
· UThe Go Everywhere Package"
That's Right! The BASIC XL TOOLKIT comes with a copy of the
BASIC XL Runtime package on a Disk. This means that YOUR
BASIC XL programs can go EVERYWHERE. By following a few
simple instructions, YOUR friends, neighbors, or User Group
members can be running YOUR BASIC XL programs WITHOUT
your BASIC XL cartridge.

If that wasn't enough, the BASIC XL TOOLKIT also contains
NEW EXTENDED commands to the already packed BASIC XL
cartridge. These NEW commands include: PROCEDURE, CALL,
EXIT, LOCAL, and ascending and descending SORT commands.

To complete the BASIC XL TOOLKIT we've added programs
that will assist you in perfecting your OWN programs. Such
techniques as Keyed File Access, Player/Missile Gr.aphics, direct
disk drive control, and much more. There's even enough to get
you starfed writing your own games.

Requires an Atari Computer with 40KB Memory, Disk
. Drive, and aR BASIC XL SuperCartrdige. ·

.·,:· .

OSS PRECISION SOFTWARE TOOLS
FOR ATARI HOME COMPUTERS

·BASIC XL ·: . : The most powerful Basic
THE BASIC XL TOQ LKIT Programming Aids
ACTION.! . Fastest structured language ·. ··
THE ACTION! T00LfbT Programming Aids
MAC/65 . Fastest macro-assembler
THE MAC/65 TOOLKIT Programming Aids
C/ 65 ~ • A small C language compiler
DOS XL . • Now with BUG/65
THE WRITER'S TOOL Writing was never so natural

Optimiz~d Sys~ems Software, Inc.
1221 B Kentwood Avenue, San Jose, California 95129 (408) 446-3099

© 1984 Optimized Systems Software, Inc.

~~~ Precision 
~ T M Software Tools 



A Reference Manual for the 

BASIC XL TOOLKIT 

Copyright <c> 1984, o.s.s., Inc. 

Optimized Systems Software, Inc. 
1221-8 Kentwood Avenue 

San Jose, California, 95129 
Phone: <408> 446-3099 



PREFACE 

Congr~tulation$ on purch~sing a copy of th~ BASIC XL TOOLKIT. 

B~fore you b~gin your tour through this manual, 
we would 1 iKe to c~ll your attention to a couple of import~nt matters. 

RUNTIME BASIC XL 

Wh•n you purchas•d this BASIC XL TOOLKIT pacK~gt, you acqulrtd the 
r1ght to use the RunTimt version of BASIC XL to distribute programs 
you h~v• written in BASIC XL. You m~y distributt thtst programs on 
tither a fret b~s i s <sometimes c~lled •publ ic domain"> or on a 
commercial ba$iS, for profit, without paying OSS any additional 
amounts. 

However, before distributing a copy of the RunTimt program, you 
must return a signed copy of the License Agreement included as part of 
this ToolKit pacKag~. The Lictnse Agreement provides, among other 
things, that you !!ll!ll affix a label b~aring this copyright ~nd 
tradem~rK of 0. S. S., Inc., to each and every copy which you 
distribute. Ple~se re~d the Lictnse Agreement c~rtfully for more 
details before signing ~nd returning it to o.s.s., Inc. 

BASIC XL Cartridge Ver5lons 

Th~ extended BASIC XL statements described in Chapter 3 of this m~nual 
and the program demonstrating the use thereof described In Chapter 4 
will not worK on BASIC XL cartridges with version numbers 1.88 and 
I .91. We are sorry about this, but the extensions "hooK Into• so many 
places within the cartridge that it is simply not practical to provide 
multiple versions of this code. 

When you turn on your computer and enter the BASIC XL cartridge, there 
is a copyright notice which also specifies the version number of your 
cartridg~. ChecK that version number. If it is nQ1 version 1.82 or 
later, you have two options: 

<I> Return your BASIC XL ToolKit for a full rtfund. For our 
own peace of mind, you must al$0 return your BASIC XL cartrldgt 
so that we may verify that it is indeed either version 1.88 or 
I .91. 

<2> You may purchase an updated version of tht BASIC XL 
cart i dge from OSS for the postpaid price of $28.88 chtcK or 
money order only, please. You !!ll!ll also rtturn your old BASIC 
XL cartridge with your checK. 

Please note that current BASIC XL cartridges with version 
numbers I .82 or later are . gold-plated (for longer and htalthitr 
life> and are beveled <for a better fit>. 

START PROGRAMMING! 



Table o~ Contents 

1. Run-Time BASIC XL ~~~~~~~--~~~--------------------
1.1 How Does the RUNTIME PacKage Work? 
1.2 How Do You Use the RUNTIME Package? 
1.3 Statements that can NOT be used. 
1.4 Error Handling 
1.5 RunTime Restart 
1.6 Incompatibilities 

2. Example BASIC XL Programs -----------------------------------
2.1 MENU 

2 
2 
2 
2 

3 
5 

2.2 SNAILS trai 1 s 8 
2.3 PICOADVenture 11 
2.4 LEM <lunar lander) 17 
2.5 GTIATEST 21 
2.6 CIRCLES ~----~~~-------------------------------- 22 
2.7 DISKIO (by sectors> 23 
2,8 CONFIGure your disK drive 26 
2.9 PHONE diary, a Little Black Book 31 
2.19 MAKEAUTO <AUTORUN.SYS> 42 

3. The 
3.1 
3.2 
3.3 

3.4 

Extended Statements of BASIC XL 43 
How to 1 oad ar.d use extended statements. -------------- 43 
Abbreviations used in this text. 45 
Procedure Blocks and the Related Statements---------- 46 
3. 3. 1 PROCEDURE 48 

3.3.2 CALL ----------------------------------------- 53 3.3.3 LOCAL 55 
3.3.4 EXIT 58 
Sorting Capabilities 69 
3. 4. 1 SORT UP 64 
3, 4. 2 SORT DOWN 65 

4. Example BASIC XL Programs with Extended Statements 
4.1 FACTOR (factorial> 

66 
67 
69 
70 

4.2 SORTDIR 
4.3 SORTNUM 
4.4 GTIATEST 
4.5 DISKIO ------------------------------------------------ 72 73 
4.6 PHONE <Little BlacK BooK> 

__________________________ 74 



CHAPTER 1 

THE BASIC XL RUNTIME PACKAGE 

On the labeled side of your BASIC XL ToolKit disKette is a file called 
"BASICXL.COH". This file contains the BASIC XL RunTime Program. That 
program allows you to run BASIC XL programs without the BASIC XL 
cartridge. · 

1.1 How Does the RUNTIME Package Work? 
The BASIC XL RunTime Program contains those portions of the BASIC XL 
cartridge which are used when programs are running. The program does 
not, however, contain any portions of the cartridge which are used to 
write new programs or edit existing programs. Thus, a program running 
under the BASIC XL RunTime Package can't perform such statements as 
LIST, ENTER, DEL, etc. Obviously, then, the BASIC XL cartridge is 
still required · to develop programs. 

The RunTime Program itself is just an Atari standard binary file which 
may be run under any Atari-compatible DOS, such as DOS XL or Atari 
DOS. The program may be run in any of three ways--as an 
AUTORU>I.SYS f i 1 e, as a .COM f i 1 e under DOS XL, or as an ordi nar>' 
binary file using the "L" option of Atari DOS. When the RunTime 
Program begins, it searches the disk in drive 1 <D1:) for the file 
AUTORUN.BXL. If that file is found, it is loaded into memory and run 
as if the command RU>I "D:AUTORUN.BXL" had been issued in response to 
the READY prompt. If the file AUTORU>I.BXL is DQi present on the disK, 
RunTime will continually try to find it. You should eject your 
disKette, shut off power, and try again. 

1.2 How Do You Use the RUNTIME Package? 
The easiest way to use the BASIC XL RunTime PacKage is to perform the 
following steps: 

1. Initialize a new disK and write 
virtually any Atari-compatible 
DOSXL.XL (after being renamed to 
RunTime. 

DOS.SYS to it. You may use 
DOS for this purpose. Note that 
DOSXL.SYS) ~ compatible with 

2, Copy the file BASICXL.COH from the BASIC XL Toolkit d i sK to a file 
called AUTORU>I.SYS on the newly initialized disK. 

3. Copy the BASIC XL program you want to run to the new disK and name 
i t AUTORU>I. BXL. 

4. Boot the disk thus created. If you have performed the previous 
steps correctly, your BASIC XL program will run automatically. 

Whenever the disK you created above is booted, your program will run. 
If you have several programs you want to run with the RunTime PacKage 
and you don't want to dedicate several disKs just to that purpose, you 
can simply put (or SAVE) some type of menu program onto the disk as 
AUTORU>I.BXL and use it to select from other programs when the disk is 
booted. You are welcome to use the program MENU.BXL, described in 
section 2.1, for this purpose. 

BXL ToolKit Page I 



1.3 St*tements that can NOT be used with RUNTIME 
As we noted above, the BASIC XL RunTime Program does not contain those 
portions of the code from the BASIC XL cartridge which relate to 
program development. Any BASIC XL program which you want to use with 
the RunTime PacKage cannot use program development statements. If the 
BASIC XL RunTime Program encounters such a statement in your program, 
execution will stop with the message "Unimplemented statement in 1 ine 
XX', and you will be asKed to hit the START Key for a RunTime Restart 
<see below), · The following is a list of all BASIC XL statements 
illegal when using RunTime BASIC XL: 

LIST ENTER 
NEW DEL 
RENUM TRACE 
TRACEOFF LVAR 

In addition, the following BASIC XL stateme-nts have slightly diffe-rent 
meanings when using the RunTime PacKage: 

DOS After this statement returns control to whatever DOS was 
booted, you can not return to BASIC XL or your BASIC program. 

END-- This statement stops the running program and prompts the 
user to hit the START Key to do a RunTime Restart. 

STOP This statement worKs exactly 1 iKe END, but also prints the 
1 ine number at which execution was ended. 

1,4 Error Hand! ing In RUNTIME BASIC XL 
Errors which are TRAPped by the running program are treated eoxactl>· 
the same way as when using the BASIC XL cartridge, Error·s which al"e 
not TRAPped are treated slightly differently, howevel". If an error is 
allowed to happen when no TRAP is active, an error message is 
displayed showing the 1 ine number where the el"ror occurred, and the 
user is prompted to hit the START Key to do a RunTime Restart, The 
user is not allowed to view or change the program after an error as he 
could with the BASIC XL cartridge, 

1.5 RunTime Restart 
At various points above, we noted that under certain circumstances YOU 

may receive a message telling you to hit START to do a "RunTime 
Restart• <the message may indicate that RunTime will 'Re-Run" a 
program), When this occurs, hitting START will cause RunTime to . once 
again RUN the program file, AUTORUN.BXL. If your particular 
AUTORUN.BXL has chained to another program, the subsequent program IS 

erased and all worK not already written to file<s> is lost. <Note 
that RUN always closes all files , so at least no files are left 
dangling open,) 

1.6 Incompatibilities 
The only difference between RunTime BASIC XL and the BASIC XL 
cartridge which affects program execution is memory usage. Since 
RunTime BASIC XL is not in a SuperCartridge, it can't •save • memor y 
1 ike cartridge BASIC XL. For this reason, the BASIC XL RunTime 
Program takes up about 11 thousand bytes of code rather than 8 
thousand bytes. If your BASIC XL program is extremely large, it may 
not run under RunTime BASIC XL. 

Page 2 BXL ToolKit 

CHAPTER :2 

BASIC XL Example Prc:>grarns 

Side one of your ToolKi t disk contain s ten 
standard BASIC XL which will , we hope, give you 
capabilities .<and 1 imita t ions) of the language . 

programs wr i tten in 
a feeling for the 

Although the selec t ion of programs is very broad, we certainly can not 
guarantee that you will find a program which answers all your 
questions about BASIC XL . In fact , perhaps we should begin by 
discussing some of the things which the example programs do not delve 
into . 

First, we do not worry about the BREAK and RESET Ke ys, These programs 
are meant as examples for ~. as a programmer or future programmer, 
to RUN and try, As such, we think you should be allowed 
~encouraged to stop a program at any time, see where it is at and 
what it is doing , and <our fervent hope) change it so it works better' 

Second, we don't try to TRAP all di s k errors , etc . The programs here 
all work properly if given pr operl y formatted disKs with the right 
data/programs <if call e d for), Again, our philosophy was to allow you 
to explore the consequences of disk errors and guard aga1nst them 1n 
your own way, <And, truthfu l ly, extens i ve 1/ 0 trapp1ng tn some of 
these programs is simply not necessar y . ) 

Th i rd, we do no t get i nto any heav y math . For those of you who are 
into analyt i ca l geometry and i ts ilK, we apologize . Unfortunately, 
you are i n a d i stinct minor ity when compared to those .who .want to use 
the ir machine for simp le graphics and/ or busine s s appl 1cat1ons . 

Fourth, the de scriptions of the programs <which follow immediately 
after this introduction) vary considerably in the depth with which 
the y explore the worKings of t he code . Again , this i s on purpose. 

The most complicated of the pr ogr ams <e.g., PICOADVENTURE and 
BLACK BOOK) are so large that e v en documenting each group of ten 1 1nes 
thoroughly would require a booK seve r al times the s i ze of this manual. 
In these cases , we have t ri ed to e xplain the pr1nc1ples . beh1nd 
blocKs of code. You are encouraged <there ' s that word aga1n) to 
explore each and every 1 ine for i ts implications. 

On the other hand, some of the programs are d i ssected in painstaKing 
detai 1 (e , g. , MENU and GTIATEST> , In some cases, we have chose~ tc.. "'" 
thorough simp l y to give beginners a chance to see the full worKings of 
a program . In other cases , the thoroughness . is dictated by the 
complexity of the subject , (Perhaps we are us1ng a poorly documented 
featu r e of either BASIC XL or Atar i 's OS or hardware,) Mainly, 
though, we describe a program intimately because we want to get you tn 
the right •tracK, " thinking of properl y structured programs, good 
error trapping, etc. 

So much for the th i ngs we do not do in this ToolK i t. What do we do? 
<We thought you ' d never asK.> 

BXL ToolKit Page 3 



If you are interested in graphics in general and games in particular, 
we turn your attention to SNAILS TRAILS, GTIATEST, CIRCLES, and 
(especially) LEH. 

Into adventure games? Try PICOADVENTURE as a start on writing your 
own! <You might want to try playing and solving the game before 
reading the description.> 

Want to learn more about how to talK to your disK drive? LooK at 
CONFIG and DISKIO. 

Interested in application programs? Want to learn how to construct 
random-access and/or Keyed-access files? LooK at BLACK BOOK. 

Finally, MENU and MAKEAUTO are general utility programs'. You 
undoubtedly use them, but you may not need to understand them. 
read about them anyway. The description of MENU, especially, is 
detailed and gives some good hints on programming style. 

wi 11 
But 

very 

A Commentary on Case-- In the descriptions which follow, we sometimes 
change a Keyword or variable name to all upper case letters, despite 
the fact that the program listings will <as is usual in BASIC XL> show 
such names in mixed upper/lower case. This is done on purpose for 
emphasis only. You need not use upper case unless you have chosen 
Atari BASIC compatibility <via SET 5 1 8). 

Page 4 BXL ToolKit 

2.1 MENU.BXL 

In most ways, this is t he simplest program we will present in this 
section, MENU.BXL is simpl y a program which presents a menu of avail
able BASIC XL programs and allows you to choose one of them to RUN. 
If you are an experienced Atari BASIC user, you have probably seen 
ver s ions of this program floating around in magazines, user groups, 
etc., for years. We thin K, though , that our version has som• advan
tages which are worth discussing. 

1878-1888 These 1 ines set the tone f or not only th i s program but, 
where possible, for a ll programs in this ToolKit. We really 
didn ' t need to init i al i ze COUNT to zero, since BASIC XL guarantees 
that all variables start at 8.8 when a program is first RUN. But 
isn't this better? We both point out that we are using a variable 
named COUNT and that we Know what its starting value should be. 

Further, we could have coded 1 ine 1888 as 
1888 Alpha = 64 

but would that have any meaning to you ? As we wrote it, the line 
clearly shows that ALPHA has a numeric value one less than the 
ATASCII value of the letter ~. 

1188 We chose the dimens i ons of FILE$ very carefully. There are 26 
elements in the arr a y because we won ' t allow more than 26 
filenames in our menu. <That way we can select any program with a 
single letter , A to Z.> And each element has 14 characters 
because that is the maximum possible for a fi l ename of the form 
"D:filename.ext•. If you wish to allow disk drive numbers in your 
version of this menu, you will n e ed to increase the second 
dimension here to 15. 

1138 This POKE is documented i n many books, including 
Atari, from COMPUTE! books . A non-zero value 
cursor. A zero value turns it back on. 

Mapping the 
turns off the 

1248 Did you remember that an OPEN in mode 6 is actually an 
the director y? Good . For a 11 in tero ts and purposes, 
will cause subsequent INPUTs to read the same data you 
you give a DIR command . Try i t. Type in 

DIR " D:*.BXL" 

OPEN of 
this OPEN 
see when 

and see 
needed. 

what is displayed. (Yes, yes, the quotes aren ' t really 
We know, thanKs.> 

1258 Sometimes, in our zeal to avoid GOTO statements, we have gone to 
great lengths in these e xample programs. This is a good instance 
of such a great length. We read the f i rst file name from the 
directory here solely because we want the WHILE loop that follows 
to look neat. Ah, don't knocK it. It worKs. 

1268 We begin the promised WHILE loop. Note how we ensure that we 
won't get more than 26 names. We chec K the second character for a 
space because the only 1 ine of the directory where it is not a 
space is the line noting the number of free sectors <which is, not 
coincidentally, the last 1 ine of the directory). 

BXL ToolKit Page 5 



1278-1318 We develop the name which will be held in the string array 
File$. First, we count this as a valid name. Then we find out 
where the first blanK after the first letter of the filename is. 

Example: for the file "MENU.BXL', the directory 1 isting is 
* MENU BXL 00B 

or similar, where the'*' means the file is PROTECTed and the 
'00B' is arbitrary, Here, the FIND function would tell ~s that 
the value of BLANK will become 7, the blanK after the 'U' of 
'MENU'. Line 1290 is necessary in case the file has B letters in 
its name <the blanK found will then be the one between the 
extension and the number of sectors). 

In 1 ine 1300, we play a tricK that worKs neat and sweet in BASIC 
XL <and also in Atari BASIC, but we had to brag a 1 ittle): As 
long as you are moving characters "down• in memory <thinK of that 
as moving them left in a printed string>, you may overlap your 
string assignment without error! This 1 ine, then, strips off the 
first two characters and all characters from the blanK on. Bingo. 

Finally, in 1 ine 1310, we actually put the name into the string 
array. Note the form it taKes: "D:filename.BXL" where 
'filename" may have from I to 8 characters. ' 

1328-1348 This is just a bit tricKy. Since we want our menu to be 
able to hold 26 names, we can't simply 1 ist them straight down our 
24 1 ine screen. We must put them two to a 1 ine. The expression 
COIJ>IT&I <where '&' is BASIC XL' s 'bitwise and' opera tor) 
effectively checKs whether COIJ>IT is even or odd. If the COIJ>IT is 
odd, we w i 1 1 put the n arne at h or i z on t a 1 <X> p os i t i on 7. If i t i s 
even, we will put it at X-position 22. 

The vertical position is also obtained through a 1 ittle magic. To 
see why it worKs, try various values for COIJ>IT and observe what 
Y value results. We will start you off: 

If COUNT is 
1 
2 
3 

26 

Y will be 
3 
3 
4 
15 

OKay? Then 1 ine 1340 is easy. We simply POSITION ourselves at 
the place we have calculated and print an indicator and the name. 
But just what is that indicator? Remember, ALPHA is one less than 
the ATASCII value of the letter 'A'. So if COIJ>IT is 1, PRINTing 
CH~<Alpha+Count> will produce the letter 'A' on the screen. 
Similarly, a COIJ>IT of 2 will produce a 'B', etc. Now you Know why 
we chose the value for ALPHA which we did. 

Page 6 BXL ToolKit 

1358-1378 Here we s imply get the next 1 ine from the directory and go 
bacK to the top of the WHILE loop. If it isn't a name <i.e., if 
it is the free sectors 1 ine> or if we already have 26 names, the 
loop will halt and fall through to the CLOSE of line 1370. We are 
then done with the directory. 

1418 This is the best way to get a single KeystroKe on an Atari 
computer. OPEN up the Keyboard <'K:'> and GET a Key <as in line 
1440) . Sure, you can do it with PEEKs and POKEs and whatever, but 
why bother? <Exception: if you don't want to wait for the Key, 
you will have to use at least one PEEK.> 

1420 and 1518 This is an "endless" WHILE loop. 
achieved the same thing by eliminating 1 ine 1420 
to read GOTO 1438. But that's terribl>· ugly! 
poor structured programming style. 

We cou 1 d have 
and changing 1510 

As we 1 1 as being 

1438-1478 We asK the user to press a Key, get the Key from the 
Keyboard, and strip it of extraneous bits. Ummmm .•• "ex tr·aneous 
bits"? 

By doing a bitwise and<&> of KEYPRESSED with $5F <that's 95 
decimal or 01011111 binary) , we have removed the uppermost bit 
(bit 7--which would indicate inverse video> and also bit 5 <which 
distinguishes upper case letters from lower case). So no matter 
what Kind of letter the user pushes, we see an upper case, 
non-inverse video character . 

Now, if it truly was a letter, subtracting ALPHA from it will 
convert it into the range of I to 26. Funny thing how the 
elements of our string array are numbered from I to 26. Do you 
thinK that's a coincidence? <If so, we've got some beachfront 
property in Nevada we'd liKe you to invest in.> 

So, in 1 ine 1460, we .validate that the letter chosen is in the 
range we have filenames for. <If it isn't, we sKip to 1 ine 1500, 
the ENDIF, and go through the WHILE loop again.) Then we show the 
user what filename he/she chose . Just to Keep them happy while ..• 

1488-1498 Line 1480 illustrates the proper use of a TRAP in a well 
structured BASIC XL program. You should always TRAP to the last 
line of a loop or condition. Here, if we get an error in line 
1490, we want to go bacK and asK for another menu selection. 
Voila. <Exception: Sometimes you will want to have a central 
routine for handling TRAPped errors. That's a good idea, but 
beware of leaving WHILEs, GOSUBs, etc., sitting on the Run-Time 
stacK.) 

And, at last, we get to use this program as it was intended, We 
actually RUN the program requested by the user. Note that since 
we PRINTed the name i n 1 ine 1470 it's hard to maKe a mis taKe here. 
But a disKette failure <bad sector, etc.> could trigger the 
TRAP when the file doesn't load properly. We emulate the Boy 
Scouts: Be Prepared. 

BXL ToolKit Page 7 



2.2 SNAILS 

If you read 39 Days to Understanding BASIC XL (or, better yet, worked 
your way through it>, you will probably remember Chapter XXIX and an 
arcade game program called SNAILS' TRAILS. This game can give you a 
real feeling _of historical perspective! 

By today's standards, SNAILS' TRAILS is a simplistic game with 
marginal video appeal. A short five or six years ago, though, a very 
similar game called SURROUND was one of the hot sellers in the Atari 
2600 VCS market. And, as recently as the time of the Disney movie 
"Tron,• the "1 ight cycles" played a variation on the same game. 

Anyway, since this game has been overdone already, why are we 
rehashing it on this disK? Truthfully, because the version in our 
tutorial was written using only the statements presented in that booK, 
and we wanted to show you what just a few added statements could do to 
BASIC XL program. The result is a well structured and even readable 
program. 

In the description which follows, we will not explore those parts of 
the program which are the same as the version shown in the booK. 
<Note that the 1 ine numbers do not match those in the book. Sorry 
about that, but there are enough differences that they couldn't have 
been identical, anyway.) 

180 In the book, we had two variables CSCORE9 and SCOREil to Keep 
track of the players' points. Here, we use a two element array. 
We'll show why below. 

26e Isn't this easy to understand? You 
English as follnws: "As long as ne-ither 
points, keep playing'" 

can translate this into 
player has scored 10 

299 and 34e In the or i gina 1 , the COLORs are different. We changed 
them because it makes it easier to flash one of the slime trails 
(J ine 800). 

49e-5ee The main movement loop translates to English pretty well, 
also: "While neither player has hit anything." Then, since we 
aren't driving this loop with FOR MOVE •• anymore, we have to bump 
the MOVE number. The only place MOVE is used, though, is in J ine 
690, as the frequency value in a SOUND statement. But SOUND won ' t 
let us use a value greater than 255 for frequency, so after 
bumping MOVE we J imit it to an 8-bit value. 

You say you don't understand h01~ bitwise-and C&) works after 
reading the brief description in the reference manual <section 
2.2.1>? We won't go into a lot of detail here, but let's show 
what happens in 1 ine 500 as the value of MOVE increases. <In the 
binary notations below, we show only 12 bits instead of the 16 
bits which BASIC XL always works with. The upper four bits are 
always zero in this example, though, so they can be ignored.) 

Page 8 BXL ToolKit 

MOVE 3 decimal, binary 0000 0000 0011 
bitwise and with ee0e 1111 1111 

binary result eeea 0000 0011 
(dec i ma 1 value of 3) 

MOVE 243 decimal, binary 0000 1111 0011 
bitwise and with 0000 1111 1111 

binary result 0000 1111 0011 
(decimal value of 243) 

MOVE 25B decimal, binary 0001 eeee 0010 
bitwise and with eeee 1111 1111 

binary result 0000 0000 0010 
<dec i rna l value of 2) 

Do you see what happens? When the value of MOVE becomes greater than 
255, the bitwise-and effectively subtracts 256 from it. In fact, we 
could have coded line 500 thus: 

500 Let Move=Move+3 : If Move>255 Then Let Move=Move-256 
But using the bitwise-and is faster yet, once you understand bitwise 
operators, just as easy to understand. 

And, as long as this explanation is too long already, Jet us note that 
we could have achieved the same effect by using these two lines 
instead: 

500 Let Move=Move+3 
690 Sound 0 1 Move&255,10,Volume 

However, the SOUND statement is inside a tight loop, and placing the 
bitwise-and in the loop would slow it down a bit. 

600-659 There's nothing really very different from the book version 
here except the order of the statements. We thought this scheme is 
more readable. We hope you agree. 

76e Why didn't we just code this 1 ine as follows? 
760 If Bange <> Bang! 

Because the va 1 ues of BANGe and BANGl ·cou 1 d be 1, 2, or 3, depending 
on who hit what. Using NOT BANGe and NOT BANG! converts a 11 va 1 ues to 
a boolean (zero or one) condition, which is more easily testable. 

If you prefer positive logic, you could change 760 and all following 
references to BANGO and BANGl to this: 

760 BangB=SgnCBangBl : Bangi=Sgn<Bangll 
761 If Bang0<>Bangl 

<Recall that SGNO of any positive number is one, as we want here.) 

779 See 1 ine 760, above. This 1 ine looks strange, so let's translate 
it in to Engl ish: • Bump the score of the p 1 ayer who did not ge ~ banged 
by one." Still confused? Then substitute the follow:ng for 1 :ne 770: 

770 If Bangl=B : BangCll=BangCll+1 
771 Else : Bang< 0 l=Bang( 0) + 1 : End if 

But, if you're willing to struggle with the logic a bit, you will 
conclude that our original 1 ine 770 achieves exactly the same result 
with 1 ess code. 

BXL ToolKit Page 9 



888 Same thing again. Remember, NOT BANGO is a logical expression, 
so it can only take on numeric values of zero and one. Cute? 

898 Another case of a logical expression being used to derive a 
numeric value. If SCORE(8) really is less than SCOREC1), then 
WI"-"'ER will receive a value of one. OthertoJis<>, WI"-"'ER will be set 
to zero. 

Technicaf note: Most languag<>s support th.- notion of T~UE and 
FALSE logical expressions. Unfortunately<?>, man>· restrict their· 
use to places where a. condi t i ona.l test is being made. HotAJever, 
BASIC XL, in common with many, many other <but not all!) dialects 
of BASIC, allow you to tr.-at TRUE and FALSE as numeric values. Be 
car<>fu 1 , though, in some Microsoft (and other?> BASICs TRUE is 
given a value of minus one <-11 for reasons which are mired in 
history. (n.b.: BASIC is not th<> only languag<> which allows 
logical expressions to produce numeric values. C and some 
versions of Fortran allow similar usages,) 

918 and 938 Set> how n.-atly we can use WI"-"'ER now that we know it has 
a value of either zero or on.-? 

988 In Eng I ish you read this 1 i ne to say: 
joystick trigg<>r is pushed, keep looping." 

Page 19 

"As long as neither 

BXL ToolKit 

2.3 PICOADV 

In addition to being the longe s t program on the ToolKit disk, 
PICO-ADVENTURE is also the old.-st. It was on.- of th<> first major 
programs we wrote for BASIC A+ (back in 1981-82> and is given here 
with only minimal modifications, even though it could probably use 
many of BASIC XL's new statements to advantage, Nevertheless, 
PICO-ADVENTURE <which name was intended to imply that it is smaller 
than a Micro-Adventure> is still a reasonably well-written, 
well-structured program which deserves more than a cursory glance, 

For all of its size, PICO Cas we shall call it from now on) only uses 
about half of the memory available when you use BASIC XL with DOS XL. 
If you feel so inclined, you may retain the structure of the program, 
replace room descriptions and object actions, and thus produce your 
own adventure. Nothing could please us more . In fact, we would love 
to see your results. 

One last warning before we start looKing at PICO a blocK at a time: 
Why don't you RUN and play it before reading this section. In 
studying the program, you will of necessit y see the secrets of the 
game, which will destroy the pleasure you will get from winning <or 
losing> gracefully, 

Because this program is so large, the best we can do is describe 
blocKs of lines . We will delve into detail only when we feel that 
reading the program 1 ines within the blocK won't give you enough 
understand i ng of their actions. 

Finally, we present this program in <'X<>cution order <not 1 ine number 
ord<>r>, because you need an understanding of some of the subroutines 
before the main 1 ine code maKes a lot of sense. 

188-119 We use the question mark (?) abbreviation for PRINT a lot i n 
this program . It makes the 1 isting smaller and allows all 1 ines 
to fit in the bounds of a 129 column printer. If you are going to 
1 ist this program to an 8 inch <nominal 80 column> printer, the 
ends of some 1 i nes w i 11 either wrap or get cut off < deperod i ng on 
how your printer worKs), If your printer has elite <12 characters 
per inch> or condensed <usually about 16 characters per inch) 
print available, we recommend that you set it in one of those 
modes before 1 isting the program. Al l program 1 ines will 1 ist on 
one printer 1 ine in condensed mode. Almost all will 1 ist properly 
in elite mode. <Note: an easy way to put your printer in one of 
these modes which worKs with most pr i nters is to put its control 
or escape code sequence right into a REMark 1 ine at the beginning 
of the program.) 

We also use some imbedded screen control characters in our quot<>d 
str i ngs, something we do not normally do with programs intended to 
be 1 isted by you, our customer and reader. Again, we felt 
justified using them here ( instead of using a CHR$() sequence>, 
because they save so much room. We apologize in advance if they 
do funny things to your printed listing. 

158 We put the initialization code up out of the way as a subroutine 
so that the pr ogram looKs better. 

BXL ToolKit Page 11 



8889-8189 Primary initialization. Some variables used as constants, 
subroutine addresses, or counters are assigned here. Various 
strings and arrays are dimensioned. Some sizes are arbitrary 
and/ or could be made bigger for a more complex adventure (one that 
understands more nouns or verbs>. Ones that are carefully 
selected Include VS$ and NS$, which are just long enough to hold a 
prefix character and a three-letter verb or noun. (See 1 ines 1290 
to 1300 and next paragraph.) 

8119-8199 We build up the vocabulary 1 ists for the verbs and nouns. 
Each entry i n a 1 ist consists of a prefix character (CHR$<155) 
but any value from 128 to 255 would have worKed>, a three Jette; 
name, and a single byte which holds the verb or noun 
number associated with this name. Note that the name's number 
corresponds to the last two digits of the DATA statement from 
which the name was READ. For example, the first two entries in 
NOUNS$, the noun vocabulary 1 ist, would looK 1 iKe this (where a 
number in bracKets indicates a byte with that value>: 

[ 1551 L I C [ 11 
[155J M 0 S [1] 

Also , as we build the noun vocabulary, 
WHERE<> and SHOW arrays. A noun's 
"visible items• routine whether to show 
WHERE<> tells where the item (noun> 

we are setting up the 
entry in SHOW<> tells the 

it or not. The entry in 
is located, according to the 

following table: 
If WHERE<noun-number> is 

less than 0 
0 

1-99 
greater than 99 

noun is 1 oca ted 
gone foreve r 
with adventurer 
in that room number 
s t i 1 1 h i dde n 

8889-8999 The DATA statements which define the verbs (88xx> and nouns 
<B9xx>. In theory, then, you could have up to 99 verbs and 99 
nouns, each with one or more synonyms. Synonyms are simply 1 isted 
one after the other on the same DATA 1 i ne, the 1 ast one terminated 
by an asterisK. The first synonym is the one shown by the command 
l1ne echo, Inventory list, and visible items list, so it is 
spelled out completely. As noted above, nouns also have their 
initial WHERE and SHOW values 1 isted here. The last entry in each 
table is terminated by a pound sign <M>. 

169 Getting a Key one at a time from the "K:• device is still the 
best way . Much easier and more readable than PEEKs and POKEs. 

929 Th i s is Ki nd of a cute tricK. Rather than print out a special 
starting location message, etc., we simply tell our movement 
subroutine <starts at 1 ine 7000> that we are in room number 7 and 
that the user just asKed us to go West. We also note that room 
number 3 is West of the current room. Then we GOSUB to do the 
movement and <PRESTO') everything comes up right for somebody who 
just walKed into Room 3! <Much of this will become clearer 
1 ater ••• Keep reading.> 

1958 Again, we could have coded the subroutine at 1 ine 6009 right 
in-Tine here (since it is called only once>, but this makes the 
program so much more readable. Besides, wait until you see what 
that subroutine does. 

Page 12 BXL ToolKit 

6888 - 6199 Special act i ons proc ess i ng . In many adventure games, 
includ i ng this one , c erta in act i ons mu s t taKe place at certain 
times and/or after a pa rticular number of turns have passed since 
some other event. For example , in PICO, the effect of eating the 
mushroom wears off after 4 turns. This time period is counted 
down in the variable CRAZY , and 1 in<.>s 6010 a nd 6030 reflect this. 
Three other such variables, CHARM , TORCHFlRE, and HUNGRY are 
similarl y accounted for here. Note that, in 1 ines 6100 to 6103, 
these counters are never all owed to become 1 ess than zero. One of 
them, HUNGRY, cycles from 20 down to zero, over and over. 

1118-1198 This is our get-a-command routine. We only allow a few 
characters to get through. All other5 are ignored. Note that the 
variable OK is used both as a flag and as a counter to the current 
character within RESPONSE$. If the user hits RETURN (1 ine 1130> 
we get out of the WHILE loop by simp!>• setting the OK flag to 
zero. Cute. 

In 1 ine 1140, we only a llow bacK spacing to th e beginnirog of the 
command t yped in so far. And we special case i nverse video space 
( KEY=168 ) for safety's saKe. Finall y , when we have masKed all 
characters to be upper case and non-inverse video, we maKe sure 
that the user typed an alphabetic char acter. And, last but not 
1 east, we 1 im i t the user ' s respon s e to 15 1 etters. That's more 
than enough ( as we will see>. 

1288-1298 We parse the user ' s response into verb and noun parts . Or 
at least we try to. Lines 1215 and 1250 strip off leading spaces 
(1 ine 1210 guar a nteed that RESPONSE$ would contain at least 
something or these 1 ines might generate e rrors ) . The verb is 
presumed to start at the first non-blanK character and continue to 
the next following blanK. <If there isn ' t a verb, we go bacK to 
1 ine 1000 and get another response.) The noun is assumed to be 
ever y thing after the blanK<s> which follow the verb. 

Aga i n, note how the search variables, VS$ and NS$ , were c a refully 
dimensioned to 4 so that they could hold our separator character 
and the three significan t letters of a verb or noun. <Do you see 
how you could easil y increase the number of s i gnificant letters in 
a PICO vocabulary word?) 

Li nes 1280 through 1290 allow for the s pecial case of a single 
letter response indicat i ng a direction to taKe. Can you see how 
easy it would be to add yP and Q.ovm to our 1 ist of valid 
directions? 

In any cas.,, we come ou t of this blocK with the variables NOUN and 
VERB holding numer i c values which repre s ent the act i on requested 
by the user. <See the e xplanat i on of l i nes 8000-9000 for details 
on what the numbers mean. > 

1388-1338 Pretty simple. If we d i dn't find a valid 
Ditto for a noun. Do you see wh y we tacKed 
RESPONSE$ in 1 i ne 121 B? If t he user te 11:. us to 
variable NOUN$ will be set to "GORP is. • Ma ybe a 
tricKy? 

BXL ToolKit 

verb, say so. 
i s.• onto 

EAT GORP, the 
1 itt 1 e too 

Page 13 



1498-1514 One of the neatest things about PICO is that it tells you 
what it thinKs you said. We've played adventures where we typed 
in "GET SNARE" only to have it tell you "You got it but it bit 
you. You're dead." How were we supposed to Know that' SNA mo?ant 
"snaKe" to that game? In PICO, if you type in "NIB MOS" the qame 
Will tell YOU that it is trying to "EAT LICHEN". A nice

1
touch- we 

thinK. ' 

1529 and 2998:....2129 There is a bug in BASIC XL '"hich has existed. ;.ince 
the earliest versions of Atari BASIC. We're afraid to fix it, 
because there may be programs '"hich depo?nd on its action! Anyway, 
the bug_ is simple: if you GOSUB to a non-existent 1 ine, the 
GOSUB IS pushed onto the run-time stacK before the error is 
discovered. Subsequent RETURNs can then end up qoino bacK to the 
wrong place(sl. We avoid the problem her·e by GOSUBbing to a Knot"n 
good line 12000). 

Then, at 1 i ne 2100, we p 1 ay a 1 i t t 1 e b i t of magic. Do >'OU see 
what 1 ine number we ~ to go to? If the user requested verb 
number 7 and noun number 2, we wi 11 try to GOTO 1 ine 17020. 
Suppose, though, that 1 ine 17020 doesn't exist Cas it doesn't in 
PICO>. Then the TRAP 2118 is activated and we GOTO 1 ine 17000 
instead. 

Why? Well, as PICO is written, trying to BURN HUSHROCt-1 will g1ve 
us verb 7 and noun 2. Since 1 ine 17020 doesn ' t exist, we <-nd up 
at line 17000, where OK is set to NO so that the message, "That 
didn't maKe sense!" will be displayed. Sine<- most items ,,, 0 n·· t 
BURN, this provid<-s a convenient method of processing all such 
non-productive requests the same way. 

1609-1618 This ELSE clause was started by the IF of 1 in<- 1510. ThE< 
direction abbreviations CN,E,S,W> produce verb numbers of 1<-ss 
than zero <-1 through -4). Once you understand the routine at 
1 ine 70013, this part becomes easy, 

7889-7958 The variables NORTH, EAST, SOUTH, and WEST are already set 
uP by the t i me we get here <we' 1 1 see h ot<J i n a moment) , so a 1 1 
these 1 i nes do is put the proper value into GO. And what's a 
wproper" value? Keep reading •.. 

7188-7198 When we get here, GO can have one of four meanings: 

If GO is 
negative 

zero 
1-99 
100+ 

we wi 11 
dr·own 
do nothing (direction unavailable) 
go to that room number 
do a special action 

"!"he 1'specia1 action•• trick is. a neat one, uniquely available 
1n BASIC XL and its brethren, because GO actually designates 
1 ine numb<-r of the subroutine to GOSUB to perform the action' 

only 
the 

Page 14 BXL ToolKit 

7288-7398 And here is wher e we get the values that end up in GO! 
After we have moved to another room < HERE=GO in 1 i ne 7160 >, or 
ever, if we haven't, we RESTORE to the proper room description 
Cline 7200, also uniquely BASIC XL, etc.), We READ in the lines 
of description Can equal sign on the end of a 1 ine indicates more 
to follow) and then, in line 7300, READ the four directions, 
NORTH, EAST, SOUTH, and WEST. 

Isn't this neat? LooK at lines 30160 to 30165. Just b;· the line 
numbers, we Know that this is the DATA for room number 16 
130000+16*1 0). The description is 3 1 ines (each in quotes) long. 
And the connecting rooms are 15 to the NORTH, 12 to the WEST. But 
looK at the "connections' for SOUTH and EAST: both get a value of 
30164. That means that, if the use asKs to go SOUTH or EAST from 
this location, 1 ine 7130 will end up doing a GOSUB 38164. So 1 ine 
30164 is actual executable code Cnot more DATA> and the poor guy 
gets zapped by a trucK. 

Examine some of the other DATA statements in this range. Note how 
eas i 1 y we drown adventurers (connecting "room number • of -1) or 
bar them from proceeding <connection values of zero). It's 
downright easy to add rooms and conditions to th i s gamo;! 

1B80 Believe it or not, this is the "end" of the program. Ev~rything 

after h~r~ is a subroutin~. Ain't structured programming neat? 
Y~ah? Then why didn't we use an endless WHILE loop instead of 
this old-fashioned GOTO? Sigh. 

With all the main-line code describ~d, we proceed to some of th~< 

subroutines not y~t discuss~<d . 

7588, 7608, 7788 Thre~ useful little routines, for when the us~r asKs 
for something not available 17500>, uses something he doesn't have 
17600), or dies gracefully 17700>. 

7888 Four entry points provide delays of I, 2, 3, or 4 seconds, 
thanKs to the clocK ticKer in location 20. 

7988 We display the stuff lying around on the ground. Remember, even 
if something is located in this room, we don't tell the user 
unl~<ss its SHOW<> flag is true. This 1 ittle nastiness maKes 
PICO harder than it would otherwise would be. You could expand 
this in your own gam•<s> as you wished. 

Finally, we get to the VERB and VERB/NOUN action routines. Remember, 
a VERB/NOUN action starts a 1 ine 10000+1000*VERB+10*NOUN. With this 
formula <and with 1 ine numbers 10000 to 29999 available) you can have 
20 diff•rent verbs <if they are numbered starting at zero> and 99 
nouns. Changing the multipliers (e.g., maKe it 500*VERB+20*NOUN> 
could change those ratios and/or maKe more 1 ines available for 
particular act i ons. 

Also recall that a VERB (a! one> action starts at 10000+1000*VERB, and 
VERB/NOUN actions specif i ed end up at those VERB alone 1 ines. 

We do not want to (nor do w• feel we need to) devote th~ space to a 
compl~<te description of all the possible actions. Instead, we will 
single a few out and leave the rest to you as an exercise. 

BXL ToolKit Page 15 



13999-13173 These are the actions taken when the user asks to LOOK at 
something. Let's see what happens when he/she asks to LOOK 
Jt.NKPILE. 

First of all, if Golem isn't in the right room (line t3t7e> how 
can we look at it? The rest of the responses depend on the ~alue 
of Jt.NKCNT, which was initialized to 3. 

I~ Jt.NKCNT is not zero, then we let the user find something · in the 
PI 1 e • What he/she finds depends on the va 1 ue of Jt.NKCNT ( 1 i ne 
13172). The 1 tern( s) . thus found ( i tern numbers 9, 3, or 8, in that 
order) are made v1s1ble by giving them a location in the 
WHERE() array < 1 i ne 131 73). Reca 11 that a 11 three of these i terns 
rece1ved an 1n1t1al location of tee (hidden) in the 
DATA statements of 1 ines 89e0 to 8999. Note that changing 
WHERE() is all that is needed to cause the visible items print 
routine ( 1 i nes 7900-7970) to make it show up, 

If Jt.NKCNT is z~ro <all three i terns have been found), then we are 
sent off to 1 1ne 13000, just as if we had typed LOOK BOAT <which 
would cause the routine at 1 ine 13150 to be execuhd, if it 
<'Xi st.. d). 

Lin<' 13000 starts with a cutE' tricK: If thE' user typed in 
LOOK, the program pretends he/she really wanted LOOK PLACE. 
13001 is pretty straightforward 1f you Know how to read it : 
the Golem isn't carrying the requested object 
WHERE<NOI..N) isn't zero) and if the object is not in this 
<WHERE<NOI..N) is not the same as HERE>, then we can~looK at 
so ask the dummy HOW we can do it." 

just 
Line 

"If 
(if 

room 
i t' 

Finally, 1 ine 13002 simply gives a nice bland message about the 
object. If the user typed just LOOK <with no noun), then the 
message refers to "this place," Not exciting, but it works. 

16999-16169 Almost every adventure you try will have some sort of 
secret word or phrase which you must SAY to unlock the mysteries. 
In PICO, we h1nt at that ability by providing you with a MAGIC 
LAHP <1n the junKpile) and putting a message on the billboard 
which has a message in quotes, usually a dead giveaway that the 
phrase <"A LAD IN BAGHDAD" in this case) is the sought after magic 
word( s), 

In fact, if you use the command SAY A LAD IN • •• before you get the 
lamp, we even give you a clue (1 ine 16160) that you need something 
else before the magic worKs. 

But all of this is in vain. We borrowed a page from Sesame Street 
and put the "fix" in: all you get for all your trouble in this 
game is a peanut butter sandwich, <To add insult to injury, it 
doesn't even fill you up! Of course, that's because the "I'm 
hungry• message is trying to make you eat the mushroom another 
trick cadged from a children's story,) ' 

That's about it for PICO. <Isn't it enough?) We hope you will 
it into your game and share it with us all, 

turn 

Page 16 BXL ToolKit 

2.4 LEH 

This program is yet another incarnation of the classic lunar lander 
game. The principles of this game haven ' t changed since people first 
started using computers to have fun, even if they were. using 
time-sharing on mainframes and min i -computers bacK in those 
prehistoric days. For example , we have a booK (fashioned from clay 
tablets, we t~ink) dated 1975 <A.D. ! !! ) and called "What to Do After 
You Hit RETURN or P.C . C.'s First BooK of Computer Games ' which 
includes no less than two different lunar lander programs. They were 
played on H.P. minicomputers with teletype-s (you Know ••• at a maximum 
of 10 characters per second, and no graphics), 

So what's different about th i s program , and why should we discus~. it? 
Well, it's written entirely in BASIC (big deal, so were those 1975 
gems), And it uses pretty graphics (that ' s a 1 ittle better), And it 
runs in ·r"al time <whazzat? impossible!). 

To play this game , plug a joysticK into socket number 1 <STICK(9) in 
BASIC) and Rt.N the program from disk. You can play on two levels, 
beginner or advanced, but we recommend you try it first as beginner, 
so simply push the joysticK button. You will be presented with a 
moonscape, a bar at the lt'ft showing your remaining fuel, a landing 
pad <which will blink), and an odd-shape-d ship (complete with 
antennae , legs, etc.) which you will <try tc• ) control. 

To move the ship left or right, s imply push the joystick left or 
right. B" careful! The effects of such pushes are cumulative with 
time. Gentle t aps in the appropriate direction worK best. 

To fire your retro-rockets , push the joysticK button. If you do 
nothing further, you will probabl y crash (albe i t perhaps slow)>·). 
That's because there are six poss i ble thrust settings on the LEH. You 
increase thrust by pushing forward on the joystick, decrease by 
pull i ng back. Need we tell you that greater thrust eats fuel faster? 
<If you run out of fuel, you run out of thrust. Need we tell you the 
resu 1 ts?) 

If you manage to land (or even c r ash) on the landing pad, you get 
points. Too fast a landing results in a crash. A landing of moderate 
speed gives you a bouncing good time. And a near perfect gets you 
applause and cheers from the crowd. <Whicn ignores the fact that 
sound doesn't carry in the vacuum on the Moon. Oh, well, maybe 
they're bacK on Earth?) You get 250 points for a great landing, 1e0 
points for a bounce, and credit for remaining fuel. You also get 
bonus points for the actual speed of your landing and the narrowness 
of the pad you landed on . 

It's a good game. We've played it many, man y times, and it's~ a 
real challenge to score over 2500 points in fi ve landings (a standard 
gam") on the Advanced level. Before perusing the explanation of the 
worKings which follows, why not try it yourself a few times. 

This is a Qlg program, but it is very well self-documented <with both 
REMarKs and self-explanatory variable names>. As with PICO (section 
2.3)wewi11 discuss this game in blocks, concentrating on the 
non-obvious features. 

BXL ToolKit Page 17 



1888-1298 After waiting for the player to let up on the joysticK 
button, we present him/her with a menu and some brief 
instructions. LEVEL is set to zero for a beginner and one for an 
advanced player. Notice how we position the arrow, basing it on 
the value of LEVEL. Also note how, after detecting the fact that 
the joysticK has been pushed, we wa i t for the sticK to come bacK 
to the center before continuing the loop . If we didn't do this, 
the arrows would flicK bacK and forth from one level to the . other· 
almost too fast to see. <Try it yourself. Remove 1 ine 1180, and 
watch what happens.> 

1388-1768 Mostly simply initializing various arrays and strings. We 
will show later how these variables are used. Note how we choose 
one or the other set of DATA in 1 ines 1700 to 1720, depending on 
the level of the player. You could have more than two levels 
here, if you wished, by adding choices to the initial menu and 
DATA for the acceleration values. 

SpeaKing of which: The first acceleration number is the force of 
gravity. In other words, the positive attraction inviting you to 
crash into the rocky surface . The other six numbers are the 
acceleration values produced by the various thrust settings. Note 
that, on advanced level, the lowest thrust doesn't even canc<'l the 
pull of gravity. You can play with these numbers, but th<' game 
worKs pretty well with the values shown. 

1888-1838 These are some critical constants used throughout th<' game. 
We need to discuss them just a 1 itt! e. 

A POKE of any value to HITCLR cl .. ars th<' coli ision r<'gisters <se<' 
"Mapping the Atari"). The YSIZE is the height of th<' active 
playing area (in pixels> in GRAPHICS 7+16. If you wanted to play 
with GRAPHICS 15+16 (available only on XL machines>, you could 
change this. 

The 1 ander spaceship <LEM> US<'S player 0. Its flam<' (from the 
thrust> uses player 1. They are offset a bit <from the base 
addresses of their respective players) to account for differences 
in their s i zes. If you changed the appearance of the ship, you 
could adjust just ADRLANDER and ADRFLAME, and all would still 
worK. 

LANDER and FLAME are <'Stabl i shed just to sav" time 
1 oops 1 ater on. 

We display the fuel remaining using player 2. 
"+159" values are empirical--they match the 1 ine to 
the playfield nicely. 

in the tight 

The "+32" and 
the size of 

1898 1 3758 The limits of the once-per-landing loop . Big, isn't it? 

1988-2858 LooK at all the stuff we have to set up each time! Most of 
these variables are self-explanatory or nearly so. Especially if 
we tell you that 11 pos" means 11 position 11 and "vel" means 
•velocity" , FUEL is actually fuel remaining, while BURN is the 
current rate of burn (thrust). BURN is the number which is 
adjusted by moving the joysticK bacK and forth. 
CURRENTTHRUST matches BURN 2.Q.l1. if the button is pushed, otherwise 
it iszero. 

Page 18 BXL ToolKit 

2868-2148 We set up the fuel-remaining indicator. Rather than a 
solid bar, we 1 i Ke d the pa t ter n that $ BOOB produced for a pair of 
ve r t i ca 11 y adjacent 1 i nes within the bar. We rep 1 i ca te the 
pat tern vi a the HOVE of 1 i ne 2898. Note how this tricK worKs and 
use it in your own programs : If you initialize the first N by tes 
of an area of memor y , you can rep! icate those bytes via 

MOVE area,area+N , <M of repl icates/N) 

Another tricK you might steal is our method of moving character 
shapes from ROM to a player (1 i nes 2100 to 2130). The usual 
character set starts at $E000, but we bias it by -$100 because 
screen byte values are not identical with ATASCII values. Recall 
that each characte r in ROM oc cupies 8 by tes, and you should get an 
idea how this worKs. After t he "fuel line" is ready, we move it 
to the left side of the playfield screen. 

2168 - 2518 We maKe the playfield looK pr etty . After picking the size 
and width of the landing pa d, we draw the moonscape i n three 
pieces: From the left edge to the pad <1 ine 2290), the pad itself 
<2318 to 2340), and from the pad to the right edge <2360). The 
subroutine at line 3980 draws the jagged mountains. <Note how the 
mountains are guaranteed to get no more than 20 units high. If 
ALT gets up to 20, 8.96*ALT immediatel y drops it bacK to 19. 
Cute.> 

After putting a few distracting stars in the sKy, we blinK the 
landing pad <that ' s one reason it was drawn using a different 
COLOR than the rest of the moon s cape) and then g i ve it the same 
color as the rest of the mounta i ns. 

2688, 2778 This WHILE loop constitutes~ the actual movement in the 
game! Do you see how few 1 i nes there are here? That ' s the 
primary reason the game can run so fast , thanKs to the extensive 
set up which we have· done, And what terminates the movement 1 oop? 
LooK at the five conditions in the WHILE statement: (I) Hitting 
the landing pad. ( 2) Hitting the mountains. <3 > Going off the 
left edge of the play ing area. <4> Go i ng of f the right edge. (5) 
Going off the top of the area. 

2618-2628 We move both the lander and its thrust flame into position. 
For vertical movement, we actuall y HOVE data from the strings we 
set up (from the hex DATA>. We do th i s because it is faster than 
PHHOVE, which must move 512 bytes in sing l e 1 ine resolution <256 
bytes out to a buffer and then bacK in, to avoid overlap 
problems> . For horizontal movement, PHHOVE is just as fast as 
POKE, so we use it. 

2638-2738 After adjusting the BURN r ate as requested , we set 
CURRENTTHRUST to either zero or BURN, depending on whether the 
button is being pushed. Since fuel is used at a rate equal to 8.1 
times the thrust, we use an i n termediate variable <LOSS> to 
accumulate thrust in units of 10. When the LOSS exceeds 18, we 
use up a unit of fuel and reflect that fact in the fuel 1 ine on 
the lef t side <1 ines 2718 to 2738 >. 

2748-2768 The hor i zontal velocity is eas y: we just accumulate the 
horizontal st i cK pushes in one-twen t ieth of a unit increments. 
The vertical veloc it y is also cumulative, but it uses the elements 

BXL ToolKit Page 19 



of the THRUST a~~ay for its accele~ation values. And, you may 
recall, the values in THRUST<> depend on whether you are playing 
at beginne~ o~ advanced level. Finally, afte~ updating the 
horizontal and ve~tical pos i tions, we maKe an app~op~iate ~ocKet 
sound. 

2888-3868 Fo~ ~eally g~eat landings, we b~ing out the c~owd. 
the way we assign the bonus points in 1 ine 3060 . 

Note 

3878-3258 Fo~ so-so landings, we bounce the ship. The numbe~ of 
bounces depends on how ha~d the landing was. Note how we choose 
the frequency fo~ the plopping sound f~om the PLOP() ar~ay. 

3278-3658 A crash landing. We allow pieces of the ship to spew all 
over the place. Up to 18 pieces a~e given independent 
positions--X<> and Y<>--and velocities--XVEL() and YVEL(). Each 
follows the laws of physics until it goes off the playing field. 

3668-3748 We display the sco~e fo~ this landing as well as the 
cumulative sco~e so fa~. 

3778-3878 After five landings, we give the grand total. We ~estart 
the game <via a simple RUN> when the joysticK button is pushed 
(which is why we waited fo~ the button to be ~eleased up there at 
the beginning). 

The~e it is. A p~actical ~eal-time game written enti~ely in BASIC XL . 
The~e a~e a lot of unnecessa~y f~ills (e.g., the va~ious types of 
landings>, but they add to the ove~all effect of the game. Try this 
on you~ Apple-owning friends. They'll neve~ believe it was done 
enti~ely in BASIC. 

Page 29 BXL ToolKit 

2.5 GTIATEST 

The earliest Ata~i compute ~ s had a g~aphics chip called a CTIA . About 
two yea~s after their int~oduction , t hough , Atari sta~ted shipping all 
499 and 800 machines with a newe~ chip, called a GTIA. <All 
XL compute~s use the GTIA.> The most sign i ficant diffe~ence between 
the two chips is t he GTI A' s abilit y t o accept commands for three 
additional g~aphics modes , GRAPHICS 9 , 10 , and 11 in BASIC pa~lance. 

For reasons we at OSS f i nd ha~d to unde~ s tand , 1 ittle in the way of 
commercia 1 sof twa~e has been p~oduced wh i ch uses these th~ee modes. 
True, compatibility with olde~ mach i nes is an issue, but the cost of a 
CTIA to GTIA upgrade is nominal, at most . And if you must maintain 
compatibility, why not provide two versions of a prog~am? Well, one 
argument for not doing so was that, acco~ding to Atari 1 i te~atu~e, 
there was no way for a running program to tell which chip was 
installed . Would .l::..QY. believe Ata~i lite~atu~e? 

We thought not. It turns out t hat a wo~kable method is a bit involved 
but more than doable. The sub~outine f~om 1 ine 9000 up in th i s 
program demon s trates one way whi ch we Kn ow wo~Ks. 

The principle is as follows : If you are in a text mode (e.g., 
GRAPHICS 0> ~you tu~n on one of the GTIA enable bits <the uppe~ two 
bits of GPRIOR>, then the collision detect i on mechanism does not wor·K 
between a playe~ and a character displayed in the modified text mode. 
As a side 1 i gh t , the characters become unreada ble unde~ these 
conditions , but this i n itself i s no t detectable by a p~og~am. 

We bel i eve this subroutine ( and i ts sample c alling pr ogram> are fairly 
self-explanatory, but we will make a few comments. 

9188 As long as we are testing , we mi ght as well PRINT someth i ng 
which makes sense. 

9138-9159 All of this ensu~es that we will place a blacK bar (player 
0) ~ight over the word GTIA. 

9168-9218 We turn on the GTIA b i ts, wa i t for a clocK ticK, clear the 
col l ision ~egisters, then wait at least two clocK ticks. 

9228 If $0004 contains anY non-zero bits , it means a collision was 
detected and that the machine under test does not have a GTIA. 

We hope that some of our users, eithe~ of BASIC XL o~ other languages, 
will see fit to produce some programs which taKe advantage of 
GTIA graphic modes when possible . 

BXL ToolKit Page 21 



2.6 CIRCLES 

We at OSS cannot take credit for discovering the algorithm used in 
this program, but we do thinK thatt,.ehavemadeitalittlemore 
usefu 1 • 

The program's workings are certainly self-explanatory up to line. 1590. 
It is the subroutine starting at 1 ine 1600, which actually draws the 
circles, which needs a few comments. 

The principle involved is simple in theory: calculate the sine and 
cosine of angles which get increasingly larger (until they reach 45 
degrees>, and plot a circle by reflecting these values in all octants. 
The trouble is, if we use conventional means of generating sine and 
cosine values, drawing a circle takes so long we might want to take a 
nap. The tricK here is an algorithm, involving the variable 
DELTA which approximates the sine and cosine values so close as to be 
indistinguishable when a circle is plotted on an Atari-size screen. 

When we enter 
already set up. 

the subroutine, we assume that XC, YC, and RADIUS are 
Then comes the fun. 

1678 This begins the real worK. The formula for DELTA is magic. 
Don ' t question it <unless your math is a whole lot better than 
average). The values for X andY are more obvious: We begin at 
an angle of zero degrees, so the sine is zero and the cosine is 
one. We wi 11 plot the points where 1 ines parallel to the axes 
intersect the circle. 

1688 This allows us to get to 45 degrees, where the sine and cosine 
values are identical . 

1698-1788 We plot the values in all octants. The cute trick we added 
here was the TRAP statements. Even if the circle is completely 
outside the bounds of the playfield, we can PLOT it in theory, at 
least! The beauty of this method is that all of those points 
which fall within the playfield !;!.ill be plotted, no. matter how few 
or how many they are. 

1888-1848 This is the algorithm at worK. Again, it's partly magic, 
but you can sort of see how it worKs. X is always increased by 
one so we never plot the same point twice . Whether or not Y is 
dec;eased by one depends on the value of DELTA <which in turn 
depends on either X or the difference betwee~ X andY> as its sign 
changes. Those of you with a mathematical streak may enjoy 
calculating the arc-tangent of X/Y, to see how close this 
algorithm is. 

Once again, this subroutine is one you can use in your own programs. 
Try it, it works. 

Page 22 BXL ToolKit 

2.7 DISKIO 

This is another progr am which in and of itse l f is only marginally 
useful, Its main purpose is to present its primary subrout i ne <1 ines 
9800 and greater) , wh i ch you ma y use in your own programs. 

As you may or not be aware, when you a s K BASIC to do I/0 
<Input/Output> to or from most devices attached to your computer 
(including particularl y the disK drive >, what actually happens is 
quite complex. BAS I C interprets your request into a call to 
CIO (Central Input Output>, which i n turn determines what device you 
are using a nd vectors to the appropriate driver rout i ne . We assume 
here that CI 0 accesses FMS 1 the Fi 1 e Management System for the disK, 
usually called DOS <Disk Opera t ing System> . 

Finally, FMS makes a c a ll to SIO <Serial Inpu t Output>, the routine 
which does the actual physical reading and writing to the device. In 
the case of the disk drive, this invo l ves the actual transfer of a 
single sector of 128 by tes (or 256 by tes in non-1050 double density), 

Most BASIC programmers seldom--if ever--have need to read or write a 
physical disK sector. Writ i ng is dangerous, since disturbing the 
format of portions of a sector can destroy DOS ' s abilit y to manage the 
disk for you. Reading a sector , th ough, can be informative, 
especially if you are tryi ng to e i ther understand DOS or find 'lost• 
i nformation. 

However, shou 1 d you ever fee 1 the need to direct 1 y read or write 
sectors, the subroutine we prov i de he r e will do the work for you. 
Just so you can see how it wor ks , we hav e included an interactive 
program which reads selected sectors. (We tooK our own advice and 
didn't allow it to write sectors . > 

The set-up program, all lines except the subroutine starting at line 
9000, is fairly self-explanatory . I t simply asks the needed questions 
before calling the actual read-a-sec t or c ode. It then displays the 
contents of the sector in an easy to r ead hex and ATASCII dump format. 
Only a couple of points are worth making regarding thi s part. 

First , we have arbitrarily used $600 th r ough $6FF as our sector 
buffer. This is the infamous •page 6' whi c h is so often overused. If 
you would 1 ike to avoid confl i cts with other routines using page 6, 
feel free to locate the buffer anywhere else (e.g., within a 
DIMensioned string). Second , note the way we print out the dumps. 
The HEX$() function always returns a fou r -character string; but, 
because we wan t only the last two (least sign i ficant> digits, we 
assign its value to a t emporary string fr om whence we can print out 
only the last two characters . Also, we avoid pr oblems with the 
ATASCII display by prefacing every character wi th the ATASCII code for 
ESCape and ensuring that onl y seven bits o f the characters value are 
used in the display . The fo r mer mechanism forces E: <the screen 
device here) to di s play what would otherwise be cursor control codes, 
etc. The latter 'fix' ensures that RETURN ($98) ~,•on't be sent to the 
screen, a desirable feat since it overrides even the ESCape sequence. 

And now, before describing the code in the sector access routine, we 
need to examine what SIO expect s to be where when it is called. 

BXL ToolKit Page 23 



SIO and the Dtvice Control Block 
The entry point to the SIO calling routine 
SIO is called, it does not care what values 
registers (A,X, andY), but it insists that 
the Device Control Block <DCB) be properly 
DCB used in the Atari OS, and it begin;. 
decimal). Its contents are as follows: 

is located at $E459. When 
are in the var i ous CPU 
a block of memory known as 
set up. There is only one 
at location $0300 (768 

Location 

$0300 
$0301 
$0302 
$0303 

$0304 
$0306 
$0308 
$030A 

# of bytes 

I 
I 
1 
1 

2 
2 
2 
2 

Oeser i pt ion 

Physical Device ID 
Device Unit Number 
Device Command Character 
Data movement control (on ca I I ) 
SID Returns Status <on exit) 
Buffer Address 
Timeout value 
Buffer Length 
Auxill iary Information 

Some of those brief descriptions need a I ittle explanation: The 
physical device ID is something not seen in Atari's OS outside of SID. 
Atari has assigned each standard serial peripheral type a uniqu~ ID; 
disk drives have an ID of $31 ('1', not to be confused with $01). The 
device un i t number is more familiar as, for example, the drive number 
< 'n' i n ' Dn : ' > • 

The device command is again un i que to SI 0. As t<Je sha II see in the 
next section of this manual, there are many possible command 
characters, though they tend to be normal ATASCI I 1 etters . For 
example, the command to read a sector is 'R ' while write is ' W'. Note 
that for versatility disk drives support a second write command, ' P ' , 
which means write sector without verify. 

The byte at $303 has two uses . When you call SIO, it~ contain $40 
if you wish to obtain data from a device or $80 if you need to send 
data. A few device control commands need to neither read nor write 
data, so they use a value of $00 here. On return from SIO, the error 
code value (if any) is placed in this location. 

Buffer address and buffer length are sim i lar, if not identical, to 
their CIO counterparts. They simply tell SIO where the data 1s and 
how much of it there is. One unfortunate point: ATARI did not choose 
to include the data length in the packet sent out over the serial bus. 
This means that the device and SID must agree on the length of data 
being sent. <Example of the consequence: Atari's OS alt<Jays sends 
data to a printer in 40 byte hunks. Wouldn't it have been simpler if 
OS could have sent any number of bytes, from I to say 255 1 to the 
printers?) 

Finally, the auxilliary information is sent unmodified to the device, 
along with the command. Each devic~ chooses what the auxill iary info 
imp! ies, but for disK drives it is always the sector number. 

The Sector Access Routine 
Actually, now that you have seen what SIO r·equires, this subroutine 
(I ines 9000 up ) is almost self-explanatory. Once aga i n, though, a few 
things need clarifying. 

Page 24 BXL ToolKit 

9238 No real reason for th i s, except that the resultant 1 isting looKs 
so much neater. 

9248 We use ASC<"1 " ) to emphasize the fact that Atari, for some 
reason, used printable characters for most of the SIO control 
information. (As a guess, we would say that they did this to maKe 
debugging using a ser i al data analyzer easie r .) 

9278-9328 We only allow the values we said we would. Everything else 
is fatal. Not fanc y , but safe. 

9338 A I ittle sneaKy, but we have already verified that CMD equals 
either 1 or 2, so onl y a legal value is poss i ble here. 

9358 The timeout value is arbitrarily large. 

9368-9418 Again, we allow only legal density values. Note that 1050 
density-and-a-half is considered Single density by this routine. 

9428-9478 Validating the sector number. If you are using a 1050 in 
density-and-a-half mode , you obviously need change the 728 value 
to 1848, instead, 

9488-9498 This is such a neat t ri ck' Because BASIC XL allows us to 
specify that the count of parameters will not be pushed on the 
stack, we can call machine language rout i nes which do not expect 
values in registers without any need for an intermediate routine' 
So simple it's almost hard to believe. 

9588 As advertised. 

9518 Just in case the caller i s usi ng a routi n e where he wants the 
count of parameters pushed! 

Techn i cal Sidel i ght 
There are two sectors on a standard Atari DOS disK <version 2.0s and 
its derivatives , including OS/ A+ and DOS XL versions 2) which you ma y 
read or write at will, since they are "invisible" to DOS: sector 3 
and sector 720. 

Sector 720's availability has been documented before: DOS "manage s " 
sector numbers 0 to 719, but the disk drive under s tands only sectors 1 
to 720 . DOS has been "fixed" to think that sector 0 i s always in use, 
but sector 720 remai n s outside its Ken. Sector 3 is a quirk: it is 
the I ast sector of the traditional 3-sector boot process. But, for 
some reason I ost in programming 1 egend, it turns out that none of the 
disK boot code used b y DOS is present in sector 3: sectors I and 2 
contain all the boot that is needed! 

A word of warning, though: if you erase, write, modif y , or 
DOS.SYS file, sector 3 will au t omatically be rewritten 
thinks it needs to reestablish the boot code). So, if y ou 
use sector 3 for your own purposes, be sure to do so on a 
either never receives a DOS.SYS file or which has one which 
is reasonably permanent . 

BXL ToolKit 

rename the 
by DOS <it 
choose to 
disk which 

y ou feel 

Page 25 



2.8 Cct-IFIG 

This program was written in response to all of our users who 
wanted to Know how to read and/or change the configuration 
information which all true double density drives utilize, The 
configuration scheme, often called the config blocK, was 
develop~d by Percom Data Corporation , the producers of the first 
commercially available double density disK drive for Atari 
computers. Since that time, all other manufacturers except Atari 
have followed the Percom lead, Strarogely enough, the Percom 
scheme was in turn developed from the ill-fated Atari 815, a 
double density drive which never saw retailers ' shelves. 

In any case, the de~ree of double density compatibility between 
drives of rival manufacturers in the Atari market is nothing 
short of amazing. In those instances where one drive cannot read 
a diskette written by another make of drive, the problem is 
almost always related to the rotational speed of the motor 
turning the disK. Adjusting that speed can often work wonders 
with a disKette which otherw i se produces only ERROR 144. 

Of course, when Atari finally came out with their own "double 
density' drive, naturally they had to invent a new standard. Cit 
wouldn't do to accept one begun by a rival--that would be an 
insult to Atari ' s dignity,) As a result we now have three 
important disKette configurations in the Atari world, which are 
summarized in the chart below. 

Sectors B>'teS per Total 
Our Name St~le eer TracK Sector K B~tes 

Single Density 810 18 128 90 
1050 Density 1a5a 26 128 130 
Double Density Perc om 18 256 180 

All drives use 40 tracKs per disKette. In addition to those 
shown, various manufacturers have also made drives with 80 
tracKs, two heads Ci .e., 4a tracKs per s i de of the disK>, 
double-headed with Sa tracKs per side, and even 8" disKs with 
other strange and wondrous configurations. Since only OS/A+ 
version 4 (of all OSS DOS's) supports other than ordinary single 
and double density drives, we will not go into detail about these 
drives here. 

As of this writing, the following drives are known to be capable 
of understanding Percom- standard double dens ity mode: 

Indus TraK 
Astra Rana 
SWP NCT Turbo 
and, of course, Percom 

In addition, AmdeK conforms to the software standard even though 
their disKettes are 3.5" (instead of the usual 5.25"), If you 
hooK a 5.25" drive up to an AmdeK controller <e.g., as a second 
or third drive on the controller>, then its disKettes will be 
hardware compatible as well. 

Now that we have all that out of the way, maybe we ought to find 
out just what the "Percom standard" is. 

BXL ToolKit Page 26 

The Percom Standard 
For a drive to qualify for that title, we at OSS feel that it must be 
capable of al l the following: 
1. Read and write standard Atari 81a single density disKettes. 
2. Read and wri te double density disKettes with 4a tracKs, 18 sectors 

per tracK, 256 bytes per sector. Peculiarity: because of the way 
Atari's OS wants to boot, the first three sectors of a double 
density disK will hold only 128 bytes of data <excess is ignored) 
and transfer only those 128 bytes on all SIO reads and writes to 
sectors I through 3. 

3. Be able to transfer an internal configuration blocK to the host 
computer on request. 

4, Be able to accept changes in that same configuration blocK 
sufficient to at least allow the drive to be changed bacK and 
forth between single and double density, 

5. Have that configuration blocK be read/written by SIO commands 'N' 
and •o• <respectively) and consist of 12 bytes conforming to the 
following table: 

Byte # # of 
a 
1 
2 
4 
5 
6 
8 
9 

10 

Bytes 
1 
1 
2 
1 
1 
2 
1 
1 
2 

Oeser i pt ion 
Number of TracKs 
Step Rate 
# of Sectors per Track 
#of Sides <heads) 
Density <0=Single, 4=Double) 
# of Bytes per Sector 
Drive Selected? 
Serial Rate Value 
Miscellaneous <reserved) 

Once again, a little explanation of some of those items is necessary: 
First of all, note that all double byte values are not in standard 
65a2 low/high order. The reason is historical: Percooo us>es a 680x 
CPU chip in their disK controller, and all 680x chips do double byte 
worK in reverse of the 6502 manner. 

' Step Rate" is not a meaningful number from one manufacturer to 
another. Step rate 1 might mean 6 mi 11 iseconds per tracK to one 
manufacturer and 20 milliseconds each to another. 

"Number of sides• is a misnomer: it is actually the number of sides 
minus one, Thus most drives will show a zero here. Note that, in 
theory, this number could have any value. For example , a hard disK 
dr ive might show a 4 here (five heads), 

The on 1 y agreed upon va 1 ues for • Dens i ty• are a ( "FM" recording mode) 
and 4 ( "MFM") recording mode, Other values are possible for strange 
circumstances. 

Some drives can actually be turned "off-1 ine" by an appropriate value 
in "Drive selected." There seems little value in this, since they can 
only be brought bacK into the system by turning them off and bacK on 
again, 

The "Serial Rate Value" has not found any compatible acceptance. As 
originally conce ive d by Percom, it would inform the drive what baud 
rate the computer would use for high speed data transfer. So far, 
those manufacturers offering higher speed transfers have not used this 
byte in any meaningful way, 

BXL ToolKit Page 27 



Finally, the "Miscellaneous" value is not--to the best of our
Knowledge--being used by anyone for- any pur-pose. 

Now that you Know what a Config Block looks like, hot~ can you tell, 
fr-om softwar-e r-unning in the Atar-i computer-, whether- a par-ticular- disk 
dr-ive is set up for- a par-ticular- density of diskette? Equally 
impor-tant, how can you change a dr-ive's set up? If you want the 
answer-s to these questions, r-ead on. 

Reading and Wr-iting the Config Block 

As noted in Section 2.7, SIO is a means of tr-ansfer-r-ing contr-ol and/or
data be tween an A tar- i computer- and a per-i pher-a 1 device vi a th<> 
standar-d s<>r'ial bus. Although the most common oper-ations on the bus 
involve r-eading (command ' R') and wr-iting <commands ' W' or- 'P'>, other
commands ar-e cer-tainly possible. In fact, all devices ar-e r-equired to 
suppor-t a status ( 'S') command, if for- no other- r-eason than so that 
the computer- can tell whether- they exist on a given bus or- not. 

When Per-com invented their- double density disk dr-ive, they 
their- Config Block and, quite natur-ally , a pair' of commands 
such a block between the computer- and the dr-ive. 

inve-nted 
to pass 

The command to r-ead a Config Block fr-om the dr-ive into the computer-'s 
memor-y is 'N' <think of it as iNto the computer-). The command to 
wr-ite a Config Block to a dr-ive is '0' <think of it as Out c•f the 
computer-), Aside fr-om the need to use these command char-acter-s, the 
only d i ffer-ences between making an SIO call to r-ead/wr-ite a sector- and 
making one to r-ead/wr-ite a Config Block ar-e <I) the length of the 
data, which is always 12 bytes (instead of the 128 or- 256 for- a 
sector-) and <2) the auxiliar-y bytes <used for- sector- number-) have no 
effect. 

For- example, then, to r-ead a configur-ation block fr-om dr· ive into a 
buffer- at location $600 <page 6) you would need to set up the 
following values in the DCB at the locations shown: 

$300 $31 Unit ID 
$301 $01 Dr-ive 1 
$302 $4E ' N', r-ead Config Block 
$303 $40 see Section 2.7 
$304 $00 

$06 $600, LSB fir-st, buffer- addr-ess 
$306 $0F 

$00 15, an ar-bitr-ar-y timeout value 
$308 $0C 

$00 12 1 length of the Config Block 

And that's it! A JSR <or- USR> to location $E459 will r-ead that block 
r-ight into memor-y. If, of cour-se, the dr-ive is capable of 
r-eading/wr-iting Config Blocks. Atar-i dr-ives, for- example, will r-etur-n 
an er-r-or- 138 <NAK>, because they do not under-stand the command. A 
command given to a dr-ive not on the ser-ial bus will r-esult in a 
time-out er-r-or-. 

Page 28 BXL ToolKit 

Our- Pr-ogr-am 
The Ca-IFIG.BXL pr-ogr-am on your- ToolK i t d i sk is ver-y long and seemingly 
comp l ex. Actually, the r-eal wor-K is don e in a couple of simple 
subr-outines and the r-est of the pr-ogr-am is simpl y ther-e to conver-t the 
r-aw number-s in the Config Block into r-eadable i nfor-mation and/ or- to 
all ow the user- to easi 1 y change infor-mat i on in th.. block. One" 
again, then, we will r-esor-t to a descr-iption of only those par-ts of a 
pr-ogr-am which _we don ' t feel ar-e self-explanator-y, 

1888 - 1288 Mostly just simple constants. Note that we will r-ead the 
conf i gur-ation table into the str-ing , Configtable$, r-ather- than 
using valuable pa ge six memor- y . Also note in 1 ine 1200 the way we 
pr-oduce scr-een contr-ol char-acter-s whic h will 1 ist on any pr-inter-. 

1248 This allows us to call s ystem r-outines via USRC) dir-ectly, See 
section 2.7. 

1278-1298 We wi 11 discuss these DATA statements 1 ater . For- now, no.te 
that each 1 ine has 12 values <funny how that matches the siz .. of a 
Config Block) , Negative values indicate bytes we won't change. 

1338 1 1928 Look at the size of this endless loop. We think that , in 
a well str-uctur-ed pr-ogr-am, a l oop r-e a lly shouldn't get any bigger-. 

1348 Two ways to use scr-een contr-ols in BASIC XL , thanks to the fact 
that you can PUT to channel zero. 

1438 This i s one way to ensur-e that a ll t he configur-ation games we 
ar-e playing her-e wi 11 take e f fect. When you chang.. a dr-ive's 
configur-ation, DOS needs to Know about it. Usuall y , one does this 
by calling a r-outine named DOSINI, wh i ch will retur-n to you after 
r-eestablishing DOS's inter-nal dr-ive configur-ation t able. If you 
don't need the r-outine t o r-etur-n to you, simply for-ce a s ystem 
r-eset by a jump <of any Kind) to $E474. This is 
exactly equivalent to hitting the RESET Ke y . 

1498-1588 See, we can use our- Sl 0 ca 1 1 i ng r-outine to do more than 
just r- ead/wr-ite Config Blocks. In this cas e, we simply do a dr-ive 
status call. 

1688-1738 The status was okay, so r-ead the Config Block. Hmm ? Can ' t 
do it? Why did you buy an Atar-i dr-ive ? 

1758-1898 Her-e is wher-e we display and then (optional l y) change the 
Config Block in a form r-eadable by humans. Note how 1 ittle of the 
code i s act u a 1 1 y he" e ; i t i s a 1 most a 1 1 i n su br- out i n e s. 

1948-2228 Once again, we have a Ke yboar-d access r-outine wh i ch avoids 
the vagar-ies of the INPUT statement <see PICO.BXL for- a fully 
commented example of this same thing) , In this case, we want only 
number-s in the pr-oper- r-ange. It' s easy i f you step thr-ough it . 

BXL ToolKit Page 29 



2238-2598 Remember what we said about a handful of subroutines which 
do the real work? Here's one of them. If you followed our 
discussion of the meaning of each byte of the configuration table 
(above>, you shouldn't have any trouble following this code. 
That's primarily thanks to the fact that all the pertinent values 
have already been placed in variables with meaningful names by ••• 

2688-2758 A very important subroutine. This takes the bytes .of the 
Config BlocK and converts them as appropriate. Note how we can 
nQi use the DPEEK<> function, thanKs to the fact that the double 
byte values are "backwards" compared to standard 6502 practice. 

2768-2918 The opposite of the previous routine. Take the values in 
the variables and stu~f them into the bytes of the Config BlocK. 
Again, note that we can not use DPOKE. 

2928-3128 We really shouldn't need to explain this routine, since it 
is· virtually identical to its counterpart in DISKIO, des.cr-ibed in 
Section 2.7. 

3138-3388 Here's where we allow you to play games, if you wish. We 
give you a menu. If you choose one of the standard configurations 
<Single, 1050, or Double Density>, then the appropriate 
RESTORE allows us to read the standard configuration information 
from our DATA statements. Once again, we note that some bytes are 
never changed: Step Rate, Acia, and the Miscellany locations. 

3398-3988 Anything goes. You can tell the disK drive's controller 
that it's connected to a drive with 130 tracks, 204 bytes per 
sector, 12 heads, or whatever. Some controllers will believe >'OU 

and try to do as you asK. We sincerely hope that you have a blanK 
or trash diskette in the drive when you give such commands. Other 
drives will only accept a limited number of configurations, 
ignoring much of the information you send them. For example, 
Indus drives allow only the three standard densities. 

Note how we re-read the Config Block after writing. This is to 
ensure that we haven ' t lost control of the drive. <With some 
drives, you can de-select them, and they will cease responding to 
anything.> 

That's about it. If you are confused, try playing with the program 
with a copy of a listing in front of you. It should become a bit 
clearer. 

Page 30 BXL ToolKit 

2.9 PH~E 

PH~E.BXL is a fairly large but well or·ganized program which is a 
simp 1 e but very e f f i c i en t ph one number 1 i s t organ i z e r • I t w i 1 1 
maintain a 1 ist of first and last names and phone numbers, Keeping the 
1 ist "sorted" by last name. Thanks to the "sort" scheme adopted, it 
finds a phone number in less than a second, no matter how many names 
there are in the 1 ist, when given a last name to worK with. 

Its other advantage is that it i s easi 1 y changed and expanded to 
provide, for example, a mailing 1 ist program. Or perhaps a 1 ist of 
booKs in your 1 ibrary, The possibilities are 1 imited mostly by your 
willingness to tackle its code and bend it to your purposes. 

Again, this program has been provided in response to numerous requests 
for a complete explanation of how to do random-access file I/0 under 
DOS 2. We hope that this program and its description will satisfy 
most of these requests. Before exploring the program, though, there 
are several technical considerations which you may enjoy considering. 
If you get lost in all the technical stuff, skip down to the program 
description and come back and try to understand the rest 1 ater. (It 
~worth understanding.> 

Seauential and Other Files 
Perhaps the biggest flaw in Atari DOS 2.0s (and all its derivatives, 
including OS/A+ and DOS XL version 2.x) is in the structure of the 
files it creates. Atari DOS 2 files are classified as "linked 
sequential" types. That means, each sector in the file points to 
(links to> then next sector. 

Sequential files have a few advantages: <1) File managers which 
handle sequential files are generally simpler and smaller than those 
for other file types. <2> If a disk is partially "clobbered," you can 
ofhn st i 11 recover much of its data when 1 inked sequential f i 1 es are 
used. This is true even if the disK's directory is damaged, a 
generally fatal condition in other file systems. (3) File manager 
disK space overhead is reasonably low. 

Unfortunately, there are also several major disadvantages: <1> To 
erase a 1 inked sequential file, the file manager mus~ read through 
each sector of the file, a very time-consuming process. As disK and 
file sizes get larger, this become a major factor in disk I/0 time. 
<2> To locate a particular record in a linked sequential file, you 
generally have no choice but to start at the beginning of the file and 
read until you come to it. (3) Similarly, to append to a 1 inked 
sequential f i le, you may have to read the entire file. 

Now, truthfully, file manager types don't matter if you are using a 
DOS to do nothing but save programs, letters, and other things where 
you always load all the information into memory before working on it. 
You're actually using the disk as a slightly smart tape drive in these 
circumstances. Where file structure becomes important is when you 
need to randomly use bits and pieces of a hunk of data (a file> too 
big to fit in memory. 

The best of all worlds would be a DOS smart enough that you could say 
something 1 ike this: "Give me the address of John Doe . " Generally, 
the computer world considers convenience 1 ike this beyond the scope of 
DOS, relegating it to the world of Data Base Managers and their ilk. 

BXL ToolKit Page 31 



The next step down is usually being able to say, "Give me the 433rd 
record in that file.• With most file organization schemes, this is a 
trivial tasK if the records are all the same length (and about as hard 
as the first request if they are not). 

How to Use NOTE and POINT to Advantage 
But what about those 1 inked sequential files we are s.tucK with? To 
get to the 433rd record, we have to read through the first 432! And 
we would be stucK here were it not for the fact that Atari DOS 
does provide one added feature: it allows you to find out just 
where on the disk you are as you read or write a file. The magic 
statement is NOTE. As you may remember from your BASIC XL reference 
manual, its format is 

NOTE W filenumber, avar1, avar2 
where the first avar gets the sector number of the current position 
within the file and the second avar gets the byte number within that 
sector. 

Then, 
record 
marKer 
NOTE>. 

if you once read a file and find out <via NOTE> where its 433rd 
begins, you can later asK DOS to change its file position 

to that s.ame location <via POINT, which has the same format as 
Voila, you are then able to read or re-write the record. 

How, you may wonder, is this different from those DOS systems which 
all ow you direct access to any byte <and thus record) in a f i 1 e? 
Don't they allow you to POINT to any disk location, also? Not really. 
Atari DOS allows only what we call Absolute access. That means that 
the numbers you use with POINT describe a physical location on the 
disKette, Other DOS types allow you to POINT to a location which is 
relative to the beginning of the file. <Example: To point to the 
22nd record when each record has 20 b1·te:,, you would simply POINT to 
relative byte number 4413, if records are numbered starting at zero,) 

With Atari DOS, Knowing that record number 22 starts at sector 3131, 
byte 115, doesn't tell you anything about where record number 23 
starts <unless record 22 is shorter than 10 bytes>, because sectors 
are not always allocated to a file in order. (Instead, as a file is 
built it is always given the next unused sector.) To maKe matters 
worse, when a file is appended to, sector:, with fewer than 125 bytes 
(253 bytes in double density) may be left in it. 

The only real solution, then, is to build a table of pointers, one per 
record. This technique has been described often before <among other 
places, in Atari's DOS 2.13s Reference Manual), In most such 
discussions, what is built is a numeric array (or arrays) of pointers 
to records by number, A segment of a typical program is shown: 

9513 NOTE #3, Sector, Byte 
9613 Sector(Recordnumberl = Sector 
970 Byte(Recordnumber) = Byte 

This is a lot of overhead: 12 bytes per record. 

Let us sidetracK for a moment, Consider this: when you use NOTE, you 
are given a sector number and a byte number. But the maximum sector 
number is 720 and the maximum byte number is 253 <double density), so 
we can store the sector number in as I ittle as two bytes (remember, a 
double byte location can hold values from 0 to 65535) and the byte 
number in a single byte. Total: three bytes. Again, a program 
fragment to implement this scheme is shown here: 

Page 32 BXL ToolKit 

930 NOTE #3, Sector, Byte 
940 Temp=Recordnumber*3+1 
950 Shi=Int<Sector/256) Slow=Sector&255 
960 Pointer$(Temp,Temp+2l=Chr$(Slowl,Chr$<Shil ,Chr$(8ytel 

LooK at the savings when compared to the numeric arrays! But an 
additional advantage of using a string to hold our pointers is that it 
can hold any other string as well, Why not " record's "name"? 

If you are using 100 byte records, "file with 500 records needs only 
1500 bytes worth of pointers, which cd.n easily be held in memory, 
Even if you add 'record names" (as PHO'-lE.BXL doe:,), the memory 
requirement for a set of pointers i ·3 quite small compared to the 
amount of disK space we can access with them. 

And, while you could re-build the pointers each time you RLN a 
program, isn't it just as easy to Keep them in another file on the 
disk? Yes! And all of this is made so much easier thanks to some 
stateml'nts in BASIC XL. There is, however, a necessary cd.veat: 
Recall that the sector and byte n•Jmbers. given you by NOTE are 
absolute. If you copy the data file to another disk, your set of 
pointers is no longer valid. You thus have two choices: rebuild the 
pointers after copying Hoe data file or duplicd.te the entire disk 
instead <which preserves everything on the disK), 

The Concept Behind PHO'-lE.BXL. alias BlackBooK 
It's Kind of funny that, becd.use other DOS systems support rd.ndom 
access files implicitly, you seldom :,ee program:, such as this 
published for them. And what's so special about this program? In it 
we give you a complete set of routines for performing Whd.t is Known as 
an • Indexed' or • Keyed Sequent i a 1 Access He thod". Remember how we 
said it would be neat to be able to d.Ccess John Doe's account 
information using just his name? Remember how we said this was in the 
domain of Data Base systems? Guess what. PHO'-lE.BXL (or, as we 
prefer, "BlackBooK") is actually a mini-Data Base, All in all, we 
have turned a DOS I imitation into a helpful situation. 

<Sidelight: Actually, there is no reason you couldn't use all the 
techniques of this program under any DOS. In fact, most ru.dom access 
DOS systems would maKe some of the steps in our process--such as 
"prebuilding" all data files--unnecessary,) 

BlacKBooK always worKs with its files in pairs: a data file and an 
index file, The structures of the files ar~ shown below: 

BlacKBooK Data Files 
Each record consists of three fields. Each field is a string of up to 
24 characters which is written to the f1le via BASIC XL's 
RPUT statement. Since RPUT uses five bytes of overhead per str·ing <as 
a safety measure--see your reference md.nuall, the total number oi 
bytes per record is 87 (24+5 is 29; 3 times 29 is 87), If you were to 
looK at a record byte by byte, it would look liKe this: 

BXL ToolKit Page 33 



Record Structure in BlacKBooK Data File 

Record: 
Fi <>I d I: 

Byte 
Bytes 
Bytes 
Bytes 

Field 2: 
Byte 
Bytes 
Byt<>s 
Bytes 

Field 3: 
Byh 
Bytes 
Bytes 
Bytes 

I 
2-3 
4-5 
6-29 

30 
31-32 
33-34 
35-58 

59 
60-61 
62-63 
64-87 

String Fi<>ld indicator 
Dimension of String Field 
Length of String Field 
Field data, as a string 

String Field indicator 
Dim<>nsion of String Field 
Length of String Field 
Field data, as a string 

String Field indicator 
Dimension of String Field 
Length of String Field 
Field data , as a string 

BlacKBooK Index Files 
Aside from the actual Key ( index> entries, there are two pieces of 
information needed when maintaining a Keyed file as BlacKBooK does: 
(I) We must Know how many records the file is capable of holding. 
This number--called HAXREC--is established when the empty file is 
pre-built. <2> Out of those MAXREC records, how many are currently in 
use? NUMREC tells us. 

In BlacKBooK, MAXREC and NUMREC are placed first in the index file via 
RPUT. They are directly followed by all the bytes of the index 
string. Since MAXREC describes the size of this :.tring, we chose to 
write/read it with BPUT. (There is another advantage to using BPUT 
here, as we shall see later,) The byte-by-byte form of an index file 
is thus as follows: 

Byte I Numeric field indicator 
B>·tes 2-7 t·1AXREC, a number 
Byte 8 Numeric fi<'ld indicator 
Bytes 9-14 NUMREC, a number 
Bytes 15-? Th<' index string 

Sidelight: the reasons we set up the files for MAXREC records, instead 
of just adding space to the file as we need it, are twofold and 
related: <I> You can only use POINT on a file which has been OPENed 
in update mode. (2) You can ' t append to a file when you are in update 
mode. 

The Index String 
The proper structure to the index string is the secret to not only the 
success but also the speed of this program. Rather than trying to 
explain it as we describe the worKings of the program, we will present 
it in some detail here. 

The string actually consists of MAXREC "elements", just as if it were 
an array, In BlackBook, we have chosen to use the first four 
characters of each person's last name as our key value. Th i s is 
arbitrary and could, without a lot of trouble, be changed. <In fact 
its size is dependent on the value of the Indexsize variable.) 

Page 34 BXL ToolKit 

In addition to the 4 character key, there are 4 bytes of overhead. 
Three of them we Know about: two bytes f or the sector number, one byte 
for the byte number. The l a st byte is used as a Key separator and 
always has a value of 255 ($FF>. At this point, you may be wondering 
why we w<>nt to the trouble of using a long string <with its 
complicated subfield addressing) in favor of a string array <where we 
could get the entire Key pertinent to a record with a simple record 
number). One main reason : BASIC XL ' s FIND<> function worKs only on a 
single string <not an array) , and we wanted to use it for speed. 

But using FIND<> has its own pr oblem. Suppose that, just by 
coincidence, the s ector and byte number characters <which is what they 
have become, once they are in the str i ng > happen to have values which 
maKe them 1 ooK 1 iKe characters in a key name we are searching for with 
FIND<>, causing the function to return a false match. We avoid the 
problem through the mechanism of th e $FF byte field separators: When 
we search for a Key name with FIND<>, the search string is preceded by 
a byte · of $FF. A match is thus guaranteed to start on a Key separator 
boundary . <We go further for safety : we separate the sector number 
into high and low bytes by dividing by 128, instead of the more 
conventional 256. Th i s means that the s e ctor number and byte number 
characters can never have a value of 255 either. Overkill? Perhaps, 
but why not when it costs us nothing. ) 

Got all that? If not, don ' t worry about it . If the description of 
the program still doesn't make it clear, it doesn't matter. If you 
follow our lead, the scheme will always work. 

Program Description : PHONE . BXL. BlackBook 
If you 1 ist th i s program to a printer ( and we : .incerely hope you do 
before trying to follow th i s description), you will find that it will 
take over 8 pages of paper. Obviously, there is no way we can give 
you a line-by-line descr i ption of such a program. Instead, ~o.•e can 
only point out the function s of various subroutines, etc. Of 
necessity, some of the detail about program function , etc., given in 
other descriptions will be missing here. We hope and exp ect that your 
programming skills will have been sharpened enough by now to allow you 
to worK through the details. 

As with some of our other programs, we will describe this program from 
the •top down • . That is, we will present i t in roughly execution 
order rather than 1 isting order. 

1888-1338 The usual constants, both strings and numbers, Note how we 
have given •names• to commonly used small numbers such as zero and 
one. This saves memory space, not time. 

1348-1438 If you adapt BlackBook to your own purposes, you can add 
data fields here and/or change the sizes of the ones given. If 
you do so, be sure to adjust Recsize, the number of bytes in each 
record. If you choose to change the length of the portion of a 
field used as the key, change Indexsize at your own risk. In 
theory, everything in the program Keys off this variable, but we 
have never tested the theory. 

1548-1558 One advantage of using BGET with the index string is that 
we do not need to make the DIHensin of Index$ match the size in 
the file, as we would if we used RGET. This maKes building a file 
somewhat easier also, as we shall see. 

BXLToolKit Page 35 



1578-1718 We have given all major subroutines names in this program. 
This maKes renumbering and reorganizing a bit more difficult, but 
pays off in much more readable code. 

1728-1958 Did we mention that BlacKBooK will even dial your phone for 
you? Here, we're just setting up an array of values for later use 
with SO~D. 

2888-2298 This monstrous program is all driven from these few 1 ines. 
All we do is present a menu and accept only one of five choices. 
If you are using BlacKBooK 1 you have to Create a file before you 
can do anything else, so we will now tracK what happens when you 
asK for that main menu option. 

15888-15288 This major routine figures out how big a file you can 
have, allows you to specify any size up to that maximum, maK~>s you 
choose a name for the file, and creates an empty data file and 
corresponding index. Such a lot of worK for so 1 ittle code! It's 
done with mirrors, otherwise called subroutines. 

6988-7868 The Calcsize routine. It figures out how big a data file 
is possible using a tricK or two we hadn't seen before. First, it 
creates a trash file containing 200 bytes. It does this so that 
it can read the sector count for this file in the directory: 290 
bytes is guaranteed to require one sector in double density, two 
sectors in single density. Then, when it finds out how many free 
sectors there are, it Knows how many free bytes there are on the 
disK. From this count of free bytes it estimates the maximum 
number of records by dividing by the number of bytes used by each 
record, which is in turn the sum of the record size and the index 
size. Finally, we never allow ourselves more records than we have 
room to point to in the index string. 

5888-5268 Our Getl ine routine is used to avoid the INPUT state.ment. 
We avoid INPUT because we don't want the user moving the cursor 
all over the screen, erasing the screen, etc. Either the ESCape 
Key or the RETURN Key terminate a 1 ine here <mainly because they 
have the same value if you ignore the upper bit). The only 
editing Key we allow is Back Space, and then only to the beginning 
of the field. We even provide for the use of a flag which changes 
lower case into upper case, used by the Getfilenames routine to 
avoid lower case in file names. Finally, we will only get as many 
characters as the caller asKs for <the contents of Haxline on 
entry). 

5498-5489 Getfilenames is onlY a little bit smart. The user should 
not type the file name extension, and typing the drive specifier 
is optioroal (01: is provided automatically if the specifier is 
omitted). Two names are returned, aliKe except for the 
extensions, DBF and DBX <Data Base File and indeX>. 

7588-7689 Most of the worK in Create is done by this routine, 
Hakeindex. Since this is a very important routine, we will 
examine it in some detail. Exception: As this routine worKs, it 
Keeps the user informed of where it is. The code for this is 
fairly obvious and will not be discussed. 

Pag• 36 BXL ToolKit 

We first set up the data fields wi th some filler bytes ($FF, in 
fact>. After performing a NOTE (1 ine 7570) to find out where the 
beginning of the current record is, we write the filler data to 
the data file <1 ine 7610). As we did that, we bui 1 t a Key string. 
Note its structure <1 ine 7590>: f i rst byte is always $FF <255) 1 

followed by four bytes which match the first four characters in 
the last name of the person being indexed, followed by the NOTEd 
information. We lengthen the index string <1 ine 7600) by simply 
tacking the Key we built onto the end of it . 

We perform all those steps for each record in · the f i 1 e <the 
FOR loop) . When all data records have been written out, we write 
out the new index file <1 ines 7640-7660). Note the presence of 
the checK in 1 ine 7630: · if th e length of the index str i ng doesn't 
correspond to the number of blanK records which were set up, 
something went disas trously wrong. When writing your own code, 
checks liK<t> this ar<t> a good i de a ( but see out final comments 
also). 

After creating a blanK BlacKBooK file, you would presumably want to 
put some data in it . In this program, one main routine is used for 
all operations on the data in the file: t he Edit operations start at 
line 10000. 

18888-18318 Once again , a major routine devolves to a small loop with 
many subroutine calls. And once again its primary purpose is to 
present you with a menu of selections and make you choose one. In 
the case of Ed i t 1 i t f i r s t asKs you a quest i on and does a 1 i t t 1 e 
set up. 

7288-7329 Even though BlackBoo K files on only the first drive are 
listed for you, the Showfiles routine will accept a choice of a 
pair of files from any on-1 ine drive. 

7489-7468 Getindexinfo is a simple routine: it opens the index file, 
reads the count of available and in-use records , and gets the 
index string i n place. 

5789-5859 By never using zero as a real record number, we make 
Showrec ' s job easy: If i t sees us try i ng to display record number 
zero, it displays blanks instead. Note that the record number 
referred to is actually an 8 byte Ke y entry in the index string, 
which may bear no relationship to the record's position within the 
data f i le. If you modifiy BlackBooK to add fields, this routine 
must change to fit; but the POSITION and PRINT statements are easy 
to modify. To get the data to be displayed, this r outine in turn 
calls ••• 

6388-6348 Getbykey simply gets the various fields of the data record 
after requesting a POINT to the right spot in the file . Again, 
you could add data fields in each record quite easily in this 
routine, simply by extending the RGET statement. 

6889-6978 Even deeper in the GOSUB 
information about sector and 
proper spot in the data file. 

BXL Too l Kit 

queue, Pointbykey extracts the 
byte from KEY$ and POINTs to the 



18248-18298 Finally, bacK in the Edit menu, we demonstrate a neat way 
of maKing menu choices using the FIND<> function. The nice part 
about it is that an invalid choice provides an Option value of 
zero. Valid choices are vectored to the appropriate routine. For 
the sub-commands of Edit, we chose to use 1 ine numbers, primarily 
so we could renumber this section of the program more easily, 
Let's looK at some of those choices in a logical order. 

11118-11298 ·Again, on the assumption that we are setting up a new 
BlacKBooK file, we start by adding records. Since the 
Editmenu routine at lines 6688 through 6770 simply sets up a set 
of blanK fields to be filled in, we won't describe it further 
here, The Getline routine does yeoman duty again, ensuring that 
we get nice neat data, ~onfined to the proper areas of the screen. 

Before bumping the count of records <as well as the current record 
number>, we call two routines which do the bulK of our worK. 
Observe how, in 1 ine 11250, we built up KEY$. By now, you Know 
that an index string entry consists of a separator byte, four 
bytes of the record's name, and three bytes of NOTE info. But 
looK where that NOTE info comes from here: from the last possible 
index entry in the index string! As you follow the next 
subroutine, you will see why. 

7888-7938 This is potentially the slowest part of BlacKBooK when you 
are adding to a large file, Using a FOR loop, we search through 
the index string looKing for a record whose name is equal to or 
greater than the one in KEY$. Because we never try to insert into 
a fu 11 index, we are guaranteed to find one such name: blanK 
records were given a name of all $FF characters! 

When we find the proper position to insert our new entry, we must 
maKe room. We leave it to you to worK out how beautifully the 
HOVE of 1 ine 7908 worKs <though we will remind you that a negative 
length forces an insertion-type move>. The special case shown is 
only used if we are putting the last possible name in and it 
happens to fall at the end of the 1 ist. 

Do you see what we have done? If this was the first real name 
being inserhd into all the dummy names in the index string, its 8 
bytes find their way to the beginning of the string. But looK 
what data record we will use: the last possible one. So what? 
That's whY we are using an indexed file, right? 

6368-6488 SpeaKing of which, we now need to PutbyKey 
record on the disK. As with Getbykey, 
Pointbykey routine set up the POINT for us and 
RPUT the data fields to the disk. It would be easy 
data fields here, to correspond to Getbykey. 

to get the data 
we let the 
then we simply 
to add more 

BacK in the Edit menu: Once you have added some records, you may want 
to go forward or bacKward in the file looKing at what you have done. 
Or maybe you want to find a particular name. 

BXL ToolKit 

18338-19459 As long as we're still within the bounds of valid data, 
we let the user go to the Next or Last <previous) name 
(alphabetically) in the file. Simple , isn't it? ThanKs to the 
fact that the index string is already sorted in alphabetical 
order. <We 11 , that's rea 11 y ATASCI I order, but for names the 
difference is moot, unless some use upper case and some use lower 
case.> Notice that these routines do not need to display any 
data, sinc.e the main Edit menu loop does that for them. 

18478-18598 This is why we went to all the trouble to set up that 
monstrous index string! See how we build our search name in 1 ine 
18540, with a leading $FF byte. Then all the worK is done for us 
in 1 ine 10550: we simply FIND the first match' Very fast, very 
efficient. Again, by ·calculating REC as a function of the 
position we found the name in the index string, we can let the 
Edit menu loop display the data for us. 

And the ·only other things this program allows you to do with your data 
is dial a phone number or erase a name from the 1 ist. 

19699-19959 This only worKs on touch-tone phone systems, but it does 
worK. If you hold your phone's microphone up to your computer's 
speaKer it is actually possible to let the computer dial for you, 
Some other things to note: A 'P' in a phone number indicates a 
short pause (some long distance companies ne-ed such pauses during 
dialing), You may easily adjust the duration of the pause by 
changing 1 ine 10780. A 'W' causes the dialer to wait until you 
give it the go-ahead. Once again, our friend the FIND<> function 
passes through only those values we actually want to handle, 

The tone generator uses the special 16-bit resolution mode of the 
Atari sound generators to produce frequencies which are more 
accurate in pitch than those ava i 1 able with the SOLND s t a temer1 t. 
The subject is too complex for further explanation he~e. Many 
graphic and sound booKs for the Atari explore this fairly fully. 

18969-11899 In most ways, the Erase a Record routine is simply the 
reverse of the ADO routine. We first remove the record pointer 
from the index string by simply squeezing up the string Clines 
11020 and 11030), But, because we don't want to lose the 
NOTE information in that pointer, we fill it in with the standard 
dummy name (all $FF characters> and tacK it onto the end of the 
index string <1 ine 11058>. We marK the record as deleted in the 
data file by zapping just the last character of its PHONE$ string 
(11860 and 11078>. Naturally, the number of records is now one 
less than it was before. 

Aside from the various edit options, the Edit menu provides an exit 
choice and a hidden choice <note the presence of the underline 
character in 1 i ne 10248). 

11399-11379 To exit from the Edit menu, we simply close the data file 
and write out a new version of the index file. The next time we 
get to the Edit menu, reading the index file will put us right 
bacK where we left off. 

9998-9949 In the process of developing this program, we had several 
occasions to doubt our sanity. Loops would straighten out. GOTOs 
wouldn't. Data would be lost. And the index string would get 

BXLToolKit Page 39 



mangled unmercifully. To help view what was going on, we would 
often write small routines to display certain pieces of data. For 
example, we built in this debug routine, which simply displays the 
current contents of the in dex string in a reasonably readable 
manner. It then waits for a Keypress before going back to the 
Edit menu. 

Now, truthfu 11 y, there is 
version of the program. The 
moves smoothly, and loops 
might be educational for you 
process: carefully and with 

no need for this routine in the final 
indexing bugs seem to be gone, data 
keep on looping. But we thought it 

to see how we approach the debug 
a lot of extra displays. 

Well, after we've cre ated a BlacKBook file and added several records, 
we may notice that the file is getting full. Time to expand the file 
and make room for more phone numbers, right? Right. 

28888-28278 Actually, this Increase file size routine is almost 
identical with the Create a BlackBooK file routine. The major 
difference is that we use the information about file space left on 
the disk (and the user ' s response to our query) to append a chunK 
of file to our existing. The Hakeindex routine, discussed above, 
does all the work. Now you may notice why Startrec and Haxrec and 
Rec were all set up before the call to HaKeindex in ADD. By doing 
so, we need only use other appropriate values to proper! Y call the 
same routine here in Increase. 

The only other possibility provided for here is the case of the 
clobbered index file. There are four ways the index file could become 
invalid: (1) Power to the computer goes off before the file is Closed 
or the disK is somehow damaged. <2> The program crashes with an 
error. <3> You erase some records you didn't mean to. <4> You 
COPY the data file to another disk so that the NOTE pointers are no 
longer valid. 

No matter what the cause, 
ills. In the case of 
recover them <so long as 
accidental ERASE). 

the Fix/Recreate Index routine will cur~ all 
deleted records, it gives you a chance to 

you didn't ADD a name after doing the 

25888-25118 Again, we show the user what BlackBook files are on the 
disK and allow him/her to choose one. We prepare the screen for 
some messages and fill the index string with $FF characters. 

25138, 25548 Don't you wish BASIC XL had a function which would 
detect the end of a file? Well, it doesn't, but the PEEK<> which 
controls this loop functions as one Just fine. 

25148-25188 We simply figure out where we 
file, get the record from disk <1 ine 25160 
you add more fields to each record>, and 
consisting of the separator byte, the 
NOTE info. 

are at in the data base 
would have to change if 

create a valid key, 
record name, and the 

25198-25318 Remember how we zapped the last b>·te of the PHtt-IE$ string 
when we erased a record? Here's where that pays off. If such a 
record is detected, FIX gives you a chance to •un-delete • it. 

Page 48 BXL ToolKit 

25328-25418 If the user wants to un-delete the record, we change that 
magic character in PHtt-IE$ to a space. If not, we change all the 
f i e 1 ds ( and the record' s n arne i n the i n de x s t r i n g) to f i 1 1 e r 
bytes. In any case, we write out the modified record. Lines 
25390 and 25400 are necessary to avoid a false end-of-file 
indicator <produced because of a bug in DOS> when writing the last 
record. 

25438-25518 This part's almost easy: If the record found is a filler 
<blank) record, we simply add its pointer info to the end of the 
index string . If the found record is a real one, we have to put 
its name in the proper place in the index string. Look at that! 
A call to our old friend, InsertKey 1 Just exactly as if we were 
adding a new record. · 

25528-25538 Since we have to count the number of records in the file 
anyway, why not give the user something to watch as we worK. 

25558-25688 Funny how this code resembles that at the end of the Edit 
Menu exit and the end of the Makeindex routine. Maybe we need 
another subroutine just to write out the completed index file. 

There will be a quiz tomorrow. 

Whew! Did you get through all that? If so, then you are ready to 
convert BlacKBooK to your own needs . 

Several fairly simple improvements would increase the usability and 
safety of the program dramatically. We leave them as exercises for 
you: 

1. There's not a single TRAP in this entire hodgepodge. Hay we 
suggest TRAPping at least the more dangerous sections, such as 
where we create file, etc , 

2. 

3. 

4. 

:s. 

The Edit Menu is missing one obvious and important choice: 
(edit) an existing record. No good reason for the omission 
than the fact that it seemed unnecessary in a demo program. 

Change 
otht>r 

Cut the program up into pieces, chaining between them via RUN, so 
that the index string can be b igger. 

Use a larger Kt>y. Change the file to a mailing 1 ist file <add 
field info in all the places we noted> and use the zip code plus 
first two letters of last name as the record name for the indt>X 
string. 

Use this basic program for something wt> didn't thinK of. Tell us 
about your efforts. 

BXL ToolKit Page 41 



2, 1 8 MAKEAUTO 

We have received many requests ior this program. Its purpose is quite 
simple: it creates an AUTORUN.SYS file for use with BASIC XL. More 
importantly, it allows you to speciiy one or more commands or 
statements which BASIC XL will execute on power-up. 

We will not explain this program on a line-by-line basis, because the 
bulk of the program is so simple. It simply allows you to type in one 
1 ine aiter another until you either enter a blank 1 ine <RETURN only) 
or you run out oi room (you are allowed up to 159 characters, 
including RETURNs). It then writes out a new AUTORUN.SYS file by (I) 
reading the machine 1 anguage program, inc 1 ud i ng the run address, irorro 
some hex data statements and then (2) writing out your commands in a 
format acceptable to DOS's binary file loader. 

Perhaps the only other thing worth mentioning is the iact that your 
commands are written out backwards <the FOR loop of 1 ines 770 to 790) 
to make the job oi the machine language program easier. When 
AUTORUN.SYS is loaded by DOS, your backward commands will start at 
location $0601, preceded by a byte containing their total length less 
one (line 750). Again, this is all to make the machine language 
program smaller and simpler. 

Normally, 
program. 

we use AUTORUN.SYS to just cause BASIC XL to RUN our menu 
In other words, we respond to this program's prompt with 

RUN "D:HENU.BXL" 

However, you may choose any commands you wish. For example, suppose 
you had a very large program you wished to run on power up, but you 
want the user t·o know that the 1 oad i ng de 1 ay was norma 1 • There are 
two solutions to that: (1) Have AUTORUN.SYS run a small program which 
simply prints a "please wait" message and then chains to the larger 
program. (2) Let AUTORUN.SYS do all the work, by answering its 
prompts 1 ik~ this: 

GRAPHICS 18:POSITION 4,11 
PRINT*6;"please wait" 
RUN "D:HYPROG.BXL" 

Why not? About the onlY statements you can't use via AUTORUN.SYS are 
those which might affect page six (e.g., POKEs> or the device handler 
table (at $031A), Try it out yourseli. 

BXL ToolKit 

CHAPTER 3 

BASIC XL Extended Statements 

3.1 How to Install the Extended Statements 

Because BASIC is usua 11 y an interpreted 1 anguage, it is no more 
flexible than the keywords with which it 1s endowed. When we at OSS 
des1gned BASIC XL, we wanted a true interpretive BASIC with a reason
able amount of power and speed . However, we also wanted a degree of 
flex1bi I 1ty unmatched in most versions of the language. Hence the 
ability to add statements to the language was Included, even though no 
such "extended" statements existed. Until now! 

This release of The BASIC XL ToolKit Includes SIX new extended 
statements for you to use in your own programs. The statements added 
fa 11 in to two groups: <I> procedure ca 1 Is and ( 2) str. ng array 
sorting. Before describing the new statements (in sections 3.3 and 
3.4, respectively>, we need to discuss how these extended statements 
are added to BASIC XL. 

If you request a directory of the reverse ("flip") side of your BASIC 
XL ToolKit disk <via BASIC XL's DIR command), you will find the f1le 

EXTEND. C!l1 
and it is this file which contains the code which Implements the 
extended statements. 

There are several ways to begin using the extended statements. The 
easiest way is to simply dupl 1cate that flip side of your ToolKit d1sk 
and boot the resultant copy. <Again, please don ' t use your original 
disk for anything other than making duplicates. Thank you.> 

The reason booting that f lip side works is that, in addition to 
EXTEND.C!l1, we have provided you with an AUTORUN.SYS program which 
i ncorporates poth the extensions <identical code to that in 
EXTEND,CQH) An£ a BASIC XL command invoker identical to that provided 
by MAKEAUTO.BXL <see section 2.10). In the version on your disK, we 
have given this MAKEAUTO equivalent only one command: 

RUN "D:EXTEND.BXE" 

In turn, EXTEND.BXE is a very, very short program. We 1 ist it here in 
its entirety: 

10 Graphics 18: Position 2,12 
20 Print 116; • ••• please wait ... • 
30 Move $57B,$C4,4 
40 Run "D:HENU.BXL" 

The only important line here is 1 ine 30 1 the HOVE statement, NOTE 
CAREFULLY: even after the extended statements have been loaded into 
memory, theY !.11.~.1 be made available to BASIC XL. This is accomplished 
by placing pointers to their execution and syntax tables in $C4-SC5 
and $C6-$C7. This has to be done after BASIC XL issues the 
Ready prompt, because BASIC XL always clears these locations to zero 
upon a coldstart <e.g., at power-on). Note the other implication oi 
this: ii, lahr, you convince BASIC XL to undergo a coldstart <either 
by exiting to DOS and performing a LOAD of some kind or, as some 
programs do, by POKEing the warmstart flag off), you must once again 

BXL ToolKit 



perform this MOVE or the extended statements will not be available to 
you. <Ac tua 11 y, if you ex i ·t to DOS and LOAD or run some program, the 
chances are good that you should then LOAD EXTEND.COM again, since 
most disK-based programs will overwrite the memory used by the 
extensions.> 

Another way to implement the extensions was just hinted at: you may, 
from virtually any DOS, simply LOAD EXTEND.COM and then enter the 
BASIC XL cartridge. If you are using a menu-driven DOS, choose the 
appropriate menu options to do the LOAD and enter the cartridge. If 
you are worKing with OS/A+ or DOS XL, you may simply type 

EXTEND 
CARTRIDGE 

in response to the 011 prompts <and, in turn, these commands cou 1 d be 
part of a STARTUP.EXC file--see your DOS XL manual), If you enter 
BASIC XL in either of these ways, you will be presented with the 
Ready prompt. In order to use the extended statements, you will have 
to use a MOVE $578,$C4,4 command as was given above. 

The final way to implement the extensions which we will explore here 
is a variation on the first one. Simply replace the program 
EXTEND.BXE with your own program of the same name . If you Keep the 
MOVE statement in your program, and if it is executed before you use 
any extended statements, this will worK just great. Probably the 
easiest way to customize EXTEND.BXE to your own purposes would be to 
s1mply change the name of the program to RUN in 1 ine 40. 

Remember: the DOS given you on this disK has neither menu 
processor, It is only capable of booting a disK 
AUTORUN.SYS file present. You may, however, copy all or 
files on this disK to another one which has your preferred 
DOS already on it. 

nor command 
with an 

some of the 
version of 

Without further ado, then, let us proceed toward the descriptions of 
the extended statements. 

BXL ToolKit 

3.2 Abbreviations Used in Formal Statement Definitions 

The following are the abbreviations used in the formal format 
definitions of the following sections <an abbreviation marKed with an 
asterisK is new; others are consistent with the BASIC XL Reference 
Manual>: 

avar --Arithmetic ~iable, neither a string nor an array, 
. Examples: TOTAL I J X0 

svar -- ~tring ~iable, either a string array or simple string, 

savar 

distinguished from an avar by a trailing dollar sign. 
Examples: NAMES$ SA$ 
Note that one~ two, or three subscripts are often used 
between the parentheses following an svar. For the 
special case of an svar used to satisfy the requirement 
for a pvar or cvar <see below>, no parentheses may be 
used. 

~tring Array ~iable, same format, etc., as svar but must 
be a properly dimensioned array, 

mvar -- matrix ~iable, numeric: array, distir.guished from an 
avar by a trailing left parenthesis. 

Examples: VALUES<> SCORES<> 
Note that one or two subscripts normally appear between 
the parentheses following an mvar. For the special case 
of an mvar used to satisfy the requirement for a pvar or 
cvar <see below>, nothing may appear between the paren
theses. 

aexp --Arithmetic ~ression, any vali d combination of numeric 
values, operators, etc. 

* rparm 

* cparm 

Examples: 33 7+VALUE SCORE<3*J) 

~eceiving ~ameter , either an avar or an exclamation point 
fo!IDI.Jed by an svar or mvar. 

Examples: TOTAL !NAMES$ !VALUES<> 

~all ing ~ameter, either an aexp or an exclamation point 
followed by an svar or mvar. 

Examples: 29*SIN<3B) !TEMP$ !AMAX<> 

slit-- ~tring llieral, a string of characters enclosed in quotation 
marKs . 

Examples: "TOTALIZE" "Test--»• 

~rocedure ~. used to identify a procedure, always 
consists of only an slit. 

* cname --~all ing ~. used to name a procedure to be CALLed, may be 
e ither an slit or svar. If an svar is used, it may~ be a 
string array and may not use any subscripts. 

Rememberr words in a format definition which are given in all capital 
letters <e.g., USING> must be entered exactly as shown. Items in 
square bracKets are optional. Items with ellipses following may be 
repeated as desired exampler rparm [ ,rparm, ••• l imp! ies that you may 
use one or more receiving parameters>. 

BXL ToolKit Page 45 



3,3 Procedure Blocks and Related Statements 

Before describing the individual statements, we present an overview of 
PROCEDUREs in BASIC XL. 

If you have programmed at a 11 in any d i a 1 ec t of BASIC, you have used 
the GOSUB statement and its companion, RETURN. For example, you might 
see a program which looks something 1 ike that which follows. <This 
program is for demonstration purposes only, but it is a fairly amusing 
1 ittle thing to spring on an unsuspecting friend,) 

20 Value=100 
30 Min=10 : Max=90 : Gosub 100 
40 Result1=Num 
50 Min=10*Value : Max=90*Value : Gosub 100 
60 Result2=Num 
70 If Result2 > Value*Result1 Then 90 
80 Print "You appear to be conservative in nature .• End 
90 Print "You seem ready to take risKs .• : End 
100 Rem THE SUBROUTINE 
110 Print : Print "Please give me a number between •; Min 
120 Print • and •; Max ; 
130 Input •, inclusive> ",Num 
140 If Num>=Min And Num<=Max Then Return 
150 Print •can't you read? That number is' 
160 Print • out of the range I gave you.• 
170 Goto 100 

And, in a small program 1 ike this one, that usage of GOSUB may be just 
fine. As programs get larger, though, 1 ines such as GOSUB 3258 become 
less and less meaningful, Atari BASIC <and thus BASIC XL) allows you 
to do something 1 i ke this: 

10 Let Getinrange=100 
20 Value=100 
30 Min=10 : Max=90 : Gosub Getinrange 

<etc.> 

Do you see what we did? By giving a name to the subroutine, we can 
make our code more readable. A disadvantage to this method is that 
BASIC XL (in common with Atari BASIC> allows only 128 unique variable 
names . Using a variable Jike this to name a subroutine diminishes the 
pool of available names. This, then, is the first advantag• of BASIC 
XL's new procedures: because we use a 1 iteral (quoted) string to name 
them, we need waste no variables! For example: 

Page 46 

20 Temp=100 
30 Call "Get In Range• Using 10,90 To Result! 
50 Call "Get In Range• Using 10*Temp, 90*Temp To Result2 
70 If Resul t2 < Temp*Resul t1 1 Type$='conservative• 
80 Else : Type$="a risk taKer• 
90 Endi f 
95 Print 'You seem to be •; Type$; • by nature.• End 

[Listing continues on next pagel 

BXL ToolKit 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 

Procedure "Get In Range" Using Min,Max 
Local Temp : Temp=1E90 

While Temp<Min Or Temp>Max 
If Temp<>1E90 : Print 
Print "Can't you read? That number is" 
Print " out of the range I gave you. • 
Endi f 

Print 
Print " 
Input ", 
Endwhile 

Exit Temp 

Print "Please give me a number between •; 
and"; Max ; 

inclusive > ",Temp 

Min 

Confused? Not too surpr i si"ng, Let's take a 1 ooK at the new 1 i nes a 
step at a time . F irst, in line 30, note the CALL to the 
PROCEDURE named "Get In Range• (which starts at line 100), Note how 
clear that CALL is, since we can use any characters we 1 iKe in the 
string• That's pretty easy, right? 

But what about that USING which appears in both the CALL and 
PROCEDURE statements? In 1 ine 30, we are "Using• values of 10 and 90. 
But in 1 ine 100, we are "Using" the variables Min and Max. Isn't that 
neat? We didn't have to do the assignments to the variables before we 
called the subroutine: CALL does the worK for us! It automatically 
moves the values (10 and 90) into the corresponding variables <Min and 
Max). This is called •passing parameters• to a PROCEDURE. 

It gets better. Notice the EXIT statement of line 210. It specifies 
a value <th e contents of Temp> which is to be placed into the variable 
Result! that follows the TO in the CALL statement. That's reasonable, 
right? If you can •pass• parameter values, you should be able to 
•return" parameter values. 

But doesn't using the variable Temp in the procedure subroutine wreaK 
havoc on its later use in the main program <e.g., in line 69)? Ah, 
but there's line 110, with its deceptively simple-looking LOCAL state
ment. Be twe en the use of LOCAL Temp and the EXIT statement, the old 
value of Temp is saved for you. When EXIT is executed, all 
LOCAL variabl es are automatically restored to their previous values. 
Wow ! And Whew! 

The example we just worked through 
PROCEDURE-oriented extended statements: 

used all of new 

PROCEDURE 
CALL 
LOCAL 
EXIT 

By no means, though, did we use 
statements. In addition to th·e 
we will present further examples 
the disK. 

all of the capabilities of these 
formal definitions which will follow, 
both in the text and in programs on 

We have presented these statements before the formal definitions 
because they are all closely related, and we felt that having a small 
but effective demonstration of their use would make it easier to 
understand the definitions . 

BXL ToolKit Page 47 



3.3.1 PROCEDURE <PROC.> 

Fo~mat: PROCEDURE pname £USING rpa~m [ ,rparm ••• l l 

Examples: 
1099 Procedure "Calculate Pay• Using Hou~s,Rate,!Taxtable() 
387 Procedu~e "P~int Msg• Using 'Msg$ 

4040 Procedu~e "Quit' 

The PROCEDURE statement is the nucleu s around which the other 
statements in its group are built. It is used to define the beginning 
of a subroutine which is intended to be e xecuted via a CALL statement. 

A PROCEDURE must be given a name, which may be any set of ATASCII 
characters enclosed in quotation marKs, the number of characters being 
subject only to the limitation that the entire line must be of legal 
1 ength. · Note in the examples abovE' how spaces have been used in the 
PROCEDURE names to add clarity to the program. As a matter of good 
p~og~amming style, you should make the names as self-e xplanatory as 
possible, shortening them only if you begin to run out of memory. 

When a CALL statement is executed, it places an entry on the Run-Time 
StacK <the same stacK used by GOSUB, FOR, WHILE, and thei~ partners>. 
This entry serves to i dentify the fact that a PROCEDURE statement has 
been encountered, and its subroutine <which we will here call the 
• procedure blocK •) is now in control . When the PROCEDURE statement 
itself is execut .. d, then 1 it ignores its own name and does nothing 
fur the~ to the Run-Time StacK. Unless, that is, the user has 
specified that one or more parameters are being passed via the 
USING Keyword. 

If USING is coded, it must be followed by one or more variable names. 
If the variable names refer to string variables, string arrays, or 
numeric arrays, the name must be p~eceded by an e xclamation point <!>. 
No matter which Kind(s) of variable(s) is/ are used, when PROCEDURE is 
e xecuted, their current •values" are pushed onto the Run-Time StacK. 
Then, after the values have been pushed, the new values as specified 
in the CALL which invoKed this procedure blocK, are cop i ed into these 
same variables. 

When working with simple numeric variables, this is a fairly straight
forward process. TaKe the following set of stat~ments as an example: 

10 JunK=20 
20 CALL "Test • USING 12•17 
30 Print JunK 
40 End 

70 PROCEDURE "Test" Using Junk 
89 Pr i nt JunK+JunK 
90 Exit 

In this example, when the PROCEDURE named "Test• at 1 ine 70 is invoKed 
and the statement is executed, the cu~rent value of the variable 
Junk <20, as assigned in 1 ine 10) is pushed on the Run-T i me StacK. 
Then the value of the expression (12*17 1 or 204) is copied into Junk. 
Any subsequent references to Junk will find that it contains this new 
value. For example, the Print of line 89 will display the value 408. 

BXL ToolKit 

The effect of pu s h i ng the prior va l ue of Junk is simple: when the 
EXIT statement (1 ine 90) is executed, i t wi 11 discovE'r thE' value that 
was pushed on the stacK and restore Junk to i ts prior condition. Thus 
the Print of 1 ine 30 w i ll display the value 20. <ThE' EXIT statement 
is discussed in more detail i n section P . 3.) 

The purpose of all this pushing may be less clea~. Fi~st, by 
"reusing• th~ variable name Junk in our p r ocedu ~ e block, we a~e 

con s erving our precious names <remember, we are allowed only 128 
different names i n a p~ogr am). S i nce the value of the var i able is 
~•stored on EXIT from the blocK, we need not worr >· about changing it 
within the block . Second , and perhap s more difficult to g~ a sp from 
th i s simplistic example, we are a ble to pass values "into' the 
procedure blocK without hav i ng to be aware of wh a t names are used 
within it. The example which i ntroducE'd this chapter shows this 
feature to some advantage and also serves to demonstrate how the 
resultant code can be both smaller and more ~eadable. 

For st~ings and a r rays used as PROCEDURE pa~ame t e~s, the methodology 
is the same, but the results a~e more complex. The difficulty I ies in 
understanding just what~ the • val ue " of a string o~ a~~ay . In Atari 
BASIC and BASIC XL, the va l ue of any variable is the content of its 
entry in the Variable Value Table. This table rese~ves eight <B > 
bytes per variable and con si sts of a flag byte, the variable's number 
(0 through 127) 1 and s i x by tes of " in f o~mation•. 

In the case of simple numeric variables, the information is the 
numeric value of t he va~iable, expressed i n an internal floating point 
form. <You may consult the Atari Techn i cal Manuals or COHPUTE!' s 
Atari BASIC Source Book for much mor e detail on the structure of these 
and other tables.) 

For str i ng and array va riab l es, the flag byte ind i cates that the 
"information• describes the location and characteristics of the 
contents of the variable . For example, a simple str i ng variable needs 
i nfo~ma t ion about its a ddress <within st~ i ng/ar~ay space), its 
dimension, a nd its current length . The string itself <the •contents• 
of the var i able from an external point of view> is located at the 
given address. Arrays (bo t h str i ng and numeric> need an address and 
two dimensions instead ; but , aga i n, the actual "contents • are found at 
the given address. 

Thus, when we push the • value • of a string or array variable on the 
Run-Time Stack, we are pushing this informat i on about where the 
actual contents are located in memory . Simila~ly, when we copy a 
value passed by the CALL statement into one of these variables, we are 
nQ1 copying the actual str i ng or array. I nstead, we are copying the 
address, dimension, etc . , as appropriate. Consider this sequence! 

10 Fun$=" Swimming is fun. • : X$ = "Right?" 
29 CALL "What Fun• USING ! Fun$ 
30 Print Fun$ , X$ 
40 End 

60 PROCEDURE "What Fun • USING !X$ 
70 Print Fun$ , X$ 
80 X$C1,5)="Laugh" 
99 EXIT 

BXL ToolKit 



Hopefully, you will actually try this little program. If so, you will 
find that 1 ine 70 shows that, as we have described above, the •value' 
of Fun$ has been copied into X$. Line 70 will display: 

Swimming is fun. Swimming is fun. 

The real surprise comes when 
successful EXIT in 1 ine 90>. 

Laughing is fun. 

line 30 is executed (f ollowing 
The resultant display is: 

Right? 

the 

Do you see why? If the value of Fun$ is copied to X$ 1 then the 
address of the contents of Fun$ is now in XS's address entry with 
its value in the variable table. Thus, any change we maKe in the 
string pointed to by X$ affects the memory at that address and thus 
affects the contents of Fun$. Complicated, yes? 

A similar action place taKes place when a string array or numeric 
array is passed as a parameter: changes in the contents of the 
PROCEDURE's parameter affect the contents of the CALLer's parameter. 

Technical Note: In computer 1 ingo, simple numeric variables are 
passed to a procedure blocK via a "call by value'. Arrays and 
string, on the other hand, are passed via a "call by reference•. 
The exclamation point required by the syntax of the extended 
statements can be used as a reminder that these are calls by 
reference, som~thing not h i therto seen in BASIC XL. <Actually, 
the exclamation point is necessary so that the expression 
evaluator can maKe the distinction between an expression--which 
could, for example, start with a string or array reference--and 
one of these special calls by reference.) 

Secondary Considerations 

(1) You may, if you wish, pass too many numeric parameters to a 
PROCEDURE. BASIC XL maKes no checK for matching number of parameters. 
It does, however, insist on a type match. Thus this sequence will 
cause a "USING Type Mismatch" error: 

4010 CALL 'Gorp• USING 33 

7280 PROCEDURE "Gorp' Using !A$ 

If the CALL passes too many parameters, the excess are ignored. If it 
passes too few, a numeric value of zero (0.0) is assigned to all 
remaining PROCEDURE parameters. This, in turn, can cause a type 
mismatch, since only numeric variables may receive a numeric value. 

Exception to the last paragraph: If the CALL passes n£ parameters, 
BASIC XL does nothing at all to the parameter passing area. This is 
on purpose, since passing parameters takes time. Thus, even a 
PROCEDURE expecting only numeric parameter<s> may report a mismatch 
error, since it attempts to obtain those parameters from the 
miscellaneous data left in the parameter area. Generally, we 
recommend passing the correct number of parameters unless you have a 
specific purpose which can use the 'default' feature to a real 
advantage. 

(2) You must be careful when changing the value of a simple string 
passed as a parameter. Recall that the length of a CALLing string 
variable is found in its variable value table entry, and that the 
entry is copied intact to the PROCEDURE's string variable. If you 

Page 50 BXL ToolKit 

then change the .l.tD..9.1h of the str in g within the procedure blocK, it 
wi 11 indeed change the. ~OCEDURE var j able's .en try. However, when you 
EXIT, the entry is ngi automatically copied bacK to the CALLer 's 
variable! This can produce some bizarre results. 

To demonstrate: modify line 80 of the last example program to read 
80 Xt='Laugh" : Print X$ 

Not surprisi'ngly, the new Print in line 80 shows us that the contents 
of X$ are simply "Laugh". However, looK at the display resulting from 
1 in<> 30: 

Laughing is fun. Right? 

Do you see the problem we warned of? Changing X$ in li ne 80 changed 
the memory at the address which Fun$ also used for its contents, but 
it did ngi change the .l.tD..9.1h of Fun$. Presumably, this could be a 
feature under the right circumstances, but there are stranger 
consequences possible. For example, try changing line 80 to read 

80 xs=•xxx• 

Now 1 ine 30's Print will display 
XXXmming is fun. Right? 

which is a l most surely not we wanted. 

One solution to this situation is simply to avoid changing a passed 
string within a procedure blocK. This may not be satisfactory, 
though, so we have provided another mechanism which you can use to 
circumvent the problem: Change 1 ines 20 and 90 in the original 
program to read 

20 CALL "What Fun" USING !Fun$ TO 'Fun$ 
90 EXIT !X$ 

EXIT will be discussed in more detail in section 3.3.3, but 5Uffice to 
5aY that this sequence guarantees that the complete new value of X$ i5 
copied bacK to Fun$. On this same topic, you may be rei ieved to Know 
that the diff i culty with length does not exist with arrays, either of 
strings or numeric values. 

(3) One way to get in real trouble with either strings or arrays is 
to pass ~ <via EXIT> one which was ngi passed in as a CALLing 
parameter. Examine the following program excerpt: 

100 CALL 'Oops' To !A$ 
110 CALL 'Oops' To !8$ 
120 Print A$ 1 8$ : End 

309 PROCEDURE 'Oops ' 
310 Input 'Type something: ',Line$ 
320 EXIT !Line$ 

If you enter and RUN this program, giving a different response each 
time you are prompted, you will be surprised at the re5ults of the 
PRINT of I ine 120: A$ and 8$ wi II be identical <up to the hngth of 
the shorter>, taKing on the value of your second INPUT. If you recall 
our discussion of what actually gets passed when a string or array is 
involved, this seemingly bizarre result c an be explained. 

BXL ToolKIt 



When you pass LINE$ back to the CALLer, you are actually transferring 
the contents of LINE$'s variable value table entry to first A$ and 
then to 8$, But that table entry consists (among other things> of 
LINE$'s address. Thus you end up with all three variables pointing to 
the same piece of memory! 

Once again, , the proper solution is to pass a string both l.!l. via 
USING and back out via EXIT. For arrays (of either strings or 
numbers>, YOU need only pass the value l.!l., since anything the 
PROCEDURE does to a parameter array is properly reflected in the 
CALLer's original value(s), 

The only way you can g·et in trouble with arrays is if you pass an 
undimensioned array to a procedure block which then dimensions it. 
Unless you pass bacK the "value• via EXIT <similar to the fix for 
strings just given above>, the space dimensioned within the blocK is 
simply · lost, s ince no var iable will any longer be referring to it via 
the address portion of its entry in the variable value table, 

When in doubt, then, pass strings and arrays both ways, 
hurt. It may help. 

It can't 

<4> Finally, another caution. A PROCEDURE must be the first 
statement on a line. CALL can nQi find a PROCEDURE if is not at the 
beginning of a 1 ine. Strange and wondrous and woefully unpredictable 
things can happen if you violate this rule. 

Similarly, you should never allow a program to "fal l through" to a 
PROCEDURE. Always maKe sure that the program immediately preceding 
each PROCEDURE finishes with a GOTO, STOP, END, RETURN, or 
EXIT statement. We recommend grouping all procedure blocKs at one 
spot in your program and ensuring that they are preceded by an 
END statement. 

Page 52 BXL ToolKit 

3.3.2 CALL 

Format: CALL cname r USING cvar r, cvar . .. ll [TO pvar r, pvar,,, ll 

Ex amp 1 es: 1 e CALL "Test • 
720 CALL 'Totals" USING !Values<> TO Sum 
800 CALL "Get Num" TO Number 
10B CALL Proc$ USING 7,!A$ TO Result 

The CALL statement has been discussed and demonstrated in both the 
introduction to this chapter and in the explanation of the 
PROCEDURE statement (section P.l>. In this section, then, we will not 
dwe 11 on such things as the· mechanics of parameter passing. Rather we 
will discuss the subtleties of the CALL statement itself. 

First, unliKe a PROCEDURE statement, the name specified b>· a CALL may 
be contained within a string variable instead of being a string 
1 i teral <see the 1 ast of the above example 1 i nes). However, you have 
no other choice of format than that shown. You may use neither a 
substring ~ an element of a string array as a CALLed name. (This 
stricture was necessary for consistency, in order to allow the syntax 
to be as close as possible to that of PROCEDURE. The alternative was 
using a comma instead of the word USING.> This is not an onerous 
restriction, though, as the great bulk of all calls will probably be 
made with 1 iteral strings. 

For those rare occasions where you wish to choose one of several 
PROCEDUREs based on the value of some index, may we suggest a program 
format similar to the following: 

30 Input 'Give me an index > ",Index 
40 Name$=Proc$Cindex;> : CALL Name$ 

Remember, also, that the name which you CALL with <whether literal or 
variable> must match exactly that given in a PROCEDURE statement. All 
characters are considered in th~ match <including leading or trailing 
spaces>, with upper case, lower case, and irover·se video all distinct. 

Second, we remind you of the possible problem associated with using a 
string variable as a CALLing parameter (if its length is modified in 
the procedure blocK, the length change is not visible to the 
CALLer--see section P.l). Generally, it is good form to always code a 
simple string variable as both a calling and returning parameter, 
thus: 

999 CALL 'Invert String' USING !Gorp$ TO 'Gorp$ 

Similarly, any array which may not be dimensioned at the time of the 
CALL should receive the same treatment. Recall our earlier cautions, 
also: DIMensioned arrays need not be passed bacK to the CALLing 
routine, but they must be passed in as parameters. 

BXLToolKit 



S~£ondarY Considerations 

Th~ numb~r of l~vels you may nest CALLs is 1 imited only by the amount 
of FREe memory left in your syst~m which rna>' be used by th~ Run-Time 
StacK. LiK~ GOSUBs and WHILEs, ~ach CALL uses four (4) bytes of 
Run-Tim~ StacK space. Each parameter passed (either expression value 
or string/array r~ference) occupies 12 bytes. A demonstration of the 
implications of these facts may be found in the e xample programs in 
the next chapt"r <see espeocially the FACTORIAL progr·am). 

CALLs ~ slow when compared to GOSUB 1 ine-number in BASIC XL's 
FAST mode. However, when compared to normal GOSUBs in slow mode, they 
may actually be just a bit faster if they do not pass parameters. 
Parameter passing can, indeed, slow things down remarKably. But, when 
you compare it to the method of doing several assignments before a 
GOSUB followed by one or more afterwar·d, it may actually save time in 
some situations. 

Within a CALLed procedure blocK, you must~ attempt to POP the 
parameter variables. You can cause a s>·stem crash if you POP a 
variable with the wrong value. Only if a procedure blocK has neither 
parameters nor LOCAL variables may you safely POP the CALL itself. We 
recommend that you do !J..Q..!. use POP anywhere in a procedure blocK unless 
absolutely necessary. 

Page 54 BXL ToolKit 

3 . 3.3 LOCAL 

Format: LOCAL avar r,avar ••• l 

Examples: 730 LOCAL Temp i 
1370 LOCAL Sum,N,Count , Mi sc 

The LOCAL statements has been provided to a l low you more flexibility 
in your programming. Wh i le the parameters received by a PROCEDURE are 
automatically made local t o that procedure blocK, there ar~ many times 
when you need a simple var iable to hold a temporary value , such as th~ 
result of a calculation, a flag, etc. LOCAL giv~s you such temporary 
variables. 

LOCAL worKs in a ver y simple fashion, When a LOCAL statement is 
executed, a l l simple arithmet i c variabl" names <roo strings or arrays 
allowed) following it are 'pushed' onto BASIC XL's rur.-time stacK (the 
same stacK which receives GOSUBs, FORs, CALLs, etc .) . Then, when a 
subsequent EXIT i s encountered, all such LOCAL variables are pulled 
bacK off the stacK and put i n the i r or i g i nal places . The effect of 
this is simple yet powerful: within the bounds of LOCAL and EXIT, you 
may change the value of any of these variables to your heart's content 
without worrying about whether some other routine in your program is 
us i ng a variable with the same name. 

A simp 1 e ex amp 1 e w i 1 1 he 1 p : 

10 Test=1234567 : Pr i nt 10,Tes t 
20 Gosub 40 : Print 20 , Test 
30 End 
40 Local Test Print 40,Tes t 
50 Test=0 , 54321 : Print 50 , T~st 
68 Exit 

Note that PRINT statements purposel y display th e curren t 1 in~ numb~r 
as w~ll as th e value of Test. Th i s is s imply to maKe tracing the flow 
of the program easier. Does it surprise you to find that th~ output 
of the above program will looK som~thing 1 i Ke this? 

10 1234567 
40 1234567 
50 0.54321 
20 1234567 

Le t's examine that program a 1 ittle clos~r . First, 1 ine 18 is simple 
enough . We just assign a value to the variable and verify that it has 
been accepted . In line 28, we first GOSUB to a routine and then again 
display the contents of our var i able. Note that in th~ program's 
running this PRINT of Te st is the last thing executed <other than 
END). 

Line 48, then , begins the inhrest i ng part of this program. We 
declare that Te st is a LOCAL variables and, once again, d i splay its 
value. Line ~8 is a repeat of 1 in~ 10 except that w~ assign a 
different value to our variable . Note that the PRINT verifies our 
change. Finally, in line 68, we use another new statement, EXIT, to 
r e store our var i able to its original value, as shown by th~ PRINT in 
I ine 20. 

BXL Too!K i t Page 55 



Once again, the point of alI this was that our- subr-outine (Jines 40 
thr-ough 60) could do what it I ii<ed with the now-LOCAL var-iable without 
affecting its value in the r-est of the pr-ogr-am. 

Secondary Considerations 

Some things ar-e made obvious in the above pr-ogr-am which bear notice: 
(1) LOCAL does not have to be used in conjunction with a PROCEDURE. 
(2) The value of a var-iable which is made LOCAL does not change 
because of the push onto the Run-Time stacK. We will attacK these 
points in or-der. 

The fact that LOCAL may be used with GOSUB-type subr-outines is not an 
accident. E><IT was specially constructed to examine what invoKed its 
subr-outine and handle the r-etur-ning condition appr-opriately (either
GOSUB or- CALL only, though). This small fact alone may allow you to 
change many pr-ogr-ams to use LOCAL without the need to modify all 
GOSUBs-to CALLs. 

Also, ther-e ar-e occasions wher-e it could be advantageous to use 
GOSUB instead of CALL. In par-ticular, GOSUB to an absolute 1 ine 
number- is significantly quicker when your- pr-ogr-am is in FAST mode than 
any other- type of subr-outine access, <A mild warning, though: 
LOCAL does occupy precious processing time, so you may do best to use 
truly unique variable names in a routine which must be super fast.) 

Our second point, the fact that variables do not change value when 
they are made LOCAL can actually be used to advantage in a few cases. 
Try the following small example program: 

10 Input "An integer greater than 1, please>> ",N 
20 Sum=0 : Gosub 50 
30 Print "The sum of integers from 1 to ";N;" is •;sum 
40 End 
50 Local N 
60 Sum = Sum+N 
70 If N=1 Then Exit 
80 N=N-1 : Gosub 50 
90 Exit 

To follow what happens here, assume that we choose a value of 3 for 
our integer. The first time I ines 50 through 70 are executed, then, 
Sum will take on the value of 3 and, since N is not 1, we continue on 
to I ine 80. There N is given a value of 2 <one Jess than its current 
value>, and we again call the subroutine at 1 ine 50. 

The second time through, the same things happen: 
of 5 and we do not yet do the Exit of 1 ine 70. 
changes to 1 and 1 ine 50 is called once again. 

Sum acquires a value 
In I ine 80, N's value 

This third time performing the same 1 ines sees lines 50 and 60 
performing as before, with Sum getting a new value of 6, In 1 ine 70, 
though, since N now has a value of 1 we do take the Exit. We return 
to the Gosub of line 80, fall throughto line 90, return to line 80 
again, fall through to line 90 again, and (at last!) return to the 
original Gosub of 1 ine 20. 

Page 56 BXL ToolKit 

Through a 11 of those Exits, BASIC XL was keeping tracK of the proper 
value of Nat each level, so line 30 displays accurate and sensible 
results for both Nand Sum. Whew. 

Final considerations: 

Since You are still limited to 128 different variable~. in very 
long programs you might do well to use the same LOCAL variable names 
in all PROCEDUREs and subroutines. For example, you might start each 
such routine with a 1 ine 1 ike this: 

3110 Local Temp1,Temp2,Temp3,Temp4 
Each routine then has four variables available exclusively for its own 
use; and, yet, you have used a total of only four names from your 
maximum of 128. 

Also, since the statements built into your original BASIC XL cartridge 
do not understand the concept of variables being pushed onto the 
Run-Time stack, you~ always use Local only at the beginning of 
subroutines and ~ in conjunction with routines ending with the 
Exit keyword. In particular,~ try to POP a variable which has 
been made Local. 

BXL ToolKit Page 57 



3.3.4 EXIT 

Fo~mat: EXIT [ cpa~m C,cpa~m ,,, l l 

Examples: 390 EXIT 10*Maxvalue 
799 EXIT Flag,!Names$ 
24990 EXIT !Inve~se<>,Rows,Columns 

835 EXIT 

If you have been ~eadi ng this i nst~uc t ion manual in front to bacK 
o~de~, you have encounte~ed seve~al examples of the use of EXIT by 
now. If you have not, we ~efe~ you to sections 3.3, 3.3.2, and 3.3,3 
fo~ some i llust~ative examp .les . 

Just as Retu~n is a pa~tne~ to Gosub, so is Exit a 
Eve~y P~ocedu~e which you invoKe via Call 
Exit statement. 

pa~ tner· 
must end 

to Call. 
with an 

Exit pe~fo~ms three functions, in the following order: <I> If there 
are any parameters after the Exit Key~>.•ord, they are placed into BASIC 
XL's parameter-passing area, for use by the TO-Keywo~d's p~ocessing 
(which is, in tu~n, pa~t of the wo~K which Call does>. <2> If the~e 
a~e any va~iables on the ~un-time stack (eithe~ as a ~esult of using a 
Local statement o~ needing to save the paramete~ va~iables of a 
P~ocedure>, Exit must ~esto~e them to their p~oper places in the va~i
able value table. (3) Exit checKs to see whethe~ the cu~rent sub
routine was invoKed via Call or Gosub. If via the latter, Exit sim
ulates the action of a Return statement; otherwise, it performs the 
special processing needed to allow TO to access its parameters (if 
any), 

Seconda~y Considerations 

In common with the other stack pulling statements <Return, Endwhile, 
Next>, if Exit discovers a For on the Run-Time stack which doesn ' t 
"belong" there, it ignores it (e.g., it "throws it away") and tries 
the next en try on the stack. For ex amp 1 e, the fell owing p~ogram w i 11 
not cause an error: 

10 Gosub 50 
20 End 
50 Rem=== Subroutine 
60 Fo~ I=! To 5 
70 Exit 

Even though the For loop started in 1 ine 60 has not finished (and is 
thus still sitting on the stack>, Exit has no trouble finding that its 
subroutine was called via the Gosub of 1 ine 10. 

On the other hand, this program wjll cause a 'nestino' error because 
While can~ be terminated by Endwhile! 

Page 58 

10 Gosub 50 
20 End 
50 Rem=== Subroutine 
60 While 1 : Rem <a never ending loop) 
70 Exit 

BXL ToolK i t 

Anothe~ thing to be ca~eful of is that no error wi 11 result if an 
Exit statement t~ies to pass parameter values bacK to a Gosub. 
Instead, they are simp ly ignored. (The reason for this, again, is 
that the cartridge BASIC XL is not prepared for such things, so it 
does not checK for them.> 

Similarly, if you pass back too many pa~ameters to a Call, the excess 
ones will be igno~ed. This design allows a single Procedure to serve 
more than one function, retu~ning more values to some Callers than to 
others. Remember, though, that a 11 parameters expected by the 
TO portion of a Call statement must be matched by type by the pa~a
mete~s of Exit <e.g., a stri ng variable to a string variable, a 
numeric expression to a numeric variable>. The matching needed is the 
same as that needed by parameters passed to a Procedure via a Call. 
See section 3.3.1 for more details. 

Since you can never properly Pop variables, you may not use Pop in a 
subroutine which uses either Local variables or Procedure pa~ameter 
variables. ThanKs to the fact that Exit may return a parameter value, 
we find 1 ittle need to use Pop in these circumstances anyway. A 
better method is illustrated here: 

10 Whi 1 e 
1 5 Ca 1 I " Demo 1 • 
20 Endwh i 1 e 

50 Procedure "Demo 1" 
55 N=Random(8) :Call "Demo 2" Using N To Flag,Inverse 
60 If Flag Then Exit 
65 Print "The inverse of • ;N; • is •; Inverse 
70 Ex i t 

85 Procedure "Demo 2" Using Value 
90 Trap 95 Exit 0 1 1/Value 
95 Exit 1 

The trick in this program is embodied in 1 ines 90 to 95. In 1 ine 90, 
we first set up a Trap to line 95, in case an error occurs. But where 
can an error occur? Certainly not in the evaluation of the zero 
following the Exit . But what about when we evaluate 1/Value? If 
Value is zero, this expression will cause overflow, an error con
dition. If the error occurs, the Trap will se nd us off to line 95, 
where we simply return the flag value of one, indicating failure. 

Line 60 is where we checK the value of the returned flag. If it is 
non-zero, we immediately Exit rather than displaying the results. Do 
you see why this is cleaner than using a Pop statement? Aside from 
the fact that the flow of the program becomes much more readable, we 
could add many Local variables ·at any point in this program without 
adversely affecting its functioning. 

This concludes our presentation of the BASIC XL ToolKit extended 
statements which relate to Procedure blocKs , See also section 4 for 
discussions of the example programs provided on your ToolKit disK. 

BXL ToolKit Page :59 



3.4 Sorting String Arrays 

Apart from the PROCEDURE blocKs described in Section 3.3 1 the only 
extended BASIC XL statements included with this ToolKit are those 
which allow you to easily sort a string array, There are two such 
statements, SORTUP and SORTDOWN, which are described formally in 
Sections 3.4.1 and 3.4.2 <respectively), However, since both sorting 
statements have many foibles in common, we thought it best to begin 
with some comments and hints about their use. 

First and foremost, note that SORTUP and SORTDOWN can ~be used to 
sort string arrays. In their simplest form, they are extremely easy 
to use. For example, consider the following short program: 

10 Dim Array$(5 1 20) 
29 For 1=1 To 5 : Input Array$(!;) Next 
30 Sortup Array$ 
40 For 1=1 To 5 : Print Array$(!;) 1 Next 
50 Run 

This program simply allows you to INPUT five strings, sorts them, and 
then shows show the sorted order. At this time, we would 1 iKe to 
suggest that you boot a copy of side 2 of your master ToolKit 
disKette. Then type in this program and try it out. <Keep it around. 
We will use it more later.) Give several sets of common and uncommon 
words as answers. Note how neatly it sorts the words into ascending 
order, 

Or does It? Try entering some words in upper case and some in lower 
case, What happens? Does it surprise you to find that •zoo• comes 
before •apple"? Actually, the reason for this behavior is readily 
understood once you real i ze that SORTUP worKs on characters using 
ATASCII ordering <ATari version of ASCII, the American Standards Code 
for Information Interchange--how's that for a mouthful>. For a 1 ist 
of ATASCII codes as they relate to your computer's Keyboard, see 
Appendix D of the BASIC XL Reference Manual. 

Even if we restrict ourselves to the •printable" characters in the 
ATASCII set <usually the numbers, upper and lower case letters, and 
standard typewriter-style symbols--codes numbered 32 through 124 in 
the manual>, we find no real help. Numbers come before upper case 
letters which come before lower case letters, but symbols are 
intermixed in no real useful fashion. 

Because the effects of this hodgepodge ordering may not be desirable 
in a sorted 1 ist, you may wish to 1 imit a SORTUP or SORTDOWN to worK 
with only part of each element of a string array, For example, if you 
have an array where each string within it contains both a person's 
name and their phone number, you may wish to perform a sort based 
solely on names. Further, to ensure that the sorted order is 
consistent, you may wish to ensure that the names being sorted are 
stored as upper case letters only, 

Page 60 BXL ToolKit 

Fortunately , the design of SORTUP and SORTDOWN is good enough that 
sorting based on "fields" <portions of each element in the string 
array) is extremely easy, And, while BASIC XL does not provide a 
built-in method of obtaining upper-case-and-non-inverse-video-only 
strings, it i sn 't very hard to build a routine which will do the real 
worK for you. For example, the following PROCEDURE converts all 
characters in its parameter string <UQi a string array) to non-inverse 
video and converts lower case letters to upper case: 

800 Procedure "To Upper• Using String$ 
B10 Local I,Temp 
820 For 1=1 To Len<String$) 
830 Temp=Asc<String$(!)) & $7F 
B40 If Temp>$60 And Temp<$7B Then Temp=Temp & $5F 
850 String$(I,I>=Chr$(Temp) 
860 Next I 
870 Exit 

For now, don't enter that subroutine. 

Instead, let's investigate the concept of "fie lds" , as mentioned 
above. Just change 1 ine 30 in that 1 ittle program we typed in earlier 
so that a LIST gives y ou the following: 

10 Dim Array$(5,20) 
20 For 1=1 To 5 : Input Array$(!;> 
30 SORTUP Array$ USING ; 3 1 5 
40 For 1=1 To 5 : Print Array$(!;> 
50 Run 

Next 

Next 

Once again, enter some strings in response to INPUT's p rompt . This 
time, though, pay special attention to the third through fi~th 
characters of each string. Notice anything funny about the sorted 
order? That's right, it is based solely on the characters in those 
positions . If you have worked with BASIC XL string arrays at all yet, 
the notation in 1 ine 30 may be both familiar and confusing. Perhaps 
changing line 40 as follows w i ll allow us to clarify the meaning of 
line 30: 

40 For 1=1 To 5: Print Array$(1;3,5) 1Array$(I;> :Next I 

This 1 ittle example should serve to remind you that you may reference 
characters within an element of a string array just as easily as you 
may reference them in an ordinary string. The •magic" character is 
the semi-colon. It separates the array element number from the 
desired character positions. <And, as the second usage of Array$ in 
that same 1 ine shows, the semi-colon is always necessary when 
referring to an element of a string array,) 

Now, since the SORTUP of 1 ine 30 refers to the entire array, String$, 
there is no need for the following parentheses <and , indeed, they are 
not allowed). Instead, the keyword USING tells BASIC XL that we will 
be working with only part of the array and/or its elements. In 
particular, the semi-colon following USING again serves as a reminder 
that the numeric expressions following it refer to character positions 
within an element <or, more properly when using SORTUP or SORTDOWN, 
within all elements> of a string array, 

BXL ToolKit Page 61 



By the way, as a s imple va~iation on what we have done so fa~, you 
might change line 30 to ~ead: 

30 SORTDOWN A~~ay$ USING ; 3,5 

Again, t~y it out. Not too su~p~ised by the ~esults? Good . The only 
diffe~ence between SORTUP and SORTDOWN is whe~e the "top' of the so~t 
<the "la~gest• st~ing) appea~s. 

The~e is one last capability of the so~ting statements which we will 
discuss befo~e moving on to othe~ helpful hints. The p~og~am we have 
been wo~King with seems all fine and good if we want to ente~ 
exactly five elements into the a~~ay. Suppose, though, that we did 
not Know how many elements we would be wo~King with. Fea~ not, BASIC 
XL's extended statements shall p~ovide. Time fo~ anothe~ example: 

10 Dim St~ing$(20,20) 
20 Fo~ 1=1 To 20 : Input St~ing$(1;> 
25 If Len(St~ing$(1;>> Then Next I 
30 So~tup St~ing$ Using 1,1-1 
40 Fo~ J=1 To I-1 : P~int St~ing$(J;> 
50 Run 

Next J 

The fi~st change you will notice is in 1 ines 20 and 25. Instead of 
blindly continuing to asK fo~ INPUT until 20 items have been entered, 
the p~og~am only goes bacK fo~ anothe~ if the length of the cu~~ent 
item is non-ze~o. That means that you may stop ente~ing items at any 
time by hitting the RETURN Key alone in ~esponse to any INPUT p~ompt. 

And looK at SORTUP in 1 ine 30. Can you guess what Using 1.1-1 is fo~? 
That ' s ~ight, only the fi~st 1=1 elements of the a~~ay will be sorted! 
And if, fo~ some reason, you wanted to never so~t the fi~st element of 
the a~~ay , you could have coded 

30 So~tup St~ing$ Using 2,1-1 

<Why would you eve~ do that? Well, maybe you Keep special info~mation 
about a file in the fi~st ·~ecord" of the file, thus having the actual 
data sta~t at the second ·~eco~d'.) In fact, you a~e not limited as 
to which elements may be so~ted othe~ than having to follow two ~ules: 
(1) The maximum element numbe~ to be sorted must be g~eater than o~ 
equal to the minimum element number. <2> Each number must be within 
the bound of the a~~ay, as dimensioned. 

Naturally, we have to give you the last of the possible va~iations on 
SORTUP <and, similarly, on SORTDOWN>. We won't explain this. Just 
type it in and try It: 

30 So~tup String$ Using 1,1-1 2,4 

Now for some hints. 

BXL ToolKit 

We already noted that it is probably a good idea to restrict the 
contents of a normal alphabetic field to upper - case, non-inverse 
cha~acters only. Suppose, though, that you ~ea lly want to so~t some 
numbers. What can you do? A prog~am such as the following will 
.!!..Q1 worK: 

10 Dim St~ing$(5,20) 
20 Fo~ 1=1 To 5: Input N : String$(l;>=St~$<N> 
30 ' So~tup St~ing$ 

Next I 

40 For 1=1 To 5: P~int St~ing$<1;>: Next 
50 Run 

Why not? Well, t~y some numbe~s in ~esponse to the INPUT p~ompts and 
see what happens. May we s ·uggest values of 1, 11, 111, 2, and 22 fo~ 
you~ test. When we t~ied those numbe~s, BASIC XL told us that the 
o~de~ was 

1 
11 
111 
2 
22 

If you thinK about the ATASCII values of those cha~acters <and they 
~ cha~acte~s , since they a~e in a string) fo~ a bit, you will 
~eal ize that those a~e the prope~ ~esul ts. The problem, then, is to 
maKe numbe~s appea~ in a string in a fashion such that the so~t 
statements can handle them. 

We could present a complete solution here, but we leave that for a 
program on the ToolKit disK <called SORTNUH.BXL>. We will, however, 
consider at least the case of sorting positive i ntegers, which may 
cover all the cases you will ever need. 

10 Dim St~i ng$(5 ,10) 
20 For 1=1 To 5 : Input N : String$< I; >="0090000000" 
25 String$(1;11-Len<Str$(N))) = Str$<N> :Next 
30 Sortup String$ 
40 For 1=1 To 5 : P~int String$<I;> :Next I 
50 Run 

We hav e alte~ed 1 ine 20 and added line 25. The t~icK he~e is not too 
terribly obscure: We first fill the pertinent element of the string 
ar~ay with place-holding zeroes. Then we position our integer at the 
proper locat i on within that field of zeroes. Since all numbers (as 
represented in ATASCII> are now the same length, it is only the 
significant digits which affect the sort process. Try it and see. 

Note that there is no protection in this program to Keep you from 
entering a number which is not a positive integer. Purists might add 
1 ine 22: 

22 If N<>Int<N> Or N<e Or . N>=1E10 Then Print "Bad number•:Stop 
And, if you prefer a neater looKing numeric print-out, you can change 
line40to: 

40 For 1=1 To 5 : Print Val <String$(!;>> : Next I 

We at OSS can see many uses for SORTUP and SORTDOWN . Again, we invite 
you to peruse the sorting demo programs on the ToolKit disK. Perhaps 
you can find a use for some of the techniques in your own programs. 

BXL ToolKit Pag• 63 



3.4.1 SORTUP 

Format: SORTUP savar [ USING [ aexp TO aexpl r 

Examples: SORTUP Stringarray$ 
SORTUP Array$ USING Min TO Max 
SORT UP X$ ; 1 , 4 
SORTUP X$ Using 5 To 10 ; 4,8 

aexp,aexp l l 

This statement will sort selected elements of a specified string array 
in ascending order, based on the contents of a selected portion (a 
"field') of each element of the array. Unless otherwise specified by 
the user, the field of each element which forms the basis for the sort 
shall consist of the entirety of each element. Unless otherwise 
specified by the user, all elements of the array will be selected to 
be sorted. 

The user may choose the beginning element of the range of elements to 
be sorted by coding the Keyword USING followed by an arithmetic 
expression. If a beginning element is so specified, an ending element 
must also be given by an arithmetic expression following the Keyword 
TO. 

The user may choose the beginning position of the field in each 
element which forms the basis of the sort by coding a 
semi-colon followed by an arithmetic expression. If a beginning posi
tion is so specified, an ending position~ also be given by an 
arithmetic expression following a comma. If a range of elements was 
not selected by the user <see preceding paragraph), the Keyword 
USING must precede the semi-colon. 

Secondary considerations: (1) The sort is done in ascending ATASCII 
order. (2) If the length of an element is Jess than the ending 
position of the field being used as the basis of the sort, the field 
shall be shortened accordingly. This condition applies regardless of 
whether the field is specified implicitly or explicitly. <Note that 
if two compared fields are equal except that one is longer than the 
other, the longer one is greater than the shorter one. This is intui
tively correct as well as being consistent with string comparisons 
made with other BASIC XL statements and operations.) 

Page 64 BXL Tool Kl t 

3.4.2 SORTDcw.l 

Format: SORTDOWN savar [ USING [ aexp TO aexpl [ 

Examples: SORTDOWN Stringarray$ 
SORTDOWN Array$ USING Min TO Max 
SORTDOWN X$; 1,4 
SO~TDOWN X$ Using 5 To 10 ; 4,8 

aexp, aexp l l 

This statement will sort selected elements of a specified string array 
in descending order, based on the contents of a selected portion <a 
"field") of each element of the array. Unless otherwise specified by 
the user, the field of each element which forms the basis for the sort 
shall consist of the entirety of e ach element. Unless otherwise 
specified by the user, all elements of the array will be selected to 
be sorted. 

The user may choose the beginning elemen t of the range of elements to 
be sorted by coding the KeYWord USING followed by an arithmetic 
express i on. If a beginning element is so specified, an ending element 
must also be given by an arithmetic expression following the Keyword 
TO. 

The user may choose the beginn i ng position of the field in each 
element which forms the basis of the sort by coding a 
semi-colon followed by an ar i thmetic expression. If a beginning posi
tion is so specified, an ending position~ also be given by an 
arithmetic expression following a comma . If a range of elements was 
not selected by the user (see preceding paragraph>, the KeYWord 
USING must precede the semi-colon. 

Secondary consideration1u (1) The sort i ·s done in descending ATASCII 
order. <2> If the length of an element is less than the ending 
position of the field being used as the basis of the sort, the field 
shall be shortened accordingly. This condition applies regardless of 
whether the field is specified imp! icitly or explicitly. <Note that 
if two compared fields are equal except that one is longer than the 
other, the longer one is greater than the shorter one. This is intui
tively correct as well as being consistent with string comparisons 
made with other BASIC XL statements and operations.) 

BXL ToolKIt Page 65 



CHAPTER 4 

Ex~mple BASIC XL Progr~ms 
......... i th 

Extended St~tements 

This chapter gives examples of programs written using the extended 
statements presented in Chapter 3. Three of the programs here (those 
in Sections 4.1, 4.2, and 4 . 3) are "brand new", presenting aspects of 
the extended statements which are very difficult to duplicate iro BASIC 
XL <or any BASIC> without the unique capabilities of the extended 
statements. Of necessity, then, their descriptions are somewhat 
detai Jed. 

The other three programs are retreads of three of our old friends from 
Chapter 2. We present them again here to show you how you can turn a 
hard-to-read program riddled with GOSUBs into a well structured 
exercise. For these programs, onlY the significant differences from 
their originals are noted. You are invited to peruse the descriptions 
in Chapter 2 for details on other parts of these programs. 

PagR 66 
BXL ToolKit 

4. 1 FACTOR , BXE 

For such a short program , this will be a 
program given here is actually one of 
how recursion worKs: We calculate the 
repetitive calls to a procedure. 

r ather long explanation. The 
the classic ones used to show 
factorial of a number by 

Now, actually, this is a fai rl y inefficient way 
factor ial. Perhaps the simplest way is the following 

te Input "Give me a positive integer > ",N 

to calculate a 
1 ittle program: 

20 P=l 
3e For I=l ToN : P=P*I: Next 
40 Pr i n t N; " • i 5 · 11 

; p 

So if all you want i s the factorial o f a number, use the above routine 
and forget about the demo on the disK . But if you want to understand 
how recursion worKs, read on. 

If you will examine a 1 i sting of FACTOR.BXE , you wi ll find the first 
part, I ines tee through 22e, rather ordinar y and mundane. The 
possible . sole exception is the CALL to the Factorial procedure, where 
we pass 1n a number and expect a r esult. 

But now looK at the Factorial procedure itself. If you recall our 
discussion of procedure parameters and local variables in Section 3.3, 
you probably aren't too surprised to find the names used in the main 
routine reused here in the procedure. Recall also that the effect of 
using an arithmetic variable either as a parameter (i . e., Number in 
this example> or as a Local variable (i.e . , Result> is that, upon 
Exit from the Procedure , its original value is r estored. Now, there 
isn't really any reason to use these same variable names again in th1s 
program other than as a teaching mechanism, but its a fairly effective 
mechanism. 

Well, once we ge t past the Pr ocedure and Local declarations, there 
isn't much left to the routine, so let's examine it in close detail. 

Since the main code ensured that we would, indeed, use a posit i ve 
integer for Number , we Know that we have a number which will produce a 
valid factorial. Now, the factoria l of 1 La 1, so line 28e maKes 
sense : If the parameter i s 1, then Ex i t with an answer of 1. Simple. 
Clean. Neat, 

Just as an exercise, let's assume that we want the factorial of 3. 
OKay, Number is not I, so we get to 1 ine 29e . How about that? We 
turn around and Call ourselves again , but th i s time our calling 
parameter has a value of 2 < ••• Using Number-! • •• ), Let's Keep going. 

W•'re bacK at li ne 28e. Bu t Number now has a value of 2, so we don't 
taKe the Exit here . Instead, we once again Cal l ourselves. Ready to 
Keep going? 

BacK at I ine 28e, Numbe r now has a value of 1. Aha! Finally, we get 
to Exit with a value of 1 . But wa i t a minute? Certainly 3! is not 1, 
is it? Not to worry, Remember, the last time we Call~the 
procedure, we did so from 1 in e 29e, when Number had a value of 2. 
OKay, so we return bacK to that same 1 i ne 29e, and Result gets a value 
of I. Then we continue on to 1 ine 3ee, where we Exit with what? 

BXL ToolKIt Page 67 



Well, we just said Result is 1, and since Number had a value of 2 when 
1 i ne 290 made the Call, that value has been restored by now (as ~~e 
noted above). So Number*Result is 2*1, and we Exit with a value of 2. 

But where do we Exit bacK to? Well , we got rid of the last of the 
Calls on that last Exit, so this time we end up bacK at 1 ine 290 from 
the time we Called with Number equal to 3, and Result gets a value of 
2. By the same logic, we continue to 1 ine 300 and Exit with 3*2• 

This time, though, we have dispensed with all the Calls except the 
original one, in line 190, so that Result gets the Exit value of 3*2 1 

or 6. Voila! 3! is truly 6, as we wanted. 

There was nothing magic about our choice of 3 for our example. The 
princ i ple holds no matter what the value we use: Keep calling the 
procedure with succesively smaller values until the value reaches 1. 
Then start Exiting bacK up the Call chain, multiplying as we go. 
Terribfy inefficient, but a beautiful example of classical recursion 
at worK. 

So, do you see the advantage of truly local values, not only for 
parameters but for other explic i tly declared variables? No? You 
thinK this was an artificially created example? Well, just wait. •• we 
have some more realistic examples coming up. 

Technical Sidelight: By the way, try to discover the largest integer 
whose factorial can be represented within your Atari's numeric range 
<it's 1 ess than 100>. Then try finding out what 188! is. Bang! You 
got numeric overf 1 ow when the mul tip 1 i es created a resu 1 t 1 arger than 
Atari floating point can represent. But for real fun, try finding out 
what 5888! is. Do you understand why you got that error? Does it 
help if we remind you that each local or parameter variable uses 12 
bytes of memory? And that each Call itself uses 4 bytes? Hmmm ••• how 
much memory does your machine have? <To get rid of all that junK on 
the stacK, just use the CLR command from the Ready prompt level.> 

BXL ToolKit 

4.2 SORTDIR.BXE 

This isn't really a very exciting program . All it does is read in a 
disK directory and then allow you to choose which one of three ways 
you wou 1 d 1 iKe to see it sorted. Its pr imary purpose is to show how 
you may sort on dif f erent "fields" within the s i ngle 'record" each 
element of a . string array can represent . 

188-248 Just the usual necessary set up. Note the names given to the 
console_Keys; obviouslY not a necessary s t ep , but one which make s 
a prettier program. The FILE$() array is dimensioned large enough 
to hold the largest di r ectory a standard DOS 2 disK will allow. 
If your DOS allows more f iles, or if the entr i es in the director y 
are longer, feel free to change the DIMensions. 

268, 688 By now, you are used to seeing endless WHILE loops in our 
programs. The beginning of this loop may be in the wrong place 
for you. As is, it reads the di r ectory in off the disK each time 
a new sort is done. This is so that you can change disKettes if 
you wish. It might have been better to at least give you a c~ance 
to tell the program that you have changed disKs . Sounds 1 i Ki' a 
goo programming exercise for you t o us. 

278-348 This is 
LINE$ variable 
string array 
SECTORS" 1 i ne 

an easy way to read in the director y. The 
is not really needed--you can INPUT d i rectly into a 
element if you wish--but it avoids having the "FREE 

end up in the array. J ust a small nicety. 

Notice how we depend on th e space in the second charac t er position 
for each directory 1 ine except the "xxx FREE SECTORS " of the final 
1 i ne. 

3~8-398 Self-explanatory. Actually , we could have special cased a 
directory with a single file <why bother to sort it?>, but it 
isn't necessary. 

488-488 After presenting the menu, a beep <PUT ~0,253) reminds you to 
push a button. After you do, we clear the screen. 

498-~6~ This is what we r e ally wanted to demonstrate. Depending on 
which button you pushed , we SORTUP based on a particular field . 
The SORTUP statements of 1 ines 508, 520, and 540 are identical 
e~cept for the numbers following the semicolon. Inspect a single 
l1ne of the directory 1 isting. Do you see how the numbers are the 
character positions within the 1 ine? Easy, isn ' t it. 

Notice, also, that we do not sort the entire array. Rather, we 
only sort the part which holds valid directory entries. Also very 
easy, right? 

~88-648 Just a way to display the directory in two columns. The 
sorted 1 isting reads down the first column and then down the 
second. It would have been eas i er to simply alternate, but this 
is easier to scan visually. 

Again, fe e l free to modify this program to your 1 i king. 

BXLToolKit Page 69 



4. 3 SORTNLI1. BXE 

In the presentation of the sort statements in section 3.3, we 
discussed a way to sort integers by converting them into a consistent 
form in a string. This program presents a different and more general 
way to sort the floating point numbers which BASIC XL (and Atari 
BASIC> uses • . 

Performing this sort depends upon Knowing the internal format of 
floating point numbers used by BASIC. The form is fairly simple: A 
single byte of sign and exponent followed by 19 BCD digits, two to a 
byte. The sign of the number is given by the uppermost bit of that 
first byte. The exponent is a power of 100 in what is Known as 
•excess-64" form. <That means that the true power of 100 has 64 added 
to it so that all exponents appear as positive numbers. To form the 
true exponent, then, subtract 64 from the byte after getting rid of 
the sign bit.) 

If you study this format, you will discover a fortituitous occurrence: 
if you treat the six bytes of a positive number as if they were a 
string, positive numbers will automatically be sorted correctly by 
SORTUP and SORTDOWN. Truthfully, this is not a coincidence. Internal 
to BASIC, such consistency is used for comparisons (e.g., as when you 
code something 1 iKe IF A>B THEN • • • >. 

On the other hand, because negative numbers have that upper bit set, 
they will all sort as larger than any positive number' Oops, to say 
the least. Not only that, if you ignore the sign bit, the negative 
numbers looK exactly 1 iKe positive numbers, so they will be sorted in 
reverse order. And, finally, what about zero, which consists of six 
bytes of $00? Well, it is now time to examine the program I isting to 
see how we turned adversity to advantage. 

158-169 The onlY reason for the DUMHY$ string is to provide an 
address for that single element numeric array. Recall that in 
BASIC XL (and Atari BASIC>, string and array variables always use 
memory in the order they are DIMensioned. Thus the address of 
VALUE ~ to be one greater than the address of DUMHY$. 

189 This array is actuallY going to hold our array of floating point 
numbers. In fact, notice that it Is the same size as an array of 
20 numbers. Of course, we have to use a string array because 
SORTUP and SORTDOWN can only handle string arrays. That's onlY a 
minor inconvenience, as we shall see. 

289, 368 We're going to generate, manipulate, and display 20 random 
numbers. 

299 This is just to give each element of the array a LENgth of six. 
Otherwise, the sort process won't Know how many bytes in each 
array element need sorting. 

389 We generate random numbers in an arbitrary range, but one which 
is easy to view. 

318-328 See how we move the six bytes of the floating point number 
into the element of the string array? Didn't Know you could do 
that in BASIC? 

BXL ToolKit 

339 

349 

wAll we do here ~ s flip the state of the sign bit: if the number 
as p~s:t1ve, 1t IS now n~gatlve ; and v ice- versa , Note the effect 

of this. what we~e negat1ve number s wi 11 now sort as smaller tha.r1 

what wer~ pos1t1ve numbers. Just thinK of that bit as 
representing a plus sign now, instead of a minus sigr1 , 

We count all the numbers which were negative, 
We' 11 show you , 

Don ' t worry why. 

359 We just display the numbers in an easy to view 
bunch of digits, aren ' t they? 

form. Mixed up 

379-380, 418-429 The only reason for these 1 ines is so that you can 
see how fast the array is sorted, Pretty impre-ss i ve even i + it 
is only 20 numbers. Feel free to try it with more, ' 

399 

498 

OKay. This is obvious. Ever y thing is now sorted very pre t ti]>· , 
Except that playing games with that sign bit d i dn ' t fi x the fact 
that the negative numbers will be sorted bacKwards. 

The magic. Because we Kept tracK of the count of negative 
~~~~=~:·and because the SORTUP of 1 ine 398 put all the negative 

before the positive ones in the array, this worKs' w
simply re-sor~ the negative numbers in bacKward order vi:
SORTDOWN. You 11 Simply have to RUN this program to believe i t.

448-498 This lo~p just d i splays the now sorted array, Note how we
nowhaveto flip the sign bit bacK to its original state before
mov1ng 1t bacK t o VALUE<&> for printing. Not very hard, right?
<Actually, we didn't have to flip the bit. We could have moved
the number as is and then printed -vALUE<&> for the same effect,
But the way shown is more orderly .)

That's i t. The best part of this method is that you
incorporate the six byte "field" of the floating point
longer "record" so that you could sort the array several
did in the last section.

BXL ToolKit

cou 1 d
number
ways,

eas i 1 >'
into a
as we

Page 71

4.4 GTIATEST.BXE

This is the first of our "conversions" from a standard BASIC XL
version to one using extended statements. In the mainline code, 1 ine
1048 has been changed to a CALL. The subroutine starting at 1 ine 9000
has been turned into a PROCEDURE, and the variables used in it have
been made LOCAL (1 ine 9080).

Now, truthfully, there was 1 ittle incentive to change this routine
into a Procedure. What have we saved? The variables are local, so
they can get used for other purposes e 1 sewhere i r. the program· And
since we Exit with the test value, the Caller doesn't have to aware of
name we use in the subroutine. Big deal.

No, the real reason we changed this program was once again
instructional. We just wanted to show how easy it really is to use
Procedures and write readable code. There's more to come.

Page 72 BXL ToolKit

4.5 QISKIO.BXE

Another fairly simple conversion from the original standard BASIC XL
program. This time, though, there is a little more justification for
using Procedures.

Just looK at I ines 9568 1 9688,
Just thinK: you could have an
around on disKs. And you
<Procedure> and Exit 1 ines.
documentation, would you?

9628, and 9668. What could be clearer?
entire I ibrary of Procedures sitting
could Keep a I isting of Just the entry
You almost wouldn't need any other

Watch how easy it is to use these routines if the code from 9008 up is
included in your code:

10 Dim High$(128> : Hi gh$="8088eaeeee•
29 Call "Read Sector• Using 1 , 720,Adr<High$),1 To Test
30 Print "High score is ";ValCHigh$)
48 Input "New high score? ',High
58 High$=Str$<High>,ChrC9B>
69 Call "Write Sector• Using 1,720 1 Adr<High$>,1 To Test
79 Stop

If you included something liKe that in your code, you could save the
high score from a game in the usually invisible sector 728. Cute?

TricKies in that code: We give High$ that initial value so that it
will have a valid LENgth (liKe BGET, direct sector access doesn't
change the length of a string), Similarly, we put a RETURN character·
into the string <1 ine 50) so that a later sector read and VALO will
find something to terminate the number.

Finally, we leave you with the thought that a sector holds 128 bytes.
If you used a string array such as

DIM HighS(11, 18)
and then, in the Call used ADRCHigh$<1;>>-2 (minus 2 so that we get
the length bytes for the first element of the array), we could keep
tracK of up to 18 high scores with, perhaps, 3 initials and up to 7
digits of score each. <Why not 11 scores, when we dimensioned the
array to have 11 elements? Well, the actual size of that array in
bytes is 11*(18+2> or 132 bytes, where the +2 accounts for the length
bytes in each element. But the sector can only hold 128 bytes, so we
would be missing 4 bytes from the last element.>

BXL ToolKit Page 73

4.6 PH~E.BXE

This 1 ast program "conversion • is our "Lit t 1 e BlacK BooK" program from
Section 2.9. It was a monster as a standard program. It remains a
monster using extended statements. But, perhaps, it is a more
managable monster now.

Actually, we changed the character of the program very 1 i ttl e. And we
even tried to Keep all subroutines at or- near- the same 1 ine numbers.
What we tried to do was change every GOSUB to a CALL. Now, we will
admit that some of the routines didn't really need to be made into
Procedures, but once again it is at worst an educational exercise.

We invite you to per-use especially the Procedures in 1 ines 5000
thr-ough 9999, What you might find most interesting is looKing for the
var-iables which we left global, those we did nQ1 pass as parameters.
The moit notable of these are str-ings used as field names (e.g.,
Last$) and file names <DBX$ 0 DBF$). The hassle of maKing these into
par-arne ters every p 1 ace they ar-e used was fue 1 ed with the 1 iKe 1 i hood
that in any application of this system you would most 1 iKely use only
one data base file at a time. Result: they ar-e left global.

On the other hand, looK at the "Get Line• r-outine, 1 ines 5000 to 5260.
Her-e was a gr-eat oppor-tunity to pass a str-ing both in and out, thus
allowing us to put the edited 1 ine dir-ectly into the user-'s str-ing
variable space, no muss, no fuss. This same Procedure benefits by
being able to easily call it with the maximum number of character-s you
want to get as well as a flag determining the fate of lower case
letters,

And looK at all the routines which use the var-iables Temp! and Temp2,
which they inevitably maKe into LOCAL var-iables. How nice it is to
not have to wor-ry about possible conflicts in temporar-y var-iable usage
anymore .

Similar-ly, "Hake Index• starting at 1 ine 7500 shows off its usage of
parameters passed to it. LooK at the Call to it in line 20240. How
nice to not be forced into maKing var-iable names match!

Aside from all of that, you might looK at the code in lin<!s 1570
thr-ough 1710. Notice how we build up two str-ing ar-rays with the names
of our Procedur<!s carefully ensconced as elements ther-ein. Then looK
at line 2260 and 1 ines 19250 and 10260. Do you see how we can use a
menu option to nicely choose even the correct Procedure to call?

The most impor-tant aspect of all this, though, may be that now the
r-outines have been somewhat freed of the tyr-anny of 1 ine numbers and
var-iable names. Feel fr-ee to copy them and use them in your- own
pr-ograms. Who Knows? You may be a budding data base programmer- who
just hasn't had the right tools. Until now.

BXL ToolKit

1

