
BASICXETM
Just look at what you get for

one low sticker price:

BEST MILEAGE: With over 60,000 more bytes
for your programs, BASIC XE Iets you use all the
memory you paid for. *
MORE HORSEPOWE R: Run Atari BASIC pro­
grams 2 to 6 times faster. * Even with its incredible
power, BASIC XE is compatible with Atari BASIC.

CLASSIC DESIGN: Show off the sleek str u c­
tured style of your own programs when you use
BASIC XE statements like PROCEDURE,
IF ... ELSE, and WHILE ... ENDWHILE.

FREE ACCESSORIES: Get over $100 worth of
Atari BASIC options FREE when you buy BASIC
XE: complete Player/Missile Graphics support,
string arrays, DOS access, SORT commands, read­
able li&tings ... over 50 extras at no additional charg~.

C>ptlmlzed Systems Software, lnc.
1>219 Konlwcod -.... San Jose. ~nia 95129 (408) ~-3099

A REFERENCE MANUAL FOR

BASIC XE

This manual is Copyright(!:>) 1985 by
Optimized Systems Software, Jnc.

Portfons of thls manual are
Copyright(!:>) 1980 by Atarl, Inc.

and are reprinted with the
permission of Atarl, Jnc.

All rights reserved. Reproduction or translatlon of
any part of thfs manual beyond that expressly
permitted by fll07 or !HOB of the United States
Copyright Act ls unlawful without the permission of
the copyright owner. ·

Optlmlzed Systems Software, lnc.
12218 Kentwood Avenue San Jose, California 95129 (408) 446-3099

Page Ii BASIC XE Reterence Manual

Acknowledgements
Trademarks

Acknowledgements

OSS gratefully thanks Atari, lnc., for its klnd
permlsslon to reprint portlons of the Atari BASIC
Reference Manual. Piease be aware that thcse
portlons have been copyrighted (Cl) by Atarl, Jnc., nnd
respect the rights implled thereby,

We also thank thosc stalwart OSS users whose requ<'sts
and pleas for an extended BASIC inspired us to crente
BASIC XR, and those beta-testers who helped us make
sure that BASIC XE works the way we want it to.

Trademarks

DOS XL, BASIC XL, BASIC XE, OSS, and Supercartrldge
are trademarks o! Optlmi?.ed Systems Software, Inc.

Atari is a reglstered trademark of Atari, Jnc.

800 XL, 65 XE, 130 XE, 810 Disk Drive, 1050 Disk Drive,
410 Program Recorder, 1010 Program Recorder,

and 850 Interface Moduleare trademnrks of Atnri, Jnc.

BASIC XE Reterence Manual Page 111

Page iv BASIC XE Reference Manual

Preface

Preface
Caveat

You may wonder why BASIC XE needs n reference manual at all. lt's just another
BASIC, right? Well ... yes and no. BASIC XE isanother BASIC, hut it's a cut above
the other BASICs currently avallable !or Atari XL and XE series computers. lt
needs lts own rPference manual ~o that you cnn find out just how to take
advantage o! all the extras included in BASIC XE.

What's In This Manual?

This manual does not pretend to teach you how to program in BASIC, There are
several very good tutorials that cover the rudiments of BASIC programming on the
Atari, and we direct you to them lf BASIC is completely forPign to you.

That doesn't mean that thls manualls useless. I! you want to exploit BASIC XF.'s
advantages, it's a necesslty. Between these covers you w!ll find a complete
description of the BASIC XE language, including the special Statements un!que to
BASIC XE as weil as those in standard BASIC. Wehave avolded computer jargon
whenever posslble, resortlng to lt only when absolutely necessary. To decrease
bewllderment we define Jargon terms when they are flrst used, and provide a
glossary of all the jargon used in the manual.

As you will notlce when you Iook at the table of contents, this manual groups
commands that perform related tasks into chapters, rather than simply listlng them
in nlphabetlcal order. This enables you to find all the commands that could help
you with a specific task. Wehave includro an alphabetized indpx at the end of th<>
book so that you can find single topics and commands quickly.

Where ToGo From Here

If you are plannlng to rend thls manual cover to cover bPfore you evPn boot
BASIC XE, that's fantastic! I! not, may we suggest that you at least read the
introductlon and scan the table of eontents. Thls will glve you a brlef overview of
BASIC XE and an ldea of where to lind things in the reference manual.

Caveat

Because we're only human and so sometimes make mistakes, a caveat is rcquired.
We have made every effort to ensure that this manual accurately describes the
BASIC XE system and Janguage, However, due to the ongolng improvement and
updat!ng of all OSS products (including BASIC XE), we cannot guarantee the
absolute accuracy of the documentation. Therefore, OSS, lnc., dlsclalms all
l!ability for changes, errors, or omlsslons in elther the manual or the software
itself.

BASIC XE Reference Manual Page v

Page vi BASIC XE Reference Manual

Table of Contents

Introductlon
Extras that BASIC XE Offcrs You 1
How to Boot BASIC XF. .. 2
How to Use this Manual. ... 3
Special Notations this Manual Uses ~
BASIC XE's Operating Modes .. 4
BASIC XE Keywords and S;)mbols 4
A Glossary of Tenns thls Manual Uses 5

Variables (var)
Variable Types, Name-s, and Maximtm !l
Arithmetlc Variables (avar) ... 9
Arlthmetlc Arrays and Matrices (mvar) 10
Strlng Variables (svar) .. 12
String Arrays (savar) •• 12
Specifylng mvar, svar, and savar Slzes DIM 13
Creat ing Private Var Iab I es ••••••••••••• • ••••• LOCAL •••••••••• • •••••• 14
Notesand Warnlogs Regarding LOCAL 15
Assignlng Values to Variables ,, 16
Uslng Keywords as Variable Names ••• ,, •••••• ,.·LET ••••••••••••••••••• 17

Operators (ops)
Ar I thmet lc Operators (aop) ••••••••• , •• ,, ••• , •• ,.,,, ••••••• ,, ••••••• 19
Loglcal Operators (lop) •• , ••• 20
Operator Precedence ••••••••••••••••••••• • •••••••••••••••••••••••••• ?1

Expressions (exp)
String and Numerlc Constants 2~
The Interna! Fonnat of Ntmbers 23
Arlthmetlc Expressions (aexp) •••••••••••••••••••••••••••••••••••••• 24
Strlng Expressions (sexp) •• 24

Edlting Your Program
Wlplng the Slate Clean ••••••••••••••••••••••• NEW ••••••••••••••••••• ?5
Llne Numberlng the F.asy Way NUM 25
Looking at Your Progr!lll LIST 26
Deleting Progr!lll Llnes ••••••••••••••••••• • ••• DEL 26
Renumber lng Your Program ••••••••••••••••••••• RENUM ••••••••••••••••• 27
Putting Remarks in Your Progr!lll RF1tf 27

Storlng and Retrieving Your Program
Storing Your Progr!lll as Text LIST 29
Retrlevlng Your Text Progr!lll ENTER ?.9
Stor lng Your Program as Tokens ••••••••••••••• SAVE •••••••••••••••••• ;10
Retrlevlng Your Tokenized Progr!lll •••••••••••• LOAD •••••••••••••••••• :10
Stor ing Your Program on Gasset te ••••••••••••• CSAVE ••••••••••••••••• ~0
Retrlevlng Your Program from C~ssette •••••••• CLOAD •••••••••••••••• ,,O

BASIC XE Reference Manual Page vll

Table of Contents

Maklng Your Program Stop and Go
Maklng Your Progrrun Go RUN 31.
Finishing Your Program ••••••••••••••••••••••• END ••••••••••••••••••• n
Making Your Progrrun Really (',o, ••••••••••••••• FAST •••••••••••••••• • • 32
Stopplng Your Program •••..•••••.••••••••••••• STOP ••••••.•••.•••••.• ~~
Restartlng Your Program •••••••••••••••••••••• CONT •••••••••••••••••• 33
Flndlng Out What Your Program ls Dolng ••••••• TRACE/TRACEOFF •••••••• 33

Conflguring the BASIC XE System
Personallzing BASIC XE •••.••••••••••••••••••• SET •••..•••••.•••••••• ~~
Find ing Out Wha t I s been Personall zed ••••.•• r SYS •••••.••••••••.•••• 36
Changing Your Computer's ~mory .••••••••••••• LOMEM •.••••••••••••••. 37
Resettlng Variables •••••••••••••••••••••••••• CLR ••••••••••••••••••• 37
Findlng Out How Much Rocrn You Have •••••••• • t FRE •••••.••••••••••••• 37
Looklng at Variables LVAR •••••••••••••••••• 37
Accesslng the Extra Memory in a l30XE EXTEND 3ß

Exl tlng BASIC XE
Going to the DOR DOS (CP) 39
Going on Long Trips BYE 39

Beginning Data Input/Output
Introducing Atari I/0 ••••••••••••• , •••••••.••••••••••••••••••••.••• 41
Preparing To Do Same 1/0 OPEN 42
Cleaning Up After Doing 1/0 CWSE 43
Displaylng Information PRINT 43
Getting Information •••••••••••••••••••••••••• INPUT ••••••••••••••••• 44
Storing a Single Ryte PUT 45
Retr!eving a Single Byte GET 45
Going Directly to the Printer LPRINT 45
Skipping to the !light Place TAB 46
Another Way of Rklpp!ng r TAB 46

Advanced Data Input/Output
Formattlng Information as You Display It ••••• PRINT USING ••••••••••• 47
Changing Your Chnracter Display •••••••••••••• NORMAL/INVERSE •••••••• 50
Storing Blocks o! Data on a Disk Drive BPUT 51
Retrievlng Blocks of nata fram a Disk Drlve •• BGET •••••••••••••••••• 51
Storlng Records on a Dlsk Drive RPUT 52
Retrlevlng Records frcrn a Disk Drive RGET 53
Storing Blnary Files on a Disk Drlve BSAVE 54
Retrlevlng Blnary Files fram a Disk Drive BLOAD 54
Finding Out Where You Are on the Disk NOTE 55
Telling the Disk l~ere You Want To Re POINT 55
Finding Out How a Device Feeis STATUS 55
Doing X-tra Special I/0 XIO 56

Page vlil BASIC XE Reference Manual

Table o! Contents

Managing Dlsk Files
Finding Out What's on a Disk DIR 57
Protect!ng a Dlsk File PROTECT 57
Unprotecting a Disk File UNPROTECT 57
Changing the Name of a Disk File RENAME 5R
Deleting a Disk File ERASE 58

Looping and Jumplng Statements
Loopl ng by Nunbers •••••••• , •••••••••••••••••• FOR/NEXT/STEP ••••••••• 59
Looping for a While WHILE/ENDWHILE flO
Junping Around in Your Program ••••• • • •• •••••• OOTO ••••.••••••••••••• 61
Getting Out of Loops POP 62

Condltlonal Statements
The One-Liner •••••••••••.•••••••••••••••••••• IF/THEN •••••••••.••••• 6:1
EI ther/Or Options IF/ELSE/ENDIF 64
Lots of Options ON f-5

Handling Errors
Setting and llalting Error Traps TRAP 67
Flnding Out 1\'hat's in the Trap ! ERR 67
A Program Example Using TRAP and ERR 68
Using STOP and CONT in F.rror llandl ing 68

Handling Strlngs
(',etting a Character's Nunber f ASC 69
Getting a Nunber's Character r CHR$ r,s
Flnding Out the Length of a String t LEN 69
Searching Through a String • t FIND 70
Finding Out the Location of a String ! ADR 70
Getting the First Part of a String r LEFT$ 71
Getting the Middle of a Strlng ! MID$ 71
C'.ettlng the Last Part of a String r RIGIIT$ 71
Changing a String into a Ntmber • t VAL 72
Changing a Nunber lnto a Strlng r STR$ 72
Displaylng Hexadecimal Nunbers .••••••••••••• ! HEX$ •••••••••••••••••• 72

Uslng the Game Controllers
Uslng the Paddles in Your Program f PADDLE 73
Pressing the Trigger on the Paddle r PTRIG 73
Uslng the Light Pen ln Your Program r PEN 73
Uslng the Joystick the Pard Way • t STICK 73
Movlng the Joystick Left and Rlght r HSTICK 74
Movlng the Joystick Up and DoY.n r VSTICK 74
Presslng the Trigger on the Joystick • t STRIG ••••••••••••••••• 74

BASIC XE Reference Manual Page ix

Table ot Contents

Graphfes
lntrodueing Atari Graphies ••• 75
Seleetlng a Graphfes Mode ••• ••••• •••••••••••• GRAPHICS •••••••••••••• 78
Changing the Color Palette ••••••••••••••••• •• SETCOLOR •••••••••• •••• 78
Pieking a Color •••••••••••••••••••••••••••••• COLOR ••••••••••••••••• 79
Plot t lng Points •••••••••••••••••••••••••••••• PLOT •••••••••••••••••• AO
Draw!ng Llnes •••••••••••••••••••••••••••••••• DRAWI'O •••••••••••••••• 80
Mov!ng Around the Sereen ••••••••••••••••••••• POSITION •••••••••••••• 80
F!ndlng Out \\hat' s on the Sereen ••••••••••••• LOCATE •••••••••••••.•• 80
Color!ng in Boxes •••••••••••••••••••••••••••• XIO F111 •••••••••••••• 81

Player I Missile Graphfes
Introdueing P/M Graphies ••••••••••••••••••••••••••••••••••.•••••••• 83
P/M Graphfes Conventions •••••.••••••••••••••••••••••••••••••••••••• R4
Seleeting a P/M Graphfes Mode •••••••••••••••• PMGRAPHICS ••• ••••••••• 85
Changing the P/M Color Palette ••••••••••••••• PMCOLOR ••••••••••••••• 86
Mov!ng a P/~1 ••••••••••••••••••••••••••••••••• PMMOVE •••••••••••••••• 86
Creat!ng and Flrlng M!ssiles ••••••••••••••••• MISSILE ••••••••••••••• R7
Seleetlng a P/M' s W!dth •••••••••••••••••••••• PMWIIYrH ••••••••••••••• 87
Eraslng a Player ••••••••••••••••••••••••••••• PMCLR •••••.••••••••••• 88
Looking for a Co!! ision •••••••••••••••••••• r BUMP •••••••••••••••••• 88
Cleaning Up Collisions ••••••••••••••••••••••• HITCLR ••••• ••••••••••• 88
Getting a P/M' s Arldress f PMADR 89
Uslng POKE and PEEK with P/M's 89
Us!ng MOVE w!th P/M's ••••••••..•••••••••••••••••••••••••••••••••••• 89
Using BGET and BPUT w! th P/M' s 89
Using USR w! th P/M' s ... 90
Two Player/Missile Graphfes Progr!rns ~0

Sound
Making Musie and llaspberries SOUND 93

Sortlng Arrays
lntrodueing the Array Sorting Statements 95
Sorting Str!ng and Aritl>netie Arrays ••••••••• SORTUP/SORTDOWN ••••••• 98

Uatng Ftxed Data in Your Program
Putt!ng Fixed Data in Your Progr!rn ••••••••••• DATA 99
Aeeessing the F!xed Data in Your Progrrun ••••• READ •••••••••••••••••• 99
Deeiding What Fixed Data to Aeeess ••••••••••• RESTORE •••••••••••••• 100

Aeeessing Memory Dlreetly
Look!ng at a Single Byte of Memory f PEEK 101
Changing a Single llyte of Memory POKE 101
Looklng at Two Bytes of Memory f DPEEK •••••••••••••••• 102
Changing Two Bytes of ~'Gnory ••••••••••••••••• DPOKE 102
Mov!ng Your Computcr's Memory Around ••••••••• MOVE ••••••••••••••••• 102

Page x BASIC XE Reference Manual

Table of Contents

Arlthmetle Funetlons
Making a Ntrnber Pos! tlve f ABS 103
Gettlng R!d of Fraet!ons r INT 10:l
Flndlng Out the Slgn of a Ntrnher ••••••••••• r SGN •••••••••••••••••• 103
Canputing Square Roots f SQR JO:l
Exponent I a t I ng a Ntrnbcr •••••••••••••••••••• f EXP •••••••••••••••••• 104
Canputlng Natural Logarltltns ••••••••••••••• f LOG •••••••••••••••••• 104
Canput !ng Comnon Logar I tltns •••••••••••••••• C CLOG ••••••••••••••••• 104
Uslng the Canputer' s Randan Ntmbers •••••••• r RND ••••••• • •••••••••• 1.04
Seleeting Your Own Randan Ntmbers •••••••••• f RANDOM ••••••••••••••• 104
An Example Program Us!ng Arithmetie Funetions ••••••••••••••••••••• 105

Trigonametrie Funetlons
Swapp!ng Between Un!ts of Measure •••••••••••• DEG/RAD •••••••••••••• 107
Canput!ng Cos!nes •••••••••••••••••••••••••• f COS •••••••••••••••••• 107
Canputing Sines f SIN 107
Canput!ng ArcTangents (TAN-1) ! ATN 107
A Table of Der!ved Funetions 108

BASIC and Maehine Language Subrout!nes
Accessing Subroutines by L!ne Ntmber ••••••••• GOSUB ••••••••••••• ••• 109
Leavlng Simple Suhrout!nes RETURN •••••••••• •• ••• 109
tntrodue!ng PROCEDURE and !ts Related Statements 110
Glv!ng Names to Subroutines •••••••••••••••••• PROCEDURE 112
Notes and Warn!ngs Regarcling PROCEDURE •••••••••••••••••••••••••••• 114
Leav!ng Subroutlnes Elegantly EXJT •••••••.•••••••• • 116
Aeeess ing Proeeclures CALL ••••••••••••••••• 117
Aeeessing Maeh!ne Code Subrout!nes ••••••••• f USR •••••••••••••••••• 118

Append!ees
A: ATASCII Characters and Codes A-1
B: BASIC XE Memory ll'ap .. ß-1
C: Compatab!l!ty with Atari JlASIC C-1
D: Data Spaee in Extended Memory n-1
E: Error Sltuatlons ••• F.-1

Index

BASIC XE Reterence Manual Page xl

Page xii BASIC XE Reference Manual

Introductlon Extras That BASIC XE Offers You

Extras That BASIC XE Offers You

OC course BASIC XE provides all the commands availablc in stnndarct Atari llASIC,
but that is only the tlp of the iceberg. You can LOAD your SAVEd Atari BASIC
programs into BASIC XE and make use of its speed lmmediately, but soon you'll
want to take fuller advnntage of the extras that BASIC XE otfers -- extras like:

Faster Program Executfon New Cloating polnt math routlnes combine with the
FAST command to produce BASICprograms that execute at near-arcade speed.

Quick Access to the 130XE's Extended Memory Now you can control and utllize
the extra 64k of memory in a l:lOX E, and you don' t even have tobe a program­
mlog genius to do lt. One simple BASIC XE statement makes all that space
avallable to your program.

Easy Program Formattfng and Edltlng Unllke other BAS!Cs, 11A:'1!C XE does not
care whether you use upper or lower case letters when you type in programs.
This alone can make your programs more readable. However, R ASIC XE wlll do
even more for you. Jt will automatically prompt you wlth llne numbers or
renumher an entire program at your request. Also, the LIST command has a
program tormatter built in, thus making your programs easier to follow, no
matter how complex or lnvolved they are. Other editing features include wrap­
around and keyboard repeat. I! you enter a program llne that's Ionger than the
length of the screen, lt wlll "wrap around" to the next scrPen Iine so that you
can view lt. Also, if you hold down any key !or over half a second, it will start
repeatlng.

Advanced Strlng Handling BASIC XE makes string handling easier and more
powerful at the same time. No Ionger must you DIMemsion strings before you
use them --BASIC XE can do it for you. Also, you can now group related
strlngs tagether in string arrays just like you're used to doing wlth numbers in
numeric arrays. Finally, BASIC XE includes new operators nnd functions that
make string separation, concatenatlon, and senrching a piece of cake.

Built-in Player/Missile Graphfes With other BAS!Cs you can use P/M graphics only
if you're a computer wiz. BASIC XE provides nine commands designed
especially for P/M graphics, and this manual shows you how several others can
be applied to P/M graphics. Now P/M graphics are as easy to control as
common playfield graphics.

Easier Joystick Control Not only does BASIC XE support the paddle and joystick
functions available in Atari BASIC, it also adds several others that make
Joystick Input easier to use.

Explanatory Error Messages Instead of generatlog a cryptic error number when
something goes wrong, BASIC XE also gives you an explanation of the error so
that you can diagnose and fix the problern qulckly. When you need more help to
solve the problem, you can Iook in Appendix E forafurther discussion of error
situatlons.

BASIC XE Reference Manual Page 1

How to Boot BASIC XE lntroduct!on

How to Boot BASIC XE

There's one thing you should do even before you boot BASIC XE for the first time:
fill out and return the Iicense agreement that came wlth BASIC XE. lf you don't,
you won't be added to OSS's users IIst, which means that not only wlll you not get
newsletters and update Info, but you won't even be able to get technlcal help from
OSS when you call. You must have a license agreement on file to get technical
support! So please, please, please, RETURN YOUR LICENSE AGREEMENT!

As you have probably noticed by now, BASIC XE is a supercartridge and a disk. To
use all of the capnbilities of BASIC XE, you need to boot with bothtile cart. and
the disk. The proccss is simple:

1) Turn on drive 1, maklng sure that it's connected to your computer.
2) Insert the BASIC XE Extensions Oisk in drive 1 and close the drive door.
3) Insert the BASIC XE cartridge in your computer.
4) Turn on your computer and wait.

Soon you will sec a title screen telllng you that the extensions are loading. After
thls the screen will clear and you will see the BASIC XE copyright m essage at the
top of the screen, and the famillar Ready prompt will appear right bclow that.
Now you're ready to program!

You can boot without the extensions disk if you want. Onc of two thingswill
happen, depending upon whether the disk you boot with has the cxtensions file on
it (instructions for copying the extensions disk and file are below).

If the boot disk does not have the extcnsions file on it, or if you boot without a
drive, you can still use BASIC XE. However, the following will not bP. avnilable:

BSAVE, CALL, DEL, EXIT, FAST, LOCAL, LVAR, MOVE,
PROCEDURE, RENUM,RGET,RPUT,SORTUP,SORTDOWN,
the fast math routlnes, and all P/M commands exccpt HITCLR.

If the boot disk does have the extensions file on it, you will be able to use all of
the capabilities of BASIC XE, just as if you had booted wlth the extensions disk.

Backing Up the Extensions Disk

The extensions disk is in single denslty Atari DOS 2.0s format, so duplicate it using
whatever command your DOS requires to dupllcate this disk format.

Moving the Extensions to Other DOS's

The BASIC XE extensions are in the file BASICXE.OSS on the extenslons disk. If
you want to use a DOS other than the one on the extensions disk, all you have to
do ls copy the BASICXE.OSS file to your DOS boot diskette. This file is in
standard DOS LOAD format, so copying it should not be a problem.

Warnlng: BASIC XE w!Il not work with any 'translator' program, nor will it work
with DOSXL.SUP or OurDOS if you use the extensions (because they try to use the
same memory).

Page 2 BASIC XE Reference Manual

In troduction How to Use this Manual
Specials Notations thls Manual Uses

How to Use thls Manual

This sectlon might seem superfluous because everybody knows how to use a
manual. That may be true, but allmenuals have thelr own idiosyncracies, even this
one, and we thought you mlght wnnt to know them.

The chapter grouplngs were designed around toplos so that you can find out
everythlng about a singletopfe without having to jump from place to place. Also,
the chapters themselves have been grouped lnto !arger toplcnl groups (e.g., the
Graphfes and P/M Graphlos chapters arc together) , with the simpler topics near
the beg!nning of the book. Jf you nre looking for something spec ific, use th!' inctex.
!t contains a multltude of references, including subheadings within !arger entrles.
Finally, if a topic confuses you, try the examples. That's what they're there for!

Special Notations thls Manual Uses

This mnnual's job !s to teach you how to use BASIC XE and its extenslons without
befudctling you. To this end we have adopted scveral convent!ons in our
presentatlon of the Janguage. We Iist them here at the bcglnning so that you can
familiarize yourself wi th them:

Capftallzed Words In the text of thls manual, all kcywords and functlons are
printed in uppercase to dlfferentlate them from the other parts of a statement.

Lowercase Words In the text of this manual, lowercase words are used to ctenote
the various classes of ltems whlch may be uscd in a program, such as variables
(var), expressions (exp), etc.

Abbrevlatlons In Sectlon Headlngs If a statement has an abbrevlation assoclnted
wlth it, the abbreviatlon is placed in parentheses followlng the full name of the
statement in the headlng (e.g., LIST (L.)).

An "f' Preceding a Keyword If an "f" preccctes a Keyword in a section heacting, it
means that the Keyword is a !unctlon, not a statement.

Items in Brackets When showlng the usage format of statements and functlons, we
use brackets ([]) to surrounct items which are optional in the format. If the item
enclosed in brackets is followed by an ellipsls (three dots), it means that ltem may
be used zero or moretim es in the formet (e.g., [exp, ••.] means thnt you may use .
0,1,2,3, or more expressions, separated by commas).

Items Stacked in Bars Items stacked vertically ln bars indicate that any onc of the
stacked items may be used, but that only one at a time is permissible. In the
followlng example, you may either use the GOTO or the GOSUB, but not both:

JOOTO I 2000
JGOSUB

Notes, Cautions, and Warnlngs: You will find these startlng pnrographs throughout
this manual. Notes are slmply lnterest!ng asldes, Cautlons are just that (they polnt
out things to watch out for), and Warnings dcscribe potentlally catastrophlc
situa tions and problems.

BASIC XE Reference Manual Page 3

BA SJC X E's Operating Modes
BASIC XE Keywords and Symbols

BASIC X E's Operating Modes

Introduction

We humans don't like to do things the same way every time, but computers do.
BASIC XE solves this problern by having three "operating modes". This helps keep
you and BASIC XE working on the snme wavelcngth. The following parngraphs
descrlbe these modes and outline what each is used for.

Direct Mode This is the mode you're in whenever you see the "Ready" (or
"xE Ready" if you've used the EXTEND statement) prompt. For this reason
Direct Mode is sometimes called Prompt Mode. Commnnds you issue in this
mode are executed immedlately (Oirectly). Most of the time you will use this
mode only to tell RASTC XE what you want to do next.

Deferred Mode You enter this mode when you use the NUM command, type in a
llne that begins wlth a line number, or edit a program lin<'. Commnnds you
issue in this mode will not be executed until you tellllASJC XE to do so. For
this reason Oeferred Mode is sometimt>s cal!ed Program Mode. When you tell
BASIC XE to execute a program (i.e., some numbered lines), it will use the line
numbers to determlne the order in which you want the progrwn executt>d.

Execute Mode BASIC XE goes into this mode when you tell it to start executing a
program and wtll remain in it until the program halts. The halt can occur
before the program is finlshed if the program causes an error, or if you press
BREAK or SYSTEM RESET.

BASIC XE Keywords and Symbols

The followlng table shows all the words and symbols that mean something special
to BASIC XE:

ARS DATA FP.E I. VAR PMWIDTH IlllN TRAP

ADR DEG GET MID$ POII\11' SAVF. UNPROTECT

AND DEL O'JSUB MISSILE POKE SF.T IJSING

ASC OlM roro MOVE POP SETCOLOR USR
ATN DIR GRAPHICS NEW POSITION SGN VAL

llGET oos HEX$ NEXT POINT SIN VSTICK

RJ.OAD DPEEK HITCLR NORMAL PROCF.DURE SOFTDOWN WHJLE

I"!PUT DPOKE HSTICK NOT PHOTF.CT SORTUP XIO
llSAVE DRAWTO IF NOTE PTRJG SOllNP

BIJMP ELSE INPUT N1JM PUT SQR # $

llYE END INT ON RAD STATUS 0(, &

CALL ENDIF INVERSE OPEN RANDOM STEP ()

CI IR ENI:'tVHILE LEFT$ Oll READ STICK * I
CWAD ENTER LEN PADDLE REM STOP +

CLOG ER ASE LET PEF.K RENAME STil$ <

CWSE ERR LIST PEN RENT.M STRJG <= <>
CLR EXIT LOAD
COLOR EXP LOCAL

PLOT RESTORE SYS >
PMADR RETiffiN TA!l >= A

CONT EXTEND LOCATE PlllCLR RGET THEN

cos FAST LQ(; NlCOLOR RJGHT$ TO

CP FIND I.OMEM PMGRAPHJCS RND Tll.ACF

CSAVE FOR LPRINT PMMOVE RPUT T!lACEOFF

Page 4 BASIC XE Re!erence Manual

Jntroduction

adata

aexp

alphanwneric

aop

Arlthmetic
Expression

Arithmetic
Operator

Arithmetic
Variable

Array

avar

Binary

Channel

cname

Command

Devlce

exp

Expression

A Glossary o! Terms this Manual Uses
adata to Expression

A Glossary o! Terms this Manual Uses

Short for "ATASC!I Data". Any AT ASCII chnrncter, excluding
commas and carriagc returns. (see DA TA for more Info.)

8hort for "arithmetic expression".

The letters A through Z (either lower or upper case) and the
dlgits 0 through 9.

Short !or "arithmetic operator".

An expression that evaluates to a number. For more Informa­
tion, see the Expressions chapter.

A unary or binary operator that performs a math operation.

A location where a single number is stored.

A one-dimensional structure in which each t>lement (celll ls
tmlquely described by its element number. The Variables chapter
gives a more in-depth definltlon.

Short for "Arithmetic Variable".

Anythlng that has two stetes (on/off, up/<lown, action/stasis,
etc.) Not simply "a ntimber system based on powers of 2".

See the Introduclng A tari J/0 sectlon of the Beginning Data
Input/Output chapter for a complete dlscussion.

Short for "Calling Name". The name used to CALL a
PROCEDURE;maybeclther astring constant or svar. Note:
substrlngs and savars may ~ be used.

Anythlng you tell BASIC XE to do is a command, so both State­
ments and !unctions are commands. Jf you give a command in
J)irect Mode it will be executed immediately, but if you're in
Deferred Mode RARIC XE will not execute the command until you
tell it to do so.

A peripheral (add-on) that you can use for l/0. The Introducing
A tari J/0 section of the Beginning Data Input/Output chapter
discusses this term in further detail.

Short for "expression".

An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Fx­
pressions can be eithcr arlthmetlc or strlng.

BASIC XE Reference Manual Page 5

A Glossary of Terms thls Manual Uses
Floating Point to pexp

Jntrocluctlon

Floating Point

tllespec

Funetlon

Integer

1/0

Keyword

llneno

Litera! String

Logical
Operator

lop

Matrix

Nurobers representecl uslng n clPcimnl polnt [4,!i, -?.R.4!l)

8hort for "flle specifier". A f!lespec ls used when when dolng
some types of J/0. You can find a complete definltlon of this
term in the Jntroduf'ing A tari 1/0 section of the Beglnning Data
Input/Output chapter.

A function is a subroutine built lnto the comput!'r so thRt it can
be cnllecl hy your program. Functions and stntements differ in
thnt functions must be used in expressions to nccomplish thelr
task, whereas Statementsare selfsufficient. COS (CosinP), FR F.
(remaining memory), and !NT (integer) are examples of functions.

A whole number [not a fraction). Integers may be eilher positive
(4, JP3) or negative (-4, -183).

Rhort for "Input or Output". This term refers to the transfer of
data between your computer or flASIC program nnd peripheral
devlces Jlke printers, disk drives, etc.

Any word that means something specinl in the ßASTC XE
language.

Short !or "Une numbPr". A constant that idPntifies a particular
program Jine. Must he an integer from 0 through ~2767, Une
numbering determines the order of program execution.

A synonym o! "f;tring Constan t".

An operntor that pcrforms a compnrision where the rPsult is
either "true" (1) or "false" (0).

Short for "Loglcnl Operator".

A two-cllmcnslonnl structure compos<!d of separate elemcnts.
Fach clement (cell) in a matrlx is uniquely descrlbed hy its row
and column number.

Matrix Variable An arlthmetlc variable of 1 (an array) or 2 (matrlx) dlmcnslons.
See the ~ sect!on of the Variables chapter for more Info.

mvar Short for "matrix variable".

Numerlc A synonym of "Arlthmetic".

Operator

pexp

Page 6

Operators are used in expresslons toteil ßAf;IC XE how it should
evaluate the variables, constants, and functions in the expres­
sion . There are two operator types: arithmetic and logicnl.

Short for "Passing Expression". An expression whose value will
be passed passed via CALL to a PROCEDURE, or passed via
EXIT back to the CALL. pexp maybe nn exp, nvar, svar, savar,
or mvar, Note: svars, savars, nnd mvars must be preceded by a !.

BASIC XE Reference Manual

lntroduction

pmnum

pname

Program Une

rvar

savar

sexp

Statement

A Glossary of Terms thls Manual Uses
pmnum to Variable

A player or mlssile number in P/M Graphlcs. Players are num­
bered 0-3, and missiles 4-7.

Short for "Procedure Name". The name used to ldentify a
PROCEDURE. pname must be a strlng constant.

BASIC XF. program Iines are mnde up of three elements: the llne
number, the program statement(s) (multiple statements are
sepnrated by colons), and the line terminator (a RETURN), In an
actual program, the three elements mlght Iook like this:
100 P RINT "I'm a program llne." :GOTO 100
I! a program Une will not fit on one screen line, it will wrap
around to the next screen Une so that you can see the entlre
program Une.

Short for "Receiving Variable". A var which will receive a the
value of a param e ter passed either !rom CALL to PROCEDURE,
or from EXIT back to CALL. Note: svars, savars, and mvars
~ be preceded by a !.

Short for "String Array Variable".

Short for "String Expression".

Statementsare subroutines built into JlASJC XE that will perform
specific tasks for you. Statements and functions differ in that
functions must be used in expressions to accomplish their task,
whereas statements nre selfsufflclent.

Strlng Constant A group of characters enclosed in quotation mnrks. "OSS is the
best" is a strlng constant. So are "1234567R9" and "Hello".

Strlng
Expresston

An expresslon that evaluates to a strlng constant. May conslst
of an svar, an savar element, astring constant, or a function that
returns a string constant.

Strlng Variable A variable where a single string is stored,

Strlng Array
Variable

Substring

svar

var

Variable

An array variable whose elements are strings.

Simply a part of a string (e.g. , "abc" is a substring of "abcdef").

Short for "Strlng Variable.

Short for "Variable".

This is the term used to describe a quantity which may (or may
not) change. In BASIC XE, there are two basic types of
variables: strlng and arlthmetic.

BASIC XE Reference Manual Page 7

Your Additions to the Glossary Jntroduction

Your Additions to the Glossary

Page 8 BASIC XE Reference Manual

Variables Variable Types, Names, and Maximum
Arithmetic Variables

Types of Variables

BASIC XE supports two basic types of variables: arithmetic variables and string
variables. In addition, it supports both arithmetic and strings nrrays, and
arithmetlc matrices. Arlthmetic variables, arrays, and matrices nre used to store
numbers, and may be used only where numbers are required. Strlng variables and
arrays store charncter strlngs and may be used only where a chnracter string is
reouired.

Variable Names

All variable names must stnrt wi th an alphabetic Ietter, but the rest of the
characters in the nnme mny be either Jettcrs or digits. Also, variable names must
be less than 120 charactcrs Iong. Flnnlly1 string varable and arrny names must end
with the dollar sign ($) charncter. The following examples should mak<> these
requirements clearer:

Arithmetic Names
Rate
PI ayerlscore
Temp

String Narnes
Name$
A$
Title$

Nurober of Variables

BASIC XE Iimits you to a maximum of 128 variables. If you need more than 128
(which is unllkely), you might use elements of an array as individual variables
instead of having a separatP. name for each. You might also usP. LOCAL to create
reusable private Vl!.rinbles. To clear the variable name tnble of extraneous names
(possibly a!ter an error 4), LIST your program to diskor cassette, type NEW to
clear the variable name table, and then ENTER your program bnck into memory.
We suggest that you use SET 510 and SET 12,0 be!ore doing this.

Arithmetfc Variables (avar)

Arlthmetic variables are used to store numbers, and are the most common vPriables
used. Here are some examples of arithmetic variables in use:

188 Input "avar Ualue» ",K
118 Print "KI n;x
121 Print nMA2: ";KA2
138 Print ".IK: ";XA8 . 5
!Cl Print "f'AK: "JEXPCKJ
158 Print "ln CKJ I "J Log CK)
161 Print "logCKJ: "JClogCKJ
178 Print :lioto 188

BASIC XE Reference Manual Page !l

Arithmetic Arrays and Matrices Variables

Arithmetic Arrays and Matrices (mvar)

An arithmetic array ls a group of separate arithmetic variables (called elements or
subscrlpts of the array) which share a common name, and may accessed only by
spec!fylng the numbPr of a given element as weil as the namp of the arithmetic
array. lf you think of an array as a string of pearls the idea is e~sier to under­
stand. lf you wnnt to Iist the worth of each penrl (for insurnnce purposcs), your
Iist mlght Iook like:

Pearl 1: $1000.00
Pearl 2: $950.00
Pearl 3: $1125.00
Pearl 4: $1100.00
Pearl 5: $1050.00
Pearl 6: $1200.00

Transieted into a BASIC XE arlthmetic array, your Iist would be:

181 DiM PearlC5J
118 PearlC81=1888
128 PearlC11=,58
131 Pearl(21=1125
148 Pearl(JJ:1189
158 PearlC41=1959
168 P•arlC5J:1288

Notlee that the elements of the BASIC XE arithmetlc array are numbered starting
nt zero. Thls doesn't seem right becnuse we humans don't think of zero as a
number, but- as far as computers and mathematlclans are concerned- lt ls.

The DIM statement on line 100 is used to tell BASJG XE how many elements you
want reserved for the arithmetic array named "Pearl". DIM is discussed in greater
detall in its own section later in thls chapter.

An arithmetic matrix is similar to an arithmetic array, except th~t it is two dimen­
sional. This means that there are two numbers required to spec!fy a given
element: a row numher and a column number. Our string of pearls 1malogy can be
extended to descrlbe matrices if you consider a matrix as a bunch of pearl strings.
Now, your price Iist would Iook something llke:

String 1 String 2 String 3

Pearl 1: :'>l 000. 00 Pearl 1: $875.00 Pearl 1: $1100.00

Pearl 2: $950.00 Pearl 2: $1075.00 Pearl 2: $980.00

Pearl 3: $1125.00 Pearl 3: $1300.00 Pearl :1: $1115.00

Pearl 4: $1100.00 Pearl 4: $990.00 Pearl 4: $1120.00

Pearl 5: $1050.00 Pearl 5: $1250.00 Pearl 5: $890.00

Pearl fi: $1200.00 Pearl 6: $1035.00 Pearl 6: $1225.(10

Page 10 BASIC XE Reference Manual

Variables Arithmetic Arrays and Matrices

Transieted lnto a BASIC XE arithmetic matrix, your Iist would bl':

188 DiM P•ariSC2,5J
118 P•arlsCI,8J:1111:P•arlsC1,8J:875:Pearls(2,8J=1188
128 PearlsCI,11=,58:PearlsC1,11=1875:PearlsC2,11='88
138 PearlsC8,21=1125:PearlsC1,2J=1388:P•arlsC2,21=1115
148 P••rlsCI,JJ=1188:P•arlsC1,Jl=,,8:P•arlsC2,ll=1128
158 P•arlsCI,41=1858:PearlsC1,41=1258:P•arlsC2,41=8'8
168 P•arlsCI,5J=12111P•arlsC1,5):18J5:PearlsC2,51=1225

As wlth arlthmetlc arrays, the first element Index ls 0 rather than 1, so the flrst
pearl on the flrst string ls accessed using the subscrlpt (0,0). The flrst 0 is the
number of the pearl string (the row number), and the second is the number of the
individual pearl (the column number). Thls analogy might Iead you to believe that
a matrix is just an array where each element is itself an array (our Iist ls one of
str!ngs of pearls, and each string of pearls is a group of individual pearls). This
conception of matrices is, in essence, correct and is very useful when trying to
manlpulate matrices.

When you use a single element of an arithmet!c array or matrix, you are actually
uslng a single number (whlch is what an ar!thmetic variable is). This means that
avar, array(element), anrl matrlx(row,column) may all be used whenever a number ls

wanted.

BASIC XE Reference Manual Page 11

Strlng Variables Variables

Strlng Array Variables

String Variables (svar)

String variables are used to store literal strings of characters. A Iitera! string of
characters ls simply some characters enclosed in double quotes; for example,
"This string entlosed in quotes is a literal string"
"llu.."ers in quotes are strings too - 12345"
"Even control charcters are - ~ J-1-t,~._ ..
are all Iitera! strings. As mentloned earller, string variable names are just like
arlthmetic variable names, except that they must end wlth a dollar slgn ($).

llefore you use a string variable, you need toteil llASIC XE the size (maximum
number of characters) of the variable. This is done using the DIM (dimension)
statement as !ollows:

DIM String$(66), A$(10)

Note: When you manipulate strings a character at a time, remernher that the
element numbering begins at 1, not 0 (as wlth arithmetic arrays and matrices). For
example, if you want to get the first character of A$ (which contalns the string
"ABCDEFG"), you would use A$(1,1), and get "A" as the result. If you try to get
the "A" by using A $(0,0), you willgetan error.

Bonus: llASIC XE can automatlcally dimension a string variable for you if you
don't manually DIMension it. For more Information about thls feature see the
diseussion of SET ll,aexp.

String Array Variables (savar)

A string array is very simi!ar to an arithmetie array, exeept that each element is a
string variable, not an arithmetic variable.

String array variables rcsemble strlng variables in three aspects: thclr names must
end with a dollar sign, they must be DIMensioned bcfore being used, and their
el~>ment numbering begins at 1, not r. However, there are two dimensions to a
string array: the number of strings in the array, and the Iength of the strings. The
following examples show how to specify both o! these dimensions:

DIM Sarray$(4,40), A$(10,100)

Thls example !irst dimensions a strlng array called "Sarray$" to contain 4 strings,
each 40 characters long, and then dimenslons "A$" to 10 strlngs, each 100

characters Iong.

To access one of the strings in a string array you specify the string's number
(remember, the first string is number 1, not 0) followed by a semlcolon (;), as

follows:
188 DiM TI!St$(3,5)
118 Test$C1;l:"This "
128 Test$C2;J="is a "
138 Test$ C3J) ="test."

As you may notice, savar(element;) is equivalent to svar, and may be used
wherever svar is used, unless stated otherwlse.

Page 12 BASIC XE Reference Manual

Variables DIM

DIM

Fonnat:
\

mvar(aexplf ,aexp2])\
DIM svar(aexpl) [, •.•]

savar(aexpl,aexp2)

The DIM statement is used to reserve space for arithmetic arrays and matrlces,
and strlngs and strlng arrays.

For arithmetic arrays DIM reserves spaee !or aexpl+l arithmetic elements. For
arithmetic matrices lt rPserves space for aexpl+l rows of aexp2+1 elements each.
The "+1" ls there because arithmetic lndexing begins at 0, thus glving you aexp+l

total Indices.

DIM reserves space for up to aexpl characters when allocating strings, nn<l space
for aexpl strlngs, each of up to aexp2 characters, when allocating string nrrays.

The following examples illustrate the use and effect of the DIM statement. The
flrst one reserves 101 arithmetlc elements for an array named Al. The second
allocates space for 7 rows of 4 columns each for a matrix called Grld. The last
example reserves ?.0 bytes for the string Bstr$, and then aJiocates lOO strlngs,
each of up to 40 characters, for the string array Friends$.

188 DiM A1U88)
118 DiM Grid(6,3J
128 DiM Bstr$C28),friends$l188,48l

Note: BASIC XE is capable of automatically DIMensionlng strlng variables. For

more Information, see SET ll,aexp.

BASIC XE Reference Manual Page D

LOCAL VAriables

LOCAL

Fonnat: LOCAL avarl [,avar2 •••)

Examples : 100 LOCAL Templ
320 LOCAL Sum,N,Count,Misc

The LOCAL statement allows you more f!exibllity in your programmlng because it
enables you to have temporary arithmetic variables wlthin PROCEDURE and
GOSUB subroutlnes. The way LOCAL works is very simple. When a LOCAL State­
ment is executed, all avar names (no mvars, svars, or savars) following it become
private untll the next EXIT ls encountered. What does 'become private' meRn?
Simply that you can change the vnlue of a LOCAL avar within its
LOCAL/EXIT bounds without affecting its vnlue outside of these bounds, as if you
had a private copy of the variable. Whcn you use LOCAL, you don't hnve to worry
about confllcts between routlnes in your program that use variables wlth the same
name.

A simple example will hclp:

18 Test=1234567:Print 18,Test
28 'osub 48:Print 28,Test
38 End
48 Local T•st:Print 48,Test
58 Test=8.54321:Print 58,Test
68 Exit

Note thc that PRINT statements purposely displAy the current line number as weil
as the value of Test. This is simply to make tracing the flow of the program
easier. noes it surprise you to find that the output of the above program will Iook
something llke this?

18
49
59
29

1234567
1234567
9.54321
1234567

Let's examlne that program a Iittlc closer. Line 10 ls simple <'nough - we just
asslgn a value to the variable Test and verify that it has been 11ccepted. Jn line
20, we first GOSUB to a routine and then again display the contents of our
variable. Note that in the program's runnlng this PRINT ls the last thlng executed
(other than the END). Llne 40 begins the interestlng part of this program. We
declare that Test is a LO CA L variable and, once again, display I ts value. Line 50
is a repeat of l!ne 10 except that we assign a cH!ferent value to our now-private
variable Test. Note that the PRINT verlfies our change. Finally, in line 60, we
use EXIT to restore Test to its original value, as shown by the PRINT In Jine 20.

The point of all this was to show that our subroutlne {lines 40 through 60) coulcl do
what lt liked wlth the LOCAL variable without affecting its valt;e in the rest of
the program.

Bonus: when you POP 11 LOCAL variable the non-private value is restored, so you
cen use LOCAL end POP to create private variables even when you're not in a
subroutlne.

Page 14 BASIC XE Reference Manual

Variables

Notesand Warnlogs Regardlng LOCAL

Notes and Warnlngs
Regarding LOCAL

Note: the fact thet LOCAL may he used wlth GOSUB subroutlnes ls not an
accldent. EXIT was speclally deslgned to find out what type of subroutine
(PROCEDURE or GOSUB) lt ls termlnatlng, and handle the returnlng conclitlon
approprlately. This small fact alone allows you to modlfy your existlng progrems
to use LOCAL variables wlthout having to change all GOSUßs to CALLs. Also,
there are occaslons where lt could be advantageaus to use GOSUB instead of
CALL. In partlcular, GOSUBblng to an absolute llne numbcr ls slgnlflcnntly
quicker than eny other type of subroutlne access when your program ls In
FAST mode.

Note: variables do not change value when they are made LOCAL. You can sec thls
in the example carller in thls sectlon. The PRINTed value o! Test in llne 40 is still
1234567, even though it has been made private. I! you want your LOCAL variables
tobe zeroed before you use them, you must equate them to zero yoursel!.

Note: slnce you are still limlted to 128 diCCerent variable names, you mlght
conslder uslng the same LOCAL variable names in all your subro'ütiil"eS I! you are
pushlng the name Iimit. For example, you might start eech subroutlne wlth the llne

Each Subroutine then has four variables availnble exclusivf"ly for its own use, and
you have used only four names from your maximum of 128.

Technical Note: LOCAL pushes the current value of an avar onto BASIC XE's
stack whcn that variable ls made private. When an EXIT ls encountered, the value
is popped o!f the stack and into the avar, thus restorlng lts prevlous value.

Warning: you may use LOCAL only at the beginnlog of subroutines thllt are
termlnated by an EXIT (not a RETURN), unless you POP the prevlous values
before RETURN!ng. For m""""Cife info, see POP.

BASIC XE Reference Manual Page 15

Assigning Values to Variables Variables

Assigning Values to Variables

The asslgnment statement is used to asslgn a value to a variable, and is of the
general form variable=expresslon. The variable and expression must be of the
same data type (arithmetic or string) or you willgetan error.

Arithmetlc Assignment
Arlthmetlc assignment is the simpller of the two, so we'll discuss it first. The
syntax !s simple: avar=aexp, but the extens!ons are numerous. Whcn you remernher
that subscripted arithmetic arrays and matrices are functionally equivnlent to
simple arlthm etlc variables, all of the following becom e valid:

188 DiM ArriYC11J,"atrixC18,18)
128 ArithYar=27.4
1JI NltriXC8,8):27.4

Strlng Assignment
String asslgnment can be done two ways: by substring and by entire str!np;. ReforP
d!scussing these two methods, we need to discuss what "string" and "substring"
mean. The following table defines these terms when used as both as the source
and destinatlon in an operation (e.g., in A $="abc", A ~ ls the destinntion, and "abc"
is the source):

S tring As Source Str!ng As Destination S t ring
-S$-- characters 1 • • LEN value characters 1 • • nTM value

S$(n) characters n •• LEN val ue characters n .• niM value

S$(n,m) characters n •• m characters n ... rn

Ass!gning an entlre strlng ls easy; the form ls simply svar=sexp. Whatever svar had
in lt before is wiped out and sexp is put in. The LEN value is set to the length of
the sexp strlng. Here ore some examples:

18 DiM 51$(58),52$(58)
28 51$:"A string assignMent"
38 52$="Another string assignMent"

Substring assignment can be done using either the formet svar(n,m)=sexp or
svar(n)=sexp. In the first case, characters n through m (lncluslve) of svar will bc
changed to sexp. Jf sexp evaluates to a string Ionger thnn the spccified
destinatlon substring, only the characters up to the substring length will be
assigned. If the sexp string has fewer characters than the dcstinntion suhstring,
only LEN(sexp) characters will be changed in the substring. Also, llASIC XF. will
update the length of svar if the substring assignment makes lt lonv,er. The second
method of substring ~ssignment rep!aces n through the DJM valuc of svar with thc
sexp string, and then updates the length of svar, The example on line !10
i1l ustrates this type of substring assignmcnt. The others show the two subscript
method:

48 RI!M "Use Dl"'S frOI'I abOYe"
58 51$:"AIICD"
68 51$(4,8):"12J4":Rel'l 51$:"A8CD12J4"
71 S1$C1,4):"ab":Rel'l 51S="abCD1234"
111 52$="1ASJC Kf - Precision Software"
'8 52$U8J:"fRO" OSS":ReM "52$:8A5JC Kf froM 055"

Page 16 BASIC XE Reference Manual

Variables
Assigning Values to Variables

LET

To asslgn a value to ~ string array (snvar), rtrst you specify whieh string elcment
of the savar you want to usc (followcd by a seml-colon), and thPn treat it just llke
a normal string (svar). The following examples help clarify this procedure:

18 DiM 5a$(11,48)
28 5a$ un="A string assignMnt" :Rel'l "saYar yersion ot 28 above"
J8 5a$ t2l) :"ABCD"
48 5a$C2;4,BJ:"12J456":ReM "sayar version of 68 aboYe"
58 5a$CJJ):"IIA5JC Kf - Precision Software"
68 5aSCJJ11J="froM 055":ReM "saYar Yersion of '' aboYe"
BASIC XE also allows you todostring concatcnatlon (tacking one strlng onto the
f'nd of another) easlly using the assignmf.'nt statement. To eonentennte strings,
simply change the sexp in the strlng assignment format to sexpl,sexp2,sexp3, ••••
sexp2 is then concatenated to sexpl, sexp3 is concatenated to thc result, and so
on. The following examples show concatenatlon:
18 DiM A$C18),8$(28J,C$C41)
28 A$=" froM 055"
J8 B$:"8ASJC Kf"
41 C$:8$," a hot Janguagi!",AS
SI B$:8$,A$
68 Print cS:Print 8$
Note that llne 50 is equivalent to

SI 8$CLenC8$J+1J:A$

Note: it is possible to store into the middle of a string by using subscripting;
however, the beginning of the string will contain garbage or nulls.

Format:
Example:

LET

LET <assignment statement>
LET OOT0=3.5
LET LETIF.RS:':="a"

LET allows you to nssign values to variables with names that start with or are
identical to a kcyword. In thc first example, LET allows GOTO to be uscd ns an
arithmetic variable rather than as the GOTO statemcnt. The second allows the
use of LETTERS$, the flrst the Jettcrs of which are the keyword LET.

There nre a few keywords which CANNOT be used as variable nnmes even when
you use LET. They are thc unary Jogicnl operator NOT, and all thc functlon names
(ABS, LEN, etc.) Hcre is an example of what will happen if you try to usc NOT as
the first three Jettcrs of a name. Type in this program:

10 CSHARP=37
20 LET NOTE=CSHARP
~0 PRINT NOTE

When you RUN lt, a "1" will get printed on the screen, not a ":l7". If you LIST the
program you will see why. Line 30 is llsted as

J8 Print •ot f

because BASIC XE does not allow "NOT" as the start of a variable name and inter­
prets it as the keyword NOT.

BASIC XB Reference Manual Page 17

Space For Your Notes Variables

Space For Your Notes

Page 18 BASIC XE Reference Manual

Operators Arlthmetlc Operators

Operators

RASIC XE has two types of operat.ors: Arlthmetlc Operators and Loglcal
Operators. As you will see in the expressions chapter, either of these two types of
operators may be used in arithmetlc expresslons, while neither may be used in
strlng expressions.

Refore discussing these two types of operators, a remlnder of the menning of
'blnary' ls needed. As stated in the glossary, this term does not mean simply "a
nurober system based on powers of ?., in which 0 and 1 are the only digits". When
'binary' is used to mean this, it is an nbbreviation of ' binary m1mber system', and
npplles only to numeric representatlons within this system. Anything which has
only two stetes (on and off, up and down, act!on and stasis, etc.) can be consldered
blnary. When we are discusslng operators, 1blnary' means that the operator
requlres two operands. For example, * is 8 blnary operator because lt mul tiplles
one value by 8 second (4 *3 me8ns something, whlle *3 menns nothing). Simllarly,
'unary' ls used to describe an operator which requires one operand (- is a unary
operator when we use it to signify that a nurober ls negative, e.g. -5).

Arithmetic Operators (aop)

RA SIC XE supports 8 binary and 2 unary arithmetlc operators. The binary ones
are:

Symbol Function
+ Addition

•
I
1\

Subtr8ction
Mul tlpl ication
nivision
F.xponentlation
lli twise AND
ßi twlse OR
Rltwlse F.OR (F.xcluslve OR)

The first four are Straightforward enough since they are the arithm etic opera tors
we use all the time, but the last Cour require some explanation.

The "operator ls used to ralse a number to a speclfled power. For example, 4"3
simply means "multlply 4 by ltselt 3 tim es", or 4 *4 *4, whlch equ8ls 64.

The a:,!, 8nd CJ6 operators allow you to perform bitwlse operations on positive
integers up to 65,535. lf you use them wlth non-integers (e .g., 4.3 , P.528, etc.),
the nurober will be rounded to the nearest Integer before the operation. Tf you try
to use them with negative numbers an error occurs. The following tables show the
results of comparing two bits for each of these operators:

Bit A Bit ll Result Bit A Rit R Result Rit A Rit B Result
1!:_1_=_1 __ _1_!_1_ -1-- _1_96_1_ -0--

0 a: 1 n 0 1 1 0 CJ6 1 1

1 a: 0 0 1 0 1 % 0
0 a: 0 0 0 0 0 0 % 0 0

BASIC XE Reference Manual Page 19

Logical Operators Operators

The following examples illustrate the results of using eneh of these bftwise
operators wfth the operands 5 and 3 ~=

a: exmnple
00000101 (fi)

a: 00100111 (:l9)
00000101 (5)

exmnple
000001 Ol (5)
00100111 (3~)
00100111 (3 !l)

96 example
000001 01 (5)

96 00100111 (:l9)
00100010 (:l2)

The two unary arlthmetlc operators are plus (+) and minus(-), and are usecl to
denote the sign (positive/negative) of a number. For example, +5 means "positive
flve" and -5 means "negative five". Note: J! you do not specify the sign of a
number, ßASIC XF. assumes thnt the number is positive.

Logical Operators (lop)

BASIC XE supports three types o! logical operators: relational, unary and binary.

The relational operators compare two <'Xpressions, givlng a boolean (true/false)
resul t, and are most frequently used in conditional statements (i.e., the IF state­
ments). They mny also be used in arlthmetic expresslons, returning a 1 lf the
relatlon is true, and a 0 if it's false.

< The first exp is less than the second exp.
> The !irst exp is greater than the second.

The exps nre equal to each other.
<= The first exp is less than or equal to the second.
>= The first exp is grenter than or equal to the second.
<> The two exps are not equnl to each other.

Examples of the relationallops may be found in the Expressions chapter.

The unary logical operator is NOT, and is used to reverse the result of an
expression. For example, the expression 2<3 is obviously true, but the exprPssion
NOT(2<3) is !alse, since NOT inverts the truth o! "2 is less thnn 3".

There are two binary loglcal operators: AN D and 0 R. D o not confuse them w!th
the bitwlse blnary arithmetic operators a: and !. They arenot the same! AND and
0 R are used to crea te compound logical exprP.ssions like

IF X=3 OR Y=9 THEN OOTO 400
WHILE Done=O AND Bail=O

Note how these operators are different. Only one of the two operand expressions
must be true !or the logical OR tobe true, while both must be true for the logical

A ND to be true.

Page 20 BASIC XE Re!erence Manual

Operators Operator Precedence

Operator Precedence

Operators require some kind o! precedence (a defined order of evaluation) or we
wouldn't know how to evnluate expressions llke 4+5•3. Js thls equal to (4+5)*:l or
4+(5•3)? Without operator precedence it's impossible to tPII. 11ASJC)(F.'s normal
precedence is very precise, as shown in the following table. The operators are
llsted in order o! hig!"test to lowest precedence. Operators on the same llne are
evaluated left to right in an expression.

()
< > = <= >= <>
NOT+-
A

96!.\:
•t
+-
< > = <= >= <>
AND
OR

P aren theses
Re!. lops in :ltring Comparislons
Unary NOT Jop, Unary Plus and Minus aops
Exponen tia tlon
Bltwise EOR, OR, AND aops
ßinary Mul tipllcative aops
ßinary Additive aops
Re!. Iops in Numeric Comparlsons
Binary AND lop
Binary 0 R lop

lf you're ever in a sltuatlon where you're unsure of the evaluatlon of an
expresslon, use parentheses to Insure the proper order of evaluatlon. F.xamples of
operator precedence during expression evaluation can be !ound in the
Expressions chapter.

BASIC XE Re!erence Manual Page 21

Space For Your Notes Operators

Space For Your Notes

Page 22 BASIC XE Reference Manual

Expressions Strlng and Numerlc Constants
Interna! Format of Numbers

Expressions

Expressions are constructlons which obtaln values from variables, constants, and
!unctions using a speclfic set of operators. HASJC XE supports two types of ex­
presslons: arlthmetic (aexp) and strlng (sexpl. lle!ore dlscussing these two types o!
expresslons something necds tobe sald ahout the constants llA RJC XE allows.

String and Numerlc Constants

Strlng constants are frequently callcd Iitera! strlngs becnuse they are just A group
of characters enclosed in double quotes ("):
"This string •nclos•d in quot•s is a string constant"
"llu••rs in quot•s ar• strings too - 12345"
"'O ar• control charct•rs ar• - ~ t'·h~.IL"
To gct a double quote lnto astring constant, use two double quotes in a row ("").

llASJC XE allows you to enter numeric constants (numbers) in one of two ways -
decimal or hexadecimal. Decimal numbers may either be integers, fractions, or
sclenti!lc notation. Tbc followlng examples lllustrate these three types of

numbers:
Iotegers

4027
-2

Fractions
-67.254
3?.5.04

Sei. Notation
4. ~:IE2

23.4E-l4

The "E" in the sclentific notation examples stands for "Exponent". The number
following it is the power of ten (e.g., 4.33E?. means "4.~3 * 102", or 433).

Hexadecimal numbers can only be lntegers, and the digits must be preceded by a
dollar slgn ($), as in the !ollowlng examples:

$4A:IO -~OA $6FF
-$E -$7BZD $FFFF

Notlee that the unary minus (denotlng a negative numberl precedes the clollar slgn.
The maximum hexadecimal value allowed is $FFFF (65,!>35 decimal).

Intemal Format of Numbers

Note: thls sectlon is provided for those of you who are interestP-d in the technlcal
aspects of BASIC XE. You can sklp thls section wlthout impairing your ability to

use BASIC XE.

All numbers in BASIC XE are Jlinary Coded Declmal (BCD) floatlng pointlog polnt
wlth a Cive byte (1 0 B CD dlgit) mantissa and a one byte exponent. The most
signlficant bit of the exponent ls the sign o! the mantissa (0 for positive, l !or
negative), and the rest of the bits are the value of the exponent in excess 64
notation. Internally, the exponE>nt represents powers of 100 (not powers of 10).
For example, 0.02 equals ?.*lo-2, which equals 2*100-1, so the Interna! represen­

tatlon is
3F 02 00 00 00 00

$3F is the exponent (-1) plus 64 ($40), and the mantissa is 2. The impl!ed decimal
point is al ways to the right of the first byte of the mantissa. An exponent less

BASIC XE Reference Manual Page 2:1

Expressions
Arithmetle Expressions

String Expressions

thnn $40 indieates n number between 0 ancl l, wh!Je an exponent greater than or
equal to $4 0 represents a num ber greater than or equnl to 1. 7.ero is represented

by a zero mantissa and a zero exponent.

Jn general, numbers have n 9 cl!glt preelslon. For exampl<'., only the Cirst 9 ctirrlts
nre guaranteed to be slgnificant when INPUTtlng a number. You can som<'times
get 10 slgnlflcant digits in the special esse where an even number of digits are to

the rlght of the decimal polnt.

Arlthmetic Expresstons (aexp)

Arithmetic expressions nre those whlch evalunte to a number, and are made up of
one or more of the followlng Iist of operands, separated by operators:

I) a numerlc constant (number)
2) an avar (or Subscripted mvar)
~) a functlon which returns a number
4) strlng comparlslon using relational lops

The first three are straightforward, but the fourth requires explanation. You may
use strlng compnrisions In arithmetic expressions because the eomparision results
in a 1 (true) or 0 (false). For example, "ABC"<"ACC" would return a 1, since
"ABC" precedes "A CC" when the two are alphabetizerl. Conversely,
"ABC">" ACC" evaluates to 0. An arithmetic expression can simply be one of the
above deseribed oper;mds, or two or more of them scparated by operators (dther
arithmetlc or logical). The following examples of arithmetic expressions include
the evaluatlon order of the operators (Ir any) and the result:

ExprPssion
3*(4+(21/7)*2)
"AR">"AC"+7*(ASC("A"))
X=lOO : Y=2
JNT(X*Y/3)

Evaluation Order
I' ,+,

> ,ASC, * ,+
N!A

*,I' !NT

Strlng Expressions (sexp)

RP-sult
--:li1

455

f.ß

String expressions are mueh simpler than arithmetie Pxprcssions slnce thcrc are
fewer things they ean h e . The following Iist shows all the valid string expressions:

1) n string eonstnnt (Iitera! string)
2) an svar (or subscripted savar)
3) a function which returns a string
4) a substring of an svar or savar

Notlee that nothing has been said about operators in string expressions. That is
beeause none are allowed (with the speelal exeeptton of the eomma (,) for concate­
natlon in string assignment). A string expresslon may be only one of the abovc, as

in the following examples:
"A I iteral string"
AS
Sa$(1;)
STR$(126. 83)

Page 24

A$(3)
Sa$(1;3)
A$(4,R)
Sa$(1;4,0)

BASIC XE Re!erenee Manual

Editing Your Program

Edltlng Your Program

NEW
NUM

The statements ln this chapter esse the Job of edltlng a BASIC XE program, so
that programming need not be consldered a ehore. This chapter eovers the stal:e­

ments NEW, NUM, LIST, DEL, RENUM, andREM.

Format:
F.xampl es:

NEW
NEW
100 NEW

NEW

This eommand erases the BASIC XE program eurrently in memory. Therefore,
before typlog NEW, make sure you have saved your program (using SA VF., CSAVF.
or LIST) lf you wnnt to keep !t. NEW also elears BASIC XE's Interna! symbol table
so that no variables are deflned. NEW is normally used in Dlreet Mode but is
sometlmes useful in neferrecl Mode as an alternative to END, when you want a

program wiped out after it has RUN.

Format:
Examples:

NtM fstartl[,inc]
Nl.M
Nl.M 50
Nl.M '1
Nl.M 50,1

NUM

The NUM eommand enables RASJC XE's automaUe llne numberlng ability. This
faclllty ean inerease your program entry speed beeause lt puts in the program llne
numbers for you. If no start or lne is given (first example), NUM wlll start
numbering from the !Ast llne number currently in the program in inerements of 1 n.
I! there ls no current progrnm, NUM will start with llne number 10. lf thc startlng
Une m1mber alone is given (second example), NUM wlll start numbering from thAt
llne number in increments of 10. Jf the increment alone is given (third example),
NUM will start numbering from the last line currently in the program, in
inerements of lne. Jf both the starting line number and the lncrement Are given
(last example), NUM wlll start numbering from the given llne number in lncrements
of ine. Note: nelther start nor lne may be 0.

Four things eause the automatlc line numbering to stop:
1) lf you press <RF.TUR N> lmmediately following the line number.
2) lf BASIC Xf. encounters a syntax error on a program line you type in.
3) If the llne number the automaUe numberer would use already exists.
4) If the automatle numberer would generate a number !arger than 327R7.

Note: uslng NUM in Jleferred ModE:' always returns you to DirE:>ct ~ode.

BASIC XE Referenee Manual Page ?5

LIST
DEL

LIST (L.)

Format: LIST [linenol][,[Iineno2ll
Examples: LIST

LIST 10
LIST .10,100
LIST 10,

F.diting Your Program

Note: this sectlon covers only the editlng uses of LIST. For its program saving
uses, see the Storing and Retrieving Your Program chapter.

LIST causes thc program currently In memorytobe displayed so that you can edit
or study It. If LIST Is used alone (without linenol or 2), the entire program is
displayed (flrst example). lf you follow 1t with a single line number, only that llne
will be displayed (second example). If you specify two line numbers (separated by
commas), lines llnenol through lineno2 will be LISTed (third example). lf you give
the starting llne number, a comma, and no ending line numher, the ending line
number is assumed tobe the last llne in the program (last example).

Note: You can control the automaUe indentlon of structured statements (FOR,
WHILE, etc.) when they are LISTed using SET 12,aexp. You can also control the
casification using SET 5,aexp. See SET for more Info.

DEL

Format: DEL linenol[,lineno2]
Examples: DEL 100

DEL J 000, lB!l!l

DEL deletes program lines currently in memory. lf a single llne number is given,
only that llne will be deleted (first example). If two line numbers are given, lines
llnenol through llneno2 (inclusive) will be deleted (second example).

Page 26 BASIC XE Reference Manual

Editlng Your Program

Format: RENll\1 [start] [, inc 1
Examples: RENlM

RENlM 100
RENl:M , ~0
RENI.:M 1000,5

RENUM

REN UM
REM

RENUM renumbers the program in memory, using start as the startlng llne number,
and lnc as the lncrement between llne numbers. If start Is not specifled, 10 ls
used. If lnc is not specifled, an incremE:'nt of 10 is assumecl. Note: nPither
start nor lnc may be 0.

All llne number references (e.g., In GO TOs, GOSUBs, etc.) are also renumbered
if they are numeric constnnts. Line numher expresslons (e.g., GOTO 1 O* A) will
not he renumbered.

Cautlon: lf you are RUNning a program in FAST mode, a RENUM in that program

will do nothing.

Cautlon: lf you use LIST in Deferred ll'ode (l.e., in a program) the Une numher
values you want to Iist will not he renumhered hy REN UM.

Cautlon: RENUM will not renumher an absolute llne number after a line number
expressed as an expression. If you R ENUM the statement
18 on X Gosub 188,J*Y,288 .
the 100 will be renumhered, but thc 200 will not since it follows a Jlne numher
expression (3*Y). Thls situatlon is posslhle only in the ON statement.

Warning: lf you have a reference to a line numher that does not yet exist (e.g. a
GOTO 50 when llne 50 doesn't exist), REN UM will not renumher that reference.
After the RENUMbering, however, the non-existent Jlne numher might exist, thus
making the reference valid, hut it will most llkely not refer to the program line

you want it to.

Format:
Exm1ples:

REM (R.)

REM text
REM This is a remark
10 RFM Routine to calculate X
20 GOSTTB ~00 : FEM Find Totals

REMstands for "remark" and is used to put comments into a program. This
command and the text followlng lt on the same Jlne are ignorcd hy the computer.
However, 1t is lnclucled In a LIST along wlth the other numhered llnes. ~lnce All
characters following A REM are treAted as part of the REMark, no statements
followlng lt (on the sAme program llne) will he executed.

BASIC XE Reference Manual Page 27

Space For Your Notes Editing Your Program

Space For Your Notes

Page 2R BASIC XE Reference Manual

Storlng and Retrlcving Your Program

Storlng and Retrlevlng Your Program

LIST
ENTER

llASIC XE allows you to store your programs in either of two formats- as AT ASCII
text, or as the tokenized gibberish internnl to JlASJC XE. LIST and
ENTER perform program 1/0 uslng the first format, while SAVE and LOAD, and
CSAVE and CLOAD use the second. The reason the tokenized formet is affered is
that lt ls generally more compnct than the AT ASCIIformat and always cuts down
on dlsk/cassette use and J/0 time.

Format:
Ex!l'llples:

LIST (L.)

LIST "filespec"[,llnenolH ,[llneno2]]
LIST "C:"
LIST "D:DEMO. LIS"
LIST "P:",20,100

LIST allows you to write out the A TA SCJJ text version of the program in memory.
As evident from the examples, filespec may refer to any device. You may add any
of the line number speciflcations (described in the previous chapter's discussion of
LIST) to LIST only a portion of your program to filespec.

Note: the quotes araund filespec are required by LIST, unless of course a strlng

variable ls used.

ENTER (E.)

Format: FNTER "f i I espec"
Ex1111ples: ENTER "C:"

ENTER "D2:DF.MO.LIS"

The ENTER command allows you to read in a program you have saved uslng the
LIST command, and will not work with programs which have been SA VEd or
CSAVEd. To use thls command, you slmply need to give the fllespec of the
program. Note: whereas both LOAD and CLOAD clear thc program memory space
be!ore reading in the new program, ENTER does not, and so ls useful whcn trying
to merge programs together.

Bonus: You can modify what BASIC :XE does after completing an ENTER uslng the
SET 9,aexp command (see SET for more Info).

BASIC XE Reference Manual Page 29

SAVF., LOAD
CSAVE, CLOAD

Format: SAVE "filespec"
Examples: SAVE "D:TEST.BXE"

SAVF. "C:"

Storing and Retrieving Your Program

SAVE (S.)

SAVE allows you to save the tokenized form o! a BASIC XF. program to any d<>vice.
A file saved using thls command may then be read back lnto program memory uslng
LOAD or loaded and lmmedlately executed uslng the RUN command.

Format:
Exanples:

LOAD "filespec"
LOAD "Dl : f'.AMF.l. BXE"
100 LOAD "C:"

LOAD (LO.)

LOAD allows you to Ioad the SAVEd version of a program into memory from any
devlce. lt will not work with programs saved uslng LIST or CSA VE.

Format:
F.xamples:

CSAVF.
CSAVF.
100 CRAVF.
100 es.

CSAVE (CS.)

CSA VE ls used to save the tokenized verslon of a program. The difference
between CSAVE and SAVE "C:" is that CSAVE leaves shorter inter-record gaps
and so makes cassette I/0 fast er. On entering CSA VE two bells so und to indicate
tha t the PL A Y and R F.C 0 Rn buttons must be pressed, !ollowed by <RETURN>.
Do not, however, press these buttons until the tape has been positloned. Note:
tapes saved uslng the two commands SA VE and CSAVE are not compatible. Note:
due to a Claw in the Atari OS ROMs (not BASIC XE), it may be necessary on some
machlnes to enter an LPRINT before using CSA VE, otherwlse it may not work
properly. For specific instructlons on how to connect and operate the hardware,
cue the tape, etc., see the Atari 410 or 1010 Program Recorder Manual.

Format:
F.xamples:

CLOAD
CLOAD
100 CLOAD

CLOAD

This command can be used in either Direct or Deferred Mode to Ioad a program
from cassette tape, and may be used only wlth programs which have been CSA VEd.
On entering CLOAD, one bellsounds to lndicate that the PLAY button neP.ds tobe
pressed, followed by <RETURN>. Jlowever, do not press PLA Y until the tnpe has
been positioned. Specific instructions for CLOAD!ng a program are contained In
the Atarl 410 or 1010 Program Recorder Manual.

Page 30 BASIC XE Re!erence Manual

Maklng Your Program :>top and Go

Maklng Your ProgramStop and Go

RUN
END

The statements discussed in thls chapter enable and control t.he executlon of your
ßASIC XE program. They are RUN, END, FAST, STOP, CONT, TRAGE, and

TRACEOFF.

RUN

Format: RUN ["fllespec"]
Exanples: RUN

100 RUN "n:MENU"

This command causes JIASTC J(F. to bcgln executlng a program. TC filespec is not
speci!led, the currcnt RAM-resident program is executed; otherwlse JIAf;!C XE
retrieves the tokenized program form the specl!led file and then executes it.
Refore execution begins, RUN sets all avars to zero, unDIMensions all mvars,
svars, and savars, CLOSEs all open files (channels), and turns off all SOUNDs. Tf
an error occurs wh!le your program is RUNnlf!g, execution will halt and 11n error
messagewill be displsyed (unless the error has been TRAPpedl.

Although RUN without a filespec is most frequently used in Ilirect ~~ode, it can
also be used In Deferred mode. For exsmple, RUN the following program (press
<BREAK> to exitl:

18 Print •continuous RUMnin9"
28 Run

Note: RUN must be the last (or only) command on 11 program Jlne when used in

De!erred Mode.

Tf you want to bP.gin program execution somewhere other than at the first program
llne, use GOTO in nirect Mode. Caution: variables nre neither clE>ared nor

inltlallzed by GOTO.

Format: F.ND
Ex~rnples: F.ND

4000 END

END

END is used to terminate the executlon of a program. In adrlltlon to this, lt also
closes all files (channels), silences any sounds, and turns off P/M's (if they were
turnedonvia PMG.). Tt does not change the graphlcs mode, however. END ls not
required in most programs because ßASTC XE automatically closes allflies and
silences any sounds after the last program line has executed.

Note: I! you have any subroutlnes following the maln program you should put an
END at the end o! the mein progrnm, or the subroutlnes may be executed as part

o! the maln program.

END may also be used in Direct mode to close flies, silence sounds, and turn off

P/M's.

BASIC XE Reference Manual Page 31

FAST

Format: FAST
Exmlpl es: FAST

100 FAST

Making Your Program Stop and Go

FAST

Durlng normal program execution BASIC XE must search from the beginning of
your program for a speclfled line number whenever lt encounters a GOTO, GOSUB,
FOR, or WHILE (this ls how most other RAS!Cs do lt too). However, you can
change thls by uslng the FAST command. When BASIC XE sees FAST, it does a
precompile ot the program currently in memory. Durfog the precomplle BASIC XF.
changes every Une number to the address ofthat line in memory. Then, whenever
a GOTO, GOSUB, FOR, or WHILE fs executed, no llne number search ls needed,
slnce BASIC XE can simply jump directly to the speclfied line's address.

Note: iC the lineno used in the GOTO or GOSUB is not a constant (i.e., is a
variable or an expressfon), that Uneno will not be affected by FAST, and so will
execute at normal speed.

Note: the !ollowing statements and situations will terminate FAST mode

execution:

DEL
ENTER
EXTEND
LIST
LOAD
LVAR
RUN "filespec"
SAVE
returnfng to Direct Mode.

Caution: when you use FAST in Deferred Mode, it must precede your flrst GO SUB,
FOR, CALL, WHILE, and/or LOCAL. We recommend that you use it as the ffrst
statement in your program.

Cautlon: i! you are using ENTER to create program overlays, you will notlce that
the notes and caution above seemlngly comblne to preclude the possibility of
ENTERed overlays executing in FAST mode. There ls only one way to get araund
this: the main program (the part that calls the overlays) ~ be in a loop,
subroutine, or local region when it ENTERs the overlay. lf you Insure this, you
may then make FAST the first statement in your overlay wlthout creatlng

problems.

Page 32 BASIC XE Re!erence Manual

r.taking Your Program Stop and Go

Format: STOP
Exmlples: 100 STOP

STOP

STOP, CONT
TRACE/TRACEOFF

When you use the STOP command in Dererred Mode in a program, BASIC XE
clisplays the messnge "Stopped at line Jlneno", terminates program execution, and
returns to Direct Mode. STOP does not close flies or turn off sounds (as does
END), so the program can be resumed by typing CONT. This can be very useful in
error handling. For more Information on this, see the Handling Errors chapter.
When used in Direct Mode, STOP slrnply dlsplays "Stoppcd", and returns to Dlrect

Mode.

Format: CONT
Exmlpl es: CONT

100 CONT

CONT

In Direct Mode, CONT resumes program executlon whlch has been lnterrupted by a
STOP statement, a <BRF.AK> key abort, or an error. Caution: execution resumes
on the Jlne followlng the halt, so any statements followlng the halt, but on the
sameprogram Une, will not be executed.

In Deferred Mode, C 0 NT m ay be used for error handling. For these uses, see the

Handling Errors chapter.

Formats : TRACE
TRACF.OFF

Examples: 100 TRACE
TRAGEOFF

TRAGE I TRAGEOFF

These statements are used to enable or dlsable the llne number trace facllity of
BASIC XE. When in TRACE mode, the Une number of a Une about tobe executed
is dlsplayed on the screcn, surrounded by brackets ([]).

Exceptions: The !lrst line of a program cannot be TRA CEd, nor can thc target
llne o! a GOTO, GOSUB, or CALL, or the Iooping Une of a FOR or WHILE.

Note: a statemcnt issucd in Direct Mode is TRACEd as havlng line number ~27611.

TRAGEOFF is used to turn TRACE!ng of! once it has been enabled.

BASIC XE Reference Manual Page 3:1

Space For Your Notes Making Your Program Stop and Go

Space For Your Notes

Page 34 BASIC XE Reference Manual

Conflgurlng the BASIC XE System SET
SETs l - 7

Configurlng the BASIC XE System

The statements and functlons in this chapter allow you to change how llASIC XE
will functlon, as well as find out the current conflguratlon. The statemcnts
discussed are SET, LOMEM, CLR, LVAR ond EXTEND, and the functions are
SYS and FRE.

SET

Fonnat: SET aexp1, aexp2

The SET sta tement allows you to change a variety of ß A SIC XE system-level func­
tions. aexpl ls the function you wish to change, and aexp2 ls the value to alter
thc functlon. The toble followlng summarlzes these SET parameters (default
values are glven in parcnthesesl:

aexpl
-0- (0)

aexp2
-0-

12R

Meaning
<RRFAF> key functions normally.
Note: Returning to Direct Mode does a SET 0,0.
<BREAK> causes a TRAPahle error (#1) to occur.
<R!!EAK>s are lgnored by BASIC XE. Other subsystems
(F.: for exanple), however, will still recognize
<RREAK>s.

(10) 1 ••• 12R Tabstop settlng !or the comma in PRINT statements.

2 (63) 0 ... 255 Prompt charaet<'r for JNPIJf (default is "?") .

(0)

4 (1)

5 (1)

6 (0)

7 (0)

0
1

0

0

FOR loops executc at least onre (nla Atari RARTC).
FOR loops may execute zero times (ANS! standard).

Instead of reprampting, a TRAPahle error (#R)
occurs.
On a multiple variable INPUT, if the user enters too
few itens. he is reprcrnpted (e.g., with "??")

BASIC XE acts like Atari BASIC in that it is
sensitive to character case on program entry (cithcr
type-In or ENTER). Lowercase and/or Inverse
characters cause syntax errors, except When used In
REM , DATA, or strlng constants.

1 RASIC XE converts text to a nicc, readable formst
upon entry. Keywords and variable names are
capitalized, Whlle REM text, DATA items, and string
constants remain unchanged.

0
t

0

Print error messages along with error numbers.
Prlnt only error numbers (ala Atarl BASIC).

P/~l's that move vertically to the edge of the screen
roll off thc edge and are lost .
P/M' s \'.Tap around fran top to bottarn and visa versa.

BASIC XE Reference Manual Page 35

SETs 8 - 15
SYS

aexp2
(1) -0-

9 (0) 0
l

10 (O) 0
1

11 (40) 1. •• 255

0

12 (1) 0

1

13 (1) 0

14 (0) 0

15 (0) 0

1

Format: SYS(aexp)

Configurlng the DA SIC X F. System

~'<>nn lng
non' t push (PIIA) the nunher of parameters to a
USR call on the stack (advantage: some assembly
IRnguage subroutines not expecting parameters mRy be
cnl led by R simple USR).
no push the count of parameters, ala Atarl BA~IC.

ENTER returns to Direct Mode on canpl etlon.
F.nd-Of-ENTER creates a TRAPabl<> error (#32).

Thß four mlssi !es act indcpendently.
The four misslies are grouped togethcr for movement
purposes. However, their wldths and colors rcmRin
Independent.

BASIC XE will automatlcally DIM a strlng
size if you do not DIMension it yoursel!.
RASIC XE works like Atari BASIC.

to this

The LIST program fonmatter does not indent when you
use structured statements (FOR, WHILE, etc.).
LIST indents when you use structured statements.

VALproduces an error (#lR) lf you use a hex diglt
string.
VAL will turn hex digit strings into nunbers,
provided that the string begins with a "$".

PRINT USING truncates numbers when they contain more
digits than specified in the formet.
This Situationproduces a TRAPahle error (#23).

In EXTENDed rv"JOde only, ADR("strlng") will produce an
error 3. ----
ADR{"strlng") will always return the address of
strlng.

f SYS

Example: 100 IF SYS(O)=O TllF.N SET 0,12R

The SYS !unction is used to find out the status of a BASIC XE system function
altereble using SET. aexp is the ntlmber of the system functlon as deflned in the
previous sectlon.

Page 36 BASIC XE Re!erence Manual

Conflguring the BASIC XE System

Format: LCMFM addr
Example: LOMEM DPEEK{128)+1024

LOMEM

LOMEM, CLR
FRE, LVAR

LOMEM is used to reserve space below the normal program space. You could then
use this space for screen display Information or assembly language routines. The
usefulness of thls may be limited, though, since there are other more usable
reserved areas avallable. Caution: LOMEM wipes out any userprogram currently
in memory.

CLR

Format: CLR
Example: 200 CLR

The CLR statement clears the values in the Variable Value Table and

unDIMensions all svars, savars, and mvars. It does not clear the Variable Name
Tahle (only NEW does), so all the names remain. Jf you wish to use an svar, savar,
or mvar a!ter using CLR, you must reDIMension it first.

f FRE

Format: FRE(aexp)
Examples: PR INT FRE(0)

100 IF FHE{O)<lOOO THEN PRINT "Memory Critical"

The FRE !unction returns the number of o! RAM bytes left for your use. Normally
FRE{O) returns the total amount of memory left, but if you have used the
EXTEND statement, FRE(O) returns the amount of data space left, and
FRE(l) returns the amount of program space Ieft in the extended memory area.

Format:
Example:

LVAR ["!ilespec"l
LVAR "P:"

LVAR (LV.)

LVA R will llst allvariables currently in use to !llespec. Each variable is !ollowed
by a Iist of the lines on which that variable is used. The example above will Iist
the variables to the printer. If !ilespec is not specified, LV AR lists to the screen.

Note: svars and savars are denoted by a trailing "$", and mvars by a trailing "(".

Warning: LVA R must be the last (or only) statement on a program line.

BASIC XE Re!erence Manual Page 37

EXTEND Configuring the RASIC XE System
For 130XE Owners Only!

EXTEND

Format: EXTEND

IJntll you use the EXTEND commnnrl with n 130XE, RASIC XE operates very much
like Atari BASIC . From the viewpoint of most programs, llASIC XE in 'normal'
mode is Atarl BASIC. Faster, and with many additional capabilities, but
very memory compatible.

EXTEND teils RASIG XE to switch from Atari BASIC 'normal' mode to 'Pxtended'
mode. In extended mode, llASIC XE programs reside in the 'extra' 64K bytes of n
130 X F., labeled 'extended memory' in the second diagram of Appendix n.
Programs can use up all 64K bytes of the extended memory without intrucling upon
the data space (for strings, arrays, etc.) in main mcmory (again, see Appendix ll).

You may use the EXTEND command in nirect ll'ode at any time--either when you
have no program in memory or after a program is in place. EXTEND will transfer
any program in main memory to the extended memory. Once in extended modc, the
only ways to return to 'normal' mode are to use the NEW command or to LOAD a
program which was SA VEr! in normal mode.

Exlting BASIC XE

Exiting BASIC XE

DOS
BYE

The !ollowing two commands, DOS and BYE, are used to leave ßASIC XF. to use

some other utilfty.

DOS (CP)

Format: DOS

DOSis used to go from RASIC XF. to the Disk Operating System (DOS). If you have
not booted a DOS lnto memory, the computerwill go lnto Seif-Test Mode and you
must press <SYSTF.M RESET> toreturn to BASIC XF.. If you have botted with a
DOS, control passes to DOS. Toreturn to BASIC XE, type "CA R" lf you are uslng
DOS XL, or press "B" if you're using Atarl DOS.

DOSis usually used in Dlrect Mode, but lt may be used in a program as well. For

more detalls on thls, see your DOS manual.

Note: CP (command processor) is exactly equivalent to DOS.

On the other hand, you will automatically enter extended mode if you LOAD a
program that was SAVEd from extended mode. Once you have EXTENDed a BYE (B.)
program, you can restore it to normal mode only by LISTing andre-ENTERing it.

Note: EXTEND can onlybe used in Direct Mode,~ in a program.

Note: You must be ustng an Atari 130XF. computer (or equivalent) for this
command to work. lf RASIC XE cannot find the extended memory banks, you will
see an Frror 60, "F.xtended Memory Not Available" .

Note: BASIC XE (ollows recently established A tari Corporation guidelincs when it
uses the extended memory. In partlcular, if the extended memory is alrcady in use
(e.g., by Atari DOS 2.~'s llamDisk), RASIC XF. will not Iet you EXTEND your
program and will give you an F.rror 60, as above. Early versions of DOS 2.5, as
weil as other progrnms, may not yet follow these new guldelines, so be sure the
extended memory is avallable before using the EXTEND command.

Technical Note: RASIC XE fills the extended memory with your program from the
'bottom' up. lleferring to the second diagram in Appendix B, this means tlwt
approximately the ftrst 16K bytes of your program will go in Bank o. The next lliK
bytes go in Bank l, etc. These numbf!rs are not exact, because (1) RA SIC XE
ai ways maintains a minimum of $100 bytes of free space in each bank, ancl (2)
BASIC XE never breaksprogram lines betwef!n banks.

Rtill, if you subtract about $4(10 from the value returned by FRE(l), you will have
a lower bound on the amount of space left in extended memory. Then you could,
for example, use bank :1 to store miscellaneous data, provided that
FRE(l}-$400 shows at least 16K bytes left. See appendix D for details, or see your
Atari 130XE owner's mnnual for Information on how the hardware side of the bank
selectlon works.

Page 38 BASIC XE Re!erence Manual

Format: BYE

The function of BYE is to exit BASIC XE and go d!rectly into your computer's
Sel!-Test Mode. Toreturn to BASIC XE, press <SYSTEM RESET>.

BASIC XE Re!erence Manual Page 39

Space For Your Notes Exitlng BASIC XE

Space For Your Notes

Page 40 BASIC XE Reference Manual

Beglnnlng Data Input/Output lntroduclng A tarl 1/0

lntroduclng A tarl 1/0

The Atarl Personal Computers consider everythlng except the guts of thP
computer (i.e. the RAM, ROM, and processlng chlps) tobe external devices- for
example, the Keyboard and Screen Editor. Some of the other devlces are Dlsk
Drive, Program Recorder (cassette), and Printer. The followlng ls a Iist of the
devlces, ordered accordlng to the device speclfler. For some devices the
speclfler alone ls needed as "filespec", whlle others requlre both the speclfler and
a flle name:

C: The Program Recorder- handles both Input and Output. You can use the
recorder as either an Input or outpul devlce, but ncver as both slmulta­
neously.

Dl:- D8: Dlsk Drlve(s)- handle both Input and Output. Unllke C:, disk drives can
be used for Input and output slmultaneously. Floppy dlsks are organized
into a group of flies, so you are requlred to glve a flle name along wlth the
devlce specif!er (see your DOSmanual for more Information). Note: if you
use D: wlthout a drive number, Dl: is assumed.

E: Screen Editor- handles both Input and Output. The screen editor simulates a
text editor/word processor uslng the keyboard as Input and the display (TV
or Monitor) as output. This is the edltor you use when typing in a RA SIC XE
program. When you speclfy no channel while doing I/0 , E: ls used because
the I/0 channel number defaults to 0, which is the channel BASIC XE opens
for E:.

K: Keyboard- handles Input only. Thls allows you access to the keyboard without
uslng E:.

P: Parallel Port on the 850 Module- handles Output only, Usually P: ls used for a
parallel prlnter, so it has come to mean "Printer" as weil as "Parallel Port".

Rl:- R4: The RS-232 Serial Ports on the 850 Module- handle both Input and
Output. These devices enable the Atari system to Interface to RS-232
compatlble serlal devices llke termlnals, plotters, and modems. Note: if you
use R: without a devlce number, Rl: is nssumed.

S: The Screen Display (TV or Monitor)- handles both Input and Output. This
device allows you to do either character or graphics I/0 on the screen
display. The cursor is used to address a screen position.

Each of these devlces ls used for 1/0 of some type, although only a few of them
can do both Input and outpul (you wouldn't want to Input data from a Printer).
Because they work dlfferently, each device has to teil the computer how lt
operates. This done through the use of a device handler. A device handler for a
glven device gives Information on how the computer should Input and outpul data
forthat device.

One of the sub-systems in the computer is the Central Input/Output (CIO) proces­
sor. It is CIO 's job to find out lf the device you specify exlsts, and then Iook up
1/0 Information in that device's handler. This makes lt easy for you, since you
don' t need to know anything about given handler. To Iet CIO know that a devlce
exists (l.e., ls avallable for J/0) you need to. OPEN the device on one of the CIO's

BASIC XE Reference Manual Page 41

ßeglnning Data Input/Output OPEN

eight channels (numbered 0-7). When you want to do J/0 involving the OPENed
device, you must then usc the channel number instead of the devlce name.

When you see "fllespec" in the following sections, it refers simply to the device
(and flle name in the case of D:) in a character string. The string may be elther a
string constant, an svar, or an savar element.

I! you use chnnnel #7, lt will prevent LPRINT or some of the other BASIC XE 1/0
Statements from being performed.

Format:
Examples:

OPEN

OPEN #chnn, aexp1, aexp2, "fi I espec"
100 OPEN #2,R,O,A$
OPEN #4, 4, 0, "D: INPUT. TXT"

As mentioned above, a device must be OPENed on a speclfic channel before it can
be accessed. This "opening" process links a specific channel to the appropriate
device handler, inltializes any CIO-related control variables, and passes any
device-specific options to the device handler. The parameters for the 0 PE N
command are defined as follows:

chan This is the number of the channel which you wnnt to associate with the
device fllespec. Also, thls is the number you use when you later wnnt to
do 1/0 involving the specified device (using INPUT, PRINT, etc.).

aexpl

aexp2

This is the J/0 mode you want to associate wlth the above channel. The
numeric codes nre described in the following table:

aexp1 Meaning
-4- Input Only

6 Read Disk Directory Only
R Output Only
9 Output Append

12 Input and Output
Note: other modes may exist for special devices or extensions to a
device.

Device-dependent auxlliary code. See your devlce manual to see if it
uses this number. Jf not, use a zero.

filespec The device (and file name, if required) you want to be assoc!Rted with
the specified channel.

Page 42 BASIC XE Reference Manual

Beg!nning Data Input/Output

Format:
F.xampl es:

CWSE #chan
CWSF. #4
100 CLOSE #1

CLOSE (CL.)

CLOSF.
PRINT

CLOSE is used to close n CIO channel which has been previously OPENed to nllow
1/0 on some device. After you CLOSE a channel, you can then reOPEN it to some
other device, and thus associate that channel number with a different device.

Note: you should CLOSE all channels you have OPENed when you are flnished
using them.

Format:

Examples:

PRINT (PR. or ?)

PRINT [#chan]

PRINT
PRINT X,Y,Z;A$
100 PRINT "The value of Xis ";X
100 PR !NT "Connas" , "cause"," tabs"
100 PRINT #3,A$
100 PRINT it4;"$";HEX$(X);" is ";X

PRINT is used in either Direct or Deferred Mode to output data. In Direct Mode,
lt prlnts whatever exp Information is given. In the second example, the screen will
display the current values of X,Y,Z, and A$. In the fifth example, A$ is PRINTed
out to the device associated with channel 3.

The comma option causes tabhing to the next tab location. Several commas in a
row cause several tab jumps. To set the tab spaclng caused by the use of a comma,
use SET 11aexp (see SET for more Info).

A semlcolon causes the next exp to be output immedlately after the precedlng
exp wlthout spaclng or tabblng. Therefore, in the sixth example spaces surround
the 'ls' so that lt and the values of X will not butt up against each other.

If no comma or semlcolon is used at the end of a PRINT statem•mt, then a
<RETURN> ls output and the next PR INT will start on the following Une.

Note: numbers smaller than 0.01 or wlth more than 10 slgnl!lcant diglts will be
PRINTed in sclentlflc notatlon.

BASIC XE Reference Manual Page 43

INPUT Beginnlng Data Input/Output

INPUT (1.)

Fonnat: INP!Jf I [#chan,] I
["string"]

var1 [,var2 •••]

Exanples: INPUT X
100 INPUT
100 INPUT
100 INPUT
100 INPUT

SA$(4;)
X,Y,Z(4),B$
#4,A$(5,V)
"SS#,Name>> ", Ssnun(X) ,Names$ (X;)

INPUT ls used to Input various data and store it directly lnto variables. The first
data element INPUTted will be stored in var1, the second in var2, and so on. If
you are INPUTtlng more than one arithmetic variable, the numeric data elements
may be entered on a single line if they are separated by commas, or on separate
llnes,each!ollowedbya<RETURN>. Inthe latter case, BASIC XE will prompt
wlth a double question mark to indicate that more Input is needed. When
INPUTtlng a group of strings, each must be typed on a llne by ltself, or as the last
item on the line when combined with numerlc Input.

Note: you can make BASIC XE produce a TRAPahle error lnstead of the double
prompt by using SET 4,aexp. Also, you can change the default questlon mark (?)
prompt to any character uslng SET 2,aexp (see SET for more Info).

The fifth example above shows off one of the most powerful additions to INPUT.
If a Iitera! string Immedia tely follows the INPUT, that string will be used as the
prompt, thus allowlng you to create prompts that are more explanatory than the
standard "?".

We strongly recommend that:
1) no more than one variable be used on each INPUT line.
2) INPUT and PRINT should not be used for disk data tile access

(RGET and RPUT are suggested lnstead).

Bonus: as you can see from the third and fourth examples above, you can
INPUT dlrectly in mvar elements and/or substrings. Thls addition (not in Atari
BASIC) can be extremely useful and make your programs very efficient.

Page 44 BASIC XE Reference Manual

Beginnlng Data Input/Output

Fonnat:
Fxanples:

PUT #<>han,aexp
PUT #6,ASC("A")
100 PUl' #0,4*t:l

PUT (PU.)

PUTJ GET
LrRINT

PUT ls used to output a slngle byte of data to an open channcl. The data output ls
aexp, and lt ls output to channel chan.

Fonnat:
Fxample:

GET #channel, avar
100 GET #0, X

GET

GET ls used to Input one byte of ctata from an open channel.
Information ls stored in avar.

Fonnat:

Example:

LPRINT (LP.)

LPRINT [exp] [I; I cxp •• • J[I; 1]
, I ,I

LPRINT "Calculatlon of X squared:"

This byte of

LPRINT causes BASIC XE to output data on the prlnter rather than on thP. scre•m.
Jt can be used in either Dlrect or Deferred Mode, and requires nelther devlce
specifler nor OPEN or CLOSE statement.

Cautlon: LPRINT cannot he used successfully wlth most printers when n traillng
comma or semlcolon is used. If advnnced prlntlng capabllltles are reaulred, we
recommend uslng PRINT # on a channel previously OPENed to the prlnter (P:) .

Note: the semlcolon and comma optlons are discussed in the PRINT sectlon of thls
chapter.

Note: although LPRINT may be used wlth USING just like PRINT, we recommencl
uslng PRINT Jx; USING lnstead.

BASIC XE Reference Manual Page 45

TAB Beglnnlng Datn Input/Output
f TAB

TAB

Format: TAB [#chan, J aexp
Examples: TAB #2,20

100 TAB 12

TAB outputs spaces to the devlce speclfled by chan (or the screen lf chan ls not
speclfled) up to column aexp. The first column ls numbered 0.

Note: the column count ls kept for each devlce and is reset to zero each time a
cnrrlage return is outputtothat device. The count is kept in Aux6 of the IOCR
(See OS documentat!on).

Note: 1! aexp ls less than the current column count, a <RETURN> is output and
then spaces are put out up to column aexp.

f TAB

Format: TAB(aexp)
Example: PRINT #3;"colunns:"TAB(20);20;TAB(:l0);30

The TAB funct!on's effect ls identlcal tothat of the TAB statement (see above).
The difference isthat imbeddlng a TAB function in a PRINT USING or PRINT can
slmplify your programming task greatly. The TAB function will output sufficient
spaces so that the next ltem will print in the column specified (only if the
TAB(aexp) is followed by a semico!on, though).

Note: if aexp ls less than the current column count, a carriage return is output and
then spaces are output up to column aexp.

Cautlon: the TAB funct!on will output spaces on some device whenever lt is used;
therefore, lt should be used only In PRINT or PRINT USING Statements.

Page 46 BASIC XE Reference Manual

Advanced Data Input/Output PRINT USING
Numerlc Formats # a: •

Advanced Data Input/Output

The Statements in this chapter deal wlth special applicatlons or arlvanced concepts
of data I/0. Unless you arealready famlllar with these or simllar Statements (l.e.
I! you've used BASIC XL), we suggest that you play wlth them a llttle just to get a
feel for what they can and can't do.

PRINT USING

Format: PRINT [#chanl:/1 USING sexp, expl [,exp2 ••• J

PRINT USING allows you to specify a format for the data you wish to output.
sexp is the string which defines the format you wish to use, and is made up of one
or more format !ields. Each format field teils how one of the exps which follow
sexp is tobe printed. The first field specifies the first exp's format, the second
!ield specifles the second exp's, and so on. The valid !ormat field characters are
lt a: • + $ 1 • % ! and I (each will be explained separately in just a moment). Non­
format characters terminate a format field and areprintedas they appear.

Note: the comma (,) and semicolon (;) spacing optlons of PRINT are overridden in
the expression Iist o! PRINT USING, but apply after chan lf lt is used (i.e. ','
produces a tab, and ';' produces no spacing).

Warnlng: sexp must contain at least one valid formet field, otherwise BASIC XE
will prlnt sexp repeatedly as it searches for a format fleld.

Numeric Formats: the characters for formatting numbers are:

lt Blank Fill
a: Zero Fill
• Asterisk Fi II

Ilecimal Point

1 Insert a Comma
+ Sign (+/-) pre/postfix
- Sign (- only) pre/postfix
$Dollar Sign prefix

c.\ and *: lf thcre are fewer digits in the output number than specified in the
format, then the digits are right justif!ed in the fleld and prefixed with the proper
fill character. If there are more digits in the output number than specified in the
!ormat, then the rightmost digit(s) of the number which fit in the !leid format are
displayed (see last example). The !ollowing table !llustrates these capabilities and
Iimits (bars have been placed around the output so that you may visualize the !leid
boundaries):

Value Format o":::r 123 #ii#il
123 &&&c.\ 0123
123 **** *123

1234 11#11# 12341
12345 #### 2:145

Note: lf you don't want numbers truncated, you can use SET 14,1. BASIC XE will
then force a TRAPahle error (#23) rather than truncate the number.

BASIC XE Reference Manual Page 47

PRINT USING
Numer!c Formats • , +

Advonced Data Input/Output

• (per!od): a period in the fonnat ficld indicotes that a dccimal po!nt is to be
printed at that location in the numbcr. All digit positions in the format that
follow the decimal point are fllled wlth digits. I! the output number contains
fewer fractional dlgits than specif!ed in the formet, then zeroes are printed in the
extra post tions. lf the output num ber contalns more fractionel diglts than
Indiented in the formet, then the output number is rounded so that there are the
spec!Cied number of fractionnl digits. Note: a second decimal point within a single
fonnat is treated as a non-format character, and so termlnates the format field.
Here are some examples:

Value Format
12.488 ~

123.4 ###.##
** ** ! 0~~:~~, 12:1.40

*2.;15.

, (comma): a comma in the format field indicates tha t a comma is to be printed at
that location in the output number. lf the formet specifies that a comma should be
printed at a position that is preceded only by fill characters (#,& ,*), then the
appropriate fill character will be printed instead of the comma. Note: the comma
is a valid !onnat character only to the left of the decimal point (if a decimal point
is used); when a comma appears to the right of a decimal point, it becomes a
non-rormat character and terminates the format field. Here are some examples:

Value Format
52i"6 ##,###

3 *,****
4175 #,###.

Output

1--s,ml *****3
14' 175 .J

+ and -: a plus sign in n format !leid indicates that the sign of the output number is
tobe printed (+ if positive,- if negative). A minus sign indicates that a minus sign
(-) is to be printed if the output number is negative and a blank if the output

number is positive.

The slgns may be flxed or fi0'8tlng preflxes, or fixed postfix es. When used as flxed
prefixes, the sign fonnat character be the first character in a rormat field:

Value Format Output

43.7 +###.fl# +43.7o
-43.7 +###.## - 43.70

23.58 -&&&.&& 023.58
-23.58 -&&&.&& -023.58

Floating signs must start In the first format position and occupy all positions up to
the decimal point. This causes the sign tobe printed immediately before thc first
digit rather than in a fixed location. Each sign after the f!rst also represents a

blank-fill digit position:

Value Fonnat Output

3:75 +++.## 1+3.751 3. 7n ---.## 3. 75
-3.75 ---.ff# 1 -3.75

Page 48
BASIC XE Re!erence Manual

Advanced Data Input/Output PRINT USING
Numeric Format a: String Formats '16 !

A tralling slgn may appear only a!ter a decimal polnt and as the last character in
the fonnat field. Jt terminates the format and prints the appropriate slgn (or
blank):

Value
4:1.17
43.17

-4 3.17

Format
~+
&M.li:&:­
###.##+ I~+ I 043.17

43.17-

$ (dollar sign): a dollar sign in a !ormat field indicates that a $ is to be used as 8

fixed or floating prefix to the output number. A fixed dollar sign must be either
the !irst or second character in the form at field (second only iC the flrst ls a + or -
used as a fixed sign prefix):

Velue
3""4":7.

34.2
34.2

-34.2

Format
$##.##

+$##,##
-$##.##

+$###.##

Output
$34.20J
+$34.201

$34.20
-$ 34.201

Flonting dollar slgns must start as e!ther the first or second (second for reasons
outllned above) character in the format field and continue to the decimal point.
Each dollar sign after the first also represents a blank-fill digit posltion:

Value
34.2
34.2

-72692.41

Fonnat
$$$$$.##

+$$$$$.##
$$$,$$$.##+

Output

1
~201
+ $34.201
H2,692.41-l

Note: There may be only one floatlng charact.er per fonnat field,

Warning: using +, - or $ in other than proper positions will glve strange results.

String Formats: the format characters !or strings are as follows:

'16 indicates the string is tobe right justified.
indicates the string is tobe left justified.

Jf there are more characters in the string than in the format fleld, then the string
is truncated, Following are examples o! string formatting:

Strlng Format Output
"BASIC XE" 91/Jf,%9iNIJIJJifi(JJ6 I BASIC XEI
"BASIC XE" ! !! ! ! ! ! !! \BASIC XE
"RASJC XE" 91/J(,"'I0)6 BASIC I
"BASIC XE" ! !! ! ! I BASIC

BASIC XE Reference Manual Page 49

PRINT USING - Embedding Format/
NORMAL/INVERSE

Advanced Data Input/Output

Embeddlng Characters: the slash character (/) does not terminate the format fleld
but wlll cause the next character tobe prlnted as is, thus allowlng you to Insert
non-format characters in the mlddle o! a format field, as in the followlng

examples:

Value
4liii446:1 0 9 9
"OSS"

Format
(###/)###/-####
%/.%/.%/.

Output

I
(408)446-3099!
o.s.s.,

Bonus: i! there are more express!ons in the llst than there are !ormat fields, the

format [Ieids wlll be reused. For example,
PRINT USING "##ll#",25,19,7

will output
1 25 19 7\

Format: NORMAL
INVERSF.

ExErnples: NORMAL
100 NORMAL
150 INVERSE

NORMAL/ INVERSE

NORMALand INVERSE allow you to change the video presentatlon of all PRINTs,
LPRINTs, and PRINT USINGs. Anything you display after aNORMAL will be
output just as !t appears in your program, whlle anythlng you display after us!ng
INVERSE will be converted to Inverse video. In this case, characters that were

prevlously in Inverse video will appear in normal video.

Note: BASIC XE returns to NORMALdisplay whenever you return to D!rect Mode

or reRUN a program from wlthln ltself.

Page 50
BASIC XE Reference Manual

Advanced Data Input/Output

BPUT

Format: BPUT #chan, aexp1, aexp2 [,bank]

BPUT
BGET

BPUT outputs a block of data to the devlce OPENed on channel chan. The block
of data starts at address aexp1, and is aexp2 bytes long. You may also select an
optlonal bank number lf you're in EXTENDed mode (see EXTEND !or more Info).

Note: aexpl the address may be a memory address, or the nddress of a strlng
(found uslng ADR).

The !ollowlng example writes out an entlre mode 8 graphlcs screen d!rectly from
screen memory:

181 Gr~PhiCS B:Addr=DP••kC$58)
118 Print "filling 5cr••m .•• "
128 for 5b!lt•=l To (418*168)-1:RI!M "fill scrl!l!n"
131 Pok• Addr+5b!lti!,R~ndoMC256)
1411 Mut 5b!lte
158 Print "Don• Fi 11 ing, Mow BPUTting,. ,"
168 Clos• a1sOp•n a1,8,8,"D:ItODE11.5CR":R•M "rl!~d!l to BPUT"
171 aput a1,Addr,418*168
181 CIOSI! a1
1'1 Print "finishl!d BPUTting"
281 End

Note: nothing ls wr!tten to the file wh!ch lnd!cates the length of the data written,
~e suggest that you write fixed-length data to make the rereading process
stmpler.

BGET

Format: BGET #chan, aexpl, aexp2 f ,bank]

BGET gets aexp2 bytes from the device OPENed on channel chan, and stores them
start!ng at address aexpl. As wlth BPUT, aexpl may be the address of a string• in
th!s case BGET does not change the length or the strlng - th!s !s ;our
respons!b!llty. You may also select an opt!onnl bank number !f you're in
EXTENDed mode (see EXTEND !or more Info).

The followlng example w!ll read in an entire mode 8 graphlcs screen dlrectly !nto
screen memory:

188 Gr~phics &:Addr=DP••kl$58)

1
1

2
1

1
8 CJos• IU:Opl!n IU,4,8,"DI""DE8,5CR":RI!M "rl!~d!l to IGET"

Print "IIOW BGETting,,,"
131 Bg•t a1,Addr,418*161
1411 CIOSI! a1
151 Print "finish•d BGETting"
168 End

Note: no error checklng ls done on the address or length so care must be taken
when us!ng thls Statement, lest you w!pe out part of DOS or your BASIC XE
program. '

BASIC XE Reference Manual Page li1

RPUT
Advanced Data Input/Output

RPUT

Fonnat: RPUT #chan, exp [,exp •••]

RPUT allows you to output flxed-length records to the device OPENed on channel
chan. Each exp constitutes one field element in the record. An arithmetic field
conslsts of one byte which indlcates an arithmetic data type, and 6 Jl CD tloating
point bytes of data. A strlng !leid consists o! one byte which indlcates a strlng
data type, 2 bytes of LEN Jength, 2 bytes o! DIM length, and then DIM length bytes
of data. All thls really means ls that you can't INPUT data whlch has been
RPUTted, since more than just the data ls RPUT.

The !ollowing example RPUTs 20 records of the form "Name"," Address", "City",

"State", Zip, Phone:

181
118
128
138
148
158
168
178
188
H8
281
218
228
238
248
258
%61
271
2118
n8
381
318
328

DiM NiM@S$(28,38J,Addrs$C28,38J,CitieS$(28,28J,5tates$l28,2J
DiM ZipsC28l,Phonesl28)
Close U1:0pen #1,8,8,"0:FRIEND5.DAT"
For RecnuM=1 To 28

Input "NaMe)) ",NaMes$(R@CRUM;l
Input "Address>> ",Addrs$CRecnUMJJ
Input "Cit!l» ",CitiesHRecnuMJl
Input "5tate>> ",5tat@s$CRecnuMJJ
Input "Z i p)) ", Z i PS CRet RUM)
Input "Phone>> ",PhonesCRecnuMJ
Print :Print 1111Wi!ii&''
Print NaMes$CRecnuM;J:Print Addrs$CRecnuM;J
Print Cities$CRecnUMlll"• ";5tates$CRecnuM;J;" "lZipsCRecnuMJ
Print Using "U#IUIJ#U#I-####",Phones(R@tftUM)
Print :Input "WUM«&-fWMin:tu ",Ans$
lf CAns$:"Y"l Or CAns$:"y"J:ReM "do RPUT"

Rput #1,NaMtsSCRecnuM;l,Addrs$CR@cnuM;l,Cities$cRecnuM;l
Rput #1,5tates$CR@tnuM:J,ZipsCRecnuMJ,PhonesCRecnuMl

Else :Print "Re-enter record":Goto 141
Endif

Next R@tnUM
Close U1:Print :Print "All Done"
End

Page 52
BASIC XE Re!erence Manual

Advanced Data Input/Output RGET

RGET

Format: RGET #chan, var [,var •.•]

RGET allows you to retrieve !lxed-length records from the devlce OPENed on
channel chan, and asslgn the values to string or arlthmetlc variables. Note: the
Input data and the variable into whlch the data ls stored must be o! the same type
(l.e. they must both be strlng or both be arlthmetlc).

Note: when the data type ls strlng, then the DIMensloned length or the data strlng
must be equal to the DIMensloned Jength of the svar. Once the data string has
been asslgned to the svar, RGET sets the LEN Jength of the svar to the
actual Jength o! the Inputted data string (not the DIM Jength of the data strlng).

Warnlng: you may not RGET lnto mvars or savars. You must RGET the field into a
temporary avär"""OrSVär, and then transfer lnto the subscrlpted variable.

The follow!ng example RGETs 20 records of the fonn "Name"," Address", "City",
"State", Zlp, Phone, and stores them in strlng and arithmetlc arrays, dependent
upon the data type o! the field:

118 DiM NaMes$C28,J8J,Addrs$C28,38l,Cities$C28,28l,5tates$C28,2J
118 DiM TnaMe$(38J,Taddr$CJ8J,Tcit!I$(28J,Tstat@$(2J
128 DiM ZiPS(28J,PhoneS(28)
138 Close #1:0pen SU,4,8,"D:FRIEND5.DAT"
148 for A@CftUM:1 TO 28
158 Rget #1,TnaMeS,Jaddr$ Tcit!IS,Tstate$,Tzip,Tphone
168 MIM!S$CRetnUMJ):lnaMtSlAddrS$(RetnUMl):laddr$:Cities$CRecnuM;J:Tcit!1$
178 5tates$CRecnuM;l:Tstatet:ZipsCR@cnuMJ=Tzip:PhonescRecnuMJ=Tphone
188 Next RunuM
1'8 CIOS@ #1:Print :Print "Got fil@"
288 ReM "Now that we have r@tords, let's show th@M"
218 Input "Rec·ord to llieW? ",RecnuM
228 If R@tnUM{)8:If RetnUM)21 Then 388
238 Gosub 318
241 EIS@ :ReM "ShOW all r@tords"
258 For RecnuM=1 To 28
268 GOSUb 318
278 Next RecnuM
288 Endif
2'8 Goto 218
388 End
318 Print NaMes$CR@tnUMJ)IPrint Addrs$CRetnUMJ)
328 Print Citi@s$CRecnuMJ)J", ":5tates$CRecnuMJ)J" "JZipsCRecnuM)
338 Print Using "cmmnmmt-####" ,Phones CR•cnuMJ 1Print
348 Return

BASIC XE Re!erence Manual Page 53

BSAVE
BLOAD

Fonnat:
F.xm~ple:

BSAVE

RSAVE aexpl,aexp2,"filespec"
BSAVE $680,$6FF,"D:PAGF.FLJP.BIN"

Advanced Data Input/Output

BSAVE allows you to store a blnary ImagE> in standard Atarl DOS LOA I' format
(wlth header) so that you can later BLOAD lt dlrectly into the rlght place.
aexpl ls the startlng address of the reglon of memory you want to save, nnd
aexp2 Is the ending address of the region. A total of aexp2-aexpl +l bytes of

binary data are stored.

Technlcal Note: BSAVE saves the mE>mory Image as a single segment, wlth a single
header. No RUN or INJT vector ls appended.

BLOAD

Fonnat: BLOAD "fll E>spec"
Example: BLOAD "D:PAGEFLJP.RJN"

BLOAD is the complementary statement to BSAVE because lt allows you to Ioad a
stnndard Atarl DOS LOAD !ormat blnary file. Jt can also be used to load
USR routlnes you have wrltten using 1\1 A C/65 (or some other Inferior assembler).

Warning: BLOAD performs ~ checks of the addresses specified in the segment
header{s). You can easily wlpe out huge and important parts of memory wlth this
statement! ---

Technical Note: BLOAD will Ioad blnary fliesthat nre made up of any numbPr or
segments. Jt willlond but lgnore RUN nnd/or INJT vectors.

Bonus: lf your binary file has a Jl UN vector, you can execute 1t via
SET 8,0:A=USR(DPEEK($2EO)).

Page 54 BASIC XE Reference Manual

Advanced Data Input/Output

Fonnat:
Exm~ple:

NOTE (NO.)

NOTE #chan, avarl, avar2
100 NOTE #1,X,Y

NOTE, POINT
STATUS

NOTE stores the current disk sector number in avar1 and the current byte oftset
wlthln that sector In avar2. Thls ls the current read or wrlte posltlon in the
speclfied flle where the next byte to be read or wrltten ls located.

POINT (P.)

Format: POINT #chan , avarl, avar2
Example: 100 POINT #2, A, B

POINT sets the current dlsk sector to avar1, and t he current byte number wlthln
that sector to avar2. Essentlally, lt moves a software-controlled pointer to the
speclfled locatlon In the file. This gives the user "random" access to the data
stored on a dlsk flle. The POINT and NOTE commnnds are dlscussed ln more detall
in your DOS Manual.

Format:
F.xm~ple:

STATUS #chan, avar
350 STATUS #l,Z

STATUS (ST.)

STATUS calls the sta tus routlne for the devlce 0 PE Ned on channel chan, and
stores the value returned in avar. This can be useful when dealing with devlces
that produce speclal status values (e.g., R:).

Warning: if no device is currently OPEN on chan, STATUS will still try to do
somethlng. What 1t will do depends on the l ast thing that was done on channel
chan, and can produce disastraus resul ts. We strongly recommend using XIO 13 on
channels which arenot OPEN.

BASIC XE Reference Manual Page 55

XIO Advanced Data Input/Output

XIO (X.)

Format: XIO cmdno, #chan, aexpl, aexp2, "fllespec"
Exllllple: XIO 18,#6, 0, 0, "S:"

XIO ls a general Input/output statement that allows you to access the speclal
capabllitlee ot the device tllespec. cmdno is an aexp, and spectfies the functlon
you wish the devlce to perform. aexpl and aexp2 are put in the aux1 and aux2
bytes of channel chan, and are dependent upon the functlon. A llst of useful
cmdnos follows:

cmdno operation example
--3- Open Use OPEN instead

5 Get Text Use INPUT instead
7 Get Char Use GET or BGET instead
9 Put Text Use PRINT instead

11 Put Char Use PUT or BPUT instead
12 Close Use CWSE lnstead
13 Status XIO 13, #6, 0, 0, "R4:"
17 Draw Llne Use DRAWI'O lnstead
18 Fill XIO 18 '#6' 0' 0'" s:"
32 Renlilie File Use RENAME instead
33 Delete File Use ERASE lnstead
35 Lock File Use PROTECT Ins tead
36 Unlock File Usc UNPROTECT instead
37 Disk Point Use POINT lnstead
38 Di sk Note Use NOTE instead

253 2. 5 Format XIO 253,#1,$22,0,"D2:"
254 Di sk Format XIO 254,#t,o,o,"D2:"

Note: we strongly recommend that you use only cmdno's 13, 18, 253, and 254, since
BASIC XE has statements that perform nll the others.

Page 56 BASIC XE Reference Manual

Managing Disk Files

Managing Dlsk Files

DIR , PROTECT
UNPROTECT

The statements in this chapter allow you to perform DOS-type commands without
ever leaving BASIC XE. The statements are DIR, PR OTECT, UNPROTECT,
RENAME, and ERASE.

Note: in the examples in this chapter, you will sometimes see the wildcard
characters • and ? in the fllespec. For Information on the use of these, see your
DOS manual.

Format:
Ex llllpl es:

DIR ["fll espec" 1
100 DIR "D:*.C0\1"
DIR FILE$
DIR "D2:TEST? .B*"

DIR

The DIR command shows a llst of the dlsk flies whlch match fllespec, and ls slmilar
to the DOS XL DIR command. Jf no filespec ls given all !lles on D 1: are displayed.
The first example will display all flies on Dl: wlth the "COM" extenslon. The
second example shows a strlng variable belng used as filespec. Thls ls legal, but
the strlng variable must contaln a valld fllespec, otherwlse an error wlll occur,
The thlrd example will dlsplay all flles on the dlsk in drive 2 which match
TEST? .B*.

Note: DIR must be used as the last (or only) command on a progam Une.

Format:
Exllllpl es:

PROTECT "filespec"
PROTECT "D:*.CCM"

PROTECT

100 PROTECT "D2:Fil.E.HXE"

PROTECT allows you to protect your disk flies wlthout going to DOS, and is very
similar to the DOS XL PRO command.

Note: Atari DOS uses the terms 'LOCK' and 'UNLOCK' lnstead of PROTECT and
UNPROTECT. They're just different names for the same idea,

Format:
Ex1111pl es:

UNPROTECT (UNP.)

UNPROTECT "fllespec"
100 UNPROTECT "D: DATA. 001"
UNP. "02:*.*"

The UNPROTECT statement a!lows you to unprotect disk Ciles which have been
protected uslng either the ßASIC XE PROTECT statement or the DOS XL PRO
command, and is slmilar to the DOI'l XL command UNProtect.

BASIC XE Reference Manual Page 57

RENAME
ER ASE

Format:
ExEillpl e:

Managing J)!sk Files

RENAME

R.ENAME "fi lespec,fi lenm~e"
RENAME "Jl2:0LnNAME. EXT ,NEWNAME. EXT"

RENAME allows you to rename dlsk flies dlrectly from BASIC XE. Note: the
comma shown between fllespec and fllename is required.

Cautlon: the new fllename cannot include a device specifler (Dn:). Also, we
strongly suggest that you do not use wildcards when RENAMEing.

Format:
Examples:

EilASE filespec
EilASE "J):*.ßAK"
EilASE "J)2:TEST? .SAV"

ER ASE

ERASE will erase any unprotected flies which match the given fllespec. The flrst
example above would erase all flies on the disk in drive 1 with the extension
"BAK". The second example would erase allflies matehing TEST? .SAV on the disk
in drive 2. This command ls simllar to DOS XL's ERA.

Page 58 BASIC XE Reference Manual

Looping and Jumping Statements FORISTEPINEXT

Looping and Jumplng Statements

The statements discussed in this chapter allow you to have repetltlon and Iteration
in your BASIC XE programs wlthout a Iot of trouble. The Iooping statements are
FOR and WHILE, and the jumplng Statement ls GOTO. The POPstatement is also
lncluded because it directly affects the executlon of the other three.

FOR I STEP I NEXT

Format: FOR avar~aexpl TO aexp2 [STEP aexp~]
[statements]
NEXT avar

The FOR statement is used to repeat a group of statements a specified number of
tim es. It does this by initlalizing the loop variable (avar) to the value aexpl. Rach
time the NEXT avar statement is encountered, avar is incremented by aexp3 if the
STEP option is used. Jf thls optlon ls not used, avar is incremented by 1. When
avar becomes greater than aexp2, the loop stops executlng, and the program
proceeds to the Statement immediately following the NEXT avar. You can control
whether or not a FO R loop will execute at least once (a Ia A tari BASIC) uslng
SET 3,aexp.

FO R loops can be nested (one FO R loop within another). Jn thls case, the
Innermost loop ls completed before returnlog to the outer loop. The following
program ls an example of nestlog (notlce how LIST lndents loops to show the
statements wlthin a loop):

18 for K=1 To J
28 Print .,-~i3ii!iil'-:;"",..,..:a .. ":K
J8 for V=1 To 5 step 2
48 Print " V Loop: "•V•
58 llext v 1 1

68 Print
78 llext x
88 End

The outer loop will complete three passes (X~l to :l). However, before thls flrst
loop reaches its NEXT X statement, the program glves control to the inner loop.
Note that the NEXT statement for the Inner loop must precede the
NEXT statement for the outer loop. Jn the example, the Inner loop1s number of
passes is determlned by the STEP statement (STEP 2). Uslng this data, the
computer must complete three passes through the Inner loop before the inner loop
counter (Y) becomes greater than 5. The following is the output of this program
when it ls RUN:

CKi!l!J:ii 1
V Loop:

CMiltd:ii 2
1 V Loop: J V Loop: 5

V Loop: 1
CKi!l!J:& l

V Loop: J V Loop: 5

V Loop: 1 y Loop: J y Loop: 5

BASIC XE Reference Manual Page 59

WHILE/ENDWHILE Looping and Jumping Statements

Fonnat: WlfiLE nexp
[statements]
ENI'M'IIILE

WHILE / ENDWHILE

W HILE allows you a Iooping statement whlch contlnues execution conditionally.
So long as aexp is non-zero (lt can be either positive or negative), nll statements
between WHILE and ENDWHILE will be executed, Be!ore each pass through the
stntements in the loop, aexp is evaluated to determine whether loop execution
should continue or not. For example, WHILE 1 will execute forever, and
WIIILE 0 will never execute. The !ollowing program ls an example o! the
WHILE loop:

189 AM•x=s:CMax:8:Currow:8:curcol:9:Found:8:Target:8
185 DiM HatriX(AMaX,CMIX)
111 Nhile currow<RMax And c Not Foundl
128 curcol:8
131 Nhile curcoJ(CMax And (Not Foundl
141 If Hatrixccurrow,curcol>=Target Then Found=1
158 curcol=Curcol+1
169 Endwhile
179 currow:currow+1
189 Endwhile
1'1 If found:Print "found ";Target;" at "l
281 Print "HatrixC";Currov-1;",";Curcol-1;">"
211 Else :Print Target;" not found"
221 Endif

Page 60 BASIC XE Re!erence Manual

Looping and Jumping Statements GOTO

GOTO (G.)

Fonnat: GOTO llneno

The GOTO command ls used to jump uncondltlonally to nnother part o! the program
by speclfylng a target Une number (llneno). Because there ls no way to return
trom a GOTO, the statements whlch !ollow lt will never be executed, unless o!
course another GOTO jumps back to them. The followlng example program shows
several uses of GOTO:

181
111
121
138
141
151
161
281
211
221
231
241
258
268
278
281
Hl
381
311
321
338

Trlll9ilin=U8
Input "liive M a nuMber froM 1 to ' > ",Luckll
If LUCk\1(1 Then 118
If LUCkll)' Then Goto 118
If Lucky()Intllucklll Then Goto Tryagilin
Print :Print
5010 218+LUCkll*18
ReM *** CHOO~E A MORD ***
LUCkll$:"fitch":Goto 389
LUCkii$:"Pippin":Goto 388
Lucky$:"HandrilJ":Goto 3811
Lucky$:"Zeitgeist":Goto Jll
Lucky$:"Zioty":Goto 388
Lucky$:"Freshet":Goto 311
Lucky$:"Crositr":Goto 388
Lutkll$="1roughii~':Goto 311
Lucky$:"Abattoir":Goto 388
Print " Your Jucky crossward puzzu word is:"
Tab (35-LenCLUCkll$))/2
Inverse :Print Lucky$:NorMal :Print
Goto Trllil9ain

Note: any GOTO statement that jumps to a preceding llne may result in an endless
loop.

Note: uslng anythlng other thnn
renumberlng uslng RENUM d!ftlcult.
improved.

BASIC XE Reference Manual

a numerlc constant for llneno will mnke
However, readablllty may be markedly

Page 61

POP Looping and Jumplng f;tatements

POP

Fonnat: POP

To understand what POP docs, we need to take a little journP-y Inside IlAil!C XF. to
find out more about how Joops work. When BASIC)"F. sees a FOR, WHILE, or
GO SUB, lt saves away lts current posltlon in the program. That way, whcn lt
reaches the NEXT, ENDWHILE, or RETURN, lt will know where togoback to.
Also, LOCAL saves the prevlous value of an avar when you makelt private so that
1t can later be restored. The place whcrc BA SW XE saves thcse thlngs ls calJed
the program stack, and ls really just a IIst. Puttlng something on thP. steck ls
caJled 'pushing', and taking something off is caJled 'popping', hence the command
POP suggests that it takcs somethlng off the stack. This is exactly what lt rloes,
and is very useful when you want

1) to jump out of a loop before it has executed its specified number of tim es,
2) to get out of a subroutine (GOSUB) which does not give control back to the

maln program through the use of a RETURN, or
3) to restore the prevlous values of LOCAL avars, thus endlng a

LOCAL reglon wlthout an EXIT.

Warnlng: lf you POP too many or too few ltems off the stack 1t wiJI cause an error
(13, 16, or 28, dependent upon what you left at the top of the stack).

The followlng examplcs illustrate these uses of POP:

18 for I=8 To '
28 Print I;
38 Local I
48 I:RandOM(18,,,J
58 · Print " : "JIJ
68 Pop
78 Print •• : ••;I
118 III!Xt I
'8 ReM lines 28 and 38 May be swapped

188 Print "At line 188"
118 Gosub 281
121 Print "At line 128"
131 End
1'8 ReM MMNIINMMMMNMMMMMMNMMMMNNMMNNMMM
281 Print " At line 288"
218 Gosub 388
228 Print " At line 220"
238 Goto 281
2,8 ReM MMIIIIMMMMMNMNNMNNMMNMMMMMMNMMMN
388 Print " At line 381"
311 for I=l To 5
328 Print " At line 328"
331 If I=l And flag Then Pop :Pop :Return
341 llext I
358 Print " At line 351"
361 flag:1
371 Return

Page 62 BASIC XE Reference Manual

Condltlonal Statements IF/THEN

Condltlonal Statements

The Statements dlscussed in th!s chapter allow you to execute parts of your
program only lf the condltlons you specify have been met. The conditlonal
statements are IF/THEN, IF/ELSE/ENDIF, and ON.

IF I THEN

Fonnat: IF aexp THEN JI!neno I
Jstatement[:statement •••)

The IF/THEN condit!onalls used when you want to cxecute a group of Statements
only I! certaln condltlons are met. These condltions may be elther arlthmetlc or
logical. If the aexp follow!ng the IF ls true (non-zero), the program executes the
THEN part of the statement. If, however, aexp is false (zero), the rest of the
Statement is lgnored and program control passes to the next numbered Une. When
THEN is followed by a l!ne number (llneno), execution contlnues at that program
llne if aexp is true. Note: llneno must be a constant (not an expresslon).

Several IF/THEN conditionals may be nested on the same line. In the example,
181 If H:5 Then R:,:tf Y:3 Then Goto 288
the statement R=9 will be executed if X=5, while the statement GOTO 200 will be
executed only i! X=5 and Y=3.

The followlng program demonstrates the IF/THEN condltional:

188 Graphits 8:Print "If DEI«<"
118 Input "Enter vuue 1. .J)) ",A
121 If A=1 Then Print "One"
131 If A=2 Then Print "Two"
141 If A:J Then Print "Three"
151 If A(1 Or A)J Then Print •WIUilJ:IU:MIJIIitW•
161 Cioto 111
171 End

BASIC XE Reference Manual Page 63

IFIELSEIENDIF

Fonnat: IF aexp
[statements]
[ELSE
[statements]]
ENDIF

Condit!onal Statements

IF I ELSE I ENDIF

BASIC XE makes available an exceptionally powerful conditional capability via
IF 1 ELSE I ENDIF. Jf the expression aexp ls true (non-zero) then all the
statements between aexp and ELSE will be executed, while the Statements
between ELSE and ENDIF wlll be skipped. If aexp is false (zero), then the
statements between aexp and ELSE will be skipped, and those between ELSE and
ENDIF wlll be executed. It ELSE is not used, this conditional acts just like a
multi-line IFITHEN with IF and ENDIF as delimiters.

Caution: the keyword THEN is not part of the syntax of this conditional.

The followlng program illustrates IF I ELSE I ENDIF:

188 If 1<2
118 Print "ThiS "l
121 If 2)3
138 Print "COMPUt•r "l
141 If 3(4
151 Print "is "l
161 Els•
171 Print "broken!"
181 Endif
Ul Eln
211 Print "prograM ";
211 If 4)5 .
221 Print "is a ";
238 If 5(6
241 Print "boo-boo"
251 Endif
268 EIS•
271 Print "works "l
281 If 6)7
2'1 Print "pooriy,"
311 EIS•
318 Print "great!"
321 Endi t
331 Endif
341 Endif
351 Else
361 Print "Kablooey!!!!!"
371 Endif

Page 64
BASIC XE Reference Manual

Condltlonal Statements

Fonnat:

ON

ON aexp ~C~TO I linenolf ,lineno2 •• ,]
GO SUB

ON

Note: GO SUB and GOTO may not be abbreviated when used in conjunctlon with
ON.

The ON statement allows conditional jumps and subroutine calls. The condltion is
determlned by aexp. If lt is negative, an error results.
aexp is rounded to the nearest Integer, and program
accordlng to the followlng table:

value
-0-

1
2

Control goes to
Statement after
linenol
lineno2

N linenoN

ON

>N Statement after ON

If lt is non-negative,
control ls channelled

"N" ls the last line number in the Iist of Uneno's following the GOTO or GO SUB.
When ON/GOSUB is used, control returns to the Statement followlng the
ON/GOSUB after the subroutine RETURNs.

The followlng program demonstrates the ON statement, hoth w!th GOTO and
GOSUB:

188
111
128
131
141
151
161
171
181 1,.
211
211
221
231
241
251
261
271
281
2'1
311
311
321
331
Hl
351
361
371
381

Graphfes 2:Print U6;'1!fMMJ4 fllf RUIIIIER"
Print 116
Print 116J"0 run basic xe file":Print #6
Print U6J"f} disk directory":Print #6
Print 116;'11 quit"
Input "Your Choice? ",Pick
on CCPick)3J or CPick=IJJ Goto 151
If Pick=3 Th•n liraphics I:End
On Pick liDSUb 211,311
on Pick Goto 151,111
Trap 211
Input "file llaM? ",f$
If find(f$ ":",IJ=I:T$="D:",f$
Else rlf:fS
fndif
If findtT$,",8KE",IJ:I Then T$:T$,",8KE"
Print "Running ";T$;",,,";:Run T$
Return
Trap lrPrint "lh•Miii i UWa";Errcel
Return
Graphics I:Print "All files with ',BKE' Extender:"
Trap 361
Print !Dir "O:*.BKE"
Print :Print "Press ~ tor -nu"
If PeekCSdl1fJ&1 Then 341
Return
Trap I
I t Err CIJ <> 136 Then Pr i nt " lf.I•Milii·l•#" J Err CIJ
cont

BASIC XE Reference Manual Page 65

Space For Your Notes Conditional Statements

Space For Your Notes

Page 66 BASIC XE Reference Manual

Handling Errors

H andlfng Errors

TRAP
ERR

The Statements and !unction in thls chapter allow you to detect and resolve
run-time errors wlthout causlng program execution to halt. Jncluded are the
TRAP Statement, the ERR !unction, and a dlscusslon o! the error handling
appllcations of CONT and STOP.

Format: TRAP llneno
Example: 100 TRAP 2000

TRAP {T.)

The TRAPstatement ls used to direct the program to a specified llne number if an
error is detected. Wlthout a TRAP the program stops executing when an error ls
encountered and displays an error message on the screen.

TRAP works !or any error that may occur a!ter it (the TRAP statement) has been
executed, but once an error has been detected and trapped, lt ls necessary to reset
the error trapplng with another TRAP statement. This resetting TRAP should be
done at the beginning o! the error handllng routlne, to Insure that the TRAP ls
reset a!ter each error.

To find out the error number and the llne number on which the error occured, use
ER R, as described in the !ollowing section.

TRAP may be disabled by executing a TRAPstatement with an llneno value of 0 or
greater than 32767.

Examples of TRAP may be found in the program on the following page.

1 ERR

Format: ERR(aexp)

Thia function allows you to find out the error number and Une on which the error
occurred when you are writing your own error trapping routines. Using an aexp of
0 will return the error number o! the last run-time error, and an aexp of 1 will
return the program Une on whlch the error occured. The results o! using other
values ot aexp are unde!ined.

Examples of ER R may be tound in the program on the followlng page.

BASIC XE Reference Manual Page 67

A Program Example Using TRAP and ERR
Using STOP and CONT in Error Handling

A Program Example Using TRAP and ERR

188 Deg .
118 Print "Angle s.ne cosecant"
128 For I=8 To 188 step 15
131 Print Using "m#l #,uuml#
Ul Trap 288
158 Print Using "mm#,#ml#'' • 1/Sin cn
168 IIUt I
178 End
188 ReM we get to ltne 281 if
1'8 ReM SinCIJ is equal to zerol
288 Print "undefined"
211 5oto ErrC1J+18

",I, Sin Cl),

Using STOP a: CONT in Error Handling

lfandling F.rrors

CONT can be very useful in error handling because you need not !ool around wiith
- tt n In the above example, exerut on

llne numbers to continue program execu 0
• h r ER R(l) and 8 GOTO.

contlnues on the line followlng the error through t e use o
Jf CONT is used instead, Une 210 becomes much simpler:

211 cont

Th t STOP in error handling is Umlted but very useful. In fact, it is not
e use o d 1 · program you

error handllng at all; it is error creation. When you are eve opmg a "St ' d at
can put STOPs where the program should never see them. I! you get a oppe
Jlneno", then you know you're doing something wrong.

Page 6R
BASIC XE Reference Manual

Handling Strings

Handling Strlngs

ASC, CHR$
LEN

This chapter discusses the functlons in BASIC XE that are designed to make
manipulatlng strlng data quick and easy.

f ASC

Format: ASC(sexp)
F.x1111p! e: 100 A~ASC(A$)

ASC returns the AT ASCII numer!c value of the flrst character in sexp. If A$~
"ABC", then ASC(A$) returns 65, and ASC(A$(2)) returns 66.

Note: Appendix A contalns a table of AT ASCIIcodesand characters.

Format: CHR$(aexp)
F.xmnples: PRINT CHR$(65)

100 A$~CHR$(65)

CHR$ returns the character (in strlng formst) represented by the ATASCII
numeric code aexp. Only one character ls returned. In the above examples, the
Ietter Als returned. Uslng the ASC and CHR$ functlons, the followlng program
prints the upper case and lower esse letters of the alphabet:

11 For c=t To 25
21 Print ChrSCAscC"A"J+CJ,chrScAscc"a"J+CJ
38 ••xt c

Note: there may be only one STR$ or CBR$ in a loglcal comparison because
BASIC XF. uses a single buffer to create the temporary string which both of these
functlons use (e,g., IF CHR$(A)~CIIR$(B) ... ls always true, whether A and Rare
equal or not.

f LEN

Format: LEN(sexp)

The LEN funct!on returns the character Iength of sexp. This Information may then
be printed or used Iater in a program. The length or a strlng variable !s slmply the
element number of the last character currently in the strlng. f;trlngs have a Iength
of 0 untll characters have been stored in them.

BASIC XE Reference Manual Page 69

FIND
ADR

Fonnat:
Exmnple:

Handling Strings

f FIND

FIND(sexpl, sexp2, aexp)
PRINT FIND("ABCDXXXABC", "'RC" ,N)

FIND !s an efficient speedy way of determinlng whether any given substring is in
any given master ;trlng. FIND will search sexpl, startlng at position aexp+l, for
the substrlng sexp2. If sexp2 is found, the function returns the position where ~t
was found, relative to the beglnnlng of sexpl. If sexp2 is not found, a 0 IS

returned.

In the example above, the followlng v!llues would be PRINTed:
2 I f N = 0 or 1
9 if N>=2 and N<9
0 U N>=9

The following example shows an easy way to have a vector dependent upon a menu

choice:
18 Jnput •'(lhange, [)rase, or [Iist? ",A$
28 On find("CEL",A$U,U,8) Goto 188,288,388
38 Goto 18

This example illustrates how changes to aexp can affect the results of FIND:
18 Input "A string, Piease - ",A$
21 For st=e To LenCA$>-2
31 F:findCA$,"A",StJ+1
48 Jf F=1 Then Print "lleither 'AB' nor 'AC' wre found":End
58 Jf A$(f,fl:"B" Then Print "found 'AB' at pos. U";f-1:St:St+1
68 Jf A$(f,F>="C" Then Print "found 'AC' at pos. U";F-l:St:st+l
78 IIUt St

f ADR

Format: ADR(sexp)
F.xamples: ADR(A$)

ADR(B$(5;))

ADR returns the memory address of the strlng sexp. Knowlng the address enables
you to use lt in USR routlnes, BGET, BPUT, etc.

Warning: if you are in EXTENDed mode, ADR("string") returns an lmproper value
bP.cause the strlng constant is copled out of the banked program memory lnto a
temporary area. Because it's wlthln a slngle statement,
J:UsrlAdr(""·L· in char string")>
works. but
T=Adrl""·L· in char string">:J=UsrlT>
won't because H's two statements. If you use ADR("string") as in the flrst case
only, you can SET 15,1 so that BASIC XE won't force an error.

Page 70 BASIC XE Reference Manual

Handling Strings

Format:
Examples:

LEFT$(sexp, aexp)
l 0 A$=LF.FT$ ("ABCDE" , ~)
20 PRINT LRFT$("ABCD",5)

LEFT$, MID$
RIGHT$

The LEFT$ function returns the leftmost aexp characters of the string sexp. If
aexp ls greater than the number of characters in sexp, no error occurs and the
entire strlng sexp ls returned.

In the Cirst example, A $ ls equated to "ABC", and in the second example, the
entlre string "ABCD" is prlnted.

Fonnat:
Exmnple:

MID$(sexp,aexpl,aexp2)
A$=MID$ ("ABCDEFG", 2, 4)

MID$ allows you to get a substring from the middle of another strlng. The sub­
atring retrleved starts at the aexplth character of sexp, and ls aexp2 characters
long. I! aexpl equals 0 an error occurs (since there is no oth character in a
strlng); I! aexpl is greater than the LEN length of sexp, no error occurs (and no
characters are returned). aexp2 may be any positive Integer, but lf lts value
makes the substrlng go beyond the LEN length of sexp, then the substrlng returned
ends at the end of sexp.

In the above example, A$ ls equated to "ßCDE".

Format:
F.xampl e:

RIGHT$(sexp,aexp)
A$=RIGHT$("l23456",4)

The RIGHT$ functlon returns the rlghtmost aexp characters of sexp. lf aexp ls
greater than the number of characters in sexp, then the entlre strlng sexp ls
returned.

In the above example, Af is equated to "3456".

BASIC XE Reference Manual Page 71

VAL, STR$

Format:
Exm~ple:

VAL(sexp)
100 A=VAL(A$)

f VAL

Handling Strlngs
HEX$

VALreturns the numeric value represented by a strlng, provldlng that the string is
lndeed a strlng representation of a number (I.P-. is a diglt string). Using this
functlon, the computer can perform arithmetlc operatlons on strings as shown in
the following example program:

18 8$:"1818811

21 B:5qrlUaJl8$))
31 Print "Th• 5quar• Root of "JB$J" is "JB

Note: VAL does not permit the use of an sexp that does not start with a digit (l.e.,
that cannot be lnterpreted as a number). lt can, however, Interpret floating polnt
numbers (e.g., VAL("1E5") would return the number 100,000). Also, non-numeric
characters followlng a valid digit strlng will be ignored (e.g.,
VAL("100ABC") returns 100).

Note: VAL. will convert hex diglt strlngs..!!_ they begln wlth a "$". (Youcan
disallow this via SET 13,0).

Format:
Example:

STR(aexp)
A$=STR$(650)

STR$ returns the strlng form of aexp. The nbovc example would return the actual
number 650, but as the string "650".

Warnlng: may be only one STR$ or only one CHR$ in a logical comparlson. See
CHR$ for more Info.

Format: HEX$(aexp)
Examples: PRINT HEX$(5000)

PRINT "$";RIGHT$(HEX$(32) ,2)

The IlEX$ functlon will convert aexp to a four dlglt hexadeclmal number in strlng
format (the second example shows how to get a two dlg!t hex number).

Note: no dollar s!gn ($) !s placed in front of the hex dig!t string.

Page 72 BASIC XE Reference Manual

Using the Game Controllers

Uslng the Game Controllers

PADDLE, PTRIG
PEN, STICK

The functions d!scussed in th!s chapter allow you to access the paddle, Joystick,
and light pen easily and quickly.

Format:
Example:

PADDLE(aexp)
PRINT PADDLE(3)

f PADDLE

The PADDLE function returns the current value of the paddle in port aexp (0-3).
The value returned will be between 1 and 22~, inclusive, wlth the value increaslng
as the paddle knob is turned counterclockwise.

f PTRIG

Format: PTRIG(aexp)
Ex!ßlple: 100 IF PTRIG(l)=O THEN PRINT "Missile Flred!"

PTRIG returns a 0 if the trigger button of the paddle in port aexp (0-3) ls pressed.
Otherwlse, it returns a value of 1.

f PEN

Format: PEN(aexp)
Ex!ßlple: PRINT "light pen at ";PEN(O);",";PEN(l)

The PEN functlon simply reads the ATA RI light pen reg!sters and returns thelr
contents. If aexp is 0, the horizontal positlon is returned; lf aexp is 1, the vertlcal
position is returncd.

f STICK

Format: STICK(aexp)
Example: 100 PRINT STICK(!)

The STICK function returns the position value of the Joystick in port aexp (0-1) as
defincd in the follow!ng diagram: '

*
J. •

J.J. 7

13

BASIC XE Reference Manual Page 73

HSTICK , VSTICK
STRIG

Fonnat: HSTICK(aexp)

Using the Game Controllers

! HSTICK

The HSTICK !unctlon returns an easily usable code for horizontal movement of a
given Joystick. aexp is simply the number of the Joystickport (0-1), and the values
returned (and their meanings) are as !ollows:

-1 if the Joystick is pushed Jett
0 if the Joystick is centered

+1 if the Joystick is pushed right

Hereis an example of HSTICK in use:

18 Let Dir:Hstick(l)
28 If Dir=-1 Then Print "~+ Left"
38 If Dir=e Then Print "• stopped"
48 If Dir:1 Thtn Print "\+ Right"
58 &oto 18

! VSTICK

Fonnat: VSTICK(aexp)

The VSTICK !unction returns an easily usable code for vertical movement of a
given Joystick. aexp is simply the number o! the Joystick port (0-1), and the values
returned (and their meanings) are as !ollows:

-1 I! the Joystick is pushed down
0 lf the Joystick ls centered

+1 if the Joystick is pushed up

Jlere is an example of VSTICK in use:

18 Let Dir:UstiCk(l)
28 If Dir=-1 Thlm Print "~• Down"
38 If Dir:e Then Print "• 5topped"
48 If Dir=1 Then Print "\t Up"
se Goto 18

f STRIG

Format:
Example:

STRIG(aexp)
100 TF STRIG(l)=O THF.N PRTNT "Fire Torpedo"

The STRIG !unction works the same as the PTRIG function, except that 1t is used
with the Joysticks instead of the paddles. aexp specifies the Joystickport (0-1).

Page 74 BASIC XE Reference Manual

Graphics

Graphfes

Introducing Atarl Graphlcs
Mode 0

This chapter describes the BASIC XE statements that allow you to manipulate the
wide variety of screen graphics available on the Atari personal computers. Before
going into the graphics commands, a little background about the modes ava!lable
would be useful.

lntroduclng A tari Graphics

The table below summarizes the graphics modes available via BASIC XE. A quick
glance down the "Type" column will show you that the Atari supports two types of
graphics, text and grid. In text graphics each pixel represents an A TASC!l
character, wh!le in the grid modes a pixel represents a box of color. The size of a
pixel depends upon the graphics mode. In all graphics modes, position 0,0 is at the
upper left corner of the graphics area; moving right increases the column value,
and moving down increases the row value. The diagram at the end of this section
illustrates this coordinate system visually.

If you Iook at the column headlngs in the table, you will notice two "Rows"
columns. "Spl!t Rows" is the numbcr of rows when you are using the graphics mode
in conjunction wlth a text window, and "Full Rows" refers to the number of rows
when used without the text window.

Following the table are short descrlptions of these graphlcs modes.

Split Full
Mode Type Co! t.rnns Rows Rows Calors
-0- Text 40 NTA 24 ----r:-5

1 Text 20 20 24 5
2 Text 20 10 12 ~

3 Grld 40 20 24 4
4 Grld 80 40 48 2
5 Grid 80 40 48 4
6 Grid 160 80 96 2
7 Grirt 160 RO 96 4
8 Grid 320 160 192 1.5
9 Grirt 80 N/A 192 16

10 Grid 80 N/A 192 9
11 Grid 80 N/A 192 16
12 Text 40 20 24 4-5
13 Text 40 10 12 4-5
14 Grid 160 160 192 2
15 Grid 160 160 192 4

Mode 0: this mode is the 1 color, 2 luminance (brightness) default mode for Atari
Personal Computers. Jt contains a 24 Ilne by 40 character screen matrix. The
default margin settings of 2 and 39 al\ow 38 characters per Une. Margins may be

changed by POKEing LJIIARGN and RMARGN (82 and 83). ~ome systems have
different margin default settings. The color of the characters is determined by
the background color. Only the luminance of the characters can be different.

BASIC XE Reference Manual Page 75

Introducing A tarl Graphfes
Modes 1 thru R, 12 thru 15

Graphfes

Modes 1 and 2: these two 5-color modes are text modes. Characters in mode l are
twlce the wldth of those In mode 0, but are the same helght, whlle those in mode 2
are twlce the wldth and twlce the height of those in mode 0. In the spllt-screen
mode, PRINT will print data in the text wlndow, and PRINT #6 will print data in
the mode 1 or 2 graphlcs window.

The default colors depend on the type of character Input, as deflned in the

following table:

Character Type
o •. 9 & A •• z
Cntl Chrs & a •• z
Inverse 0 •• 9 & A •• Z
Inverse Cntl Chrs & a •• z
Playfield and Border

SETCOLOR
Register

0
1
2
3
4

Note: see SETCOLOR to change character colors.

Defaul t Color
Orange
Light Green
Dark Blue
Red
!Hack

Unless otherwise specifled, all characters are dlsplayed in uppercase non-inverse
form. To print lowercase letters and graphics characters, use a POKE $2F4,$E2.
Toreturn to upper case, use POKE $2F4,$EO.

Modes 3, 5, 7, and 15: these four 4 color grid modes are also split-screen displays
in their default state, but may be changed to full screen by adding 16 to the mode
number. Modes 3, 5, and 7 differ only in grld size. In mode 15 the plxels are
smallest, thereby giving the highest resolution.

Modes 4, 6, and 14: these three 2-color grid modes have an advantage over the
4-color grid modes in that they requlre less Jl AM space. Therefore, they may be
used when only two colors are needed and RA M is getting crowded.

Mode 8: this grld mode gives the hlghest resolution of all. As lt takes a Iot of RA M
to obtain thls kind of resolution, it can only accommodate a maxlmum of one color
and two different luminances, as mode 0.

Modes 12 and 13: these two text modes are very special. Inslead of using slngle
blts wlthin a characters definlt!on in the character set to determine how to
represent that character, they use bit pairs and Interpret them as colors, as
follows:

Hit SETCOLOR
Image Register
----o-o- --4--

01 0
10 1
11 2 I 3*

* If the character is in inverse video, reglster 3 ls used, otherwise register 2 ls
used. This enables you to have 5 color on the screen at one time, although you
may have only 4 colors in a slngle character.

Page 76 BASIC XE Reference Manual

Graphfes Introduclng Atarl Graphlcs
Modes 9, 10, and 11

Modes 9, 10, and 11: these are the GTIA modes, and ar<> somcwhat different from
all the other modes. Note that these modes do not a!low a text wlndow . Mode 9 is
a one color, 16 luminance mode. The main color is set by the background color,
and the \uminance va\ues are determlned by the Information in the screen memory
itself. Each plxel is four bits wlde, allowing for 16 different values (0-15). These
values are lnterpreted as the lumlnance of the base color for that plxel. Mode
11 ls simllar to mode 9 in that the color Information is in the screen memory itself,
but the Information for each plxel is interpreted as a color Inslead of a \umlnance.
Thus there are 16 colors, all of the same lumlnance. The luminance is set by the
lumlnance of the background color (default is 6). Mode 10 is somewhat of a
crossbreed of the other two GTIA modes and the normal modes in that it offers
lots of colors (l!ke the GTIA modes) and uses the color registers (like the normal
modes). However, since mode 10 allows 9 colors, 1t must use the player color
registers as weil as the other color registers. The following table shows how the
pixel values relate to the color register s and what BASIC XE command maybe
used to set each color reglster.

Pixel System Reg . BASIC XE

Value Register Addr Statement
-0- PCOLRO 704 PMCOLOR 0, aexp

1 PCOLRl 705 PMCOLOR 1, aexp

2 PCOLR2 706 PMCOLOR 2, aexp

3 PCOLR3 707 PMCOLOR ~, aexp

4 COLORO 708 SETCOLOR O, aexp
5 COLOR! 709 SETCOLOR 1,aexp

6 COLOR2 710 SETCOLOR 2,aexp

7 COLOR3 711 SETCOLOR 3,aexp

8 COLOR4 712 SETCOLOR 4,aexp

' Upper Le f"t (9. 9)

CiRAPHl:C!> 4

scre en

Tex-t Window

BASIC XE Reference Manual Page 77

GRAPHICS
SETCOLOR

Fonnat:
Example:

GRAPHJCS aexp
GRAPHICS 2

GRAPHICS (GR.)

Grnphics

The GRAPHICS statement ls used to select one of the graphics modes discussed
above. It autom atlcally opens the graphlcs area of the screen (S:) on channel # 6.
As a result of th!s, it is not necessary to specify a channel number when you want
to PRINT to the text wlndow, slnce it is still open on channel # 0. aexp is the
mode number as used in the table at the start of this chapter, and must be positive.

Modes 0, 9, 10, and 11 are full-screen display only, whlle modes l through 8 are
default to split-screen displays. To override the split-screen, add 16 to the mode
number (aexp). Adding 32 prevents GRAPHICS from elenring the screen memory.

Fonnat:
Example:

SETCOLOR (SE.)

SETCOLOR aexpl,aexp2,aexp~
100 SETCOLOR 0,1,4

SETCOLOR is used toset the hue and luminance of one of the color registers.
aexpl is the number of the color register (values 0-4 legal), aexp2 is the hue (see
followlng table), and aexp3 is the lumlnance (0-14, even numbers only, are valid).
the !arger aexp3 is, the brlghter the color. The follow!ng table shows the
aexp2 values and corresponding colors:

aexp2 Color aexp2 Color

0 nray 8 Blue
1 Gold 9 Light Blue

2 Orange 10 Turquoise

3 Red-Orange 11 Green-Blue

4 Pink 12 Green
5 Violet 13 Yellow-Green

6 Blue- Violet 14 Orange-Green
7 Rlue 15 Light Orange

Note: actual colors will vary with type and adjustment of TV or monitor used.

The following table shows the default values for the !ive SETCOLOR registers:

Reg Value Color Lun Color
-0- $28 -2- -8- Orange

1 $CA 12 10 Green
2 $g4 9 4 Dark Blue
:J $46 4 6 Pink-Red

4 $00 0 0 Black

SETCOLOR uses values 0 to 4 to specify the color register, whlle COLOR uses
dirterent values. Translation between the two can be confusing, so careful study
of the table on the following page is advised.

Page 78 BASIC XE Reference Manual

Graphfes

COLOR
GR Hodt value

8
and fll COTOR
!tx v~ ue

w1ndows PICKS
\~r

1,2
PLOT,
DRAW,
ttc

~· .r~ j
4,6,14 l

8 l
e, .15

9 ~1cks ixtl
Lum

Format:
F.xanpl es:

SETCOLOR/COLOR Table
COLOR

SETCOLOR/COLOR Table

SE. DHc r i p t i on
reg and CO!Ill1\en t s GR Hode

t ~haracttr L~minance F Color & har Hut
order Color

~
8 •• 9, Aotf 18
a • • z 1 CN A •• z
~t:~AßY!fJ,: .fj

1 Pjxel P1xe
jxe ~I Xf 1 PF 1 & Border

11

~ Pixtl
Pixel , PF 1 & BordH

l P~xf Lumin•ncy
~ olorb Plxt Hue or er C lor

4 PF & ~or~tr Color, Hur o a P1xels 12,13
NOT~~ R~?4 fum ORtd Wl h Xf Lum o

gr t fi n a Lum.

COLOR (C.)

COLOR aexp
ll 0 COLOR ASC("A")
COLOR 3

COLOR SE. Description
valut reg and C0111111ents

J! mt
PF and Border
Pjxel PIXf
Pjxe

8 P1x e
5,1 1 PI xe

~!! I ~ Pjxej
~I xe IXf

~~'~5 4 EF & ?or~yr Col~r,
U 0 a I Xt ,

lxtf NO~E: R~g4 kut ~td
Huf wi th IXtl Hut o

8 •• 5 get final Hut,

COTOR t Rit ~ajr BA 't II r I ~fc~: BI Pa1r 11
1

lf ehr
ehr ~s N~RHAL v d'?' to 3 i t a i r II , 1 ehr

I>W: ~~ INV~RSä vidto,
4 1t Pa1r 8

•tc

The COLORstatement Jets you ehoose which color will be used !or all suhsequent
PLOTs and D RA WTOs. The aexp value chooses the color and so must bc a positive
integer 0 •• 255. The color you get !s dependent upon the graphlcs mode you're ln 1

as described in the table above,

Note: in text modes 0, l, and 2, thc number can be !rom 0 through 255 (R blts) and
determines the character tobe displayed (and its color ln modes I & ?.).

Note: when BASIC XE ls flrst powered up COLOR 0 ls the default.

BASIC XE Reterence Manual Page 79

PLOT, DRA WTO
POSITION, LOCATE

Format:
Exanple:

PLCYf aexp1,aexp2
100 PLOT 5,5

Graphics

PLOT (PL.)

The PLOT command is used to plot a pixel in the graphlcs window. aexp1 speclfles
the column (X-coordinate) of the pixel, and aexp2 specifles the row
(Y-coordlnate). The color of the plotted point ls determlned by the last
COLOR statement executed. To change this color (and the color of the PLOTted
polnt) use SETCOLOR. Valid pixel coordinates are dependent on the graphlcs
mode being used. The range of pointsbegins at (O,O), and extends to (columns in
mode)-1 in the x direction, and (rows in mode)-1 in the y direction.

Format:
Example:

DRAWTO aexpl,aexp?.
100 DRAWTO 10,8

DRA WTO (DR.)

The DRA WTO statement draws a Jine from the current posit!on of the graphics
cursor (set by a prevlous PLOT, POSITION, or DRA WTO) to the locatlon
(aexpl,aexp2). aexp1 represents the X coordinate (column) and aexp2 represents
the Y-coordlnate (row). The color of the line is determined by the last
COLOR statement.

Format:
Example :

POSITION (POS.)

POSITION nexp1,aexp2
100 POSITION 0,0

POSITION places theinvisible graphics cursor at the location (aexp1,aexp2) on the
screen, and may be used in all graphics modes. In mode 0 only, POSITION affects
the text cursor, not thc graphics cursor. --

Note: the cursor does not actually move until the next command that uses the
cursor.

Format:
Example:

LOCATE (LOC.)

LOCATE aexp1,aexp2,avar
150 LOCATE 11,15,X

The LOCATE statement retrleves the value of the plxel at coordinates
(aexpl,aexp2), and stores it in avar.

Page 80 BASIC XE Reference Manual

Graphfes XIO Flll

XIO (X.) Flll

Format: XIO 18,#6,0,0,"8:"

Thls special appllcation of the XIO statement fllls an area on the screen between
previously PLOTted and DRAWTOed bounds wlth a non-zeroCOLOR value. The
zeroes in the XIO are used as dummies, but are required. The following steps illus­
tra te the !!11 process:

1. Pick the COLOR.
2. PLOT bottarn rlght corner.
:1. DRAWTO upper rlght corner.
4. DRA WTO upper Jert corner.
5. POSITION the cursor at the lower left corner.
6. POKE address 765 with the fill COLOR value.
7. Make the XIO Flll call.

Thls method ls used to !!11 each horizontal llne from top to bottarn o! the specifled
area. The !111 starts at the left and proceeds across the llne to the right until lt
reaches a p!xel whlch conteins non-zero data (will wraparound !f necessary). This
means that XIO Fill cannot be used to change an area which has been filll"d in with
a non-zero value, as the !lll will stop.

Warnlng: XIO Flll will go !nto an Infinite loop I! you attempt to put COLOR 0 on a
l!ne whlch has no non-zero plxels. Pressing <BREAK> or <SYSTEM II ES ET> can be
used to stop'the f!ll if this happens.

BASIC XE Reference Manual Page 81

Space For Your Notes Graphfes

Space For Your Notes

Page 82 BASIC XE Reference Manual

Player/Mlsslle Graphfes Introduclng P /M Graphlcs

Player/Misslle Graphfes

Thls chapter describes the ll.ASIC XE commands and functions used to access the
Atarl's Player-Missile Graphics. Player Missile Graphies (hereafter usually
referred to as slmply "PMG"} represent a portion of the Atarl hardware totally
lgnored by Atarl llAfiiC and Atarl OS. F.ven the sereen handler (the S: devlee}

knows nothing about PM G.

ll A SIC XE goes a long way toward remedylng these omlsslons by addlng seven PM G
statements and two PMG funetlons to the already eomprehenslve Atarl graphlcs.
In addition, four other statements and two functlons have slgnificant uses In PMG
and wlll be dlscussed In thls chapter.

Introduclng P/M Graphfes

For a complete technleal dlscusslon of PM G, and to learn of even more PM G
"trlcks" than are lneluded In BASIC XE, read the Atari doeument entitled "Atari
400/800 Hardware Manual" (Atari part number C016555, Jlev. l or later}.

We stated above that the S: device drlver knows nothing of PMG, andin n sense
thls ls proper: the hardware mechanlsms that Implement PM Gare, for vlrtually all
purposes, completely separate and distinct from the "playfield" graphics supported
by S:. For example, the slze, positlon, and color of players on the video screen are
completely .Independent of the GRAPHICS mode eurrently act!ve. In Atari fand
now BASIC XE} parlance, n "player" is simply a contlguous group of memory cells
dlsplayed as a v<'rtieal strlpe on the screen. Sounds dull? Consider: each player
(there are four} may be "painted" in any of the 128 colors avallable on the Atari
(see SETCOLOR for speciflc eolors}. Withln the vertleal strlpe, each hit set to l
paints the player's color in the corresponding pixel, while each bit set to 0 palnts
no color at all! That ls, any 0 blt in a player stripe has no effeet on the underlying
playfield display.

Why a vertical strlpe? P.efer to the flgure at the end of thls seetlon for a rough
idea of the player coneept. If we define a shape wlthln the bounds of this strlpe
(by changing some of the pleyer's blts to 1 's}, we may then move the strlpe
anywhere horizontally by n simple reglster POKE (or via the PMMOVE statement In
BASIC XE}. We may move the player vertically by dolng a simple clrcular shift on
the contlguous memory block representing the player (agoln, the PMMOVE stnte­
ment simplifles thls proeess}.

To slmplify:
A player is aet.ually seen os a strlpe on the screen 8 pixels wide by 128 (or
256, see below} pixels high. Wlthln thls stripe, you can POKE or
MOVE bytes to establlsh whot is essentlally a tall, skinny picture (though
much of the pleture may consist of 0 blts, in which case the baekground
"shows through"}. Uslng PMMOVE, you may then move this player to any
horizontal or vertical locatlon on the screen.

BASIC XE Reference Manual Page 83

P/M Graphfes Conventlons Plnyer/~4issile Graphfes

To eompl!cate:
For each of the four players there ls a corresponding "missile" available.
Missilesare exactly like players except that:

1) they are only 2 bits wide, and all four misslle share a slngle block

of memory.
2) each 2 bit sub-strlpe has an Independent horizontal posltion.
3) a missile always has the samecolor as its parent player.

Agaln, by using the BASIC XE statements (MISSILE and PMMOVE, for example),
you the programmer necd not be too aware of the mechanisms or PM G.

Upos dbl ~ sgl

Hpos 16 _,.·········~ Hpos

48_. 1+-288

·iiil· --Pla!,ler 5hape
•• J. bi 1:5 ShOW

PHCOLOR.

~"•••"'-•• m~---~
Pla!lfield Areaj J.27 .__ 255

P/M Graphfes Conventlons

1. PlayNs are numb<'red from 0 through 3. Each player has a corrcspondlng missile
whose number is 4 greater then that of its parent player, thus missiles are
numbered 4 through 7. In the BUMP function, the "playfields" are actually the
colors as defined by SETCOLOR, but are 8 grater than the SETCOLOR register
value, and so are numbercd 8 - 11.

2. There is some inconsistency in which way is "up". PLOT, DRAWTO, etc. are
aware that o,o is the top left of the screen and that vertical posit!on numbering
increases as you go down the screen. PMMOVE and VSTICK, however, do only
relativ<' screen poslt!oning, and def!ne "+"tobe up and "-"tobe down.

3. "pmnum" is an abbrevlat!on for Player-Misslle Nurober and must be a number
from 0 to 3 (!or players) or 4 to 7 {for misslles).

Page 84 BASIC XE Reference Manual

Player/ ~issile Graphfes

Format:
Ex1111pl e:

PMGRAPHICS aexp
PMG. 2

PMGRAPHICS

PMGRAPHICS (PMG.)

This statement is used to enable or disable the Player/Misslle Graphfes system.
aexp should evaluate to 0,1, or 2, as follows:

0 - Turn off PMG
1- Enable PMG, slngie line resolution
2 - Enable PMG, double line resolution

Single and Double line resolutlon (herearter refered to as "P~'G Modes") refer to
the helght whlch a byte in the player "stripe" occupies - either one or two
television scan llnes {GRAPHICS 7 has pixels 2 scan llnes high, llke PMG. 2, and
GRAPHICS 15 has plxels 1 scan l!ne high, l!ke PMG. 1). The seeondary lmpl!catlon
of slngle llne versus double line resolution ls that slngle Une resolutlon requlres
twice as much memory space as double l!ne - 256 bytes per player versus 128
bytes. The following diagram shows PMG memory usage in BASIC XE, but you
really need not be aware of the mechanlcs lf you use the PMA DR functlon:

Currtnt GRAPHICS Hodt

+$488
+$388
+$388

+$288
+$288
+$188

PM BASE

NOTE:

PHG. 2

Pl ayer3
Pl a.yer2

Plartr1
Plartr9

H3 I H2 I H1 T H9

HE~OP ($2ES)
to ht bottom P?ints o the
rnissi !PS.

BASIC XE Reference Manual

PHG.

Playtr3

Playtr2

PI ayer 1

PlaytrB

H1 I H2 I H3 I H4

+$888

+$788

+$689

+$508

+$499

+$398

PM BASE

Page 85

PMCOLOR
PMMOVE

Format:
Exampl e:

PMCOLOR (PMCO.)

PMCOLOR pmnum,aexpl,aexp2
PMCOLOR 2,12,8

Player/ Missile Graphics

PMCOLOR is ldent!cal to SETCOLOR ln usage except that a P/M color register
rather than a playfield graphics color reglster is set to hue aexpl and lumlnance
aexp2. Note: there ls no correspondence in PMG to the COLORstatement of
playfleld graphlcs- none is necessary slnce each player has its own color.

The example above would set player 2 and misslle 6 to a medium (iuminance R)

green (hue 12).

Note: PM G has ~ defaul t colors set on power-up or <SYSTEM RES ET>.

PMMOVE

Format: PMMOVE pmnum [,aexpl] [;aexp2]
Examples: PMMOVE 0,120;1

PMMOVE 1,RO
PMMOVE 4;-3

Once a player or misslle has been "defined" (via POKE, MOVE, GET, BGET, or
MISSILE), the truly unique features of PMG under RASIC XE may bc utilized. With
PMMOVE, you may position cach P/M shape anywhere on the screen lndependently
ln the blink of an eye. Becausc of the hardware implementation, though, there ls a
di!ference ln how horizontal nnd vertical posltions are speclfied.

aexp1 is taken to be the absolute posltion of the left edge of the "stripe" to be
displayed. Thls posltion ranges from 0 to 255, though the lowest and highest
posltlons in thls range are beyond the edges of the display screen. Note: changing
a player's wldth (see PMWIDTJI) will not change the posltion of lts left edge, hut
will expnnd the player to thc rlght.

aexp2 ls a relative vertical movement speclfier. Recall that a "stripe" of player is
128 or 256 bytes of memory. Vertlcal movement must be accompllshed by actual
movement of the bytes within the stripe- towards either higher memory (down the
screen) or lowcr mcmory (up the screen). RASlC XE a\lows you to speclfy a
vertical movement between -255 (down 255 plxels) and +255 (up 255 pixels),

lncluslve.

Note: the +/- conventlon on vert!col m ovement conforms to the valuc returned by
VSTIC K. For example, PMMOVE 2;VSTICK(2) will move player 2 up or down (or
not move him) in accordance wlth the joystlck posltlon.

Note: SET 7,aexp may he used to tel! PMMOVE whether a P/M should "wrap
around" (from bottom of screen to top of screen or vlce versa) or should dlsappear
as lt scrolls oft the screen.

Page 86 BASIC XE Reference Manual

Player/Misslle Graphlcs

Format:
Example:

MISSILE (MIS.)

MISSILE pmnum,aexpl,aexp2
MISSILE 4,48,~

MISSILE
PMWIDTH

The MISSILE Statement allows an easy way for a parent player to "shoot" a misslle.
pmmnn ls the missile number (4-7), aexpl specl!ies the absolute vertical posltion of
the beginnlng of the missile (0 ls the top of mlssile memory), and aexp2 specl!ies
the vertlcal height of the misslle. For example, MISSILE 4,64,3 would place a
mlsslle 3 PMG pixelshigh at plxel64 from the top.

Note: MISSILE does not slmply turn on the blts correspondlng to the position
specl!ied. Instead, the blts specified are exclusive-or' ed wlth the current mlssile
memory. Thls allows you to erase the previous missile pmnum when creating
another. For example:
11 "issil• 4,48,1
21 "jssil• 4,41,1
The flrst statement creates a mlssile 1 PMG plxel high at vertlcal posit!on 40. The
second statement erases the first mlssile whlle creating another 1 PM G p!xel
mlsslle at vertlcal posltion 41, thus giving the effect of a moving mlsslle.

Format:
Exampl e:

PMWIDTH pmnum , aexp
PMWIDTH 1,?

PMWIDTH (PMW.)

Just as PMGRAPJIICs allows you to select single or double plxel helght,
PMWIDTH allows you to speclfy the screen wldth of players and mlsslles.
However, where PMGRAPHICs selects the vert!cal resolutlon mode for all players
and mlsslles, PMWIDTH allows the width of each player or mlssile to be speclfled
separately • aexp is used for the wldth and should have a value of 1, 2, or 4 -
representlng the number of color clocks {equlvalent to a pixel wldth ln GR. 7) wide
each bit in a player definltion will be.

Note: PMG. 2 and PMWIDTH 1 comblne to allow each bit of a player definition to
be equlvolent ln size to a GR. 7 plxel, while PMG. 1 and PMWIDTH 1 comblne tobe
equlvalent to n GR. 15 plxel- not altogether accldental occurences.

Note: although players may be made wider with PMWIDTII, the resolution then
suffers. Wider hlgh-resolutlon "players" may be made by placing two or more
separate players slde-by-slde (as in the second example program at the end of thls
chapter).

BASIC XE Reference Manual Page 87

PMCLR, BUMP
HITCLR

Fonnat:
Example:

PMCLR pnnun
PMCLR 4

Player/Misslle Graphics

PMCLR (PMC.)

PMCLR "clears" a player or misslle area to all zero bytes, thus "erasing" the P/lr'.
PMCLR ls aware of what PMG mode is actlve and clears only the appropriate
amount of memory. Cautlon: pmnum values 4 through 7 an produce the same
action- an misslies are cleared, not just the one specified. To cleRr a single
misslle, try SET 7,0 : PMMOVE N;255.

f BUMP

Fonnat: BtMP(pnnun,aexp)
Example: IF BUMP(4,1) THF.N B=BUMP(0,8)

BUMP accesses the P/M conlsion registers of the Atari and returns a l (collision
occurred) or 0 (no colllslon occurred) as appropriate for the pair of objects
speci!ied. Note that the second parameter (aexp) may be elther a player number
or playfield number (see the section on PM G conventions, above). Valid BUMPs:

Player to Player:
Player to Playfield:
Missile to Player:
Missile to Playfield:

BUMP(0-3,0-3)
ßU'viP(0-3, R-11)
Rl/MP(4-7,0-:l)
ßU'viP(4-7 ,R-11)

Note: BUMP(p,p}, where the p's are 0 through 3 and identical, always returns 0
(i .e. a player can't collide with itself}.

Note: we advise that you reset the collision registers if you have not checked them
in a long time or Rfler you are through checking them at any given point in a
program. You can do thls uslng HITCLR.

HITCLR

Fonnat: HITCLR
Example: l 00 HJTCLR

HITCLR resets the collision registers used by BUMP, thus avoidlng spurious
collision readings. We suggest that you use HITCLR just before you do something
that mlght create a colllsion (move or create a P/M, change the playfield, etc.}.
Alternatlvely, you could use HITCLR immedlately after you check for colllslons
(using BUMP}.

Page 88 BASIC XE Reference Manual

Player/Misslle Graphics PMADR, Uslng POKE and PEEK wlth P/M's
Using MOVE, BGET and BPUT wlth P/M's

Fonnat:
Example:

PMADR (pnnun}
PO=PMADR(O}

fPMADR

The PMADR function returns the memory address of any player or mlsslle. lt is
useful when you wish to MOVE, POKE, BGET, etc., data to (or from} a player areR.
Note: PMADR(m}- where m ls a misslle numbcr (4 through 7} - returns the same
address for all misslles.

Uslng POKE and PEEK wlth P/M's

One of the most common wRys to put player data lnto a player stripe may weil be
to use POKE. In conjunctlon with PMADR, it is eRsy to write understandable
player Ionding routines, for example:
18 for Lot=48 To 52
28 R•~d AIPok• PM~dr(8J+Lot,A
38 ll•xt Lot
48 Da~a $,,,$8B,$ff,$BB,$''

PEEK might be used to find out what data is in a particular player location.

Uslng MOVE wlth P/M's .

MOVE ls an efficlent way to Ioad a IRrge player and/or move a ployer vertically by
a I arge amount. This nblllty to MOVE data either upwards or downwards allows for
interesting possibillties. Also, it would be easy to have severRI player shapes
contained in stripes and then MOVEd into place at will. For exomple,
KO~· Adr(A$) 1 PM~dr(2),128
could move an entire double Uneresolution player from A$ to player 2, and
Pok• P~drl1),$ff:Kov• PM~drl11,PMadrl1J+1,127
would f!ll player l 's stripe wlth all "on" blts, c reating a solid strlpe on thc screen.

Using BGET and BPUT wlth P/M's

As wlth MOVE, BßET may bc used to fill a player memory quickly with a pl11yer
shape. The dlfference is that BGET may obtaln a player dlrectly from the disk!
For example,
Bg•1 Ul,PMadrliJ,$88
would get a PMG.2 mode player from the dlsk flle OPENed on channel 3, and
Bg•1 U4,PMadr(4),$588
would flll all the mlssiles and players in PMG.l mode- wlth a slngle Statement!

BPUT would probably be most commonly used durlng program development to save
a player shape (or shapes} to a file for later retrleval by BGET.

BASIC XE Reference Manual Page 89

Using USR with P/M's Player/Mlssile Graphlcs

Two P/M Graphies Programs

Using USR wlth P/M's

Beeause of USR 's abillty to pass parameters to an assembly language routine, PM G
funetions (wrltten in assembly language) can be lncorporated easily into to

BASIC XE. For example,
A:UsrCPMblink,PMadrt2J,$88J
m!ght call an assembly language program (at address PMB LINK) toblink plAyer 2,
whose size is 128 bytes.

188
118
128
138
141
158
161
171
188
Ul
281
218
221
238
248
258
268
271
288
Hl
388
318
328
J31
3~8
358
368
378
388
ne
~~~ 
'18 
428 
438 
448 
~58 
~68 
478 
~88 

Two P /Pli Graphfes Programs 

Setcolor 2,8,8:ReM "Note: still in liR.8" 
PMgraphiCS 2lRfM "dOUble linf res• 
Let Midth:8:Y:~8:ReM "initializing" 
PMClr 8:PMC1r ~:ReM "clear pla!ler 8 and Millilt 8" 
PMColor 8,13,8tReM "a nice green pla!ler" 
P=PMadrtiJ:Re M "gets address of pla11er 8" 
for I:P+Y To P+V+~lRI!M "a S eli!Mtnt pla!ltr" 

Rl!ad VllRI!M "SI!I! btlOW for DATA scheMe" 
Poke I,VllRI!M "actuall!l Sl!tting UP" 

MI!Xt I 
for X:;:t To 128:ReM "pla!ler MOYeMI!nt loop" 

PMMOYI! 8,XlRI!M "MOYI!S pla!ler horizontlll!l" 
Sound 8,X+X,8,1S:ReM "Just Making soMe noise" 

Mext X 
Missile I,V,1:ReM "a one-high Missile at top of pla!ler" 
Missile 8,V+2,1:ReM "another, in Middll! of p1a11er" 
Missile 8,V+~,1:ReM "and at bottoM of pla!ll!r" 
for X=127 To 2SS:ReM "Missile MOYeMI!nt loop" 

PMMOYI! 4,X:ReM "MOYI!S MiSSile 8" 
Sound 8 ,2SS-K,18,1S 
If CX&7J:7:ReM "tYI!r!l eighth horiz. position" 

Missile 8,V,S:RI!M "!IOU have to see this to bl!lieve it" 
Endif :ReM "!IOU could have had an ELSE, of course" 

Mext II 
P-ove 8,8:RtM "so width doesn•t Change on screen" 
Width:Width+2:RI!M "WI!'ll Make thl! p1a11er Wider" 
If Width)~ Then Width:B 
PMWidth 8,Width:ReM "the ntW Width" 
PMClr ~lRI!M "no MOrl MiSSile" 
lioto 288:ReM "do it all again" 
ReM 
ReM "**** the Plil!ltr•s shape DATA ****" 
RI!M " 8~218421 " 
RI!M "$'' • . ,.1 n RI!M "$BD . .1 " 
RI!M "$FF " 

ReM "$811 · - · " ReM "$'' 1 . .• . . 1 " 
Data $,,,$8D,$FF,$BD,$'' 

Notlee how the data for the player shnpe ls bu!lt up- draw a picture on an R-wlde 
by n-high plece of grld paper, filllng in whole cells. Call fllled in cells 'l', and 
empty cells 'O'. Convert the 1's and O's to hex notatlon and, viola! -- you have 
your player. 

This program will run notlcably fester lf you use multiple statements per line. Jt 
was written as above for clarlty, only. 

Page 90 BASIC XE Referenee Manual 

Player/Misslle Graphics Two P/M Graphfes Programs 

A more compllcated program, sparsely commented. 

188 
118 
128 
131 
148 
158 
168 
178 
188 
Ul 
288 
218 
228 
238 
248 
258 
268 
278 
288 
2,. 
388 
U8 
328 
J38 
348 
358 
368 
378 
3118 
n8 
488 
418 
428 
438 
4~8 
458 
461 
478 
488 4,. 
588 
518 
528 
538 
548 
551 
568 
578 

liraphics 8:ReM "not necessar11, Just prettier" 
PM9raphics 2:PMClr e:PMclr 1 
Setcolor 2,8,8:PMcolor 8,12,B:PMColor 1,12,8 
P8:PMadrlll lP1=PMadr(U lRI!M "addr's Of 2 Pla!ltrs" 
V8=68:Vold=VB:RtM "starting vertical pos'n" 
H8=11B:ReM "starting horizontal pos'n" 
for Loc:V8-8 To V8+7:ReM "a 16-high double pla!ler" 

RUd II 
Poke PB+Loc,IntCIII$8188] 
Pokt P1+Loc,ll&$ff 

Mext Loc 
ReM "aniMatt it" 
Let Radius=48:Deg 
Mhile 1:ReM "infinite loop l !" 

C:RandOM(15JlPMcolor I,C,BlPMCOlor 1,C,8 
for Angle=& To 355 Step S:ReM "in DEiirees, reMtMber" 

Vnew:V8+RadiUS*5inCAnglel 
Vchange=Vnew-Vold:RtM "change in vpos" 
Hnew=HI+RadiUS*CosCAnglel 
PMMove I,Hnew;Vchange:PMMove 1,Hnew+8;Vchange 
ReM "Move two pla!ltrs together" 
Vold=Vnew 
Sound 8,Hnew,18,12:5ound 1,vnew,11,12 

llext Angle 
ReM "jUSt did a fUll Circltl" 

EndWhi u 
ReM "we better MEVER get here!" 
ReM "**** the fanC!I pla!ler DATA ****" 
ReM" 8~218421184218~21 
ReM "$83C8 , , , • , ·• 1• •.,,,, 
ReM "$BCJ8 , • • •• • • • •• •••• 
ReM "$1888 •• • 1 ... "I' .. . 1 ... 
ReM "$2884 , ,1 , , , , , , , , , .1 . , 
ReM "$4882 ·• •••••• ••• • • •• · 
RI!M "$4E72 .••• • • 1 •• • • 1 . 
RttM "$BA 51 • ••••• I ·I·· . I ...• 
ReM "$8E71 1 .. .• ..• . , .1 
ReM "$8881 1 . ••••••I•••••••• 
RI!M "$'88, 1 . .• .. , , , , , .• . . 1 
ReM "$4812 .• • • 1 .. . ,. , .• . .• . 
ReM "$47E2 , • , •• - ·,. , 
ReM "$288~ • . 1.,, .. .....• . , 
ReM "$1988 •• • 1 . ... I ... . 1 ... 
ReM "$8C:JI ••• ·• . ·1· .• .... 
ReM "$83C8 ••••••••• , , , •. 
RI!M 
Data S83C8,$8C3B,$1888,$2884,$4882,$4E72,$BAS1,S8E71 
Data $8881,$,88,,$4812,$~7E2,$2884,$1888,$8C38,$BJC8 

The factor slowing this progrAm the most is the SIN and COS bPing calculAted in 
the movement loop. Tf these values were precalculated ond placed in an array thls 
program would move! 

BASIC XE Referenee Manual Page 91 



Space For Your Notes Playerl Missile Graphics 

Space For Your Notes 

Page 92 BASIC XE Reference Manual 

Sound SOUND 

Sound 

Thls chapter is devoted to the SOUND statement, and shows how to access the 
many forms of sound avallable on Atari Fome Computers. 

SOUND (SO.) 

Format: SOUND aexp1,aexp2,aexp3,aexp4 

The SOUND statement causes the speclfied note to begln playing as soon as the 
Statement is executed. The note wlll continue playing until the program 
encounters another SOUND wlth the same aexp1 or an END. aexp1 ls the volce on 
whlch you want the sound produced, and ranges between 0 and 3, lncluslve. 
aexp2 ls the frequency (pitch) of the sound, and ranges between 0 and 255, 
inclusive. The lower aexp2 is, the hlgher the frequency. aexp3 is a measure of the 
sound's distortion (fuzziness). Valid numbers are 0 -14, even numbers only. A 
value of 10 creates pure tones like a nute, and a 12 produces sounds simllar to a 
guitar. aexp4 is the volume of the sound. Valid values are 1 - 15; the lower the 
number, the lower the volume. 

Here ls a table for various musical notes using a distortion of .10: 

Note: Low Notes High Notes 
c 14 29 60 121 * 243 
B 15 3.1 64 128 255 

Bb I All 16 33 61! tn 
A 17 ~5 72 144 

Ab I Gil 1R 37 76 15:1 
G 19 40 81 162 

c;b I pll 21 42 85 173 
F 22 45 91 182 
E 2:t 47 96 193 

Eb I nll 24 50 102 204 
D 26 53 108 217 

ob 1 eil 27 57 114 2:t0 

Middle C ls marked by a "*". Thls program plays a C scale uslng the above values: 

18 Read A:If A)255 Then End 
21 Sound I,A,11,18:Print A 
JB for Mait=1 To 488:Mext Mait 
48 Goto 11 
58 Data 1 4 ,15,16,17,18,1,,21,22,2J,24,26,27,2,,J1,JJ 
68 Data JS,J7,41,42,45,47,SI,SJ,57,68,64,68,72,76,81 
71 Data 85,,1,,6,182 , 188,114,121,128,136,144,153,162 
88 Data 173,182,1,3,214,217,238,243,255,256 

Notlee that the DA TA statement in Une 80 ends with a 256, which is outside of the 
designated range. The 256 is used as an end-o!-data marker. 

BASIC XE Reference Manual Page 93 



Space For Your Notes Sound 

Space For Your Notes 

Page 94 BASIC XE Re!erence Manual 

Sortlng A rrays lntroducing the Array Sortlng Statements 

Introducing the Array Sortlng Statements 

Rather than go directly into the descrlptions of SORTUP and SORTDOWN, we 
thought lt best to begln with some comments nnd hlnts nbout thelr use, becnuse 
they hnve many !oibles in common. 

First and foremost, note that SORTUP and SORTDOWN can only be used to sort 
arrays. In thelr slmplest form they are extremely easy to "üSe."" For example, 
conslder the following short program: 

11 DiM Arra~$(5,21J 
21 For I=1 To s:Input "5tring) ",Arra~$li;J:Next I 
Jl 5ortup Arra~$ 
41 for I=1 To s:Print Arra9$li;J:Next I 
51 Run 

Thls program slmply sorts 5 INPUTted strlngs and then shows the sorted order. At 
thls time, we would llke to suggest that you type in thls program and try it out 
(Keep lt around - we will use !t more Inter). Glve several different sets of words 
as answers. Note how neatly it sorts the words !nto ascending order. 

Or does lt? Try entering some words in uppercase and some ln lowercase. What 
happens? noes lt surprlse you to find that "ZOO" comes before "apple"? Actually, 
the renson for thls behavior ls readily understood once you reallze that 
SORTUP works on characters using AT ASCII orderlng (see Appendix A for a Iist of 
ATASCII codes). 

Even lf we restriet ourselves to the "prlntable" chnrncters ln the ATASCIJ set 
(alphanumerlc and standard symbols), we find no real help. Digits come before 
uppercase letters which come before lowercnse letters, but symbols are Intermixed 
ln no real useful fashlon. Because the effects of thls hodgepodge orderlng mny not 
be deslrable in a sorted Iist, you may wish to Iimit n sort to a substring of the 
strlng elements in a snvar. For example, if you have a savar where each strlng 
within it contains both a person's name and their phone number, you may wish to 
perform a sort based solely on names. Further, to ensure that the sorted order is 
consistent, you may wish to ensure that the names are stored in uppercase only. 

Fortunately, SORTUP and SORTDOWN offer you the abllity to sort based on sub­
strings. And, whlle BASIC XE does not provlde a built-in method of obtnlning 
uppercase, non-Inverse strlngs, it lsn't very hnrd to bu!ld a subroutlne thnt will do 
the real work for you. For exnmple, the following PROCEDURE converts nll 
chnracters in its svar pnrameter String$ (not n savar) to non-Inverse, nnd converts 
lowercase letters to uppercase: --

811 Procedure "To Upper" Using !5tring$ 
811 Local I,Tt"P 
821 for 1=1 To Lenr5tring$J 
8Jt T•MP=Asc(5tring$CIJJ&S7f 
848 If lt"P)$61 And lf"P($7b Then TeMP:TeMP&SSf 
851 51ring$li,IJ=ChrSrTtMP) 
861 Next I 
871 fxit 

BASIC XE Re!erence Manual Page 95 



Introducfng the Array Sortfng Statements Sorting Arrays 

For now, clon't enter thls subroutine. Jnstead, let's lnvestigate the conc<'pt of 
substrlngs, as mentioned above. Just change line 30 in that little program we 
typed in earlier so that a LIST gives you the following: 

18 DiM Arra~$CS,28J 
28 For I=t To 5:Input "String) ",Arra~$CI;J:Next I 
38 sortup Arra~$ Using ;3,5 
41 For I=1 To 5:Print Arra~$CI;J:Mext I 
51 Run 

Once agaln, enter some strings in response to INPUT's prompt. This time, though, 
pay speclal attention to the thlrd through f!fth characters of each string. Notlee 
anythlng funny about the sorted order? That's rlght, it ls based solely on the 
characters in those positions. Jf you have worked wlth ll A SIC XE string arrays at 
all yet, the notation in line 30 may be both familiar and confuslng. Perhaps 
changing lfne 40 to the following will clarify the meaning of llne 30: 
41 FOr I:1 TO 5:Print Array$CI;3,5l,Arra~$li;J:Mext I 

Thls llttle example should serve to remind you that you may reference characters 
withln an element of astring array just as easily as you may reference them in an 
ordlnary string. The "magic" character is the semi-colon. Jt separates the array 
element number from the desired character positions. ( And, as the second usage of 
Array$ in that same line shows, the seml-colon is always necessary when referrlng 
to an element of a string array.) ---

Now, since the SORTUP of llne 30 refers to the entlre savar Array$, th..re is no 
need for the followlng parentheses (and, indeed, they are not allowed). Tnstead, 
the keyword USING teils BASIC XE that we will be working wlth only part of the 
array and/or its elements. In particular, the seml-colon followlng USING serves as 
a reminder that the aexps followlng lt should be used to define n substring of the 
strlng elementsinn savar. 

There ls one last capahillty of the sorting statements whlch. we will discuss before 
moving on to other helpful hints. The program we have been working with seems 
all f!ne and good if we want to enter exactly five elements into the array. 
Suppose, though, that we did not know how many elements we'cl be working with. 
Fear not, J1ASIC XE shall provide. Time foranother example: 
18 DiM String$(21,28) 
28 For 1=1 To 28:Input "String) ",String$CI;J 
25 If LenCString$CI;lJ Then Mext I 
31 Sortup String$ Using 1 To I-1 
48 For J:t To I-t:Print string$CJ;l:Mext J 
51 Run 

The flrst change you will notice ls that the FOR Ioop on line 20 now INPUTs 20 
strings. The second change is the Insertion of line 25. Instead of bllndly 
contlnulng to ask for Input untll 20 items have been entered, the program only goes 
back for another if the length of the current strlng ls non-zero. That means th.at 
you may stop entering ltems at any time by h!tting the RETURN key alone in 
response to any INPUT prompt. 

Page 96 BASIC XE Re!erence Manual 

Sortlng Arrays !ntroducing th.e Array Sortlng Statements 

And Iook at the SORTUP in llne 30. Can you guess what the Using 1 To I-lls for? 
That's rlght, only the flrst J-1 elements of the array will be sorted! And lf, for 
some reason, you wanted to never sort th.e flrst element of th.e array, you could 
have written 
31 sortup string$ Using 2 ro I-1 

(Wh.y would you ever do that? Well, maybe you keep special Information about a 
savar in its flrst element, thus havlng the actual data startat the second element.) 

Well, so much for sorting string arrays. We haven't yet mentioned how to sort 
arlthmetic arrays, but it's just as easy. You use the same statements, 
SORTUP and SORTDOWN, but you use th.e name of an arithmetic array as the first 
argument, llke this: 
sortup An 

Notlee that instead of following the array name by a dollar slgn (as with. strlng 
arrays), you !ollow lt by a pair of parentheses (to lndicote that the array ls 
arith.met!c). Slnce no element range was speclfled in our example, thls statement 
will sort ~ elements o! the array A(). 

If you don't want to sort the wh.ole array, you can specify a range of elements to 
sort, just like we did when sorting string arr'ays. The following wll1 sort elements 
3 through 5, incluslve, of the array TempO in de scendlng order: 
sortdown TeMPll Using 3 To 5 

There are two restrictlons to bear in mincl wh.en sorting arithmetlc arrays. First, 
you can't spec!fy substring Indices (because numbers don't have substrlngs). 
Second, and more important, you can only sort arlthmetlc arrays, not matrices! 
Thus, if you have the followlng DIMension llne in your program-,--

11 DiM Al48l,Bl18,28l,Cl51) 

you could use SORTUP and SORTDOWN to sort AO and CO, but not ll(), slnce lt 
has two dimenslons and so is a matrix. 

Finally, there are a couple of rules to keep in mind: 
1) Th.e endlng element numher tobe sorted must be greater than or equal to the 

beglnnlng element number (l.e, you can't sort elements 3 TO 1), 
2) Both element numbers must be withln the DIMensioned bounds of the array, and 
:l) the prevlous two rules also apply to the numbers you use to speclfy a substrlng 

range wh.en sorting savars. 

BASIC XE Reference Manual Page 97 



SORTUP 
SORTDOWN 

SORTUP I SORTDOWN 

Sorting Arrays 

Format: 

\ 

SORTUP larray [USING [aexpl TO aexp2][;aexp3,aexp4]l 
SORTIJOWN 

Ex~mples: SORTUP Aarray 
SORTDOWN Aarray USING Min TO Max 
SORTUP Sarray$ USING ;1,4 
SORTDOWN Sarray$ USING 5 TO 10 

Note: the ;aexp3,aexp4 option may be used only when sorting savars. You can 
not use it when sorting arithmetic arrays! 

SORTUP sorts the elements of an array in ascending AT ASCII or numerlc order 
(dependent upon the array's type), while SORTDOWN sorts in descending order. If 
no element range aexp1 TO aexp2 is specified (1st and 3rd examples), all elements 
are sorted, 

If an element range is specified, both beglnning and ending elements must be 
given, separated by the keyword TO. -- --

Note: if no ~ubstring ;aexp3,aexp4 is specified (4th example), the sorting is donE" 
using the string elements in their entirety. Ir a substring is specified, both the 
beginning and endlng of the substring must be specified, separated by a comma: If 
an element range is not being used but a substring is, thP. keyword 
USING must precede the substring-marking semicolon (:lrd example). 

Note: lf a string element is shorter than the specifled ending position of the 
substring being used, the substring !or that element will be shortened accordingly. 
Tf two compared strings nre equal, hut one is Ionger thnn the other, the Ionger one 
ls greater than the shorter one (e.g., "abc"<"abcd"). This is intuitively correct as 
weil as being consistent wlth the other string comparisons available in BASIC XE. 

Page 98 BASIC XE Re!erence Manual 

Using Fixed Data in Your Program 

Using Fixed Data in Your Program 

DATA 
READ 

The three Statements in this chapter allow you to Insert and utilize !ixed data in 
your BASIC XE programs. These Statementsare DATA, READ, and RESTORE. 

Format: 
Examples: 

DATA (D.) 

DATA adata [ ,adata] 
100 DATA 12,13,14,15 1 16 
110 DATA Mike,Becky,Tommy,Kathleen 
120 DATA "adata wi th a , in it" 

DATA ls used in conjunction wlth READ to access elements in a data Iist. A 
DATAstatementmayheanywhereinaprogram,but it must contain nt least as 
many adata ltems as used in the READ statement that accesses them; othcrwise an 
"No DATA to READ" error (#6) is displayed on the screen. When more than one 
DATA statement ls used, the adata ltems form a single llst. For example, the flrst 
two examples could just as weil be combined into 

100 DATA 12,13,14,15,16,Mike,Recky,Tommy,Kathleen 

Note: all characters except comma (,) and <RETURN> are legal in adata. 
However, it you put adata in double quotes ("adata"), then all characters except 
double quote (") and <RETURN> are allowed (as in the last example). 

READ 

Format: READ var1 [ ,var2 ••• 1 
Examples: 200 READ A,R,C,D,F. 

210 RF.AD A$,B$,C$,D$,E$ 

The READ Statement ls used to retrieve adata itcms in a DATA Iist, and store 
them in program variables for use. When a READ is executed, the flrst avallable 
adata ltem ls stored in var1, the second is stored in var2, and so on. The 
adata ltem and the variable into whlch it is tobe stored must be of the same data 
type (arlthmetlc or strlng). 

The !ollowing program sums a group of numbers uslng R EA D and DA TA: 

18 for 11:1 To s 
28 R~ld DI~M+D 
31 llnt II 
.C8 Print "5UM is "lM 
51 End 
68 Ditl JI,15,186,87,.C7 

BASIC XE Re!erence Manual Page 99 



RESTORE 

Format: 
Examples: 

RESTORE rtinenol 
100 RESTORF 
RESTORE X+2 

Using Fixed Data in Your Program 

RESTORE (RES.) 

ßASIC XE uses an internal 'pointer' to keep track of the next adata item in the 
DATA list to be READ. When used without the optionallineno, RESTORE resets 
thls pointer to the first adata item in the !irst DATA statement in the program. 
When lineno is specified, RESTOREsets the pointer to the first adata item in the 
DATA statement on the program Une lineno. This permits repetitive use of the 
same adata items, as shown in the followlng example: 

11 For M=2 To 1 strp -1 
28 Rl!storl! III+M 
38 Rl!ad A,II:M:A+B 
48 Print "Totu is "JH 
58 MI!X1 M 
61 l!:nd 
81 DaU 31,15 
112 Data 11,11 

Page 100 BASIC XE Re!erence Manual 

Accessing Memory Directly 

Accesslng Memory Dlrectly 

PEEK 
POKE 

The commands in this chapter allow you to access memory directly, and are very 
useful when you want to inspect and/or modify Atari variables and routines. Each 
of the commands In thls chapter allows you to specify an optlonal bank number. 
Fora discussion of the meaning of this numher, sce EXTEND. 

The Statements dlscussed here are POKE, DPOKE, and MOVE, and the functions 
are PEEK and DPEEK. 

f PEEK 

Format: PEF.K(aexp [ ,bank]) 
Examples: 1000 IF PEEK($4000,4)=255 THEN PRINT "Maln Memory $4000=255" 

100 PRINT "Left Margin ls "; PF.EK(A2) 

PEEK Returns the value stored at memory locatlon aexp. The address speclfled 
must evaluate to an integer between 0 and 65535. The value returned will be a 
declmal integer between 0 and 255, incluslve. This !unction allows you to examlne 
elther RAM or ROM locatlons. Jn the first example above, PEEK is used to 
determine whether location $4000 in maln memory contalns the value 255. In the 
second example, PEEK is used to find thc current left margln. 

POKE 

Format: POKE aexp1,aexp2 [,bank] 
Examples: POKE 82,10 

100 POKE 82,20 

The POKEstatement puts the value aexp2 into memory location aexp1. aexp1 may 
range ln value between 0 and 65535, lnclusive, and aexp2 has range 0 •• ?55. The 
first examplc changes the screP.n's left margln from lts default value of 2 to a new 
value of 10. Torestore the margin to lts normal default position, press <S YSTF.M 
RESET>. 

Note: POKE cannot be used to alter JlOM locations. 

While you are becomlng famlllar wlth this Statement we advlse that you flrst 
PEEK at the memory location and write down the value before you POKE ln A new 
value. Then, if the POKE doesn't work as anticlpated, you can POKE the original 
value back in. 

BASIC XE Reference Manual Page 101 



DPEEK , DPOKE 
MOVE 

f DPEEK 

Accessing Memory Directly 

Format: DPEEK(aexp [ ,bank]) 
Example: PRINT "Variable Name Table is at ";DPEEK($82) 

DPEEK is very similar to the PEEK function, except that it allows you to find out 
the two-byte value at the memory Iocatlons aexp and aexp+l. This is especlally 
useful when Iooking at Iocations which contain address Information, as in the 
above example. Jf you did this example using PEEKs, it would Iook Iike 

Prin1 "Uariablt! llaMl' Tablt> is a1 "JPl't!kU38)+Pt>t!kU3U*128 

It's obvious that using DPEEK is much easler. 

Format: 
Example: 

DPOKE 

DPOKE aexp1,aexp2 [,bank] 
DPOKE 88,$8000 

DPOKE ls slmilar to POKE, except that it allows you to put a two-byte value lnto 
memory locations aexpl and aexpl +1. aexp2 ls the value, and must be an Integer 
value 0 •• 65535, incluslve. In the above example, the address of the upper left-hand 
corner of the screen (thls address is stored at locatlons 88 and 89) is changed to 
$8000. To do this using POKEs you would need to do an amazlng amount of math 
to get the rlght number into each of the two bytes. 

Format: 
Example: 

MOVE 

MOVE aexp1 , aexp2, aexp3 [ ,bank] 
MOVE $0000,$8000,$400 

Cautlon: be care!ul wlth this command! MOVE will tnove any number of bytes from 
any address to any nddress at assembly language speed. No address checks nre 
made! aexpl is the starting address oftheblock you want to move, aexp2 is the 
starting address of the place where you want the block moved to, and aexp3 is the 
length of the block. The slgn of aexp3 (the length) determlnes the order in whlch 
the bytes nre moved, as follows: 

Positive 
( frcm) 
( frcm+l) 

- > ( to) 
-> (to+l) 

Negative 
(frcm+len-1) -> (to+len-1) 
(frcm+len-2) -> (to+len-2) 

(frcm+len-1) -> (to+Ien-l) (frcm) -> ( to) 

When the Iength is positive, the destination block can overwrite lower part of the 
source block. When the length is negative, the destination block can overwrite the 
upper part of the source block. 

Note: MOVE cannot automatically move memory between banks. To do so you must 
first MOVE the block to main memory and then MOVE it to the other bank. 

Page 102 BASIC XE Reference Manual 

Arithmetic Functions 

Arithmetlc Functlons 

ABS, !NT 
SGN, SQR 

The arithmetic functions supported by BASIC XE are ABS, !NT, SGN, SQR, EXP, 
LOG, CLOG, RND, and RANDOM. At the end of the chapter you will find a 
program that shows these functlons in use. 

Format: 
Example: 

ABS(aexp) 
A=ABS(-160) 

f ABS 

ABS returns the absolute (positive) value of aexp. 

Format: 
Examples: 

INT(aexp) 
I=INT(-3.445) 
X=INT(14. 753) 

fiNT 

INT returns the greatest integer less than or equal to aexp. This is true whether 
the expression evaluates to a positive or negative number. Thus, in the first 
example, -4 is asslgned to I, and 14 is assigned to X in the second example. Note: 
this t:unctlon should not be confused with the INT functlon on calculntors which 
simply trun~ates nll decimal places. Forthose of you with a mathematical back­
ground, you may think of INT as the "Floor" function. 

f SGN 

Format: SGN( aexp) 
ExRmple: 100 X=SGN(-100) 

SGN returns ll -1 lf aexp evaluates to a negative numher, a 0 if aexp evaluntes to 
0, or a 1 ls aexp evaluates to a positive number. 

Format: SQR(aexp) 
Example: X=SQR(lOO) 

SQR returns the square root of aexp. Note: aext> must be positive. 

BASIC XE Reference Manual PRge 103 



EXP , LOG , CLOG 
RND, RANDOM 

Format: EXP(aexp) 
Exanple: PR IN!' EXP (3) 

Arlthmetlc Functlons 

f EXP 

The EXP functlon returns the value of e (approximately 2.718281 79), raised to the 
power aexp (i.e., eaeXP). 

Format: 
Exanple: 

LOG(aexp) 
A=LOG(20) 

fLOG 

The LOG functlon returns the natural logarithm (In) of aexp. LOG(O) gives an 
error, and LOG(l) ls 0. 

Note: LOG and EXP are complementary functions (i.e., both LOG(EXP(n)) and 
EXP(LOG(n)) equal n, within the bounds of the accuracy of BASIC XE's math 

routlnes). 

Format: 
Exanple: 

CLOG(aexp) 
A=CLOG(lO) 

f CLOG 

The CLOG functlon returns the base lO logarithm (log10l of aexp. CLOG(O) gives 
an error, and CLOG(l) is 0, 

f RND 

Format: RND(aexp) 
Example: 10 X=RND(O) 

RND returns a hardware-generated random number greater than or equal to 0, but 
less than 1. aexp is a dummy and has no effect on the number returned, but is re­
quired anyway. 

f RANDOM 

Format: RANnOM(aexpl[ ,aexp2)) 
Exampl es: X=RANI'()M( !19) 

Y=RANOOM( 10, 20) 

The RANDOM function returns a random integer dependent upon aexpl and aexp2. 
When aexpl alone is specified (as in the first example), the value returned is 
between 0 and aexpl-1, inclus!ve. When both aexpl and aexp2 are specified (as in 
the second example), the value returned is between aexpl and aexp2, inclusive. 

Page 104 BASIC XE Reference Manual 

Arithmetic Functions An Example Program Uslng Arithmetlc Functlons 

An Example Program Using Arlthmetlc Functlons 

saa consot~=$dl1f:5tart:$81 
518 Op~n JU,4,8,"1Cl" 
521 T~st:-2,71828183 
531 Print :Print "Wt! start with a vatu~ of "JT~st 
548 T~st:AbsCTestJ 
551 Print :Print "Its absolute vatue is "JTest 
561 T~st:IntCT~stJ 
571 Print :Print "And th~ int~g~r part of that is "JT~st 
588 T~st:sqrCTestJ 
5'8 Print IPrint "Mhich has a square root of ";Test 
&aa Test:nst/2 
611 Print :Print "Half ofthat giv~s "JTest 
628 Print " lreMeMber that nuMb~r, half 50RC2)]" 
631 Test:SgnCT~stJ 
648 Print tPrint "The '5GM' of that is ";Test 
658 Deg 
668 T~st:AtnCT~St) 
671 Print :Print "Mitose AreTangent of ";Test;" is" 
688 Test:IntCTestJ 
6'1 Print " ctose, correct r~sult is ";Test;" d~gr~~s" 
718 Pr!nt :Print "The sin~ and cosine ot ";Test;" d~grees:" 
711 Pr.nt " sin~ = ";Sinnest) 
721 Print " cosine = ";CosCTestJ 
731 Pr i nt " U ook at th~ nuMb~r !IOU reMeMber~dJ" 
748 Print :Print "hit &jN:IM for next pilrt. +"J 
758 Nhile P~~kCConsoleJ&start:Endwhile 
768 Graphics 8 
771 Test:ctogC181J 
781 Print "The COMMOn (bas~ 18) log of 181 iS ";T~st 
7'8 T~st:logCT~stJ 
888 Print :Print "Mhieh has natural log of ";Test 
818 Test:ExpCTestJ 
821 Print :Print "'e' is the base of the natural Iogs " 
831 Print " and e to that power is ";Test ' 
848 Print IPrint " Cwhich is prett!l darn close to 21" 
851 Print :Print "Hit an!l k~!l to continu~ ••• "; 
868 Get au, Ke!l 
878 Graphics 8 
888 Print :Print "Mow Iets fliP soM coins, using that" 
B'l Print " vatue as 1 greater than the MaxiMUM" 
'88 Print " ps~udo-randoM valu~ w~ want:":Print 
ua count=a 
'28 Nhile AbsccountJ(3 
'38 If RandoMCTestJ:count:count+1:Print ," H~ads" 
'41 for V=12 To I 5t~p -8.2:5ound 8,18,2,V:Mext V 
'58 EIse : count:count-1: Pr i nt , "Mmd" 
'61 for V=15 To 8 5tep -8,25:5ound 8,81,12,V:Mext V 
'71 Endif 
'88 fndwhiU 
''8 If count>I:Print " r Heads won l" 
1181 Eis~ :Print " Tails won )" 
1118 Endif 

BASIC XE Reference Manual Page 105 



Space For Your Notes Arlthmetic Functions 

Space For Your Notes 

Page 106 BASIC XE Reference Manual 

Trigonometrie Functlons 

Trlgonometlc Functlons 

DEG/RAD 
COS, SIN, ATN 

Dlscussed in thls chapter are the trigonometlc functions COS, SIN , and ATN, and 
the Statements DEG and RAD. Also lncluded ls a tablethat shows you how to get 
other trascendental trlg functions uslng the ones provlded. 

DEG I RAD 

Format: DEG 
RAD 

These two statements allow you to speclfy whether the angles used ln the trig 
functlons are in DEGrees or RADians. Note: BASIC XE defaults to radians. Also, 
all trig functions following a DEG or RAD are performed uslng that angle 
measurement untll the mode ls changed by another RAD or DEG, respectively. 

1' cos 

Format: COS(aexp) 
Exli'Tlple: 100 PRINT COS(O) 

COS returns the cos!ne of aexp. The operatlon is donein radians or degrees, 
dependent upon whether DEG or RAD has been most recently used. 

f SIN 

Format: S IN( aexp) 
Ex!lllpl e: 100 X=SIN(O) 

The SIN functlon returns the sine of aexp. The operation ls done in degrees or 
radlans, dependent upon whether DEG or RAD has been most recently used. 

Format: 
Example: 

ATN( aexp) 
100 X=ATN(1) 

1' ATN 

ATN returns the arctangent (Tan-1) of aexp. The operatlon is donein degrees or 
radians, dependent upon whether DEG or RAD has been most recently used. 

BASIC XE Reference Manual Page 107 



A Table of Derlved Functlons Trlgonom etrlc Functlons 

A Table of Derlved Functlons 

The followlng table lists some o! the trigonometrlc and hyperbolic functlons you 
can derlve !~om the arlthmetlc and trlgonometrlc functlons available in BASIC XR. 
The term "x" is the value on which you wish to perform the derlved functlon, and is 
simply an aexp. Also, you will see "C" in some of the functions. Thls ls a constant 
dependent upon whether the angles are measured in degrees or radians. C=90 in 
DEGree mode, and C=l.57079633 (pi/2) in RADfan mode. 

Trigonometrie Function 
Tangent 
Cotangent 
Secant 
Gosecant 
ArcSlne (Sln-1) 
ArcCoslne (Cos-1) 
ArcCotangent (Cot-1) 
ArcSecant (Sec-1) 
AreGosecant (Csc-1) 

Hyperbolle Functlon 
SlneH 
CoslneH 
TangentH 
CotangentH 
SecantH 
CosecantH 
AreSincH (SlnH-1) 
Arc('_osineH (CosH-1] 
ArcTangentH (Tann- ) 
ArcCotangentH (CotH-1) 
ArcSecantH (Secfl-1) 
ArcCosecantH (Cscll-1) 

Page 108 

Derivation 
SIN(x)/COS(x) 
COS ( x) /S IN( x) 
1/COS(x) 
1/S IN( x) 
ATN(x/SQR(1-xA2)) 
-ATN(x/SQR(1-xA2))+C 
ATN(x)+C 
ATN(SQR(xA2-1))+(SGN(x-1)*C) 
ATN(1/SQR(xA2-l))+(SGN(x-l)*C) 

J)e r I va t I on 
(EXP(x)-EXP(-x))/2 
(EXP(x)+EXP(-x))/2 
-F.XP(-x)/(EXP(x)+EXP(-x))*2+1 
EXP(-x)/(EXP(x)-EXP(-x))*2+1 
2/(EXP(x)+EXP(-x)) 
2/(EXP(x)-EXP(-x)) 
LOG(x+SQR(xA2+1)) 
LOG( x+SQR( x"2 -1)) 
LOG((1+x)/(1-x))/2 
LOG((x+1)/(x-1))/2 
LOG((SQR(1-xA2)+1A/x) 
LOG((SGN(x)*SQR(x 2+1)+1)/x) 

BASIC XE Reference Manual 

BASIC XE and Machlne Language Subroutlnes 

BASIC XE and Machlne Language Subroutlnes 

GO SUB 
RETURN 

A subroutlne ls slmply a plece of a program that accompllshes a single task. Thls 
means that a program ls really just a bunch of subroutines strung together. Rut 
what!! you want to execute the same subroutine a bunch of tim es? You could 
type lt in every time you want to use it, butthat could mean a Iot of boring typlng. 
The Solution is to use one of BASIC XE's special subroutlnc calls. They all allow 
you to wrlte a subrout!ne once, and then have lt get executed several tim es in 
different parts of your program. 

Jlow you get a subroutlne executed (l.e., how you call a subroutlne) <lepends upon 
the type of subroutlne you are uslng. The GO SUB subroutlne structure Iets you 
call a BASIC subroutlne by Une number, the USR functlon Iets you call a machlne 
langnage subroutlne by address, and PROCEDURE allows you to call a BASIC 
subroutlne by name! Slnce eoch of these subroutlne structures ls different, they 
are discussed in depth in separate sectlons, startlng wlth the easlest to 
understand, GOSUB. 

GOSOB (GOS.) 

Format: OOSUB llneno 

GOSUB allows you to 'cal\ 1 an unnamed subroutlne written in BASIC XP.. 
llneno speclfles the startlng Une number of the subroutlne. A GO SUB subroutlne 
must end with a RETURN or EXJT (lf you use LO CA L avars wlthln the subroutlne) 
so that program executlon may contlnue wlth the statement after the GO SUB. 

To prevent aceidentat trlggering of a subroutlne whose code follows the maln 
program, place an ENDstatement between the end of the program and the start of 
the subroutlne. 

Cautlon: Llke the FOR and WHJLE statements, GOSUB uses the program stack to 
save its return llneno. Jf the subroutlne ls not allowed to complete norm ally ( e.g ., 
you exit via a GOTO) the return !lneno must be POPped off the stack or lt will 
cause an error. Also, lf you use LOCAL avars within a GOSUB subroutlne and do 
not exlt via EXIT, you ~POP the prevlous avar values off the stack yourself. 

RETURN (RET.) 

Format: lineno RETURN 

RETURN is used to exit a GO SUB Subroutine that does not contnln LOCAL avars. 
I! the subroutlne does use LOCAL, you must end it with an EXJT. 

When you RETURN from a GOSUB, program executlon contlnues at the statement 
after the GOSUB call. 

BASIC XE Reference Manual Page 109 



lntroduclng PROCEDURE and 
lts Related Statements 

BASIC XE and Machlne Language Subroutlnes 

Introduclng PROCEDURE and lts Related Statements 

Before descrlbing the individual statements used to create and call named 
subroutines, we present an lntroduction to them because they are interdependent, 
and we feit that havlng a small but effective demonstration of their use would 
make it easier to understand the Jater definitlons. 

lf you have programmed at all in any dialect of JlASIC, you have used the 
GOSUB ••• RETURN construction. For exarnple, you might see a program like the 
following (This program is for .demonstration purposes only, but lt is a falrly 
amusing Jittle thing to spring on an unsuspecting friend): 

21 Value=111 
31 Min=11:Max:,I:Gosub 111 
48 RI!SUlt1:1CuM 
51 Min:11*Value:Hax:'I*VitlUeiGOSUb 181 
61 Result2:1CUM 
71 If Result2)VitlUe*ReSUlt1 Then '' 
88 Print "Vou appear to be conseruatiue":End 
'' Print "Vou seeM read~ to take risks":End 
111 ReM "The 5ubroutine" 
111 Print :Print "Please giue MI! a nuMber between" 
128 Print Min;" and ";Hax; 
138 Input ", inclusiue> ",ICUM 
141 If ICuM>=Hin And ICuM<=Hax Then Return 
151 Inverse :Print "Can•t ~ou read? That nuMbl!r is" 
161 Print " out of the range I gaue ~ou. ":ICor.-al 
171 Goto 111 

In a small program Jlke this one, the GOSUB may be just flne. As programs get 
!arger, though, llnes Jike GO SUB 3250 become Jess and Jess meaningful. Atarl 
BASIC (and thus BASIC XF.) allows you to do somethlng Jlke thls: 

11 Let Getinrange:181 
28 Value=111 
31 Hin=1B:Hax:,I:Gosub Getinrang• 

ßy givlng a name to the subroutine, we can make our code more reaclable. A 
disadvantage to thls method is that BASIC XE (in common with Atari FA~IC) 
allows only 128 unique variable namcs. Uslng a variable name as a subroutlne 
name diminishes the pool of avallable names. This, thcn, is the first advantage of 
BASIC XE's new procedures: we usc string constant to name them, so we need 
waste no variable names! Look at thc listing opposite-

Page 110 BASIC XE Reterence Manual 

BASIC XE and Machine Language Subroutlnes lntroducing PROCEDURE and 
its Related Statements 

28 TtMP=181 
38 Call "litt In Range" Using 11,,8 To RI!SUlt1 
SI CUI "liet In Range" Using 11*TeMP,,.*TeMP To RI!5Ult2 
71 If Result2(TeMP*Resultt:T~pe$:"construatiue" 
81 Use rType$:"a risk taker" 
'e Endif 
'5 Print Using "VOU seeM to be ~~X~~~~~~X~~I.",TYPeS:End 
111 Procedure "Get In Range" Using Hin,Hax 
111 LOCitl TeMPITI!MP=1e+'8 . 
128 Mhill! TeMp(Hin Or TeMp)Hax 
138 If TeMP()1e+,I:Print 
141 Inverse :Print "Can•t ~ou read? That nuMber is" 
151 Print " out of the rangt I gaue ~ou. ":NorMal 
161 Endif 
171 Print :Print "Please giue M a nuMber between" 
181 Print Hin;" and ";Hax; 
1'1 Input ", inclusiue> ",TeMP 
211 End Wh iJ e 
218 I!Xit li!MP 

Confused? Not too surprising. Lct's take a Iook at the new Jines a step at a time. 
First, in llne 30, note the CALL to the PROCEDURE named "Get In Range". See 
how clear accessing this subroutlne ls, since we can use any characters we llke in 
the name string. That's pretty easy, right? 

But what about the USING that appears in both the PROCEDURE and 
CALL ~tatements? In llne 30, we are 'using' values of 10 and 90. But in l!ne 100, 
we are using' the variables Mln and Max. lsn't that neat? We didn't have to 
assign the values 10 and 90 to Mln and Max before we called the subroutlne: 
CALL does the work for us! This is called 'passing parameters' to a procedure. 

It gets better. Notlee the EXJT statement of llne 210. It allows the procedure to 
return a value (the contents of Temp) to the CALL. The value is placed into the 
variable that follows the TO in the CALL statement (Resultl, in this case). That's 
reasonable, right? lf you can 'pass' parameter values, you should be able to 
'return' parameter values. But doesn't using the variable Temp ln the procedure 
subroutlne wreak havoc on lts later use in the main program (e.g., in llne 50)? 

Ah, but there's llne ll o, wlth its deceptlvely simple-Iooking LOCAL Temp state­
ment. Ry uslng it we have created a 'private' copy of Temp for use in the 
procedure. Any changes to Temp between the LOCAL and the EXIT won't affect 
its value in the rest of the program. Wow! 

The example we just worked through uses all of the new proceclure-oriented 
statements: PROCEDURE, CALL, and EXIT. By no rneans, though, dld we use all 
of the capabllitles of these statements. 

BASIC XE Reference Manual Page 111 



PROCEDURE BA SJC X R and Machine Language Subroutines 

PROCEDURE (PROC,) 

Fonnat: PROCEDURE pname [USING rvarl [,rvar2 •• ,J] 
Examples: 1000 PROCEDURE "Calculate Pay" USING Hours,Rate,!Taxtable() 

387 PROCEDURR "Prlnt Msg" USINn !Msg$ 
4040 PIIOCRDURE "Qui t" 

Note: if rvar ls an mvar, svar, or savar, lt must be preceded by an exclamatlon 
polnt (!). See rvar in the glossary for more Info. 

The PROCEDURE statement ls the nucleus around whlch named subroutines in 
BASIC XE are built. Jt defines the beginnlng of a subroutine whlch will be 
termlnated by EXIT, and executed via CALL. 

pname ls the name of the PROCEDURE, and ls slmply a valid strlng constant. Jn 
the examples above you can see that spaces have been used in the pnames to add 
clarlty to the program. As a matter of good programmlog style, you use names 
that descrlbe what the PROCEDURE does, shortening them only if you beg!n to 
runout of memory. 

When you CALL a PROCEDURE, the return lineno !s pushed onto the BASIC XE 
stack so that execut!on can cont!nue w!th the Statement follow!ng the CALL when 
the PROCEDURE !s done. 

lf you pass parameters to the PROCEDURE (via USING), CALL will push the 
current 'values' of rvarl, rvar2,... onto the steck, then put the pexpl, 
pexp2, ... 'values' (see CALL) !nto the recelving variables, and :Cinally pass control 
to the PROCEDURE. This is a fairly Straightforward process when the rvars are 
avars, because the 'values' pushed onto the stack are simply numeric constants. 
Take the following set of statements as an example: 

18 Junk=2t 
21 ca11 "Test" Using 12*17 
Je Print Junk 
48 End 
78 Procedure "Test" Using Junk 
88 Print Junk 'e fxit 

Jn thls example 1 when the PROCEDURE named "Test" at lfne 70 ls CALLed, the 
current value of the rvar Junk (2(1, as assigned in line 10) is pushed on the stack. 
Then the value of the pexp (12*17, or 204) is copled lnto Junk. Any subsequent 
references to Junk wlthln the PROCEDURE wlll find that lt contains thls new 
value. For example, the PRINT on llne RO will dlsplay the value 408. When the 
EXIT on line 90 is exccuted, 1t will restore Junk to its prlor value o:C 20, thus the 
PRINT on line 30 will display the value 20. 

All that th!s means is that USING (when used in conjunction with CALL and 
PROCEDURE) does an lmplfc!t LOCAL. The purpose o:C thls m!ght not be 
perfectly clear. Thanks to the lmpliclt LOCAL, we can reuse the variable name 
Junk in our procedure and so conserve on names (remember, we are allowed only 
128) wlthout worrying about changing lt withln the procedure. The second 
advantage is more dlfficult to see from thls slmplistic example: we are able to pass 
values lnto the procedure wlthout knowlng what variable names are used withln it. 

Page 112 BASIC Xlt Re:l'erence Manual 

BASIC XE and Machlne Language Subroutines PROCEDURE 

The example in the prevlous section shows thls feature to some advantage, anrl 
demonstrates how the resultant code can be both smaller and more readable. 

When the rvars arenot avars (l.e. they're mvars, svars, or savars), the methodology 
is the same, but the results are more complex. The dif:Ciculty lies In unrlerstandlng 
just what the 'value' that gets pushed on the stack is. A journey Inside BASIC XE 
!s requlred to answer thls questlon. Jn BASIC XE the value of any variable !s the 
contents of its entry in the Variable Value Table. This table reserves eight (8) 
bytespervariable- a flag byte, the varlable's number (0 .. 127), and six bytes of 
'Information'. 

For simple avars, the 'Information' is the numerlc value ot the variable. For svars, 
savars, and mvars, the flag byte lndicates that the 'Information' is the address and 
characterist!cs o! the actual data. For example, an svar needs Information about 
lts address, its DIM length, and its current LEN length. The strlng data ltself ls 
located at the glven address. The 'Information' for both mvars and savars consists 
of an address and two DIMensions. 

Thus, when CALL pushes the 'value' of a rvar that's a svar, savar, or mvar on the 
steck, lt is push!ng this special Information. Slm!larly, when CA LL coplos a pexp 
that's a svar, savar, or mvar !nto one of these types of rvars, it ls not copying the 
actual string or array. Instead, it ls copying the special in form at!on. This is the 
reason that rvar and pexp require the! preflx when they refer to these types of 
variables. Conslder thls sequence: 

11 Fun$="Swi-ing is fun.":K$="Ri9ht?" 
21 Call "Mhat Fun" Using !Fun$ 
Je Print Fun$,K$ 
48 End 
51 ReM "The Procedure" 
51 Procedure "What Fun" Using !K$ 
71 Print Fun$,K$ 
88 K$U,5J:"Laugh" 
,. Exit 

Hopefully, you will actually try thls llttle program. J! so, you will find that line 70 
shows that, as we have descrlbed above, the 'value' of Fun$ has been copled lnto 
X$. The PRINT in llne 70 will dlsplay 

Swi-ing is tun. 

The real surprlse comes when the PRINT in Une 30 is executed (following th" 
Ruccessful EXIT In llne 90). ThP. resultant dlsplay ls 

Right? 

Do you see why? JC the 'value' of Fun$ is copied to X$, then the address of 
Fun$ is now in X$'s entry In the Variable Value Table. Thus, any change we make 
to X$ a!feets affects thP. contents of Fun$. Compllcated, yes? 

A slmllar actlon place takes place when a savar or mvnr ls passed as a parameter -
changes to the rvar withln the PROCEDURE will affect the pexp variable in the 
CALL. 

Technlcal Note: in computer llngo, avars passed to a procedure via a 'call by 
value', whlle the other types of variables are passed via a 'call by re!erence'. 

BASIC XE Re:l'erence Manual Page 113 



BASIC XE and Machine Language Subroutines Notesand Warnings 
Regarding PROCEDURE 

Notesand Warnings Regarding PROCEDURE 

Note: BASIC XE inslsts that paired pexps and rvars be o! the same type. For 
example, the following will cause error 24 ("USIN G Type ll'ismatch"): 
488 Call "Oh llo!" Using 33 

1i8 Proc~dur~ "Oh llo!" Using !A$ 

Note: BASIC XE does not make sure that you have the same number of rvars as 
pexps In a CALL to a PROCEDRE. Jf a CALL does pass too many pexps, the extra 
ones are Ignored. If lt passes too few, a value of zero is assigned to all remainlng 
rvars parameters. This, in turn, can cause a type mismatch, since only avars may 
recelve a numerlc value. Exception: I! the CALL passes no parameters, RASJC XE 
does nothing at all to the parameter passing area. This ison purpose, slnce passing 
parameters takes time. Thus, even a PROCEDURE expecting only numeric 
parameter(s) may report a mismatch error, since it attempts to obtaln those 
parameters !rom the mlscellaneous data left In the parameter area. Generally, we 
recommend passlng the correct number of parameters unless you have a speclflc 
purpose whlch can use the "default" feature to a real advantage. 

Note: you must be careful when changing the value o! a svar passed as a 
parameter. Recall that the length of a svar is !ound in its Variable Value Table 
entry, and that the entryis copied intact to the PROCEDURE's rvar. Jf you then 
change the length of the rvar string within the procedure, it will indeed change 
the rvar's length in the table. However, when you EXJT, the rvar entry is 
not automatically copied back to the pexp used in the CALL! This can produce 
some bizarre results. To demoostrate- modify llne 80 of the last example program 
to read 
88 H$="Laugh":Print H$ 

Not surprisingly, the new PRJNT in line 80 shows us that the contents of X$ are 
simply "Laugh". llowever, Iook at the display resulting from Une ~0: 
Laughing is fun. Right? 
Do you see the problem? Changing X$ in Une RO changed the contents of Fun$, 
but lt did not change the length of Fun$. Presumably, this could be a feature 
under therlght circumstances, but there are stranger consequences possihle. For 
example, try changing line RO to read 
88 K$:"HKK" 
Now Une ~O's PRJNT will display 
HKKMMing is fun. Right? 
which is almost surely not we wanted. 

One solution to this situation ls simply to avoid changing a passed string wlthin a 
procedure block. Thls may not be satlsfactory, though, so we have provided 
another mechanism which you can use to circumvent thc problem. Change lincs 20 
and 90 in the original program to read 
28 Clll "Nhat Fun" Using !Fun$ To !Fun$ 
n f:Xit IK$ 

Using the TO guarantees that the complete new "value" of X$ will be copied back 
to Fun$. On this same topic, you may be relieved to know that this difficulty with 
length does not exist with mvars or savars. 

Page 114 BASIC XE Re!erence Manual 

BASIC XE and Machine Language Subroutines Notesand Warnings 
Regarding PROCEDURE 

Warning: one way to get in real trouble with either strings or arrays is to pass one 
back (via EXIT) which was not passed in (via CALL). Fxamine the following 
program excerpt: 

181 CUI "Oops" To !A$ 
118 Call "Oops" To !B$ 
128 Print A$,B$:End 
388 Proc•dur~ "Oops" 
318 Input "T!,IP~ SOMthi ng) ",Lin~$ 
328 t:xit !lin~$ 

Jf you type in and RUN this program, givlng different responses when you are 
prompted, you will be surprised at the results of the PRINT of Une 120: A$ and 
B$ will be identical (up to the length of the shorter), taking on the value of the 
second INPUT. If you recall our discusslon of what actually gets passed when a 
string or array is involved, this seemingly bizarre result can be explained. 

When Line$ gets passed back, what ls actually transferred is its Variable Value 
Table entry, first to A$, and then toB$. Rut the table entry consists (among other 
things) of LINE$'s acldress. Thus you end up with all three variables pointing to 
the same plece o! memory! 

The proper solution ls to passastring bothin via USING and back out via EXIT. 
For savars and mvars, you need only pass the value in, sinceanythlng the 
PROCEDURE does these variable types is properly reflected in the original 
variable. 

The only way you can get in trouble with arrays is if you pass an unDIMensioned 
array to a procedure whlch then DIMensions it. Unless you pass back the "value" 
via EXIT (simllar to the fix forstrings just glven above), the space DIMensioned 
within the procedure is lost, since no variable's entry will refer to it after the 
EXIT is executed, 

Warning: PROCEDURE must be the first statement on a line. CALL cannot find a 
PROCEDURE lf is not at the beginning of a llne. Rtrange nnd wondrous (nnd 
woefully unpredlctable) thlngs can happen lf you violate thls rule, Similarly, you 
should never allow a program to "fall through" to a PROCEDURE. Always make 
sure that the program lmmediately precedlng each PROCEDURE flnishes with a 
GOTO, STOP, END, RETURN, or EXIT. We recommend grouplng all procedures at 
one spot in your program, preceded by an END statement. 

BASIC XE Re!erence Manual Page 115 



EXIT 

Fonnat: 
Examples: 

BASIC XE and Machine Language Subroutines 

EXIT 

EXIT [pexpl [ ,pexp2 ••• ]] 
~90 EXIT lO*~axvalue 
799 EXIT Flag,!Nmnes$ 
24990 EXIT !Inverse() ,Rows,Columns 
835 EXIT 

Note: if pexp is an mvar, svar, or savar, it must be preceded by an exclamation 
point (!). See pexp in the glossary for more more info. 

Jf you have been reading this manual front to back you have encountered several 
exmnples of the statement EXIT by now. If you have not, we refer you to the 
three previous sections for some illustrative examples. 

EXIT performs the following three functions: 
1) If there are any variables on the stack (i.e., if you passed parameters or used 

LOCAL) EXIT restores them to their proper places in the Variable Value Table. 
2) If there are any pexps after the EXIT, it places them into the rvars following 

the TO in the CALL Statement. 
3) EXIT checks to see whether the current subroutinewas lnvoked via CALL or 

GOSUB. If lt was a GOSUB, EXIT simulates the action of a RETURN. 

Warnlng: no error will result lf an EXIT statement tries to pass pexps back to a 
GO SUB. Instead, they are simply ignored. Similarly, !f you pass back too many 
pexps to a CALL, the excess ones will be lgnored. This deslgn allows a slngle 
PROCEDURE to serve more than one function, returnlng more values to some 
CALLers than to others. Remember, though, that all rvars expected by the 
TOportion of a CALL statement must be matched by type by the pexps of EXIT. 

Warnlng: because POP is smart enough to popvariable 'values' off the stack, you 
can leave subroutlnes wlth LOCAL avars and/or parameters wlthout using EXIT. 
You must, however, make sure that you POP~ variables off the stack, as well as 
POPping the return l!neno. 

Page 116 BASIC XE Reference Manual 

BASIC XE and Machine Language Subroutines 

Fonnat: 
Examples: 

CALL 

CALL cname [USING pexpl[,pexp2 ••• ]] [TO rvar[ ,rvar ••• )) 
10 CALL "Test" 
720 CALL "Totals" USING !Values() TO Sun 
800 CALL "Get Nun" TO Nunher 
100 CALL Proc$ URING 7,!A$ TO Result 

CALL 

Note: I! rvar or pexp is an mvar, svar, or savar, it must be preceded by an 
exclamat!on point (!). See rvar and pexp in the glossary formore more Info. 

The CALL statement has been both dlscussed and demonstrated earller in this 
chapter. In thls section, then, we will not dwell on such things as the mechanics ot 
parameter passing. Rather we will discuss the subtleties of the CALL statement 
ltself. 

First, unlike a PROCEDURE Statement, the name specifled by a CALL may be a 
svar instead of being a string constant (see the last of the above example l!nes). 
However, you have no other choice ot tonnat than that shown. You may use 
nt>ither a substring nor an element ot astring array as a CALLed name. This is not 
"'ii'i1"0rierous restrictlon, though, since the great bulk ot your CA LLs will probably 
be made with string constants. For those rare occasions when you wish to choose 
one ot several PROCEDUREs based on the value ot some Index, may we suggest a 
program fonnat slmllar to the fo!lowing: 

Ja Input "fii v• M4! an Ind•x> ",Index 
Cl IIM4!$:Prot$(Index;J:Call MIMe$ 

Note: the name that you CALL wlth (whether constant or variable) must match 
exactly that given in a PROCEDURE statement. All charactere are consldered in 
the match, wlth upper case, lower case, and inverse video all distlnct. 

Cautlon: we remind you of the possible problern assoclated wlth uslng a svar as a 
pexp: if !ts length ls modified in the procedure, the change is not reflected in the 
svar unless TO ls used. Slmllarly, any array thnt's not DIMensionerl at the time of 
the CALL should recelve the same treatment. 

Technlcal Note: the number ot Ievels you may nest CALLs ls llmited only by the 
amount or FREe memory left for stack use. Llke GOSUB and WHILE, CALL uses 
four (4) bytes or stack space, anrl each parameter passed occuples 12 bytes. 

Note: CALLs are slow in comparison toGOSUB llneno in FAST mode. flowever, 
when compared to normal GOSUBs in slow morle, they may actually be just a blt 
raster lf they don't pass parameters. Parameter passlog can, lndeed, slow thlngs 
down remarkably. But, when you compare lt to the method of dolng several asslgn­
ments before a GO SUB, followed by one or more arterward, lt may actually save 
time in some sltuatlons. 

BASIC XE Reference Manual Page 117 



USR DA SIC XE and ~achlne Langunge Subroutines 

Fonnat: 
Example: 

USR(aexp1[,aexp2 ••• )) 
100 RES=USR(ADDR,A*2) 

f USR 

The USR functlon returns the result of a machine-language subroutlne. 
aexpl must be an Integer, and is used as the address of the mnchlne language 
routine to be performed. The Input arguments aexp2, aexp3, ••• are optlonal, and 
are used as parameters to the machine language subroutlne. These aexps must be 
between 0 and 65535, and will he rounded to the nearest positive integPr lf they 
are :l'ractlonal. They are then pushed on the hardware stack in the reverse of the 
order glven, so the machlne language program may then pull them In proper 
forward order. Addltlonally, a one byte count of parameters ls pushed onto the 
stnck last, and must be popped by the US R routlne. This m ay be changed using the 
SET B,aexp. --

Also, lf all arguments are properly pulled from the stack, then the USR routlne 
may return to BASIC XE slmply by executlng an RTS lnstruction. Flnally, the 
routlne may return a single 16-blt value to BASIC XE (as the "value" of the 
functlon) byplaclng a result in FRO and FRO+l ($D4 and $D5) before returnlng. 

Note: see ADR lf your machine language subroutlne ls in a strlng, as thls might be 
problematlc lf you are ln EXTENDed mode. 

The followlng example uses a USR routlne to ASL a number (the argument to the 
USR routine) and then return that value to BASIC XE. 

BASIC XE statement: 

xast=usrC$681,XJ 

USR routlne at $680: 

188 
111 
128 
138 
148 
158 
168 
178 
188 
U8 
281 
218 EIIO 

Page 118 

PLA 
c ... #1 
BMf fNO 
PLA 
JAK 
PLA 
ll5L A 
5 TA $1>4 
TKA 
ROL A 
5TA $05 
RTS 

;Get u of paraMeters 
;If not 1 fXIT 

HSB 
Sa11e it 
LSB 
ASL LSB 
sa11e it 
Get HSB 
ROL it to get carr9 
sa11e it 

BASIC XE Re:l'erence Manual 

Appendix A ATASCU Characters and Codes 
NORMAL Video 

NORMAL Video 

E!i tl!! ~ Keystroke 
8 $99 
I $81 
2 $82 
3 $83 
4 $94 
5 $85 
6 $86 
7 $87 
8 $88 
9 $89 

18 iBA 
II $88 
12 iBC 
13 $90 
14 $8E 
15 $8F 
16 $18 
17 $11 
18 $12 
19 $13 
28 $14 
21 $15 
22 $16 
23 $17 
24 $18 
25 $19 
26 ilA 
27 $18 
28 . $IC 
29 $10 
38 $JE 
31 $1F 
32 $29 
33 $21 
34 $22 
35 $23 
36 $24 
37 $25 
38 $26 
39 $27 
48 $28 
41 $29 
42 $2A 
43 $28 
44 i2C 
45 $20 
46 S2E 
47 $2F 
48 $38 
49 $31 
58 $32 
51 $33 
52 $34 
53 $35 
54 $36 
55 $37 
56 $38 
57 $39 
58 i3A 
59 $38 
68 $3C 
61 $30 
62 i3E 
63 i3F 

I 

+ 
r 

+ • • I 
I 
t .. 
t • • .. 

sptc• 

• 
II • X 
& 
' 

* + 

; 
9 
I 
2 
3 
4 
5 
6 
7 
8 
9 

) 
? 

CTRL 1 CTRL A 
CTRL 8 
CTRL C 
CTRL 0 
CTRL E 
CTRL F 
CTRL G 
CTRL H 
CTRL I 
CTRL J 
CTRL K 
CTRL L 
CTRL H 
CTRL N 
CTRL 0 
CTRL P 
CTRL Q 
CTRL R 
CTRL S 
CTRL T 
CTRL U 
CTRL V 
CTRL W 
CTRL X 
CTRL Y 
CTRL Z 
ESC ESC 
ESC CTRL t 
ESC CTRL • 
ESC CTRL + 
ESC CTRL -t 
SPACE BAR 
SHIFT ! 
SHIFT • 
SHIFT II 
SHIFT i 
SHIFT X 
SHIFT & 
SHIFT ' 
SHIFT 
SHIFT 
* + 

; 
9 
I 
2 
3 
4 
5 
6 
7 
8 
9 
SHIFT 

t 
) 
SHIFT ? 

BASIC XE Reterence Manual 

~ tl!! ~ Kerstroke 

64 i49 II 
65 $41 A 
66 <!42 8 
67 $43 c 
68 $44 0 
69 $45 E 
79 $46 F 
71 $47 G 
72 $48 H 
73 $49 I 
74 $4A J 
75 $48 K 
76 $4C L 
77 $40 H 
78 $4E N 
79 i4F 0 
89 $59 p 
81 $51 Q 
82 $52 R 
83 $53 s 
84 $54 T 
85 $55 u 
86 $56 V 
87 $57 w 
88 $58 X 
89 $59 y 
99 $5A z 
91 $58 [ 
92 t5C \ 
93 $50 l 
94 $SE 
95 $5F 
96 $69 i 
97 $61 a 
98 $62 b 
99 $63 c 

199 $64 d 
191 $65 e 
192 $66 f 
193 $67 g 
194 $68 1\ 
185 $69 i 
186 $6A j 
187 $68 k 
198 $6C 1 
189 $60 m 
118 $6E n 
I II $6F o 
I 12 $78 p 
113 $71 q 
114 $72 r 
115 $73 s 
116 '$74 t 
117 $75 u 
I 18 '$76 v 
119 $77 w 
128 '$78 X 
121 $79 y 
122 $7A z 
123 '$78 t 
124 $7C I 
125 $70 Ii 
126 $7E 4 
127 $7F t 

SHIFT i 
A 
B c 
0 
E 
F 
G 
H 
I 
J 
K 
L 
H 
N 
0 
p 
Q 
R 
s 
T 
u 
V 
w 
X 
y 
z 
SHI FT [ 
SHIFT \ 
SHIFT l 
SHIFT A 
SHIFT _ 
CTRL 
a 
b 
c 
d 
• f 

~ 
i 

~ 
1 
m 
n 
0 
p 
q 
r 
s 
t 
u 
... 
w 
X 
y 
z 
CTRL I 
SHIFT I 
ESC SH FT CLEAR 
ESC BK SP 
ESC TAB 

Page A-1. 



AT ASCII Characters and Codes 
INVERSE Video 

Appendix A 

INVERSE Video 

E!E. !i!! 
l2S $S9 
129 $SI 
139 $S2 
131 $S3 
132 $S4 
133 $S5 
134 $S6 
135 $S7 
136 $SS 
137 $S9 
13S $8A 
139 $SB 
149 $SC 
141 $SO 
142 $SE 
143 $SF 
144 $99 
145 $91 
146 $92 
147 $93 
14S $94 
149 $95 
159 $96 
151 $97 
152 $9S 
153 $99 
154 $9A 
155 $98 
156 $9C 
157 $90 
l5S $9E 
159 $9F 
169 $AB 
161 $Al 
162 $A2 
163 $A3 
164 $A4 
165 $A5 
166 $A6 
167 $A7 
168 $AB 
169 $A9 
179 $AA 
171 $AB 
172 $AC 
173 $AO 
174 $AE 
175 $AF 
176 $89 
177 $81 
17S $82 
179 $83 
IS9 $84 
ISI $85 
IS2 $86 
IS3 $87 
184 $88 
IS5 $89 
IS6 $BA 
187 $88 
188 $BC 
189 $80 
199 $BE 
191 $BF 

Page A-2 

Kerstroke 

~~ H~t A 
INV CTRL B 
INV CTRL C 
INV CTRL 0 
INV CTRL E 
INV CTRL F 
INV CTRL G 
INV CTRL H 
INV CTRL I 
JNV CTRL J 
INV CTRL K 
INV CTRL L 
INV CTRL H 
INV CTRL N 
JNV CTRL 0 
INV CTRL P 
INV CTRL Q 
ItN CTRL R 
INV CTRL S 
INV CTRL T 
INV CTRL U 
INV CTRL V 
INV CTRL W 
INV CTRL X 
JNV CTRL Y 
INV CTRL 2 
RETURN 
ESC SHIFT DELETE 
ESC SHIFT INSERT 
ESC CTRL TAB 
ESC SHIFT TAB 
JNV SPACE BAR 
INV SHJFT ! 
INV SHJ FT • 
JtN SHIFT II 
INV SHIFT $ 
JNV SHJ FT /: 
JtN SHIFT & 
INV SHIFT ' 
INV SHIFT 
INV SHJFT 
JNV * 
ItN t 
INV 1 
JNV -
INV • 
INV I 
JNV 9 
INV I 
INV 2 
JNV 3 
JtN 4 
JNV 5 
INV 6 
JNV 7 
JNV S 
JNV 9 
INV SHJFT 

~~! 
JNV = 
INV > 
INV SHJFT ? 

E!E_ !i!! C h r 

192 $C9 lil 
193 $Cl f!l, 
194 $C2 [i) 
195 $C3 ~ 
t96 sc4 m 
197 $C5 II 
19S $C6 ~[j 
199 SC7 
299 $CS 
291 $C9 (J 
292 $CA !l 
293 SCB 1:i 
294 sec 11~,... 
295 $CD u. 
296 $CE 

287 $CF I' 29S $08 
299 $01 
219 $02 
211 $03 
212 $04 D 
213 $05 ~[!) 214 $06 
215 $07 
216 $DS 
217 $09 ~ 

21S $DA fj~ 219 $08 
228 $DC 
221 $00 
222 $OE I 
223 $0F B 
224 $E9 C 
225 $EI m 
226 $E2 lll 
227 $E3 [I 
22s sE4 rn 
229 $E5 I·· 238 $E6 
231 $E7 
232 SEB 
233 SE9 0 
234 $EA 'l 
235 SEB !::[!! 
236 $EC 0 
237 $EO 
23S $EE !il 
239 $EF ~: 249 $F9 
241 $F1 
242 $F2 
243 $F3 
24<1 $F4 0 
245 $F5 !!] 
246 $F6 t'J 
247 $F7 ~ 
24S $FS 1!1 
249 $F9 ro 
259 $FA H 
251 iFB 
252 $FC 
253 $FD 13 
254 $FE llU 
255 $FF 

Kerstroke 

INV SHIFT a 
INV A 
JNV B 
JNV C 
JNV D 
INV E 
JNV F 
JNV G 
JNV H 
JNV I 
JNV J 
JNV K 
JNV L 
JNV H 
INV N 
JNV 0 
JNV p 
JNV Q 
JNV R 
JNV S 
INV T 
JNV U 
INV V 
INV W 
INV X 
INV Y 
INV 2 
INV SHIFT [ 
JtN SHIFT \ 
ItN SHIFT l 
INV SHIFT A 

INV SHJFT _ 
INV CTRL 
INV l 
JNV b 
INV c 
INV d 
INV e 
INV f 
INV g 
JNV f\ 
INV i 
JNV j 
INV k 
INV 1 
INV m 
JNV n 
INV o 
INV p 
JNV q 
INV r 
INV s 
INV t 
ItN u 
INV v 
INV w 
INV X 

INV >' 
INV z 
INV CTRL • 
INV SHIFT' I 
INV ESC CTI'{L 2 
ESC CTRL DELETE 
ESC CTRL INSERT 

BASIC XE Reference Manual 

Appendix B 

BASIC XE Memory Map 

BASIC XE Memory Map 
$0000- LOMEM 

Relow you will find a table containlng the low memory locatlons used by 
BASIC XE. Jn the descriptlons you will find the abbreviatlons 'Atß' and 'BXF.'. 
They stand for 'Atarl BASIC' anct 'R ASJC XE', respectlvely. 

Most of these locatlons are documented only because they are used to delimit 
areas in the memory maps on the followlng pages. The only locatlons that mlght be 
of use to you are LOMEM, STOPLN, ERRflAV, and PTARW. These, however, are 
assoclated wlth DASIG XE commancts as follows, so you need never use PEEK or 
POKE: 

LOMEM 
STOPLN 
ER RSA V 
PTABW 

LOMEM 
ERR(l) 
ERR(O) 

SET l,aexp 

Note: unless otherwlse specl!led, all zero page locatlons $80- $FF are used by 
BASIC XE. 

Locatlon(s) 
$E-$F 

$20-$2F 
$43-$49 
~80' $81 
$82 '$83 
$84, $R5 
~R6,$R7 

$88,$89 
$8A, $Ril 
$8C, $8D 
$8E, $8F 
$90,$91 
$BA, $BB 
$C3 
$C9 
$CB-$l1l 
$D4-$D9 
$EO-$E5 

$480-$57F 

$580-$67F 

$680-$6FF 

~700-LOMEM 

Label 
APPMHI 
ZJOCB 
FMSZPG 
L~FM 

VNTP 
VNTD 
VVTP 
STMTAß 
STMCUR 
STARP 
RUNS TI< 
MFMTOP 
STOPLN 
ERRSAV 
PTABW 

FRO 
FRl 

Usage 
System polnter to free memory. 
Temporary storage for Floating Point routlnes. 
Temporary storage !or Floating Point routlnes. 
Low memory polntcr. 
Variable name table polnter. 
Pointer to the end of variable name table plus one. 
Variable value table polnter. 
Statement table polntPr. 
Current statement pointer. 
mvar, svar, and savar value table pointer. 
Runtime stack pointer. 
Highmemory polnter. 
Llne number at whlch the program stopped. 
The number of the most recent error. 
Number of columns between tab stops. 
Unused by llXE! ! 
Floating polnt register 0. 
Floating point register 1. 
Used by RXF. for vorlaus purposes. Cautlon: some 
AtR programs use thls area during RUN. RXE pro­
grams that use only AtR cammancts can do thls also, 
but those thnt take advantage of the new cammanrls 
may not use thls space. 
Normally unused by BXE, but INPUT or ENTER frcm an 
external devlce can wipe it out. 
Unused by ßXE!! we suggest that you use this area 
for your USR routlnes. 
DOS and any other devlce handlers (R:, etc.) reslde 
here. The LOMEM statement can change the slze of 
thls spnce. 

BASIC XE Reference Manual Poge ß-1 



BASIC XE Memory Map 
Low Memory - Standard 

Appr.mllx 8 

Low Memory- Standard 

The dlagrams on this and the facing page show how BASIC XE uses memory 
between LOMEM and the start of cartrldge memory ($ A 000). The diagram on this 
page shows how memory !s used Ir you do not use the EXTEND statement, and the 
one opposite shows the memory configuratlon in EXTENDed mode. 

RAH 
$A888 

GR. RAH 
------------PHG. RAH 
-----------

$9888 J., 
$8998 1 
APPHHI ------------

rus{C XE 
~n 1me tack 

Rl.tlSTK ------------
$7989 

mvar, 
svar 1 

savar 1 

STARP 
Spact> ------------

$6999 

Your 
$5998 

BASIC XE 

$4889 

Program 

$3998 

5THTAB ------------var Valuts 
WTP ------------uar Namts 
VNTP ----------- Lfl1EM 

Page B-2 BASIC XE Reference Manual 

Appendix B 

Low Memory- EXTENDed 

$A888 
GR. RAH 

~-------------PHG. RAH 
------------

$9888 

The 
$8988 

Ext~nded RAH 

A 

FRE (8) 

$7988 

------------
FRE<D 

$6888 

Your 

APPHHI 
$5988 
Rl.tlSTK 

------------
fuSIC XE BASIC XE 
~n 1mt> hck 1-------------

Program 

$4888 
muar, 
suar, Bank 8 Bank 1 

savar 
Spacr 

$3988 
STARP ------------
WTP 

uar Valu~s 
------------

VNTP 
var Namts -------------

Lfl1EH 
BXE Bufftr ~ $388 bytt Buffer. 

------------

BASIC XE Reference Manual 

BASIC XE Memory Map 
Low Memory- EXTENDed 

in a 138XE 

Ar-
"' "" 

Bank 2 Bank 3 

Page B-3 



BASIC XE Memory Map 
High Memory 

Appendix R 

High Memory 

The diagram on this page shows the memory conflguration from the start of 
cartrldge memory to $FFFF (the end of address space). Those areas Iabelied 
'R AS!C XE Extensions' are used by Rtl SJC XB only when you have booted uslng the 
disk extenslons. --

Rfl1 RAH 

Atari Reserved 

$F999 
Operating by 

System Atari 

$E989 
Standard Ch racter Sets 

Atar i 's BASIC XE 

Floating Pt. Extensions 

GTIA, POKEY 1 and PIA 

$0999 
International Char. Set 

$C99ß 

Atari 
BASIC XE 

Operating 
RAH 

Syshm 

Unusable 

$8999 
Atari BASIC XE BASIC XE 

BASIC Extensions Cartridge 

$A989 

Page B-4 BASIC XE Reference Manual 

Appendix C Compatablllty wlth Atarl BASIC 

Compatablllty wlth Atarl BASIC 

Generally, BASIC XB ls totally compatable wlth Atarl BASIC. Virtually all 
programs you have wrltten in Atarl BASIC will execute properly under BASIC XE. 
However, there are a few subtle dlfferences between the two B MUCs, and some of 
these can affect whether a program will Ioad and run or not. This appendix 
presents a IIst of known differences, but we can't guarantee that lt covers all the 
dltrerences. 

Variable Harnes 

When you SAVE or CSAVE a program ln Atari BASIC, and then LOAD or CLOAD it 
into BASIC XE, you will never encounter a conflict in variable nnme usage. If, 
however, you LIST a program from Atarl BASIC, and try to ENTER it into 
BASIC XE, you might discover that RA~IC XB will not accept some llnes that you 
know arelegal in A tari RA SIC. 

The reason, o! course, isthat BASIC XB has a much !arger IIst of commands than 
does Atarl BASIC, and in neither RA~JC can you start a variable name wlth a 
command name unless you precede lt with LET. To illustrate how thls can create a 
problem, consider this program Une that's valid ln Atarl 11ASJC: 

181 MUMIIER:7 

Recause NUM ls a BASIC XE statement the above line wllllook Iike 
188 Ku" ller=7 
to BASIC XE. Since your program probably doesn't have a variable named Ber, the 
expresslon Ber=7 will evaluate to zero, thus making the originalstatementturn 
into 
188 IIU" 8 
which ls certalnly ~ what you intended! 

In most cases variable name conflicts will result ln syntax errors, but in thls parti­
cular case (and a few others) the result appears valid to BASIC XE, thus creating 
posslbly disasteraus consequences. 

How can you detect and fix such prohlems? The easiest way ls to examine a 
BASIC XE LISTing of the program, and, thanks to BASIC XB's program formotter, 
the dlscrepancles will stick out. 

Remember, however, that even LET will not allow you to use functlon names as 
variable names, so you need to changevariable names that hegin wlth (or match) a 
BASIC XE !unctlon name to something eise (e.g., change BUMP to DMP or VB UMP). 

BASIC XE Re!erence Manual Page C- l 



Compatabllity with Atari BASIC Appendix C 

Programs that RUN Too Fast 

One of the reasons you bought BASIC XE in the first place was probably its speed. 
Jfowever, little did you realize that some of your BA SJC programs (most l!kely 
games) would RUN too fast! The only solution to thls is to put delays in your 
program. You can do this easily by CALL!ng a PROCEDURE that waits for some 
time, dependent upon the value you pass lt, as follows: 

1888 PI'OCI!dUI'I! "Mait" Using TiMt! 
1818 Local TI!MP 
1828 for TI!Mp:1 To TiMI!INI!Xt TI!MP 
1838 fxit 

Now, just Insert CALLS to this routine where you need to waste some time: 
188 call "Mait" using 28 

Memory Gonfilets 

BASIC XE attempts to conform to all memory location usage published in any or all 
of the following books: 

Atari BASIC Reference Manual, by Atarl, Inc. 
D e Re A tari, by Chrls Cra wford el a!ia 
Mapping the Atarl, from COMPUTE! llooks 
Master Memory Map, by Bducat!onal Software, lnc. 

A few programs written by extemely knowledgeable lndivlduals have made use of 
one or more of the followlng unpubllshed facts ab out Atarl llA SJC: 

.t) A tari R ASIC uses certaln memory Jocatlons only at certaln tim es, 
2) Certaln zero-poge Jocations have specinl meaing to Atari BASIC, and 
3) Certain subrout!nes interne! to Atari BA~JC begin at certain nddresses ln 

the cartrldge. 

Obviously, we couldn't hnve added speed and features to llASIC XB without addlng 
code and maklng more use of the memory reserved for RASIG. Although we kept 
changes to a minlmum, we can't possibly be held responsihle for confllcts created 
by programs that depend use such methods to accomplfsh their task. They were 
created speclfically for use wlth Atari BASIC, and must remain that way. 

Automatie String DIMensionlog 

BASIC XE wiJI automatically DIMension strlngs to 40 charactcrs for you, and this 
should have no effect on your Atarl llASIC programs, but, lf you rea!ly want to 
Insure total compatlblllty, use SET 11,0. 

Indented LIST!ngs 

When RA SIC XE LISTs a program lt automatically lndents control structures ( FO R, 
WHILE, etc.). This can be a problern lf you LIST an Atarl llASIC program wlth 
extemely Jong llnes and then try to ENTER lt into RA SIC XE. 'l'o solve problems 
that arlse from thls, use SET 12,0. 

Page C-2 BASIC XE Reference Manual 

Appendix D Data Space ln Extended Memory 

Data Space in Extended Memory 

When you use BASIC XE wlth an Atari 130 XB computer, there are three ways to 
use the "extra" 64K bytes of ll AM memory which this machlne gives you, Although 
you can use only ~ of these ways at a time, the flexlbllity ls nlce and may allow 
you to wrlte some interestlng programs. You should nlready be !amlllar with two 
o! these ways: 

1l You can use BASIC X'F.:'s EXTEND command to give yourself a 64K program 
workspace wlthout affectlng a data space of 301( bytes or more, or 

2) You can boot wlth a DOS that allows you to use this memory as a sup€'r-fast 
RamDisk (Atari DOS 2.5 ls a good example). 

Thls Appendix will lntroduce you to the thlrd way to use thls memory. 

I! you don't use the memory for !arge programs, and iC you don't use ft !or a 
RamDisk, then BASJC YE allows you to use 1t for your own purposes. In !act, 
BASIC XE has several statements and functlons which were deslgned to help you 
use this memory. If you will refer to the descriptlons in thls manual of the 
following commands, you will find that each allows you to spP.cify an optlonal bank 
number: 

MOVE 
BGET 
BPUT 

POKE 
DPOKE 
PF.:EK 
DPEEK 

The bank numbers that can be used wlth these commands are illustrated in 
Appendix B. Not shown in that diagram ls Bank 4, whlch ls simply the "maln" 
memory from $4000 to $7FFF. BASIC XE asslgns lt thls bank number !or your 
convenlence, but in any of these commands "Rank 4" is assumed if no banknurober 
is given. 

With the exceptlon of MOVE, all of these commands can be used easlly and safely 
to Store or retrleve data in any o! the extended memory, so long as netther 
BASIC XE nor DOSis trylng to use the memory at the same time. For example, 
you could copy a small dlsk flle by 
1) OPENing the Clle wlth lts original disk lnserted, 
?.) using BGET to read lt lnto one of the banks, 
3) CLOSEing and reOPEN!ng the flle afterinsertlog another dlsk, and 
4) uslng BPUT to wrlte the :flle from the extended bank. T! the fl!e ls Ionger than 

16K bytes, you could use 2, ='• or even all 4 banks to hold lt while waitlng !or 
the disks tobe swapped. 

Use of the MOVE Statement requlres a llttle more care, though. The bank numher 
you spect!y for a MOVE refers to both the source and destlnatlon addresses. Thus 
a command of the form --
MOve $4000,$5000,$200,3 
would move 512 ($200) bytes from location $4000 in bank 3 to location $5000 in 
bank 3. Thls is often exactly what you want and will probably make you glorlously 
happy. But conslder a command llke thls: 
MOve Adr(Goodles$),$4000 1 Len(Goodles$),2 
This ls dangeraus and probably will not work! 

BASIC XE Reference Manual Page D-1 



Data Space in Extended Memory Appendix D 

It you re!er to the memory map of Appendix B ngaln, you will note that !t is 
possible (or even probable) that BASIC XE will store your strlngs and arrays 
somewhere in the address range $4000 through $7FFF in main memory. Assume, 
!or the moment, that the strlng Goodles$ ls stored at address $6050. The above 
MOVE command would try to move bytes from location $6050 in bank l' to locatlon 
$4000 in bank 2. Almost certainly ~ what you wanted. 

How can you avoid this problem? First, always MOVE any object that ls located in 
main memory !rom $4000 to $7FFF to an Intermediate locatlon that ls outside 
those bounds. Then MOVE from the Intermediate location to the appropriate bank. 
What Intermediate areas are avallable? It you are wrlting your own program from 
scratch, then there are several good locations avallable, lf you will refer to 
Appendix B agaln. If you aren't uslng lt for any other purpose, page 6 of memory 
($600 to $6FF) ls a good spot. Note that thls Iimits your MOVEs to 256 bytes each. 
Thls may requlre a llttle work on your part, such as in thls routlne: 
910 For Loc=O To Len(X$) Step 256 
920 Move Adr(X$)+Loc,$600,256 
930 Move $600,$4000+Loc,256,3 
940 Next Loc 

(There is a fiaw in the above program: if X$ is -- !or example -- 10 characters 
long, then the first set o! MOVEs will move 246 bytes too much. I! this could 
cause a problem, your program would have to check for thls situatlon and make a 
shorter MOVE on the last section of each string.) 

The program tltled "SHOWPIC" on page D-5 shows another good locatlon to use for 
a MOVE buf!er: the graphlcs screen memory. Jn thls program, the screen memory 
is used to actually hold pictures, but there ls no reason you couldn't use excess 
memory in thls area (between A PPM 111 and IHM El\1) for any purpose you choose. 

To hE>lp get you started uslng extended memory in new ways, we bere explaln the 
"SHOWPIC" program, step by step. As lts name lmplles, lt shows plctures. In fact, 
it will show up to eight plctures in slide show fashion, and its blg feature ls the 
speed at whlch it shows them. 

To use the program, you need two or more picture files that have been saved in 
what ls known as "JIIlcro-Jllustrator" format. The flrst 76RO bytes (40 bytes per 
Une by 192 llnes) o! a flle in this format are slmply a dump of elther a 
GRAPHICS 24 (whlch ls 8+16, a full screen two color mode) or GRAPHICS :n (a 
full screen also, 15+16) screen memory. ~~ost popular drawing programs for Atarl 
8-bit computers either use this formst or provlde a means of uslng lt. For 
example, standard Koala Pad and Atarl Artistsoftware use a condensed format, 
but both allow you to produce a Jllicro-Illustrator flle by pressing 
"Control-Shift-Insert" (push the Insert key whlle holdlng down both the Contra! 
and Shift keys). Dolng this always produces a file of the name "PICTUJt E," so you 
must go to DOS and rename the flle before you save another plcture on the dlsk in 

the same way. 

Since picture flies in this !ormat are !arge, we suggest putting the program 
"SHOWPIC" on a disk wlth nothing but nos and the plctures. The picture !lies 
may use any 8-character name, but all must have the extension ".PIC" in order for 
"SHOWPIC" to find them. The paragraphs that begin on the following page explain 
the worklngs o! "SHOW PIC" in some detail, and the numbers used are those o! the 

Page D-2 BASIC XE Re!erence Manual 

Appendix D Dat a Space in Extended Memory 

lines being explained. 

180 The string File$ ls used onl y to read a Une !rom the directory. The 
string array Files$ will hold the names of up to eight !lies. 

190 As noted above, a 1\licro-Illustrator picture is simply 76RO bytes 
"dumped" from screen memory. 

200 The stetes of the Start, Select, and Option keys are found by PEEKing 
location $D01F . Jf the Start key is pressed , the least signlticant bit ($01) 
ot the location will be zero. 

240 We will read a portion o! the d irectory of the disk indrive 1. Feel !ree 
to change the drive n umber and/or the fllename extension. 

250 We will read in a maxlmum o! 8 file names. 

260,270 As we read in a filename, we check i t. I! there are !ewer tha~ R picture 
tu es on the <:lisk, we will read the llne whlch tells how many f ree sectors 
there are. If we find tha t llne, we exit from the FOR loop early. 

280,290 Because the directory Jisting !ormat does not produce standard flle 
names, we must build a proper name !or later use by OPEN. Again, you may 
change the drive number and/or fllename extension IC you wlsh. 

300,310 Regardless of how we exit the loop, we success!ully r ead in one fewer 
than the value o! the loop variable. 

320 Even when you read the directory, you ~ close the C!Je. 

360,370 We chose a full screen black and white plctur e. We also chose colors 
whlch looked good on our monitor. I! you are using color pictures, change 
to GRAPHICS 31 and use approprlate SETCOLORs. 

380,390 We will read in only as many flles as we !ound in the directory. 

400 This one statement reads in the entlre picture! Location $5!1 contalns 
address o! the beglnnlng o! screen memory (l.e., t he address o! the byte !or 
POSITION 0,0). See any good Atari memory map book. 

440 We put pictures 1 and 2 in bank 0, pictures 3 and 4 in bank I , etc. 

450,460 I! it's an odd-numbered picture, we put it in the lower half of the bank. 
Even-numbered ones go to the top of the b1mk. 

470 As explained above, this MOVE ls sa!e because screen memory is located 
above $7FFF. J! you use a program which somehow lowers HIMEM, thls 
mlght not work! 

480,490 Finishup with this flle and loop for the next one. 

500 At this polnt, all the plctures have been read in !rom disk and saved in 
varlous parts of extended memory. 

BASIC XE Re!erence Manual Page D-3 



Data Space In Extended Memory Appendix D 

530 Just lnltlallzatlon. See llnes 600 through 630. 

570 Remernher that a WHILE Joop executes so long as the expresslon 
!ollowing WHILE ls true. But a constant other than zero ls always true. So 
we Joop untll the user hits B n EA K or R F.SF.T. 

600-620 This is a llttle sneaky. Every time we get to llne 600, Pie will be equal 
to Oldpic, so the WHILE Joop wlll execute at least once. BASIC XE's 
RANDOM !unction conveniently chooses a valld plcture number. Then we 
go back up to the top o! the WHILE Joop to tlnd out if we plcked a clifferent 
picture. lf not, we try again. 

630 And this ensures that the Joop of lines 600 to 6?.0 will execute at least 
once next time. 

670-700 Does thls code Iook almost the same as that in llnes 440 to 4 70? Jt 
should. The only dlfference isthat now we are moving !rom the extended 
memory into the screen memory. 

740 As long as you hold the Start key down, RASIG XE wlllloop on this llne. 
Remember, the "&:" symbol means "blt-wlse AND," so the test here ls of a 
single bit in the console register. 

750 The end of the "forever" loop. 

Flnally, a last hint of another dlrectlon to explore. Although this program used 
BGET to move a plcture into screen memory and then MOVEd the plcture into 
extended memory, you can also use BGET to read dlrectly lnto extended memory. 
Jt won't Iook as pretty as thP. flies are belng read in, but you could remove llne 400 
and change llne 4 70 to read as follows: 
470 Bget fl,Address,Picsize,Bank 

The fast sllde show portlon of the program is unaffected, because the pictures are 
still in the memory locatlons where lt expects them. And, if you hit Rreak but 
want to contlnue the show, just type in the following llne: 
GRAPHieS 24:GOTO 500 
to use the default colors. Or add SETeOLORs before the GOTO I! you wlsh. 

Page D-4 BASIC XE Re!erence Manual 

Appendix D Data Space in Extended Memory 
SHOWPie Program 

188 
111 
121 
131 
141 
151 
J&l 
171 
181 
Ul 
288 
218 
221 
2J8 
241 
258 
268 
278 
2118 
2'8 
J81 
JJI 
J21 
JJI 
J41 
J51 
J68 
J71 
3111 
U8 
488 
.U8 
421 
431 
441 
458 
468 
478 
4118 
n8 
581 
511 
528 
538 
541 
551 
568 
571 
5118 
ne 
688 
618 
621 
6JI 
1141 
658 
668 
671 
11111 
Ul 
718 
718 
721 
7JI 
741 
751 

R~M ••••••••••••• 

·~ .. * * R~M * SHOMPIC * 
R~M * * 
ReM •••••••MMMMMM 
ReM 

SHOWPie Program 

ReM stt up bUffers, arrays, constants 

·~· Dill filessre,28J,Fil~$(28) 
Picsize=41*U2 
consoJe:$d81f:Start:$8J 
·~M 
•~• find a11 th~ pictures files 
ReM 
Open aJ,6,8,"D1:*.PIC" 
For Pic=1 ro e 
Input aJ,File$ 
If filt$(2,2J()" " Then Pop:Goto 388 

Files$(Pic;J="D1:",Fil~$(3,18J," " 
Files$ CPic Jfindffi Us$ lPiC ;J," ",8)) :" .PIC" 

Next Pie: 
Maxpic=Pic-1 
Close a1 
ReM 
RtM rtad in all the fil~s 
R~M 
Graphits 24 
setcolor 2,6,8:S~tcolor 4,6,8:S~tcolor 1,6,8 
for Pic=1 To "axpic 

Open a1,4,8,Fil~s$(Pic;J 
Bgtt a1,Dpe~k($58J,Picsiz~ 
R~ .. 
ReM ~ve pictur~ into ~xt~nd~d M~Mory 
ReM 
Bank=Int((Pic-1J/2J 
Address=$4888 
If Pic&1=8 Then lllddress=$6888 
~ve Dpeekf$511J,Addr~ss,Picsiz~,Bank 
Close a1 

llnt Pie 
ReM 
ReM now Show the pictur~s 
ReM 
OldPiC=IIPic:8 
R~M 
ReM we want to do this forever 
ReM 
Mhile 1 

ReM be sure we don•t show sa~ one 
ReM • twic~ in a row 
Mhile Pic=Oldpic 

Pic=RandoMl1,HaxpicJ 
EndWhile 
Oldpie:Pic .... 
ReM ~ve froM ext~nded Me~ry to scre~n 
ReM 
Bank=IntllPic-1)/2) 
lllddress:$4888 
If Pic&1:1 Then Address:$6888 
~vt lllddrtss,Dpeekl$58J,Picsizt,Bank 
RtM 
ReM allow user to Iook at one .... 
Nhilt PetklConsoleJ&Start:I:EndWhile 

EntiWhilt 

BASIC XE Re!erence Manual Page D-5 



Data Space in Extended Memory 
Space For Your Notes 

Space For Your Notes 

Page D-6 

Appendix ll 

BASIC XE Reterence Manual 

Appendix E Error Situations 
Numbers 1-9 

Error Situations 

Whenever something that BASIC XE wasn't expectlng happens, BASIC XF. will stop 
whatever it's dolng and give an error {unless, of course, you TRAP the error). An 
explanatory message will accompany the error number if you have booted with the 
extensions dlsk, otherwise the error number alone will be displayed. All errors 
that fnvolve IlASIC XE directly have personallzed error messages, but some 
obscure system errors simply produce the message "(See Manual)". This are errors 
Iike #173 {can't formst disk), and occur very rarely. The "(See Manual)" does not 
necessarlly mean this manual, but the manual !or the device or subsystem that 
produces the error. 

F.rror 

1 

Screen Message and Further Descriptlon 

BREAK key not TRAPped 
Whlle SET 0,1 was specltled, the uscr hit the <IlREAK> key. This 
TRAPahle error gives the IlASIC XE programmer total system control. 

2 Memory Full 
You have used all avallable memory. You can't enter any more 
statements, nor can you de!ine any more variables. 

3 Value Out o! Range 
An expression or variable evaluates to an incorrect value. For exemple, 
if a value 0-7 is required, and you use a negative number or a number 
greater than 7, an error 3 will occur {e.g., SETC. 99,0,0). 

4 Too Many Variables 
No more variables can be deflned. The maximum numbcr of variables is 
121!. 

5 Access Past String DIM 
You tried to access a character beyond the DIMensioned length of a 
string. 

6 No DATA to READ 
A READ statemfmt is executed after the last adata ltem in the last 
DATA statement has already been read. 

7 Val> 32767 
BASIC XE encountered a Jlne number !arger than ;l?.71l7. Same other 
commands (e.g., POINT) can also produce this error. 

8 INPUT/READ Type Mlsmatch 
The INPUT or READ statement did not receive the type of dnta 
{arlthmetlc or string) it expecterl. 

9 DIMenstontng 
Bither you tried to reDIMension an already DIMensioned var, or used an 
unDIMensioned variable as though it were DIMensioned. 

BASIC XE Reterence Manual Page E-1 



Error Situations 
Numbers 10 - 20 

Appendix F. 

F.rror 

10 

11 

12 

13 

15 

16 

17 

18 

19 

20 

Page E-2 

Screen Message and Further Descriptlon 

Expression too Complex 
An expression is too complex for BASIC XE to handle. The solution is to 
break the calculatlon into two or more BASIC XE Statements. 

Overflow/UnderFlow 
The floating point routines have produced a number that is either too 
!arge or too small. 

Llne Not Found 
The target lineno of a GOTO, GO SUB, or IF/THEN does not exist. 

NEXT wlthout FOR 
A NEXT avar was encountered without a corresponding FOR avar. 
Note: Improper use of POP could cause this error. 

Llne Too Long or Complex 
The progam line just entered is either Ionger or more complex than 
BASIC XE can handle. The solution is to break the line into multiple 
llnes by puttlng fewer statements on a Une, or by evaluating the 
expression in multiple statements. 

Llne Not Found 
The Une contalning a GOSUB or FOR was deleted after it was executed 
but before the RETURN or NEXT was executed. Thls can happen 1!, 
whlle running a program, a STOP is executed after the GOSUB or FOR, 
then the line contalning the statement is deleted, then you type 
CONT and the program tries to execute the RETURN or NEXT. 

RETURN wlthout GOSUB 
A RETURN was encountered when execution ls not in a GO SUB routlne. 
Note: improper use of POP could also cause this error. 

Bad Line 
You tried to RUN a program that had a llne with an already-markecl 
syntax error on lt (i.e. it has the "F.R ROR -" on it), Note: the SAVEing 
of a Une that contains a syntax error can be useful when debugglng your 
program, but don't forget to changelt before R UNnlng again. 

Nota Number 
lf the sexp in a VAL does not stnrt with n number, this message number 
is generated. For example, VAL(" A D C") would cause this error. 

Too Big to LOAD 
The program you're trying to LOAD is !arger than available memory. 
This could happen if you have used LOMEM to change the address at 
which the BASIC XE tables start, or iC you're LOAD!ng using a DOS 
different from the one used when the program was SAVEd. 

Invalid Channel # 
lt the device number given in an 1/0 Statement is greater than 7 or less 
than 0, then this error is issued. 

BASIC XE Reference Manual 

Appendix E Error Situations 
Numbers 21 - 40 

Error 

21 

22 

23 

24 

25 

26 

28 

29 

30 

32 

35 

40 

Screen Message and Further Descriptlon 

File Not LOADformat 
Thls error results if you try to LOAD a flle that was not created by 
SAVE. 

USING Strlng Too Blg 
This error occurs if the entlre formst 
PRINT USING statement is Ionger than 255 characters. 
a slngle formst !leid is Ionger than 59 characters. 

USING Value Too Blg 

string in a 
It also occurs if 

The value of an aexp in a PRINT USING statement is greater than or 
equal to 1 E+50. 

USING Type Mlsmatch 
The formst fleld in a PRINT USING Statement and the corresponding 
exp to be output using that formst are not of the same data type 
(arithmetlc or string). 

RGET DIM Mismatch 
A string being retrieved by RGET has a different DIMensloned length 
than the strlng variable to whlch it ls to be asslgned. 

RGET Type Mismatch 
The record element belng retrieved by RGET and the variable to which 
1t ls asslgned arenot of the same data type, 

Invalid Structure 
The end of a control structure like ENDIF or ENDWHILE was 
encountered wlthout a corresponding IF or WHILE. 

P/M I Out of Range 
An lllegal player/missile number. Players must be numbered from 0-3 
and misslies from 4-7. 

P/M Graphfes not Active 
You attempted to use a PMG statement before initlallzlng P/M's via 
PMG. 1 or PMG. 2. 

ENTER not TRAPped 
End of ENTER. Thls ls the error resulting from using a SET 9,1. 

Can't NUM/RENUM 
aexp1 or aexp2 in a RENUM or NUM statement evaluated to zero. 

Can't NUM/RENUM 
When RENUMbering, the maxlmum llne number (:12767) was exceeded. 

Strlng Type Mismatch 
You attempted to use an svar as an savar, or vlsa versa. 

BASIC XE Reference Manual Page E-!1 



Error Situations 
Nurobers 65- 147 

Appendix E 

Error 

65 

100 

129 

130 

131 

132 

133 

Screen Message and Further n escription 

EXTENDed Memory Not Available 
You trled to LOAD an EXTENDed program or use the 
EXTEND statement on a computer that doesn't have extended memory. 

Extensions not installed! 
You used a command avialable only if you boot with the disk extensions. 
See How to Boot BASIC XE in the introduction !or a Iist of these 
commands. 

Channel Already OPEN 
You are trying to OPEN a CJO channel that is already OPEN. 

No Devlce Handler 
CIO could not find the device you speclfled ln lts devlce table. 

Wrfte Only 
You are trying to read !rom a CIO channel that was OPENed for wr!tlng 
only. 

Bad Devlce Cmd 
The 1/0 command you issued does not exlst for the device. This can 
happen if your XIO command or OPENmode is wrong. 

Channel Not OPEN 
You tried to use a CIO channel that you haven't yet OPENed. 

135 Read Only 
You are trying to write to a CIO channel that was OPENed for readlng 
only. 

136 End-0!-File 
There is no more data in the file you are reading. 

138 Devlce Timeout 
The devlce you tried to access dld not respond wlthin its allotted time. 

139 Devlce NA K 
The device does not acknowledge. 

141 Screen Position 
You tried to access a position not ·valid in the current graphics mode. 

144 Device Done 
Elther the 1/0 operation you attempted didn't execute properly, or you 
tried to wrlte to a wrlte-protected dlsk. 

145 Invalid G R Mode 
You attempted to use a graphlcs mode that doesn't exlst. 

147 No Memory !or GR Mode 
You don't have enough room !or the graphlcs mode you specifled. 

Page E-4 BASIC XE Reference Manual 

Appendix E Error Situations 
Numbers 160 - 171 

Error 

160 

161 

162 

165 

167 

169 

170 

171 

Screen Message and Further Descrlption 

Invalid Drive # 
DOS does not recognize the drive number you gave. This can happen 1C 
you specifled an !\legal drive number or if the drive is not on. 

Too Many OPEN Files 
DOS does not have any more buffers ava!lable on which to OPEN files. 

Dlsk Full 
There is no room for more data on the disk. 

Bad File Name 
You used an !llegal disk !lle name. See your DOS manual for legal f!le 
names. 

Flle PROTECTed 
You tried to write to a PROTECTed flle. 

DIRectory Full 
The dlsk directory is full, so you can't create any new files. 

File Not Found 
DOS can't find the C!le you spec!f!ed on the disk. 

Bild Point Value 
You attempted to POINT to a non-existent place on the dlsk, or you did 
not OPEN the !lle in update mode (12). 

BASIC XE Reference Manual Page E-5 



Error Situations 
Space For Your Notes 

Page E-6 

Space For Your Notes 

Appendix E 

BASIC XE Reference Manual 

Index 

INDEX 

Underlined page numbers refer to sections where the term is defined. 

# 

96 

* 

+ 

I 

as bitwise OR 19-20, 21 
in PRINT USING formst 47, 49 
with PROCEDURE parameters 

7, 112-117 

precedlng I/0 channel 41-42 
in PRINT USING !ormat 47-49 

after svar or savar 9, 12 
in hexadeclmal constant 23 
in L VA R variableUst 37 
in PRINT USING formst 47, 49 

asbitwise EOR 19-20,21 
in PRINT USING !ormat 47, 49 

as bitwise AND 19-20, 21 
In PRINT USING format 47-49 

as multiply operator 19, 21 
in PRINT USING formet 47-48 
In fllespec string 57 

as plus operator 19-20, 21 
in PRINT USING formst 47-49 

forstring concatenation 17 
spacing in 1/0 4~ 
in PRINT USING format 47-49 

as minus operator 19-20, 21 
as unary minus 23 
in PRINT USING formet 47-50 
ln PRINT USING formet 47-49 

as divlde Operator 19, 21 
in PRINT USING formet 47, 50 

spacing in 1/0 42 
savar element 12 
with SORTUP/SORTDOWN 96, 98 

< less than operator 20,21 
<= less or equal operator 20,21 
<>not equal operator 20,21 

BASIC XE Reference Manual 

in variable assignment 16-17 
as equal operator 20,21 

> greater than operator 20,21 
>= greater or equal operator 20,21 
? as fllespec character 57 
/1. exponentiatlon operator 19, 21 

A BS - absolute value 17, 103 
adata- AT ASCII data 5 -­
A D R - address of variable 70 

with BPUT and BGET 5l 
with USR calls 118 
and SET 15,aexp 36 

Alphanumeric 5, 95 
AND -logical AND operator 19-21 
aop- arlthmetic operator 5, 19 
Arlthmetlc -

Assignment 16 
B CD Storage 23 
Constant 24, 61, 63 
Expressions 24 
Floating Point fl, 23 
Matrices 10-11 
Operators 19-20 
Variables 9 

Arrays 5 
Arithmetic 10 
String 7, 12 
DIMensiöning 13 
Assignment 16 
with RGET 53 
as PROCEDURE parameters 

113-117 
Sortlng 95-98 

ASC - A TASCII value 24, f\9 
Assignment to variables 16-17 
ATASCII 5, 29, 69, 75, 95, 9R 
ATN- Aretangent 107, 108 
Automatie DIMensioning 12, 1~ 

see also SET 
avar- Arlthmetlc variable ~ • .!!_ 

assignment 16 
ln expressions 24 
as LOCAL variable 14, 111, 

112-113, 116 



BCD 
EXTENDed mode 

BCD 
see Blnary Coded Decimal 

BGET 51 
withADR 70 
with PMADR 89 

Blnary Coded Declmal 23, 52 
Blnary operators 5, 19-20, 21 
Bitwlse operators -19-20, 21 

AND (&:) 19-20 
OR (!) 19-20 
EOR (96) 19-20 

BLOAD 54 
BPUT 51 

withADR 70 
wlth PMADR 89 

Bracketa 3 
BREAK key 4 

Trapplng 35 
BSAVE 2, 54 
BUMP 84,Ss 
BYE 39 -

CALL 2, 110-111, 117 
in TRACE mode 33 

Channel for 1/0 ~. 41-4 2 
CHR$ 69 
CLOAD 29, 30 
CLOG - baseTo logarithm 103, .!Q! 
CLOSE 

an OPEN channel 43 
done by LPRINT 45 

CLR- clear allvariables 35, 37 
cname- CALLed name 5, 117-
COLOR 79 -

reglsters 77 
values 711 
SETCOLOR relationship 79 
when PLOTtlng 80 
when fllllng 111 

Concatenatlng Strlngs 17 
Condltlonal 

Expression 20 
StatPments 60, 63-64, 65 

Constant 
see Strlng Constant 
and Arlthmetic Constant 

CONT 31, 33 67-68 
cos- coslne 107 
CP 39 
CSAVE 29, .!Q. 

Page 1-2 

DATA ~. JOO 
and SET 5,aexp 35 

Data 1/0 47 
Deferred Mode 4 
DEG 107, 10R 
DEL 2,25, 26, 32 

Index 

Derlved Trigonometrie Functlons 108 
Devlce 5, 41 

Storlng programs to 29-30 
OPEN!ng and CLOSEing 42-43 

DIM 13 
Arrays and Strlngs 10, 12, 13 
autoDIM size 36 
DIM slze and RPUT/RGET 52-53 
DIM withln PROCEDURE 1.15 

DIR 57 
Dlrect Mode 4 
Dlsk File 41 
DOS 

Dlsk Operating System 2, 41, 
51, 55, 57, 58 

command 39 
DPEEK 101,lo2 
DPOKE 101,102 
DRAWTO SO-

setting the COLOR 79 
wlth fill 81 

ELSE 64 
END 31, 93, 109, 115 
ENDIF64 
ENDWHILE 60, 62 
ENTER 29 -

to clear variable table 9 
in FASTmode 32 
SET 5,aexp 35 
SET 9,aexp 36 

ERASE 57, 58 
ERR R7, R8-
Error Handling 33, 67-118 
Error Message 35 
Execute Mode 4 
EXIT 2, ll0-111, 116 

and LOCAL 14-=15 
from a GO SUB 109 

exp 5, 20 
EXP-: exponentlal 103, 104 
Expression 5, 23-24 --

ArlthmetiC ~ 
String 24 

EXTEND 4, :12, 35, 38 
EXTENDed Mode 38;"""51, 101 

BASIC XE Reference Manual 

Index 

FAST 2,31,32 
filespec 6, 41-42 
Flll with XIO 56, 81 
Flll character -

in PRINT USING 47-48 
FIND 70 
Floating Point 6, 2:! 
FO R 26, 35-36, 59 

POP wlthln FOR Joop 62 
FRE 35, 37 
Functions 

Arlthmetlc 103, 104, 105 
Game Controller 7;1, 74 
P /M Graphfes 88, 89 
String 6 9, 70, 71, 72 
Trigonometrie 1 07, 108 

GET 45, 56 
Glossary 5-7 
GOSUB 109 

ON ••• GoSUB 65 
RENUMbering 27 
in FASTmode 32 
Jeavlng wlth POP 62 
wlth LOCAL 14-15 
EXITing il GOSUB 116 

GOTO 27, 31-~3, 61, 68 
ON ••• GOTO 65 

GRAPHICS 78, 85 
Graphics 31;-41, 51, 75, 78 

Mode 75-76, 79 -

Hexadeclmal Constant .!:!_, 36, 72 
HEX$ 72 
HITCLR 2, 88 
HSTICK 74 

IF 63-64 
Indenta tlon 2 6, 35, 36 
INPUT 24, 35, 44, 52, 56 

Custom Prompt 44 
Default Prompt 35, 44 
Reprompt 44 

INT J 03 
Integers 6, 19, 101-102 

hexadeclmal integers 23 
INVERSE 50 

LEFT$ 71 
LEN 16, 53, 69, 71 
LET 17 -
lineno 6, 29 

see äfso Line Number 

BASIC XE Reference Manual 

FAST 
Numeric Constant 

Llne Number 4, 6 
LISTrange -26, 29 
RENUMbering 27 
autoNUMber 25 
and FAST 32 
in TRACE mode 33 
error line 6 8 
with GOTO &: GO SUB 61, J 09 
with IF ••• THEN 63 
with ON 65 
withTRAP 67 
with RESTORE 100 

LIST 9, 25, 26, ?.7, 29, 32, 36 
Litera! String -

see Strlng Litera! 
LOAD 29, 30, 32 
LOCAL 2,9,14 

POPping LOCALs 62 
with GOSUB 109 
lmpllclt LOCALs lll-112 
and EXIT 116 

LOCATE 80 
LOG- naturallogarithm 104 
Logical Operator 6, 17-19, 20 
LOMEM 35, 37 -
Loops 32, 35';59, 60 
lop 6, 20, 21, 24 
LPRINT42, 45, 50 
LVAR 2, 32, 35,..:!.! 

Matrix Variable 6, 9-11 
DIMensloning l3 
assignlng 16 
as PROCEDURE parameter 97 

MID$ 71 
MISSILE 84-86, 87 
Modes -

Graphfes 78, 79 
Operating 4 
P/M Graphics 83 

MOVE 2, 89, 102 
mvar !_, 10, 2'4,53, 112 

NEW 9, 25 
NEXT sg;-62 
NORMÄL 50 
NOT 17,20,21 
NOTE 55-
NUM 4-;-"25 
Numeric Cönstant 

see Arithmetlc Constant 

Page I-3 



ON 
Statement 

ON 27, 65 
OPEN 4T, 42, 45, 56 

status of OPENed channel 55 
Operating Modes 4 
Operators 5, 6, 19 

Arithmetie -19-20 
Bitwise 19-20 
Logleal 20 
Preeedenee 21 

OR 19,.!Q_, 21 

PADDLE 73 
PEEK 89, 101, 102 
PEN 73 -
pexp 6, 112, 114, 115, 116 
PLOT-79, 80, 81 
P/M Graphfes 83-85, 90 

Conventions 84 
Flfth Player 3 6 
Modes 85 
Wraparound 86, R8 

PMADR 85,..!!,! 
PMCLR ~8 

PMCOLOR 77,86 
PMGRAPHICS ii5 
PMMOVE 83-84, 86, 88 
pmnum 7, 84, 89-
PMWIDTHS6, 87 
pname 7, 112 
POINT 55 
POKE 89, 101, 102 
POP 62, 1~116 
POSITION 80 
PRINT 35, 43, 45, 46, 50, 76 
PRINT USING 36, 46,47 
PROCEDURE 2, 14, 110-115,.!1,! 
Program 

Edlting 2 5-2 7 
Entry 25-27, 29, 35 
Exeeutlon 31-3 3 
Formatting 26, 35, 36 
Llne 4, 7 
1/0 29-30 

PROTECT 57 
PTRIG 73 
PUT 45 

RAD 107 
RANDOM 104 
READ 99-100 
relational operators .!!!_, 21, 24 
REM 27 
RENAME 58 

Page I-4 

RENUM 2,27,61 
RESTORE lOO 
RETURN 15, 62, 65, 109, 110, 
RGET 2, 44, 53 --
RIGHT$ 71 -
RND 104 
RPUT 2, 44, 52 
RUN 30, 31, ~2 
rvar 1• 112, 114, 117 

savar 7, 12 
DIMensioning 13 
assigning 1 7 
in expressions 24 
sorting 95-9R 

Index 

as parameters ll2-11:1, 116, 117 
SA VE ?.5, 30, 32 
SET -

table 35-36 
0 -<BREAK> keytrapplng 35 
1 -PRINT tabs 43 
2 -INPUT prompt ehar 35 
3 -FOR loops 59 
4 -INPUT reprompting 44 
5 -LIST format 26-27 
6 -print error m essages 35 
7 -P/M wraparound 86, 68 
8 -PHA of USR arguments 118 
9 -ENTER trapping 29 
10-5th player enable 36 
11-auto DIM 1 2-13 
12-indentation of LIST 36 
13-VAL w/ hex eonstant 72 
14-USING format overflow 47 
15-ADR w/ llteral strlng 70 

SETCOLOR 76-77, 78, 7!!-80, 84 
sexp 7, 16, 17, 23, 24" 
SGN l03 -
SIN 107 
SORTDOWN 2, 95,98 
SORTUP 2, 95, 98 
SOUND 93 -
SQR 103 
Statement 7 

Asslgnment 16-17 
Condltional 63-65 
DATA 99-100 
Data I/0 41-46,47-511 
Disk File 57-58 
Graphfes 75-R1 
Loops 59-62 
P/M Graphfes 83-91 
Program Editing 25-27 

BASIC XE Referenee Manual 

Index 

Statement (eontd.) 
Program Exeeution 31-33 
Program I/0 29-30 
Sorting 95-98 
Subroutine 109-118 

STATUS 55 
STEP 59 
STICK 73 
STOP 33, 68 
STR$ 72 
STRIG 74 
Strlng 

Array see savar 
Assignment 16-17 
AutoDIMensloning 12, 13 
AutoDIM Slze 36 
Coneatenation 17 
Constant 23, 44 
Expressions 24 
as tllespee 4 2 
Funetions 69-72 
as PROCEDURE name 110-112, 

117 
Substrings 16 
Variables 12 

svar 7, 12 
asSlgning 16-17 
ln expressions 24 
as PROCEDURE parameters 112, 

116-117 
SYS 35, 1_! 

BASIC XE Referenee Manual 

TAB 
statement 46 
funetion 46 
tab stops 35, 43 

THEN 63, 64 
TO -

wlth FOR 59 
wlth SORT 97, 98 

Statement 
XIO 

wlth CALL 111-;1"14-116, .!..!1 
wlth E XIT 116 

TRACE :n, 33 
TRACEOFF3i, 33 
TRAP 31, 35-36;44, 47,~ 

UNPROTECT 57 
USING 

wlth PRINT 47 
with CALL and PROC. 111-112, 

117 
with SORT 96, 98 

USR 36, 70, 90,.!.!:! 

VAL 36,72 
var 7 -
Variables 7, !1 

Arithmetic 9 
LOCAL variables 14-15 
Matrix 10-11 
Maximum number 9 
Names !l 
String 12 
Types of 9 

VSTICK 74, 84, 86 

W HILE 26, 36, ~ 62 

XIO 55,~, 61 

Page 1-5 




