
neat? We didn’t have to do the assignments to the variables before we
called the subroutine: CALL does the work for us! It automatically
moves the values €18 and 9@) into the corresponding variables (Min and
Max). This is called *passing parameters” to a PROCEDURE.

It gets better. Notice the EXIT statement of line 218, It specifies
a value (the contents of Temp) which is to be placed into the variable
Resulti that follows the TO in the CALL statement. That’s reasonable,
right? 1f you can ‘“pass" parameter values, you should be able to
“return" parameter values.

But doesn’t using the variable Temp in the procedure subroutine wreak
havoc on its later use in the main program ¢e.g., in line 68>? Ah,
but there’s line 118, with its deceptively simple-looKing LOCAL state-

ment. Between the use of LOCAL Temp and the EXIT statement, the old
value of Temp is saved for you. When EXIT is executed, &ll
LOCAL variables are automatically restored to their previous values.
Wow! And Whew!
The example we Just worked through used all of the new
PROCEDURE-oriented extended statements:

PROCEDURE

CALL

LOCAL

EXIT
By no means, though, did we use all of the capabilities of these

statements. In addition to the formal definitions which will follow,
we will present further examples both in the text and in programs on
the disk.

We have presented these statements before the formal definitions
because they are all closely related, and we felt that having a small
but effective demonstration of their use would make it easier to
understand the definitions.

BXL ToolKit Page 47

3-3.1 PROCEDURE (¢(PROC.)

Format: PROCEDURE pname [USING rparm [,rparm...] 1

Examples:

1066 Procedure "Calculate Pay" Using Hours,Rate,'Taxtable()

387 Procedure "Print Msg" Using 'Msg$
4048 Procedure "Quit"
The PROCEDURE statement is the nucleus around which the other

statements in its group are built. It is used to define the beginning
of a subroutine which is intended to be executed via a CALL statement.

A PROCEDURE must be
characters enclosed

given a name, which may be any set of ATASCII
in quotation marke, the number of characters being

subject only to the limitation that the entire line must be of legal
length.’ Note in the examples above how spaces have been used in the
PROCEDURE names to add clarity to the program. As a matter of good

programming style, you should make the names as self-explanatory as
possible, shortening them only if you begin to run out of memory.

When a CALL statement is executed, it places an entry on the Run-Time
Stack (the same stack used by GOSUB, FOR, WHILE, and their partners).
This entry serves to identify the fact that a PROCEDURE statement has
been encountered, and its subroutine <(which we will here call the
"procedure block") is now in control. When the PROCEDURE statement

itself is executed, then, it ignores its own name and does nothing
further to the Run-Time Stack. Unless, that 1is, the wuser has
specified that one or more parameters are being passed via the

USING keyword.

If USING is coded, it must be followed by one or more variable names.
If the wvariable names refer to string variables, string arrays, or
numeric arrays, the name must be preceded by an exclamation point (!),
No matter which Kind(s) of variable(s) is/are used, when PROCEDURE is
executed, their current "values" are pushed onto the Run-Time Stack.
Then, after the values have been pushed, the new values as specified
in the CALL which invoked this procedure block, are copied into these
same variables.

When working with simple numeric variables, this is a fairly straight-
forward process. Take the following set of statements as an example:
16 Junk=280
280 CALL "Test™"
38 Print Junk
40 End
70 PROCEDURE “"Test"
80 Print Junk+Junk
98 Exit
In this example, when the PROCEDURE named "Test" at line 70 is invoked
and the statement is executed, the current value of the wvariable
Junk (20, as assigned in line 18) is pushed on the Run-Time Stack.
Then the value of the expression (12%17, or 204) is copied into JunK.

USING 12%17

Using Junk

Any subsequent references to Junk will find that it contains this new
value. For example, the Print of line 80 will display the value 488.
Page 48 BXL ToolKit

The effect of pushing the prior value of Junk is simple: when the
EXIT statement (line 98) is executed, it will discover the value that
was pushed on the stack and restore Junk to its prior condition. Thus

the Print of line 30 will display the value 20. (The EXIT statement
is discussed in more detail in section P.3.)

The purpose of all this pushing may be less clear. First, by
“reusing" the variable name Junk in our procedure block, we are

conserving our precious names (remember, we are allowed only 128
different names in a program). Since the value of the wvariable is
restored on EXIT from the block, we need not worry about changing it
within the block. Second, and perhaps more difficult to grasp from
this simplistic example, we are able to pass wvalues "into" the
procedure block without having to be aware of what names are used
within it. The example which introduced this chapter shows this
feature to some advantage and also serves to demonstrate how the
resul tant code can be both smaller and more readable.

and arrays used as PROCEDURE parameters, the methodology
but the results are more complex. The difficulty lies in
understanding just what is the "value" of a string or array. In Atari
BASIC and BASIC XL, the value of any variable is the content of its
entry in the WVariable Value Table. This table reserves eight (8)

For strings
is the same,

bytes per variable and consists of a flag byte, the variable’s number
(8 through 127), and six bytes of "information".

In the case of simple numeric variables, the information is the
numeric value of the variable, expressed in an internal floating point
form. <(You may consult the Atari Technical Manuals or COMPUTE!’s
Atari BASIC Source Book for much more detail on the structure of these

and other tables.)

For string and array variables, the
“information" describes the Jlocation and characteristics of the
contents of the variable. For example, a simple string variable needs
information about its address <(within string/array space), its
dimension, and its current length. The string itself (the “contents"
of the wvariable from an external point of view) is located at the
given address. Arrays (both string and numeric) need an address and

flag brte indicates that the

two dimensions instead; but, again, the actual "contents" are found at
the given address.
Thus, when we push the "value” of a string or array variable on the

this information about where the
memory. Similarly, when we copy a
into one of these variables, we are

Instead, we are copying the
Consider this sequence:

Run-Time Stack, we are pushing
actual contents are located in
value passed by the CALL statement
not copring the actual string or array.
address, dimension, etc., as appropriate.

18 Fun$="Swimming is fun." : X$ = “Right?"

28 CALL "What Fun" USING !Fun$

38 Print Fun$, X$

48 End

40 PROCEDURE "What Fun" USING !'X$

78 Print Fun$, X$
80 X#(1,5)="Laugh”
90 EXIT

BXL ToolKit Page 4%

Hopefully, you will actually try this little program. If so, you will
find that line 70 shows that, as we have described above, the "value"
of Fun$ has been copied into X$. Line 78 will display:

Swimming is fun. Swimming is fun.

line 38 is executed
The resultant display is:

The real surprise comes when
successful EXIT in line 90).

(following the

Laughing is fun. Right?
Do you see why? 1f the wvalue of Fun$ is copied to X$, then the
address of the contents of Fun$ is now in X$’s address entry with

in the
thus

its wvalue in the wvariable table. Thus, any change we make
string pointed to by X$ affects the memory at that address and
affects the contents of Fun$. Complicated, res?

A similar action place takes place when a string array or numeric
array ic passed as a parameter: changes in the contents of the
PROCEDURE’s parameter affect the contents of the CALLer’s parameter.

Technical Note: In computer lingo, simple numeric variables are
passed to a procedure block via a "call by wvalue®. Arrays and
string, on the other hand, are passed via a "call by reference”.
The exclamation point required by the syntax of the extended
statements can be used as a reminder that these are calls by
reference, something not hitherto seen in BASIC XL. (Actually,
the exclamation point is necessary so that the expression
evaluator can make the distinction between an expression—--which
could, for example, start with a string or array reference--and
one of these special calls by reference.)

Secondary Considerations

(1) You may, if you wish, pass too many numeric parameters to a
PROCEDURE. BASIC XL makes no check for matching number of parameters.
It does, however, insist on a type match. Thus this sequence will
cause a "USING Type Mismatch" error:

4018 CALL "Gorp" USING 33

7288 PROCEDURE "Gorp" Using !'A$

1f the CALL passes too many parameters, the excess are ignored. If it
passes too few, a numeric value of zero (@8.8) is assigned to all
remaining PROCEDURE parameters. This, in turn, can cause a type
mismatch, since only numeric variables may receive a numeric value.

Exception to the last paragraph: If the CALL passes no
BASIC XL does nothing at all to the parameter passing area. This is
on purpose, since passing parameters takes time. Thus, even &
PROCEDURE expecting only numeric parameter(s) may report a mismatch
error, since it attempts to obtain those parameters from the
miscellaneous data left in the parameter area. Generally, we

parameters,

recommend passing the correct number of parameters unless you have a
cpecific purpose which can use the “default" feature to a real
advantage.

(2) You must be careful when changing the value of a simple string

parameter. Recall that the length of a CALLing string
its variable value table entry, and that the
to the PROCEDURE’s string variable. If »ou

passed as a
variable is found in
entry is copied intact

Page 50 BXL ToolKit

then change the length of the string within the procedure block, it
will indeed change the RROCEDURE variable’s .entry. However, when you
EXIT, the entry is not automatically copied back to the CAlLler’s
variable! This can produce some bizarre results.

To demonstrate: modify line 88 of the last example program to read
88 X$="Laugh" : Print X$

Not surprisingly, the new Print in Tine 8@ shows us that the contents
of X$ are simply "Laugh". However, looK at the display resulting from
line 38:

Laughing is fun. Right?
Do you see the problem we warned of? Changing X$ in line 88 changed
the memory at the address which Fun$ also used for its contents, but
it did not change the lenqth of Fun$. Presumably, this could be a
feature under the right circumstances, but there are stranger
consequences possible. For example, try changing line 88 to read

88 X$="XXX"

Now line 38‘s Print will
XXXmming is fun.

display
Right?

which is almost surely not we wanted.

One solution to this situation is simply to avoid changing a passed
string within a procedure block. This may not be satisfactory,
though, so we have provided another mechanism which you can wuse to
circumvent the problem: Change lines 20 and %8 in the original
program to read

26 CALL "What Fun" USING !Fun$ TO !'Fun$

90 EXIT !Xs$

EXIT will be discussed in more detail in section 3.3.3, but suffice to
say that this sequence guarantees that the complete new value of X$ is
copied back to Fun$. On this same topic, you may be relieved to Kknow
that the difficulty with length does not exist with arrays, either of
strings or numeric values.

(3) One way to get in real trouble with either strings or arrays is
to pass back <(via EXIT) one which was not passed in as a CALLing

parameter. Examine the following program excerpt:
186 CALL "Oops" To !A$
118 CALL "Oops" To !B$

120 Print A%,B$: End

300 PROCEDURE "Oops"®
318 Input "Type something:
320 EXIT !Lines$

“,Lines$

1f you enter and RUN this program, giving a
time you are prompted, you will be surprised at the results of the
PRINT of line 128: A$ and B$ will be identical (up to the 1length of
the shorter), taking on the value of your second INPUT. If you recall
our discussion of what actually gets passed when a string or arrayr is
involved, this seemingly bizarre result can be explained.

different response each

BXL ToolKit Page 51

When you pass LINE$ back to the CAlLLer, you are actually transferring
the contents of LINE$’s wvariable value table entry to first A$ and
then to B$. But that table entry consists (among other things) of
LINE$’s address. Thus you end up with all three variables pointing to
the same piece of memory!

Once again, the proper solution is to pass a string both in via
USING and back out wvia EXIT. For arrays (of either strings or
numbers), you need only pass the wvalue in, since anything the
PROCEDURE does to a parameter array is properly reflected in the

CALLer’s original value(s).

The only way you can get in trouble with arrays is if you pass an
undimensioned array to a procedure block which then dimensions it.
Unless you pass back the “"value" via EXIT (similar to the fix for
strings just given above), the space dimensioned within the block is

simply - lost, since no variable will any longer be referring to it via
the address portion of its entry in the variable value table.

When in doubt, then, pass strings and arrays both ways. It can‘t
hurt. It may help.

<4 Finally, another caution. A PROCEDURE must be the first
statement on a line. CALL can not find a PROCEDURE if is not at the
beginning of a line. Strange and wondrous and woefully unpredictable

things can happen if you violate this rule.

Similarly, you should never allow a program to "fall through" to a

PROCEDURE. Always make sure that the program immediately preceding
each PROCEDURE finishes with a G6GO0TO, STOP, END, RETURN, or
EXIT statement. We recommend grouping all procedure blocks at one
spot in your program and ensuring that they are preceded by an

END statement.

Page 52 BXL ToolKit

3.3.2 CALL

Format:

Examples: 108 CALL "Test"

728 CALL "Totals" USING !'Values()> TO Sum

800 CALL "Get Num* TO Number

186 CALL Proc$ USING 7,!A$ TO Result
The CALL statement has been discussed and demonstrated in both the
introduction to this chapter and in the explanation of the
PROCEDURE statement (section P.1). 1In this section, then, we will not
dwell on such things as the mechanics of parameter passing. Rather we

will

First,

be contained within a

literal

no other choice of format than that shown.
substring
stricture was necessary for consistency,
to be as close as possible to that of PROCEDURE.

using a

restriction,
made with

For those rare occasions where you
PROCEDUREs
format similar to the following:

Remember,
variable) must match exactly that given
characters
spaces), with upper case,

Second, we remind you of the possible problem associated with using a

string
the

simple

thus:

Similarl
CALL

also: DIMensioned arrays need not be passed back to the CALLing
routine, but they must be passed in as parameters.
BXL ToolKit Page 53

discuss the subtleties of the CALL

procedure
CALLer--see section P.1).

should receive the same treatment.

CALL cname [USING cvarl,cvar...1] [TO pvarl,pvar...]]

statement itself.

unlike a PROCEDURE statement, the name specified by a CALL may
string wvariable instead of being a string
(see the last of the above example lines). However, you have
You may use npeither a
element of a string array as a CAlLLed name. <(This
in order to allow the syntax
The alternative was
instead of the word USING.) This is not an onerous
though, as the great bulk of all calls will probably be
strings.

nor an

comma
literal

wish to choose one of <ceveral
based on the value of some index, may we suggest a program

30 Input "Give me an
48 Name$=Proc$(Index;) :

index > ",Index
CALL Names$

that the name which you CALL with (whether literal or
in a PROCEDURE statement. Al]
are considered in the match (including leading or trailing
lower case, and inverse video all distinct.

also,

variable as a CALLing parameter (if its length is modified in
block, the 1length change is not wvisible to the
Generally, it is good form to always code a
string variable as both & calling and returning parameter,
999 CALL "Invert String" USING !Gorp$ TO !Gorp$

¥, any array which may not be dimensioned at the time of the
Recall our earlier cautions,

Secondary Considerations

levels you may nest CALLs is limited only by the amount
of FREe memory left in your system which may be used by the Run-Time
Stack. Like GOSUBs and WHILEs, each CALL uses four (4) byrtes of
Run-Time Stack space. Each parameter passed (either expression value
or string/array reference) occupies 12 bytes. A demonstration of the
implications of these facts may be found in the example programs in
the next chapter (zee especially the FACTORIAL program).

The number of

CALLs are slow when compared to GOSUB 1ine-number in BASIC XL’s
FAST mode. However, when compared to normal GOSUBs in slow mode, they
may actually be just a bit faster if theyr do not pass parameters.
Parameter passing can, indee¢d, slow things down remarkably. But, when
you compare it to the method of doing several assignments before &
GOSUB followed by one or more afterward, it may actually save time in
some situations.
Within a CALLed procedure block, you must pever attempt to POP the
parameter variables. You can cause a system crash if you POP a
variable with the wrong value. Only if a procedure block has neither
parameters nor LOCAL variables may you safely POP the CALL itself. We
recommend that you do not use POP anywhere in a procedure block unless
absolutely necessary.

Page 54 BXL ToolKit

3.3.3 0

Format: LOCAL avar [,avar ... 1

Examples: 730 LOCAL Templ
1370 LOCAL Sum,N,Count,Misc

The LOCAL statements has been provided to allow you more flexibility
in your programming. While the parameters received by a PROCEDURE are
automatically made local to that procedure block, there are many times
when you need a simple variable to hold a temporary value, such as the
result of a calculation, a flag, etc. LOCAL gives you such temporary
variables. -

LOCAL works in a very simple fashion. When a LOCAL statement is
executed, all simple arithmetic variable names (no strings or arrays
allowed) following it are "pushed® onto BASIC XL‘s run-time stack (the

same stack which receives GOSUBs, FORs, CAlLLs, etc.). Then, when a
subsequent EXIT is encountered, all such LOCAL variables are pulled
back off the stack and put in their original places. The effect of

this is simple yet powerful: within the bounds of LOCAL and EXIT, you
may change the value of any of these variables to your heart’s content
without worrying about whether some other routine in your program is
using a variable with the same name.

A simple example will help:

10 Test=1234567 : Print 10,Test
20 Gosub 48 : Print 28,Test

36 End

408 Local Test :
58 Test=8.54321 :
60 Exit

Print 40,Test
Print 50,Test

Note that PRINT statements purposely display the current line number
as well as the value of Test. This is simply to make tracing the flow
of the program easier. Does it surprise you to find that the output
of the above program will look something like this?

18 1234547
40 1234567
Se 8.54321
20 1234547

Let’s examine that program a little closer. First, line 18 is simple

enough. We just assign a value to the variable and verify that it has
been accepted. In line 28, we first GOSUB to a routine and then again
display the contents of our variable. Note that in the program’s
running this PRINT of Test is the last thing executed <(other than
END) .

Line 48, then, begins the interesting part of this program. We

declare that Test is a LOCAL variables and,
value. Line S8 is a repeat of 1line 18 except that we assign a
different value to our variable. Note that the PRINT wverifies our
change. Finally, in line 68, we use another new statement, EXIT, to
restore our variable to its original value, as shown by the PRINT in
line 20.

once again, display its

BXL ToolKit Page S5

Once again, the point of all this was that our subroutine (lines 40 ‘all of those Exits, BASIC XL was keeping track of the proper

. . X o { . Through) :
:zgggg?nga?t;D:;?ugoi:hige':e;;k;? ?A:hp:ggrzgw HieaL: warialle withnuy value of N at each level, so line 38 displays accurate and sensible

results for both N and Sum. Whew.

Secondary Considerations Final considerations:
Some things are made obvious in the above program which bear notice: g % P 8 different variable names, in very
(1) LOCAL does not have to be used in conjunction with a PROCEDURE. slmey o gre 3di) | imbted o 12 kY 1

: i i i lon rograms you might do well to use the same LOCAL variable names
;2)azhe valuetgz N uaglabl: f:'cg i?- mad: tOCA& dP?? %%L kc::nge ; in ga?l gROCEDUREs and subroutines. For example, you might start each
otk ia pus onte aia Rl b ol artac e i such routine with a line like this:

RIS L SRR 3118 Local Templ,Temp2,Temp3,Temp4)
Each routine then has four variables available exclusively for its own
use; and, yet, you have used a total of only four names from your

max imum of 128.

The fact that LOCAL may be used with GOSUB-type csubroutines is not an
accident. EXIT was specially constructed to examine what invoked its
subroutine and handle the returning condition appropriately (either
GOSUB or CALL only, though). This small fact alone may allow you to
change many programs to use LOCAL without the need to modify all
G0SUBs -to CALLs.

| Also, since the statements built into your original BASIC XL cartridge
do not wunderstand the concept of wvariables being pushed onto the
Run-Time stack, you must always use Local only at the beginn;ng of
subroutines and only in conjunction with routines ending with the

Also there are occasions where it could be advantageous to use . g P i

GOSUé instead of CALL. In particular, GOSUB to an abgolute line Exit keywotd. ‘In particuyar; ARGME ‘try tH FOPa osmiable which hes
number is significantly quicker when your program is in FAST mode than been made Local:

any other type of subroutine access. (A mild warning, though:

LOCAL does occupy precious processing time, so you may do best to use
truly unique variable names in a routine which must be super fast.)

Our second point, the fact that variables do not change value when
they are made LOCAL can actually be used to advantage in a few cases.
Try the following small example program:

18 Input "An integer greater than 1, please »> *,N

28 Sum=8 : Gosub S8

38 Print "The sum of integers from 1 to “;N;" is * 3 Sum
48 End

50 Local N

48 Sum = Sum+N

78 If N=1 Then Exit

88 N=N-1 : Gosub 5@

98 Exit

To follow what happens here, assume that we choose a value of 3 for
our integer. The first time lines 58 through 7@ are executed, then,
Sum will take on the value of 3 and, since N is not 1, we continue on
to line 88. There N is given a value of 2 (one less than its current
value), and we again call the subroutine at line 58.

The second time through, the same things happen: Sum acquires a value
of 5 and we do not yet do the Exit of line 78. In line 88, N’s value
changes to 1 and line 50 is called once again.

This third time performing the same lines sees lines S8 and &0
performing as before, with Sum getting a new value of &4, In line 70,
though, since N now has a value of 1 we do take the Exit. We return
to the Gosub of line 88, fall through to line 90, return to line 8@

again, fall through to line 98 again, and (at last') return to the i i
original Gosub of line 20.

. B 1Ki
Page 56 XL ToolKit BXL ToolKit Page 57

3.3.4 EXIT
Format: EXIT [cparm [,cparm ... 1 1]

Examples: 398 EXIT 108#Maxvalue
799 EXIT Flag,!Names$
24998 EXIT !Inverse(),Rows,Columns
835 EXIT

1f you have been reading this instruction manual in front to back
order, you have encountered several examples of the use of EXIT by
now. 1f you have not, we refer you to sections 3.3, 3.3.2, and 3.3.3
for some illustrative examples.

Just as Return is a partner to Gosub, so is Exit a partner to Call.
Every Procedure which you invoke wvia Call must end with an
Exit statement.

Exit performs three functions, in the following order: (1) If there
are any parameters after the Exit Keyword, they are placed into BASIC
XL’s parameter—-passing area, for use by the TO-Keyword’s processing
(which is, in turn, part of the work which Call does). (2) If there
are any variables on the run—-time stack (either as a result of using a
Local statement or needing to save the parameter wvariables of a
Procedure), Exit must restore them to their proper places in the vari-
able wvalue table. (3) Exit checks to see whether the current sub-
routine was invoked via Call or Gosub. 1If via the latter, Exit sim-
ulates the action of a Return statement; otherwise, it performs the
special processing needed to allow TO to access its parameters (if
any).

Secondary Considerations

In common with the other stack pulling statements (Return, Endwhile,
Next), if Exit discovers a For on the Run-Time stack which doesn’t
"belong" there, it ignores it Ce.g., it "throws it away") and tries
the next entry on the stack. For example, the following program will
not cause an error:

18 Gosub S8

20 End

58 Rem === Subroutine ===

48 For I=1 To S

70 Exit

Even though the For loop started in line &8 has not finished (and is
thus still sitting on the stack), Exit has no trouble finding that its
subroutine was called via the Gosub of line 18.

On the other hand, this program will cause a ‘nesting’ error because
While can only be terminated by Endwhile!

18 Gosub 5@

26 End

58 Rem === Subroutine ===

48 While 1 : Rem (a never ending loop)

70 Exit

Page 58 . BXL ToolKit

Another thing to be careful of is that no error will result if an
Exit statement tries to pass parameter wvalues back to a Gosub.
Instead, they are simply ignored. (The reason for this, again, is
that the cartridge BASIC XL is not prepared for such things, so it
does not check for them.)

Similarly, if you pass back too many parameters to a Call, the excess
ones will be ignored. This design allows a single Procedure to serve
more than one function, returning more values to some Callers than to
others. Remember, though, that all parameters expected by the
TO portion of a Call statement must be matched by trpe by the para-
meters of Exit (e.g., a string wvariable to a string variable, a
numeric expression to a numeric variable). The matching needed is the
same as that needed by parameters passed to a Procedure via a Call.
See section 3.3.1 for more details.

Since you can never properly Pop variables, you may not use Pop in a
subroutine which uses either Local variables or Procedure parameter
variables. Thanks to the fact that Exit may return a parameter value,
we find little need to use Pop in these circumstances anyway. A
better method is illustrated here:

16 While

15 Call "Demo 1"

20 Endwhile

58 Procedure “Demo 1"

55 N=Random(8) : Call "Demo 2" Using N To Flag,Inverse
48 1f Flag Then Exit

45 Print "The inverse of "j;N;" is ";Inverse
70 Exit

85 Procedure "Demo 2" Using Value

90 Trap 95 ¢ Exit 8,1/Value

?5 Exit 1

The trick in this program is embodied in lines 986 to ?5. In line 98,
we first set up a Trap to line 95, in case an error occurs. But where
can an error occur? Certainly not in the evaluation of the zero
following the Exit. But what about when we evaluate 1/Value? If
Value is zero, this expression will cause overflow, an error con-
dition. 1f the error occurs, the Trap will send us off to line 95,
where we simply return the flag value of one, indicating failure.

Line 40 is where we check the value of the returned flag. H it s
non-zero, we immediately Exit rather than displaying the results. Do
you see why this is cleaner than using a Pop statement? Aside from
the fact that the flow of the program becomes much more readable, we
could add many Local variables at any point in this program without
adversely affecting its functioning.

This concludes our presentation of the BASIC XL ToolKit extended

statements which relate to Procedure blocks. See also section 4 for
discussions of the example programs provided on your ToolKit disk.

BXL ToolKit Page 59

3.4 Sorting String Arrays

Apart from the PROCEDURE blocks described in Section 3.3, the only
extended BASIC XL statements included with this ToolKit are those
which allow you to easily sort a string array. There are two such
statements, SORTUP and SORTDOWN, which are described formally in
Sections 3.4.1 and 3.4.2 (respectively). However, since both sorting
statements have many foibles in common, we thought it best to begin
with some comments and hints about their use.

First and foremost, note that SORTUP and SORTDOWN can only be used to
sort string arrays. In their simplest form, they are extremely easy
to use. For example, consider the following short program:

16 Dim Array$(5,28)

20 For I=1 To 5 : Input Array$(I;> : Next I
3@ Sortup Arrayé

40 For I=1 To 5 : Print Array$(Il;) : Next I
58 Run

This program simply allows you to INPUT five strings, sorts them, and
then shows show the sorted order. At this time, we would 1like to
suggest that you boot a copy of side 2 of your master ToolKit
diskette. Then type in this program and try it out. <(Keep it around.
We will use it more later.) Give several sets of common and uncommon
words as answers. Note how neatly it sorts the words into ascending
order.

Or does it? Try entering some words in upper case and some in lower
case. What happens? Does it surprise you to find that "Z00" comes
before "apple"? Actually, the reason for this behavior is readily
understood once you realize that SORTUP works on characters using
ATASCII ordering (ATari version of ASCII, the American Standards Code
for Information Interchange--how’s that for a mouthful). For a list
of ATASCII codes as they relate to your computer’s Keyboard, see
Appendix D of the BASIC XL Reference Manual.

Even if we restrict ourselves to the "printable" characters in the
ATASCII set (usually the numbers, upper and lower case letters, and
standard typewriter-style symbols--codes numbered 32 through 124 in
the manual), we find no real help. Numbers come before upper case
letters which come before Jlower case letters, but symbols are
intermixed in no real useful fashion.

Because the effects of this hodgepodge ordering may not be desirable
in a sorted list, you may wish to limit a SORTUP or SORTDOWN to work
with only part of each element of a string array. For example, if you
have an array where each string within it contains both a person’s
name and their phone number, you may wish to perform a sort based
solely on names. Further, to ensure that the sorted order |is
consistent, you may wish to ensure that the names being sorted are
stored as upper case letters only.

Page 4@ BXL ToolKit

Fortunately, the design of SORTUP and SORTDOWN is good enough that
sorting based on "fields" <(portions of each element in the string
array) is extremely easy. And, while BASIC XL does not provide a
built-in method of obtaining upper-case-and-non-inverse-video-only
strings, it isn’t very hard to build a routine which will do the real
work for you. For example, the following PROCEDURE converts all
characters in its parameter string (not a string array) to non-inverse
video and converts lower case letters to upper case:

8008 Procedure "To Upper” Using String$
816 Local I,Temp
828 For I=1 To Len(String$)
8386 Temp=Asc(String$(Id) & $7F
840 If Temp>$46 And Temp<$7B Then Temp=Temp & $5F
858 String$(Il,I)=Chr${(Temp)
840 Next I
870 Exit
For now, don’t enter that subroutine.

Instead, let’s investigate the concept of “fields", as menticned
above. Just change line 38 in that little program we typed in earlier
so that a LIST gives you the following:

18 Dim Array$(5,20)

20 For I=1 To § : Input Array$(I;) : Next I
30 SORTUP Array$ USING ; 3,5

48 For I=1 To S : Print Array$(I;) : Next I
56 Run

Once again, enter some strings in response to INPUT’s prompt. This
time, though, pay special attention to the third through fifth
characters of each string. Notice anything funny about the sorted
order? That’s right, it is based solely on the characters in those
positions. If you have worked with BASIC XL string arrays at all yet,
the notation in line 30 may be both familiar and confusing. Perhaps
changing line 48 as follows will allow us to clarify the meaning of
line 30:
48 For I=1 To 5 : Print Array$(I1;3,5),Array$(I;> : Next I

This 1little example should serve to remind you that you may reference
characters within an element of a string array just as easily as vyou
may reference them in an ordinary string. The "magic" character is
the semi-colon. It separates the array element number from the
desired character positions. <(And, as the second usage of Array$ in
that same 1line shows, the semi-colon is alwars necessary when
referring to an element of a string array.)

Now, since the SORTUP of line 3@ refers to the entire array, Strings,
there is no need for the following parentheses (and, indeed, they are
not allowed). Instead, the Keyword USING tells BASIC XL that we will
be working with only part of the array and/or its elements. In
particular, the semi-colon following USING again serves as & reminder
that the numeric expressions following it refer to character positions
within an element ¢or, more properly when using SORTUP or SORTDOWN,

_ within all elements) of a string array.

BXL ToolKit Page 81

By the way, as a simple variation on what we have done so far, You
might change line 38 to read:

30 SORTDOWN Array$ USING ; 3,5

Again, try it out. Not too surprised by the results? Good. The only
difference between SORTUP and SORTDOWN is where the "top" of the sort
(the "largest" string) appears.

There is one last capability of the sorting statements which we will
discuss before moving on to other helpful hints. The program we have
been working with seems all fine and good if we want to enter
exactly five elements into the array. Suppose, though, that we did
hot Know how many elements we would be working with. Fear not, BASIC
XL’s extended statements shall provide. Time for another example:

18 Dim String$(20,208)

280 For I=1 To 286 : Input String$(l;)

25 1f Len(String$(I;>) Then Next I

3¢ Sortup String$ Using 1,I-1

49 For J=1 To I-1 : Print String$(J;> : Next J
58 Run

The first change you will notice is in lines 26 and 25, Instead of
blindly continuing to ask for INPUT until 20 items have been entered,
the program only goes back for another if the length of the current
item is non-zero. That means that you may stop entering items at any
time by hitting the RETURN Key alone in response to any INPUT prompt.

And look at SORTUP in line 38. Can you guess what Using 1,I1-1 is for?
That’s right, only the first 1-1 elements of the array will be sor ted!
And if, for some reason, you wanted to never sort the first element of
the array, you -could have coded

30 Sortup String$ Using 2,I-1

(Why would you ever do that? Well, maybe you Keep special information
about a file in the first "record" of the file, thus having the actual
data start at the second “"record".) In fact, you are not limited as
to which elements may be sorted other than having to follow two rules:
(1) The maximum element number to be sorted must be greater than or
equal to the minimum element number. (2) Each number must be within
the bound of the array, as dimensioned.

Naturally, we have to give you the last of the possible variations on
SORTUP (and, similarly, on SORTDOWN). We won’t explain this. Just
type it in and try it:

30 Sortup String$ Using 1,I-1 ; 2,4

Now for some hints.

Page 62 BXL ToolKit

We already noted that it is probably a good idea to restrict the
contents of a normal alphabetic field to upper-case, non-inverse
characters only. Suppose, though, that you really want to sort some
numbers. What can you do? A program such as the following will
not work:

18 Dim String$¢(5,28)

28 For I=1 To S : Input N : String$(I;>=Str$(N) : Next I
30 ‘Sortup String$

40 For I=1 To 5 : Print String®(I;> : Next I

58 Run

Why not? Well, try some numbers in response tc the INPUT prompts and
see what happens. May we suggest values of 1, 11, 111, 2, and 22 for
your test. When we tried those numbers, BASIC XL told us that the
order was

1

11

i11

2

22

1f you think about the ATASCII values of those characters (and theyr
are characters, since they are in a string) for a bit, you will
realize that those are the proper results. The problem, then, is to
make numbers appear in a string in & fashion such that the sort
statements can handle them.

We could present a complete solution here, but we leave that for a
program on the ToolKit disk (called SORTNUM.BXL)>. We will, however,
consider at least the case of sorting positive integers, which may
cover all the cases you will ever need.

18 Dim String$(5,18)

26 For I=1 To 5 : Input N : String${l;)="60606060800000"
25 String$¢l;11-Len(Str$(N))) = Str$(N) : Next I

30 Sortup String$

48 For I=1 To S : Print String$(I;) : Next I

58 Run

We have altered line 28 and added line 25. The trick here is not too
terribly obscure: We first fill the pertinent element of the string
array with place-holding zeroes. Then we position our integer at the
proper location within that field of zeroes. Since all numbers (as
represented in ATASCII) are now the same length, it is only the
significant digits which affect the sort process. Try it and see.

Note that there is no protection in this program to keep you from
entering a number which is not a positive integer. Purists might add
line 22:
22 1€ N<Y>Int¢(N) Or N<B8 Or. N>=1E18 Then Print "Bad number":Stop
And, if you prefer a neater looKing numeric print-out, you can change
line 46 to:
48 For I=1 To 5 : Print Val(String$(l;>) : Next I

We at 0SS can see many uses for SORTUP and SORTDOWN. Again, we invite
you to peruse the sorting demo programs on the ToolKit disk. Perhaps
you can find a use for some of the techniques in your own programs.

BXL ToolKit Page 463

3.4.1 SORTUP
Format: SORTUP savar [USING [aexp TO aexpl [; aexp,aexp 1 1]

Examples: SORTUP Stringarray$
SORTUP Array$ USING Min TO Max
SORTUP X$; 1,4
SORTUP X$ Using 5 To 18 ; 4,8

This statement will sort selected elements of a specified string array
in ascending order, based on the contents of a selected portion (a
"field") of each element of the array. Unless otherwise specified by
the user, the field of each element which forms the basis for the sort
shall consist of the entirety of each element. Unless otherwise
specified by the user, all elements of the array will be selected to
be sorted.

The user may choose the beginning element of the range of elements to
be sorted by coding the Kkeyword USING followed by an arithmetic
expression. If a beginning element is so specified, an ending element
must also be given by an arithmetic expression following the Keyword
TO.

The user may choose the beginning position of the field in each
element which forms the basis of the sort by coding a
semi-colon followed by an arithmetic expression. If a beginning posi-
tion is so specified, an ending position must also be given br an
arithmetic expression following a comma. If a range of elements was
not selected by the user (see preceding paragraph), the ke»word
USING must precede the semi-colon.

Secondary considerations: (1) The sort is done in ascending ATASCII
order. (2) 1f the 1length of an element is less than the ending
position of the field being used as the basis of the sort, the field
shall be shortened accordingly. This condition applies regardless of
whether the field is specified implicitly or explicitly. (Note that
if two compared fields are equal except that one is longer than the
other, the longer one is greater than the shorter one. This is intui-
tively correct as well as being consistent with string comparisons
made with other BASIC XL statements and operations.)

Page 44 BXL ToolKit

3.4.2 SORTDOWN

Format: SORTDOWN savar [USING [aexp TO aexpl [; aexp,aexp 1 1]

Examples: SORTDOWN Stringarray$
SORTDOWN Array$ USING Min TO Max
SORTDOWN X$; 1,4
SORTDOWN X$ Using S To 18 ; 4,8

This statement will sort selected elements of a specified string array
in descending order, based on the contents of & selected portion (a
"field") of each element of the array. Unless otherwise specified by
the user, the field of each element which forms the basis for the sort
shall consist of the entirety of each element. Unless otherwise
specified by the user, all elements of the array will be selected to
be sorted.

The wuser may choose the beginning element of the range of elements to
be sorted by coding the Keyword USING followed by an arithmetic
expression. If a beginning element is so specified, an ending element
must also be given by an arithmetic expression following the Keyword
TO.

The user may choose the beginning position of the field in each
element which forms the basis of the sort by coding a
semi—-colon followed by an arithmetic expression. If a beginning posi-
tion is so specified, an ending position must also be given by an
arithmetic expression following a comma. If a range of elements was
not selected by the user (see preceding paragraph), the Keyword
USING must precede the semi-colon.

Secondary considerations: (1) The sort is done in descending ATASCII
order. (2) If the length of an element is less than the ending
position of the field being used as the basis of the sort, the field
shall be shortened accordingly. This condition applies regardless of
whether the field is specified implicitly or explicitly. <(Note that
if two compared fields are equal except that one is longer than the
other, the longer one is greater than the shorter one. This is intui-
tively correct as well as being consistent with string comparisons
made with other BASIC XL statements and operations.)

BXL ToolKit Page &5

CHAaPTER <

EE;<earr:p>1 e BaAaSICc XL Programs
wi th
Extended Statements

This chapter gives examples of programs written using the extended
statements presented in Chapter 3. Three of the programs here (those
in Sections 4.1, 4.2, and 4.3) are "brand new", present!ng as?ects of
the extended statements which are very difficult to duplicate in BASIC
XL (or any BASIC) without the unique capabilities of the extended
statements. 0f necessity, then, their descriptions are somewhat

detailed.

The other three programs are retreads of three of our old friends from

Chapter 2. We present them again here to show you how you can turn &
hard-to-read program riddled with GOSUBs into a .well structured
exercise. For these programs, only the significant differences from

their originals are noted. You are invited to peruse the descriptions

in Chapter 2 for details on other parts of these programs.

Page &6 BXL ToolKit

4.1 FACTOR.BXE

For such a short program, this will be a rather long explanation. The
program given here is actually one of the classic ones used to show
how recursion works: We calculate the factorial of a number by
repetitive calls to a procedure.

Now, actually, this is a fairly inefficient way to calculate a
factorial. Perhaps the simplest way is the following little program:
18 Input "Give me a positive integer> ",N

20 P=1
30 For I=1 To N: P=P#I: Next I
48 Print Nj "! is "; P

So if all you want is the factorial of a number, use the above routine
and forget about the demo on the disk. But if you want to understand
how recursion works, read on.

If you will examine a listing of FACTOR.BXE, you will find the first
part, lines 188 through 228, rather ordinary and mundane. The
possible sole exception is the CALL to the Factorial procedure, where
we pass in a number and expect a result.

But now look at the Factorial procedure itself. If you recall our
discussion of procedure parameters and local variables in Section 3.3,
you probably aren’t too surprised to find the names used in the main
routine reused here in the procedure. Recall also that the effect of
using an arithmetic wvariable either as a parameter (i.e., Number in
this example) or as a Local variable <(i.e., Result) is that, upon
Exit from the Procedure, its original value is restored. Now, there
isn’t really any reason to use these same variable names again in this
program other than as a teaching mechanism, but its a fairly effective
mechanism.

Well, once we get past the Procedure and Local declarations, there
isn’t much Teft to the routine, so let’s examine it in close detail.

Since the main code ensured that we would, indeed, use a positive
integer for Number, we know that we have a number which will produce a
valid factorial. Now, the factorial of 1 is 1, so line 288 makes
sense: If the parameter is 1, then Exit with an answer of 1. Simple.
Clean. Neat.

Just as an exercise, let’s assume that we want the factorial of 3.
Okay, Number is not 1, so we get to line 2%0. How about that? We
turn around and Call ourselves again, but this time our calling
parameter has a value of 2 (...Using Number—-1...>. Let”s keep going.

We’re back at line 288. But Number now has a value of 2, so we don’t
take the Exit here. Instead, we once again Call ourselves. Ready to
keep going?

Back at line 288, Number now has a value of 1. Aha! Finally, we get
to Exit with a value of 1. But wait a minute? Certainly 3! is not 1,
is it? Not to worry. Remember, the last time we Called the
procedure, we did so from line 298, when Number had a value of 2.
Okay, so we return back to that same line 298, and Result gets a value
of 1. Then we continue on to line 388, where we Exit with what?

BXL ToolKit Page 67

Well, we just said Result is 1, and since Number had a value of 2 when
line 298 made the Call, that value has been resto?ed 'by now (as we
noted above). So Number#Result is 2%¥1, and we Exit with a value of 2.

But where do we Exit back to? Well, we got rid of thg last of the
Calls on that last Exit, so this time we end up back at line 298 from
the time we Called with Number equal to 3, and Resul? gefs a value of
2. By the same logic, we continue to line 366 and Exit with 32,

This time, though, we have dispensed with all the Ca!ls except the
original one, in line 198, so that Result gets the Exit value of 3%2,
or &. Voila! 3! is truly é, as we wanted.

There was nothing magic about our choice of 3 for our example: The
principle holds no matter what the value we use: Kkeep calling the
procedure with succesively smaller values until the uglueA reaches 1.
Then start Exiting back up the Call chain, multlp!ylng as we go.
Terribly inefficient, but a beautiful example of classical recursion
at work.

So, do you <see the advantage of truly local vglues, not only for
parameters but for other explicitly declared uarnable§? No? You
think this was an artificially created example? Well, just wait...we
have some more realistic examples coming up.

Technical Sidelight: By the way, try to discover the'largest ‘integer
whose factorial can be represented within your Atarlfs numeric range
(it’s less than 188). Then try finding out what 168! is. Bang! You
got numeric overflow when the multiplies created a result lgrggr than
Atari floating point can represent. But for real fun, try finding ogt
what 5888! is. Do you understand why you got that err0f? Does it
help if we remind you that each local or parameter variable uses 12
bytes of memory? And that each Call itself uses.4 bytes? Hmmm...how
much memory does your machine have? (To get rid of all that Junk on
the stack, just use the CLR command from the Ready prompt level.)

Page 68 BXL ToolKit

4.2 SORTDIR.BXE

This isn’t really a very exciting program. All it does is read in a
disk directory and then allow you to choose which one of three wars
you would like to see it sorted. 1Its primary purpose is to show how
you may sort on different "fields" within the single "record" each
element of a string array can represent.

186-248 Just the usual necessary set up. Note the names given to the
console Keys; obviously not a necessary step, but one which makes
a prettier program. The FILE$()> array is dimensioned large enouagh
to hold the 1largest directory a standard DOS 2 disk will allow.
1f your DOS allows more files, or if the entries in the directory
are longer, feel free to change the DIMensions.

248, 688 By now, you are used to seeing endless WHILE loops in our
programs. The beginning of this loop may be in the wrong place
for you. As is, it reads the directory in off the disk each time
a new sort is done. This is so that you can change diskettes if
you wish., It might have been better to at least give you & chance
to tell the program that you have changed diskKs. Sounds like a
goo programming exercise for you to us.

278-348 This is an easy way to read in the directory. The
LINE$ variable is not really needed-—-you can INPUT directly into a
string array element if you wish--but it avoids having the "FREE
SECTORS®" line end up in the array. Just a small nicety.

Notice how we depend on the space in the second character position
for each directory line except the “xxx FREE SECTORS®" of the final
line.

356-398 Self-explanatory. Actually, we could have special cased a
directory with a single file <(why bother to sort it?), but it
isn‘t necessary.

480-488 After presenting the menu, a beep (PUT #86,253) reminds you to
push a button. After you do, we clear the screen.

498-3568 This is what we really wanted to demonstrate. Depending on
which button you pushed, we SORTUP based on a particular field.
The SORTUP statements of lines 568, 528, and 548 are identical
except for the numbers following the semicolon. Inspect a single
line of the directory listing. Do you see how the numbers are the
character positions within the 1ine? Easy, isn’t it.

Notice, also, that we do not sort the entire arrar. Rather, we
only sort the part which holds valid directory entries. Also very
easy, right?

588-648 Just a way to display the directory in two columns. The
sorted listing reads down the first column and then down the
second. It would have been easier to simply alternate, but this
is easier to scan visually.

Again, feel free to modify this program to your liKing.

BXL ToolKit Page 69

4.3 SORTNUM.BXE

In the presentation of the sort statements in section 3.3, we
discussed a way to sort integers by converting them into a consistent
form in a string. This program presents a different and more general
way to sort the floating point numbers which BASIC XL <(and Atari
BASIC) uses.,

Performing this sort depends upon Knowing the internal format of
floating point numbers used by BASIC. The form is fairly simple: A
single byte of sign and exponent followed by 18 BCD digits, two to a
byte. The sign of the number is given by the uppermost bit of that
first byte. The exponent is a power of 186 in what is Known as
"excess—&4" form. (That means that the true power of 180 has 64 added
to it so that all exponents appear as positive numbers. To form the
true exponent, then, subtract 44 from the byte after getting rid of
the sign bit.)

1f you study this format, you will discover a fortituitous occurrence:
if you treat the six brtes of a positive number as if they were a
string, positive numbers will automatically be sorted correctly by
SORTUP and SORTDOWN. Truthfully, this is not a coincidence. Internal
to BASIC, such consistency is used for comparisons (e.g., as when you
code something like IF A>B THEN...).

On the other hand, because negative numbers have that upper bit set,
they will all sort as larger than any positive number! Oops, to say
the least. Not only that, if you ignore the sign bit, the negative
numbers look exactly like positive numbers, so they will be sorted in
reverse order. And, finally, what about zero, which consists of six
bytes of $88? Well, it is now time to examine the program listing to
cee how we turned adversity to advantage.

150-160 The only reason for the DUMMY$ string is to provide an
address for that single element numeric array. Recall that in
BASIC XL (and Atari BASIC), string and array variables always use
memory in the order they are DIMensioned. Thus the address of
VALUE has to be one greater than the address of DUMMYS$.

188 This array is actually going to hold our array of floating point
numbers. In fact, notice that it is the same size as an array of
26 numbers. 0f course, we have to use a string array because
SORTUP and SORTDOWN can only handle string arrars. That’s only a
minor inconvenience, as we shall see.

288, 360 We’re going to generate, manipulate, and display 20 random
numbers.

298 This is just to give each element of the array a LENgth of six.
Otherwise, the sort process won’t Know how many bytes in each
array element need sorting.

388 We generate random numbers in an arbitrary range, but one which
is easy to view.

318-320 See how we move the six bytes of the floating point number
into the element of the string array? Didn’t know you could do
that in BASIC?

Page 78 § BXL ToolKit

338 All we qo hefe is flip the state of the sign bit: if the number
was p9s|t|ve, it is now negative; and vice versa. Note the effect
of this: what were negative numbers will now sort as smaller than
what were positive numbers. Just think of that bit as
representing a plus sign now, instead of a minus sign.

348 e count all the numbers hich were n i worr
2 w . ¥ . o
w/]] » : egative Don“t orry why.

3586 We just display the numbers in an eas i
» to vie f .
bunch of digits, aren’t they? N o ik

376-386, 416-428 The only reason for these lines

up

ie so that you can

see how fast the array is sorted Pretty im i iF
s . pressive, even f
is only 28 numbers. Feel free to try it with more. ' l b

3986 Okay. This is_obuious. Everything is now sorted very prettily.
Except that plgylng games with that sign bit didn’t fix the fact
that the negative numbers will be sorted backwards.

488 The magic. Because we Kept track of the count of negative
numbers, and because the SORTUP of line 398 put all the negative
ngmbers before the positive ones in the array, this works' We
simply re-sort the negative numbers in backward order via

SORTDOWN. You’ll simply have to RUN this program to believe it.

4486-4980 This logp Jjust displays the now sorted array. Note how we
now have to flip the sign bit back to its original state bLtefore

moving

it back to VALUE(®) for printing. Not very hard, right?

(Actually, we diqn’t have to flip the bit. We could have moved
the number as is and then printed -VALUE(8) for the same effect.

But the

That’s it.
incorporate

way shown is more orderly.)

The besf part of this method is that you could easily
the six byte “field" of the floating point number into a

longer ®"record” so that you could sort the arra
did in the last section. I Samered . T

BXL ToolKit

Page 71

4.4 GTIATEST.BXE

This is the first of our "conversions" from & standard BASIC 'XL
version to one using extended statements. In the mainline coqe, line
1840 has been changed to a CALL. The subroutine starting gt I!ne Y000
has been turned into a PROCEDURE, and the variables used in it have
been made LOCAL (line 9888).

Now, truthfully, there was little incentive to change this routine
into a Procedure. What have we saved? The variables are local, =o
they can get used for other purposes elsewhere in the program. And
since we Exit with the test value, the Caller doesn’t have to aware of
name we use in the subroutine. Big deal.

No, the real reason we changed this program was once again
instructional. We Jjust wanted to show how easy it really is to use
Procedures and write readable code. There’s more to come.

Page 72 BXL ToolKit

4.5 1SKI10. BX|

Another fairly simple conversion from the original standard BASIC XL
program. This time, though, there is a little more justification for
using Procedures.

Just look at lines 9548, 9488, 9628, and 9648. What could be clearer?
Just think: you could have an entire library of Procedures sitting
around on disks. And you <could keep a listing of just the entry
(Procedure) and Exit lines. You almost wouldn’t need any ather
documentation, would you?

Watch how easy it is to use these routines if the ccde from 96008 up is
included in your code:

18 Dim High$(128) : High$="00608600808068"

28 Call "“Read Sector® Using 1,728,Adr(High%$),1 To Test

38 Print "High score is ";Val(Highs$)

48 Input "New high score ? ",High

S8 High$=Str#(High) ,Chr$($9B)>

48 Call "Write Sector* Using 1,728,Adr(High$),1 To Test

78 Stop

If you included something like that in your cocde, you could save the
high score from a game in the usually invisible sector 728, Cute?

Trickies in that code: We give High$ that initial value so that it
will have a wvalid LENgth (like BGET, direct sector access doesn’t
change the length of a string). Similarly, we put a RETURN character
into the string (line 58) so that a later sector read and VAL() will
find something to terminate the number.

Finally, we leave you with the thought that a sector holds 128 byrtes.
If you used a string array such as
DIM High$(11,18)

and then, in the Call used ADR(High$(1;))-2 (minus 2 so that we get
the length bytes for the first element of the array), we could keep
track of wup to 18 high scores with, perhaps, 3 initials and up to 7
digits of score each. (Why not 11 scores, when we dimensioned the
array to have 11 elements? Well, the actual size of that array in
bytes is 11%#(18+2) or 132 bytes, where the +2 accounts for the length
bytes in each element. But the sector can only hold 128 bytes, so we
would be missing 4 bytes from the last element.)

BXL ToolKit Page 73

4.6 PHONE.BXE

This last program “"conversion®" is our "Little Black Book" program from
Section 2.9. It was a monster as a standard program. It remains a
monster using extended statements. But, perhaps, it is a more
managable monster now.

Actually, we changed the character of the program very little. And we
even tried to Keep all subroutines at or near the same line numbers.
What we tried to do was change every GOSUB to a CALL. Now, we will
admit that some of the routines didn’t really need to be made into
Procedures, but once again it is at worst an educational exercise.

We invite you to peruse especially the Procedures in lines 5o6@@
through 999%9. What you might find most interesting is looking for the
variables which we left global, those we did not pass as parameters.
The most notable of these are strings used as field names <(e.g.,
Last$) and file names (DBX$, DBF$). The hassle of making these into
parameters every place they are used was fueled with the 1likelihood
that in any application of this system you would most likely use only
one data base file at a time. Result: they are left global.

On the other hand, look at the "Get Line" routine, lines S068 tc 52&0.
Here was a great opportunity to pass a string both in and out, thus
allowing us to put the edited line directly into the user’s string
variable space, no mues, no fuss. This same Procedure benefits by
being able to easily call it with the maximum number of characters you
want to get as well as a flag determining the fate of lower case
letters.,

And lTook at all the routines which use the variables Templ and Temp2,
which they inevitably make into LOCAL variables. How nice it is to
not have to worry about possible conflicts in temporary variable usage
anymore .

Similarly, "Make Index® starting at line 7588 shows off its usage of
parameters passed to it. Look at the Call to it in line 20248. How
nice to not be forced into making variable names match!

Aside from all of that, you might look at the code in lines 1570
through 1718. Notice how we build up two string arrays with the names
of our Procedures carefully ensconced as elements therein. Then look
at line 2260 and lines 10256 and 182468. Do you see how we can use a
menu option to nicely choose even the correct Procedure to call?

The most important aspect of all thie, though, may be that now the
routines have been somewhat freed of the tyranny of line numbers and
variable names. Feel free to copy them and use them in your own
programs. Who Knows? You may be a budding data base programmer who
Jjust.-hasn’t had the right tools. Until now. .

Page 74 : BXL ToolKit

