
 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 1 / 321

$19.95 U.S.
$24.95 CAN

Clayton Walnum's

COMPLETE
Learn to program your ST in C!

A Taylor Ridge Book

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 2 / 321

C-MANSHIP COMPLETE

CLAYTON WALNUM

TAYLOR RIDGE BOOKS
MANCHESTER, CONNECTICUT

Copyright © 1990 by Clayton Walnum. All rights reserved.

Any reproduction of this work, in part or whole, mechanical or electronic, is strictly forbidden
without the written consent of the author, with the exception of brief passages to be used in a
review.

While every effort has been made to ensure the accuracy of the contents of this book, the author
and the publisher accept no liability for losses that may arise from the use of the information
contained herein. This book is sold without warranty, either express or implied. Published by Taylor
Ridge Books, P.O. Box 78, Manchester, CT 06045.

This book was produced on an Atari Mega 4 workstation, using Calamus desktop publishing software.

Designed by
Bryan Schappel

Cover designed by
Maurice Molyneaux

This material was originally published in both ANALOG Computing and ST-Log.

Printed in the United States of America.

To Lee Pappas and Michael DesChenes, for letting me through the door.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 3 / 321

THE ST PROGRAMMING MANUAL THAT TEACHES
BOTH C AND GEM PROGRAMMING TECHNIQUES.
LEARN TO:

• Program in C.
• Perform raster operations.
• Use VDI graphics primitives.
• Design and program dialogs.
• Create custom mouse forms.
• Handle multiple windows.
• Call up alert boxes.
• Write desk accessories.
• Manipulate file selectors.
• Program animation.
• Design and program menu bars.
• Write a complete GEM application.
• And much more!

For nearly four years, readers of ANALOG Computing and ST-Log looked forward to Clayton
Walnum's monthly "C-manship" column. From the basics of C, through to the creation of
sophisticated GEM application programs, Clayton Walnum lead his readers, step-by-step, through the
sometimes exasperating, sometimes exhilarating, always challenging, experience of C programming
on the Atari ST.

Now all 31 "C-manship" columns, edited and updated, have been compiled into this book. People
who followed the original series will be delighted to have all the columns organized into a single
volume, while those who missed "C-manship" the first time around now have a second chance to
learn the tricks of the professional ST programmers.

 "Clayton Walnum not only succeeds in teaching the C language, but also explains the intricacies of
GEM better than I've seen it done anywhere." ---David Plotkin

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 4 / 321

ACKNOWLEDGMENTS

Many people over the years have contributed, either knowingly or unknowingly, to this book. At the
top of the list are Lee Pappas and Michael DesChenes, who, even though I wore a suit to my
interview, hired me as a full-time staff member of A.N.A.L.O.G. Computing. I'd also like to
acknowledge the Massachusetts staff of A.N.A.L.O.G. Computing and ST-Log, particularly the
following: Diane Gaw, who told me my writing was coherent even when I swore it wasn't; Douglas
Weir, who bailed me out whenever the source code stopped making sense; Patrick Kelly, who
supplied the dirty jokes; and Charles Bachand, who was, and still is, a buddy. In addition, gratitude is
due to LFP, Inc., for rescuing a sinking ship, and to Bryan Schappel, for motivating me to publish this
book, and for doing so much of the work. Scott Whittlesey gets a thank you for blowing my mind
with a Timex/Sinclair, all those many years ago. And, as always, I'm indebted to my wife, Lynn, who
played the computer widow so well. Finally, to all the Atari computer owners who read my articles,
used my programs, and still said such nice things...hey, you're the best.

DOCUMENTATION PORTING CREDIT

The documentation has been ported to HYPertext by Lonny Pursell .

This HYPertext was created from the original Calamus *.CDK files. Unfortunately the fonts were
missing. The images are not exact since other fonts were used. He has tried to match them as close
as possible. The image of Clayton Walnum on the inside of the back cover is missing. It was not
contained in the CDK file. He suspects it was put in at the time of printing since it's a rather high
resolution black & white photo. Tools used:

• GFABASIC CDK ascii extraction
• QED text editor
• STeno reformat paragraphs
• ST-Guide testing
• HCP HYPertext compiler
• Calamus export ASCII text, print to IMG
• GEM-View crop IMG files
• Interface recreated some of the images, touched up others
• Book the actual book for comparison

Many thanks to Lonny for porting the original document as this project have taken a lot of his time.
He had to write a program to extract the text from something like 30 or so individual files, formatted
them all, fixed all the fonts that were characters (wingdats), some of the images were made by hand
because he could not get Calamus to export them correctly.

The HYPertext V0.70 (8/6/2008) has been translated to PDF by DrCoolZic (jlg). It also took me a lot of
time to translate the rather ugly HYPertext to Word and PDF!!!

http://www.bright.net/~gfabasic�

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 5 / 321

TABLE OF CONTENT

THE ST PROGRAMMING MANUAL THAT TEACHES BOTH C AND GEM PROGRAMMING
TECHNIQUES. ... 3
ACKNOWLEDGMENTS ... 4
DOCUMENTATION PORTING CREDIT ... 4
TABLE OF CONTENT .. 5
INTRODUCTION .. 12

Some History .. 12
C-Manship, the Book ... 13
Some Important Details .. 13
What about the Disks? .. 14
Let's Boogie .. 14

CHAPTER 1 - SOME BASICS .. 15
Why C? ... 15
C, Wherefore Art Thou? .. 15
Underway At Last ... 16
A Simple Program ... 16
Where's the Beef? ... 18

CHAPTER 2 - A LOOK AT STRINGS .. 22
A Look at the Program .. 22
Some Fancy Stuff .. 24
Type Conversions .. 26
Odds and Ends .. 26

CHAPTER 3 - LOOPING AND IF STATEMENTS .. 27
Onward .. 27
The Golden Moment ... 28
Back to the Program ... 28
Another Break in the Proceedings ... 31
Back To It ... 31
Take a Breath ... 32

Program Listing #1 ... 33
CHAPTER 4- FLOW OF CONTROL AND FUNCTIONS ... 36

The Game's Afoot (Without Toes) .. 36
Digging Deeper ... 38
Breathing Time ... 41

Program Listing #1 ... 41
CHAPTER 5 - STORAGE CLASSES AND ARRAYS.. 44

Game Time Again ... 44
Some Classy Information ... 45
Hip, Hip Array! .. 46
Another Dimension ... 48
Whambles For Sale ... 48

Program Listing #1 ... 49
Program Listing #2 ... 52
Program Listing #3 ... 53

CHAPTER 6 - FILE HANDLING AND CUSTOM INPUT ROUTINES .. 54
The Innards .. 54
Doing it Our Way .. 54
A Bit of Construction ... 55
Disk Files .. 56

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 6 / 321

Starting Our File ... 56
Writing Our File .. 57
Simple, but Cute ... 57

Program Listing #1 ... 57
Program Listing #2 ... 60
Program Listing #3 ... 60

CHAPTER 7 - POINTERS AND MACROS ... 63
A Point of Declaration ... 63
Putting Them to Work... 64
Incrementing and Decrementing ... 65
The Proof .. 65
A Glimpse of Macros ... 66

Program Listing #1 ... 67
Program Listing #2 ... 68

CHAPTER 8 - STRUCTURES AND MORE ON POINTERS ... 69
Filling It In .. 69
Getting It Out ... 70
Layers Upon Layers ... 70
More Layers! .. 71
An Important Point ... 71
Pointing to a Member ... 72
Functions and Structures ... 72
The Listing .. 73

Program Listing #1 ... 73
CHAPTER 9 - MORE LOOPING STRUCTURES AND FILE I/O ... 81

Unfinished Business .. 81
A Quick Look at GEM .. 81
And a Peek at VDI ... 82
Moving Along ... 82
The VDI Cursor Stuff .. 83
Printer Output .. 84
Odds and Ends .. 84
A New Loop .. 85
Break, Continue, and Goto .. 86

CHAPTER 10 - THE FIRST LOOK AT GEM AND THE VDI .. 87
A Review of GEM .. 87
Presenting the VDI .. 87
The VDI functions.. 87
The Sample Program .. 88
Let's Get Virtual .. 88
Polylines ... 88
Rounded Rectangles ... 89
Filled Rounded Rectangles .. 90
Circles .. 90
Polymarkers ... 90
Filled Rectangles ... 91
Ellipses ... 91
Arcs .. 91
Pie Slices .. 91
Fill Patterns .. 93
Use Those Tools! ... 93

Program Listing #1 ... 94

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 7 / 321

CHAPTER 11 - VDI TEXT FUNCTIONS .. 98
Who's a Dummy? .. 98
Converting Between Resolutions ... 98
Of Mice and C ... 99
Menus and Varmints with Buttons ... 100
Text Effects .. 101
Text Height .. 102
Text Rotation ... 102
Mouse Prestidigitation .. 102
Break Time .. 103

Program Listing #1 ... 103
CHAPTER 12 - ALERT BOXES AND CUSTOM MOUSE FORMS... 108

Getting to Work ... 108
A Small Matter of Incompatibility .. 108
Alert Boxes .. 109
They Don't Fit! ... 110
Custom Mice.. 110
Coding It .. 111
Mission Accomplished .. 112

Program Listing #1 ... 113
CHAPTER 13 - THE FILE SELECTOR AND RASTER OPERATIONS .. 115

Picking a File ... 115
Calling Up a File Selector .. 115
File Selector Housekeeping ... 116
Raster Operations .. 117
Filling in the Blanks .. 117
The Next Listing ... 118
The Raster Details .. 119
Off Again ... 120

Program Listing #1 ... 121
Program Listing #2 ... 122

CHAPTER 14 - OBJECT TREES AND DIALOG BOXES ... 126
The Definitions .. 126
RCP: A Mini Tutorial ... 127
Crankin' with the RCP .. 128
So How About Some Details? ... 130
Editable Text ... 131
Your First Dialog Box ... 132
Taking It Apart .. 132
The Mysterious TEDINFO .. 134
As the Fear Sets In ... 134
Breathing Time .. 134

Program Listing #1 ... 135
CHAPTER 15 - MORE ON DIALOG BOXES ... 140

The Workings .. 140
And Speaking of the Program... .. 140
Finding the Data .. 143
Dealing with TEDINFO .. 143
Releasing Resource Memory .. 145
Knowing Who Your Friends Are .. 145
Closing Up Shop ... 146

Program Listing #1 ... 147

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 8 / 321

Program Listing #2 ... 147
CHAPTER 16 - MENU BARS ... 151

Another RCP Tutorial ... 151
Steppin' Through the Menu Bar .. 151
The Program.. 152
Menu Bars in Your Program ... 153
A Nifty Message System ... 153
Enough of this Event Junk .. 155
Another Lesson Learned ... 156

Program Listing #1 ... 157
CHAPTER 17 - WINDOWS - PART 1 - DRAWING ... 160

What Are Windows Really? .. 160
The Window Demo .. 160
Drawing a Window .. 161
Handling a Window ... 163
Window Moved ... 164
Full Size or Previous Size? ... 164
Closed For Business .. 165
More to Come.. 165

Program Listing #1 ... 166
CHAPTER 18 - WINDOWS - PART 2 - SIZING .. 169

The Demo Program .. 169
Any Size You Like ... 169
Redraw Messages .. 170
Lock the Window ... 171
The Rectangle List .. 171
The Clipping Rectangle .. 172
Emptying the Rectangle List ... 172
Something of Interest .. 172
The Agenda ... 173

Program Listing #1 ... 174
CHAPTER 19 - WINDOWS - PART 3 - THE RECTANGLE LIST ... 178

Rectangles Revealed .. 178
Out of the Fog ... 182
Sidelines .. 183
Another Day, Another Dollar .. 183

Program Listing #1 ... 183
CHAPTER 20 - WINDOWS - PART 4 - SLIDERS AND ARROWS .. 188

Getting a Directory .. 188
Slipping and Sliding ... 189
Me and My Arrow.. 190
Paging All Sliders ... 191
Anywhere You Like .. 192
An Important Note .. 192

Program Listing #1 ... 192
CHAPTER 21 - D.E.G.A.S. PICTURE VIEWER ... 199

Hey! That Space is Reserved! .. 199
Putting It Back Where We Found It ... 203
Mission Complete .. 203

Program Listing #1 ... 203
CHAPTER 22 - THE INTERNAL CLOCK/CALENDAR ... 208

Computer Dating ... 209

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 9 / 321

A Bit About Bits ... 209
But What About the Date? ... 211
Some Timely Information ... 212
Setting the Time and Date ... 212
All Ashore Who's Going Ashore .. 213

Program Listing #1 ... 214
Program Listing #2 ... 220
Program Listing #3 ... 221
Program Listing #4 ... 221

CHAPTER 23 - Desk Accessories with Built-In Resource Trees .. 222
Our Resource Tree ... 222
Writing a Desk Accessory ... 224
Waiting Forever ... 225
The Desk Accessory Link ... 225

Program Listing #1 ... 227
Program Listing #2 ... 234

CHAPTER 24 - THE GRAPHICS MANAGER LIBRARY .. 235
The Sample Program ... 235
Déjà Vu ... 235
Our Program ... 236
Some Leftovers .. 237
Put on the Coffee ... 238

Program Listing #1 ... 238
CHAPTER 25 - THE MYSTERY OF COMPILE AND LINK ... 244

Stating the Obvious ... 244
Compilation ... 244
Linking .. 246
The File Types .. 246
Moving Along .. 248

CHAPTER 26 - SIMPLE ANIMATION TECHNIQUES .. 249
The Program.. 249
The First Step ... 249
Programming the Animation .. 250
The Photon .. 251
Kaboom! ... 252

Program Listing #1 ... 253
CHAPTER 27 - A COMPLETE GEM APPLICATION - PART 1 ... 260

The Listings ... 260
Getting Down To It .. 260
Function main() ... 261
Function do_mcheck() .. 261
Function get_event() .. 262
Function set_menu_entries() .. 262
Functions calc_vslid() and calc_hslid() .. 262
Function open_vwork() .. 262
Function get_date() ... 263
Final Notes .. 263

Program Listing #1 ... 263
Program Listing #2 ... 265
Program Listing #3 ... 271
Program Listing #4 ... 278

CHAPTER 28 - A COMPLETE GEM APPLICATION - PART 2 ... 279

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 10 / 321

Function handle_messages() .. 279
Function do_redraw() .. 280
Function draw_interior() .. 280
Function draw_rec() ... 281
Function set_clip() ... 281
Function updte_chk_wind() .. 281
Function prnt_chk_wnd() ... 281
Function format_date() .. 281
Function draw_buttons() .. 281
Function set_buttons() ... 282
Function button() ... 282
Function center_butstring() .. 282
Function do_full() .. 282
Time For Another Break ... 282

Program Listing #1 ... 283
CHAPTER 29 - A COMPLETE GEM APPLICATION - PART 3 ... 288

Marching Onward ... 288
Function do_menu() ... 288
Function do_wind_close() .. 288
Function handle_button() .. 289
Function do_arrow() .. 289
Function do_uppage() .. 289
Function do_dnpage() .. 289
Function do_upline() .. 289
Function do_dnline() .. 290
Function do_vslide() ... 290
Function do_hslide() .. 290
Function do_quit() ... 290
Putting It In Order .. 290

Program Listing #1 ... 291
CHAPTER 30 - A COMPLETE GEM APPLICATION - PART 4 ... 298

Compiling .. 298
Function handle_keys() .. 298
Function do_newacct() ... 299
Function check_newacct() .. 299
Function newacct_file() .. 299
Function clear_newacct() ... 300
Function get_tedinfo_str() ... 300
Function check_file() .. 300
Function no_decimal() ... 300
Function str_to_long() ... 300
Function write_new_info() ... 301
Conclusion ... 301

Program Listing #1 ... 302
CHAPTER 31 - A COMPLETE GEM APPLICATION - PART 5 ... 308

Function open_acct() ... 308
Function do_new_mnth() ... 309
Function save_month() .. 309
Function open_new_month() ... 309
Function open_month().. 309
Summing It Up ... 310
And Now, the Big Finish ... 310

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 11 / 321

Program Listing #1 ... 311
APPENDIX A - ST-CHECK ... 318

Introspection ... 318
Using ST-Check .. 318
Passing the Buck .. 318

Program Listing #1 ... 319
Program Listing #2 ... 320

Taylor Ridge Book Order Form ... 321

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 12 / 321

INTRODUCTION

This book was four years in the making.

Whew! When I read that sentence, I feel like a refugee from the Twilight Zone. Four years! If
someone back in 1986 had whispered in my ear that I would write a C programming tutorial totaling
over 80,000 words and including hundreds of K of source code, I would have asked how he had
escaped from his rubber room.

But here it is, in black and white: C-manship Complete. Where did all that time go?

Some History

I had been working as a full-time employee of A.N.A.L.O.G. 400/800 Corp. (publishers of A.N.A.L.O.G.
Computing and ST-Log magazines) for less than a year when the editors asked me to write a C
programming tutorial for the ST. Being a rookie on the staff, and anxious to write as much as
possible, I swore that they could count on me. Yes, indeed, I'd teach all those new ST owners to make
their computers perform the most amazing tricks.

But, I mumbled to myself as I slinked back to my desk, who was going to teach me?

At that time, GEM and I were not on good terms. GEM was an intimidating beast that leered from
the pages of poorly written documentation, page after page of obscure text through which I would
have to muddle if I was to fulfill the challenge that had been laid before me.

Was I nervous? You bet! Back in those early days, only high-tech wizards knew anything about
windows and dialog boxes. They locked themselves in dusty little rooms, and, shrouded in the glow
from their monitors, tapped endlessly at their keyboards, while gulping gallons of Coke and
munching bushels of Twinkies. They conversed in a secret language. Words like "workstation,"
"tedinfo," "raster," and "touchexit" fell from their lips in a stream of jargon that could bring other
professional programmers to their knees.

I was terrified.

I realized, though, that I had something to offer that none of the high-tech wizards had: a novice's
viewpoint. As I learned to tame the beast called GEM, I would stumble into all the traps, then learn to
avoid them, immediately passing on what I had learned to my readers. We would learn together, the
readers and me.

So, I set to work.

Some month's, particularly in the beginning, the job was easy: Take some notes. Write a sample
program. Compose a tutorial. Hey, this wasn't so bad, after all! But there were months when
producing a column was tougher than slogging through a room full of week-old jello. The research
crawled. The programs bombed. I'd stare, perplexed and panicked, at a line of error messages as long
as the source code for TOS, as my deadline, the demon of the magazine biz, slipped ever closer.

Nevertheless, I made every deadline. Yes, I know; there were months when "C-manship" was missing
from ST-Log, but that was always due to situations beyond my control -- having to attend a trade
show, for example. As my responsibilities grew, as I advanced from programmer to technical editor
and, eventually, to executive editor, more and more installments of "C-manship" were missed. But
never once because GEM pinned me to the mat.

What's the point? If you're willing to apply yourself, you too can learn C and GEM programming.
That's a promise. If an idiot like me can write this book, then a smart cookie like you can understand
and apply it. Really.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 13 / 321

C-Manship, the Book

By the last issue of ST-Log (December, 1989), 31 installments of "C-manship" had been published.
Each of those installments is included in this book.

Some chapters have been edited in order to bring the material up to date. For example, all the
programs will now compile with either the original Megamax C or with Laser C. In addition, errors (at
least those of which I was aware) have been corrected. Finally, in the course of editing this book, I
deleted the reader's letters that started off some of the earlier columns.

Except for the above changes, each of the "C-manship" columns is presented in this book exactly as it
was originally published in A.N.A.L.O.G. Computing and ST-Log, and in the same order. Even the
illustrations have been reproduced (and some extra ones added).

Because "C-manship" was written as a series of monthly tutorials rather than as a book, you might
find that the chapters jump erratically from one topic to another, rather than progressing smoothly
forward in text-book fashion. That's okay. This book is a series of C programming experiments, not a
C programming reference.

That's not to say that C-manship Complete can't be used as a reference. It can. By taking advantage
of the index, you should have little difficulty finding information you need. C-manship Complete,
however, is not organized as a reference book. (For a C programming reference, I recommend The C
Programming Language by Kernighan and Ritchie, published by Prentice-Hall. The manual that came
with your Laser C or Megamax C compiler makes a good GEM and TOS reference.) Even so, each
chapter builds upon the information covered in previous ones. If you read the chapters in order,
you'll always be prepared for the current topic. I promise you that, if you start with Chapter 1 and
read through to Chapter 31, studying the sample programs and doing the experiments, you will get a
good grasp of both C and GEM programming.

Some Important Details

Most of the sample programs in C-manship Complete are compatible with both Megamax C and
Laser C. If you have a different compiler, you may have to make some changes to the source code to
get it to run. However, because there are major differences between Megamax C and Laser C, most
notably the 32K segment restriction with the former, a few of the sample programs will compile only
with Laser C.

Further, although most of the sample programs will run fine on either color or monochrome systems,
a few can be run only on one or the other.

In summary, all the programs in C-manship Complete are compatible with both Megamax C and
Laser C, and with color or monochrome systems, with the following exceptions:

Chapter 10: Color suggested.
Chapter 13: Program 2, color only.
Chapter 20: Laser compatible only with header files changes.
Chapter 26: Color only.
Chapters 27-31: Laser C only.

If your system won't run all the sample programs, don't panic. Even though it's helpful to see
examples in action, each chapter covers the material completely enough (sometimes even providing
sample output) that you'll have no difficulty understanding the topic. Whether or not a program will
run on your system, however, do study the source code carefully. Moreover, if a sample program is
incompatible with your system, find the problem and correct it. Program debugging is an art that can
be learned only through application.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 14 / 321

What about the Disks?

As you know, C-manship Complete is also available in a disk version. The disks are incredibly
reasonably priced (only $10 for two single-sided disks), so I would urge anyone buying this book to
also get the disks.

But do you really need the disk version? The answer depends on your definition of "need." If you like
to type -- and then debug -- a lot of program listings, everything required for every sample program is
included in these pages. However, some of the program listings, particularly in the chapters on GEM,
are extremely long. You would save a great deal of time by having the source code on disk.

Also, in addition to all the sample programs in the book (in source and compiled form), the disk
version contains the complete MicroCheck ST home checkbook program, portions of which make up
the final five chapters of this book. The complete documentation and source code for MicroCheck ST
are also on the disk. In my humble (yeah, right) opinion, MicroCheck ST, which is a commercial-
quality application, is itself worth much more than a measly ten bucks.

Bottom line: It's up to you.

Let's Boogie

Writing C-manship has been one of the greatest challenges and pleasures of my life. I'm delighted
that I have had this opportunity to share that challenge with you and thank you for the trust you've
shown by buying this book. I hope you'll be pleased.

All set?

Then hoist the anchor, and let's set sail.

Clayton Walnum

August, 1990

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 15 / 321

CHAPTER 1 - SOME BASICS

When it comes to programming languages for the ST, we have a lot of options, including BASIC (in
many different "dialects"), LOGO, Pascal, Modula-2, assembly language and C. (There are a few
others, but they haven't received widespread use.) Each of these languages has its advantages and
disadvantages.

LOGO -- one of the languages that are packed with the ST -- is a good beginner's language, but has
many limitations and is very slow. On top of that, few people are familiar with it (which makes its
inclusion with the ST seem strange).

Another possibility is assembly language. If you happen to be familiar with the Motorola 68000's
instruction set and have the time, patience and necessary documentation to make your ST perform
its tricks, go to it! As for the rest of us? Next.

How about BASIC? This is a popular language for the ST, if for no other reason than it's an old friend.
But in considering BASIC as a programming environment, one has to ask an important question: why
are programmers of the 8-bit Atari machines, slowly but surely, abandoning BASIC and moving to
Action!? Answer: because Action! provides the convenience of a high-level language with the speed
of assembly language.

And guess what? There is just such a language available for use on the ST.

For those who haven't guessed the obvious, this language is C.

Why C?

C is a high-level language that's compiled into machine language form. This means programs can be
developed quickly and easily, but still retain the speed of machine language.

Also, C encourages the use of structured programming techniques. If that buzzword "structured"
doesn't mean anything to you now, it will when you've finished learning about C. I promise you that,
once you get accustomed to structured programming, you won't want to go back to the old
"spaghetti code" of BASIC.

Another important characteristic of C is its compactness. There are only about thirty reserved words.
This yields a language that is easy to learn, yet extremely powerful.

One of the qualities of C that has made it popular with professional software developers is its
portability. Programs can be transferred from one machine to another with a minimum of effort. This
means that, once a software package has been developed, it can be marketed for many machines
with very little extra expense.

If none of the above makes an impression, consider that a large quantity of the software that is
available for the ST was written in C. Does that tell you something?

C, Wherefore Art Thou?

I'll assume at this point that you're all hopping up and down, anxious to start your first programming
experiments with C. Unfortunately, if you go through all that packaging your computer was packed
in, you'll quickly discover that there's nothing with "C" written on the label. That's right, folks. You're
going to have to track down a copy on your own.

There are many C compilers available for your machine, but the most popular ones seem to be
Megamax C, Mark Williams C and the DRI compiler that comes with the Atari Developer's Kit. For the
purposes of this book, I've chosen the Megamax compiler (and the new version of the Megamax
compiler, Laser C). It's fast, fairly easy to use and is an excellent compiler to use for your first forays
into C programming, due to it's easy to use GEM interface. If you choose to use a compiler other than

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 16 / 321

Megamax or Laser C, you may have to make some slight changes to the programs presented in this
book in order to get the programs to run properly.

Underway At Last

Now that we've gotten all the preliminaries out of the way, let's take a look at the way C programs
are created.

C programs are written using a text editor. How sophisticated the editor is will depend upon the C
package you're using. Since C source code is really nothing more than a text file, you can use many
different word processing programs. The only restriction is that the text must be saved to disk
without the extra codes that some word processors automatically add to your files.

Once the source code has been written, it must be "compiled." How complicated this process is
depends, once again, on what software you're using. But essentially, during the compilation, the
source file is read in from the disk and translated into an "object" file. This object file is stored on
your disk in a form that your computer can understand (machine language). The object file is then
"linked" with the other object files that may be needed, and the executable file (the runnable
program) is written to your disk. Sounds easy, right? Good! Let's get on with it.

A Simple Program

Get your text editor loaded up and type in the following code exactly as it appears here (Don't type
the line numbers.):

1 #include <stdio.h>
2 main()
3 {
4 char ch;
5
6 printf("Press return\n");
7 ch = getchar();
8 }

Now compile and link the program (refer to your compiler's manual for instructions on how to do
this) and run it. What happened? Bet you made some typing errors! You'll find that the compiler is
very fussy. If you're used to programming in BASIC, you've been spoiled by getting syntax error
messages immediately upon entering a new line of code. Life isn't so simple when you're dealing
with a text editor. It will let you enter any kind of mumbo-jumbo. Your compiler, however, will do a
lot of whining if it doesn't see exactly what it expects.

So go back to your text editor (unless you managed to get the program typed right the first time),
and correct your source code; then try to compile it again. Got it?

When you run the program, the words "Press return" should be printed on your screen. Pressing
Return will bring you back to the ST's desktop. Let's take a look at the code and figure out what's
going on. I'll refer to the program lines by line numbers, even though C does not use line numbers.
(That's why there are line numbers to the left of the source code lines.)

Line 1 tells the compiler to look on your disk for a file called “STDIO.H” and insert whatever code it
contains into your program. This file is supplied with your compiler and contains input/output
information for your ST. The filename stands for STandarD Input/Output Header, and though not
every program you write will need it, it's a good idea, until you really know what you're doing, to
include it -- just in case.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 17 / 321

Line 2 is a function name. C programs are made up of one or more functions, executed in a sequence
specified by the programmer. Large programs will contain many functions, each doing a small part of
the total job. Breaking a program up into small portions makes the programmer's job easier and
results in source code that's more readable.

A function can be quickly identified by the parentheses which follow its name. In our example, the
parentheses are empty, but this won't always be the case. Sometimes we may wish to send values to
a function when we call it. These values are called "arguments," and the variables which will receive
these values are placed within the parentheses. In our case, there are no arguments being passed, so
the parentheses remain empty. If you're a bit confused, don't worry about it. We'll get into functions
in greater detail later on.

The function main() is not your everyday, garden-variety function. Every C program must contain
main(), for it's here that program execution begins.

Line 3 contains nothing but a left brace. It marks the beginning of our function. The body of every
function must begin with a left brace and end with a right brace. All the program statements that
make up the function fall in between.

Line 4 is a declaration statement. It declares a variable of the type character and gives it the name ch.
Every variable in your C program must be declared before it's used. This allows the compiler to
allocate the proper type of storage and supplies your computer with the information it needs to
interpret the data properly.

The word char is a C keyword, a word that's been set aside for specific use within the language.
Keywords may never be used for any other purpose, such as function or variable names. Here is a list
of C keywords:

C Keywords
auto Extern short
break float sizeof
Case for static
Char goto struct
continue if switch
Default int typedef
do long union
Double register unsigned
else return while

Notice, in our declaration of ch, the semicolon at the end. All program statements in C must be
followed by a semicolon. But, wait a minute! What about Lines 1 and 2? They're missing their
semicolons! Not really. The former is a compiler directive, not a program statement, so it doesn't
require a semicolon.

Function names are also excluded from the semicolon rule.

Line 6 is the equivalent of a print statement in BASIC. See the parentheses following the word
printf()? What does this tell you? If you said that it has something to do with a function, you're
absolutely correct. This line is a function call. The text inside the parentheses is the argument we
wish sent to the function.

The astute among you may now be checking the program listing for a function called printf(). Don't
bother. It's an additional C function that's added to your program when your program is linked. Your
C compiler provides many "extra" functions like printf(). Though they are not really part of the C
language, they are functions that are used a lot by programmers and so are supplied for your
convenience. Also note that printf(), being a function name, isn't a keyword.

The argument for printf() is the text you want printed, plus any format control characters you wish to
include. See the n with the backslash in front of it? This is the escape sequence that moves the cursor

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 18 / 321

to the next line. If we hadn't inserted it in our text, the next line we printed would be on the same
line as the first. There are five control characters that may be used with printf(). They are:

\n -- new line
\r -- carriage return
\t -- tab
\b -- backspace
\f -- form feed

When the compiler sees the backslash, it knows that it should interpret the next character as a
control code. (Note that, even though each control appears as two characters on your screen, they're
stored as a single character in the computer's memory.) What if you want a backslash in your text?
No problem. There are three escape sequences to let you print characters which may confuse the
compiler. They are:

\\ -- backslash
\" -- quote
\' -- single quote

See those parentheses in Line 7? That's right. We're calling another function. The function getchar()
accepts a single character from the keyboard and is one of the functions defined in the STDIO.H file.
Aren't you glad we included it? Here, we're taking the character returned by getchar() and placing it
in the variable ch.

There is, however, one complication with getchar() that I should mention here. Because the ST's
keyboard is buffered, getchar() won't return anything from the console until the return key is
pressed, and then, of course, the character it gives back to us will be Return. To get a single character
from the ST's keyboard, we have to have to resort to a call to the ST's operating system. But we'll
save that discussion for later.

Something worth noting at this point is the way the expression ch = getchar() is evaluated. The equal
sign is an assignment operator and doesn't mean "equal to." C has a separate operator, ==, for the
equal condition. The expression a = b should be read as "a gets the value of b." Contrast that with the
statement if a == b, which is read "if a equals b."

Line 8 is the right brace to mark the end of our function (and our program as well, in this case). The
program has ended, and control is returned to your ST's operating system.

Where's the Beef?

Okay, now let's look at something with a little more meat to it. Type the following code into your text
editor and compile it.

#include <stdio.h>
main()
{
 char ch;
 int num1,num2,ans;
 printf("Enter two numbers: ");
 scanf("%d %d",&num1,&num2);
 ans = num1 + num2;
 printf("\n\n");
 printf("The sum of %d & %d is %d.",num1,num2,ans);
 printf("\n\nPress return\n");
 ch = getchar();
 ch = getchar();
}

When you run this one, you'll be prompted to enter two numbers. Enter them one after the other,
separated by one space (5 10), and then press Return. Presto! Now your computer's doing first grade
math. Let's see what's going on.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 19 / 321

Lines 1 through 4 are now old hat. You should be able to figure them out with little difficulty. Line 5,
though, gives us something new to chew on. Here, we're declaring three variables of the type
integer, another of C's basic data types. C interprets an integer as any whole number from -32,768 to
32,767.

Notice I said whole number. No decimal portions are allowed.

Why are we restricted to this range? On the ST computer, an integer is stored in two bytes. That
gives us 16 bits, or a maximum value of 65,535. Unfortunately, all 16 bits aren't used to store the
value, since the most significant bit (bit 15 counting from left to right and starting with 0) holds the
number's sign. It's set when the number is negative and cleared when the number is positive. With
15 bits, the maximum value that can be represented is 32,767.

If you need to use a larger integer value, you may declare the variable as unsigned int, or the
abbreviated version, unsigned. This will free up the sign bit and allow any whole positive number up
to 65,535. If this range is still not satisfactory, use the long int (abbreviated long) data type. This
increases the length of the variable's storage to four bytes. Now you can work with numbers from
about negative two billion to positive two billion. That big enough for you? Here are some
declaration examples:

unsigned num1, num2;
long ans;
float num3;

You may declare as many variables on one line as you wish, as long as they're all the same type and
are separated by commas.

Line 6 is our old friend printf(), only this time we've left off the newline character, so that whatever
text is printed next will appear on the same line.

Line 7 introduces you to a new function, scanf(). This is an input function, and, in our case, it is
looking for two numbers separated by spaces to be input from the keyboard.

The arguments for scanf() consist of a control string and a list of pointers. The control string may
consist of white space characters (blanks, tabs, etc.) and conversion specifications. The pointers are
the addresses where you wish the data to be stored.

Okay, okay, I'll slow down. First, let's look more closely at the control string.

The control string is the portion of the function call that appears between the quotes. There are two
conversion specifications in our example, both of which tell the computer to expect the input of an
integer. Take note of the syntax.

The control string is within quotes, just like any other string, and the conversion character d is
preceded by the percent sign. Each control specification is matched with its corresponding argument.
In other words, in our example, the first %d is paired with &num1 and the second with &num2. The
ampersand (&) tells the compiler we want the address of num1 and num2, not their value. This is
important. If you leave off the ampersands (and believe me, sooner or later you will), you're
guaranteed to see those famous ST bombs appear on your screen. For instance, look at this program
fragment:
 num1 = 100;
 num2 = 150;
 scanf ("%d %d", num1, num2);

When we enter the data into scanf() in this example, the first value will be stored in memory at
address 100 decimal and the second at address 150 decimal. Ouch!

A word of warning about scanf(): Many C programmers will not use this function because it assumes
too much on the part of the person typing in the data and the person who wrote the scanf() routine.
In other words, if the data that's input to scanf() is not exactly what the function expects to see, you

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 20 / 321

may get unpredictable results. In following chapters, we'll see how to get around scanf() by writing
our own input routines.

Getting back to the program, Line 8 is where we do the calculation, which brings us to a short
discussion of data types. In C there are many different data types, including not only integer and
floating point, but also long, short, unsigned and character. Some danger lies in the fact that C allows
you to mix these data types with impunity. When you do, C will do type conversions on the numbers,
and you may not end up with what you expect.

In this example, we're adding two integers, num1 and num2, and assigning their value to a third
integer, ans. Although we're not mixing data types, we're still not out of danger. We must be sure
that the result of our calculation falls within the -32,768 to +32,767 range that we discussed earlier.

Hmmm. What happens if we try to add 1 to an integer that's already at its maximum value of 32,767?
Can you guess? You'll end up with a result of -32,768. This is called an "overflow." You get a result of -
32,768 because the integer wraps around from its highest value back to its lowest.

What will you end up with if you add 2 to an integer value of 32,767? If you guessed -32,767, you're
right!

Be forewarned: C doesn't care about overflows and will not give you an error message.

Now that we've done our calculation, we have to get the answer out to the user. We do this with our
old pal printf().

Line 9 does nothing more than leave a blank line between the earlier text and the text we'll be
printing next.

Line 10 actually prints out the final data. Take a good look at the control string. There are those
conversion specifications again, only this time we're not accepting values from the keyboard; we're
printing them to the screen. We put the conversion specification %d wherever we wish to have an
integer printed in the text.

Following the control string are the matching arguments for the conversion specifications. Each %d
pairs with an argument in the same manner as scanf(). You must be sure that the arguments match
the control string properly, or you'll get unpredictable results.

There are nine basic conversion specifications you may use. They are:
%d -- decimal integer
%f -- floating point
%e -- floating point, scientific notation
%c -- single character
%s -- string
%g -- use the shorter of %f or %e
%u -- unsigned decimal integer
%o -- unsigned octal integer
%x -- unsigned hex integer

If some of these confuse you, don't worry about it. We'll get to them in due time.

Getting back to Line 10, when the text is printed, whatever you entered as the first number (now
stored in num1) will be substituted for the first %d, the second number (num2) will replace the
second %d, and the sum (ans) will be printed in place of the last %d.

Study this use of the printf() function closely until you understand it. You'll see it a lot, and many
times it'll be much more complicated. Just remember that none of the conversion specifications are
printed literally.

Lines 11, 12, and 13 bring us back to familiar territory. But why are we using the getchar() function
twice? Remember when you entered those two numbers, then pressed Return? Well, the first
number was stored in the variable num1 and the second in num2, but the Return didn't have any

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 21 / 321

place to go, so it stayed in the keyboard buffer. When we call getchar() the first time, the Return
gladly jumps into our character variable ch, and the program goes on its merry way. If we didn't have
the second getchar(), the program wouldn't pause for our next input.

Now spend some time writing a few simple programs using what you've learned. When you feel
comfortable with the material presented here, move on to the next chapter.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 22 / 321

CHAPTER 2 - A LOOK AT STRINGS

In chapter 1, we looked at how a simple C program is constructed. Along the way, we also learned a
bit about the basic data types and got an introduction to the C functions printf(), scanf() and
getchar(). Now that we've got all that mastered, it's time to learn how to handle strings. We'll also
take a closer look at the printf() and scanf() functions.

Of course, you have a job to do first ... namely, typing and compiling the following program:
#include <stdio.h>
#define TEXT "Your full name is"

main()
{
 char ch;
 char fname [20], lname [20];

 printf("Enter your first name: ");
 scanf("%s", fname);
 printf("\n\n");
 printf("Hi, %s! Enter your last name: ",fname);
 scanf("%s", lname);
 printf("\n\n");
 printf("%s %s %s.\n\n", TEXT,fname, lname);
 ch = getchar();
 ch = getchar();
}

Got it? When you run the program, you will be prompted to enter your first name. Type in your
name, terminating the input with Return. You'll get a personal hello and be asked for your last name.
When you enter it, the program will print some important information (your name), after which it'll
wait for you to press Return to end the program. A program run will look something like this:

Enter your first name: Clay
Hi, Clay! Enter your last name: Walnum
Your full name is Clay Walnum.

A Look at the Program

Line 1 instructs the compiler to add the contents of the STDIO.H file to our program.

Line 2 introduces us to the #define statement. The format of this statement is the word #define,
followed by a symbolic name and the value we wish placed in the name. In our example, the
symbolic name TEXT will contain the string constant Your full name is.

Since C doesn't provide the programmer with a special data type for strings, they are stored as an
array of characters. The last character in this array will be the null character (zero). We don't have to
worry about supplying the null character, though. It's added automatically. Here's a graphic
representation of how the string constant TEXT looks in memory:

Y O U R N A M E I S \0

Your C compiler contains a program known as the "preprocessor." When you compile a program, the
preprocessor searches for any occurrence of items that were defined by the #define statement.
Wherever it finds a match, it replaces the symbolic name with the value the name contains. In other
words, in our program, every place the word TEXT appears, the string Your full name is will be
substituted. Notice that there's no semi-colon at the end of a #define statement. It's a compiler
directive and not subject to the semi-colon rule.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 23 / 321

Here are a few other examples of the #define:
#define ZERO 0
#define PI 3.14159
#define PLUS +

Why do we bother with the #define statement? Why not just use a regular variable? After all, aren't
the statements pi = 3.14 and #define PI 3.14 really equivalent?

No! The difference has to do with the preprocessor we discussed earlier. By using #define, your
program will actually run a bit faster than if you used a variable name. The reason is that each time a
variable is encountered in the program; its storage location must be "peeked" to get its value. This is
called "run-time substitution." With #define, the substitution is accomplished during compilation
(compile-time substitution), so that when the program is run, the values are already in place.

You're probably beginning to realize just how powerful the #define statement is. The following
program listing shows an extreme use of #define. The program hardly looks like C anymore.
#include <stdio.h>
#define START {
#define STOP }
#define INPUT scanf
#define OUTPUT printf
#define TIMES *
#define EQUALS =
#define SQUARES main()
#define WAIT ch=getchar()

int _isconio;

SQUARES
START
 int num,ans;
 char ch;

 _isconio = 1;
 OUTPUT ("Enter a number: ");
 INPUT ("%d", &num);
 OUTPUT ("\n\n");
 ans EQUALS num TIMES num;
 OUTPUT("The square of %d is %d.", num, ans);
 WAIT;
 WAIT;

STOP

Notice that the constants defined in the #define statement are written in upper case. This is standard
practice in C and makes it easy to distinguish our variables from our constants.

We can clean up the above program by putting all those #define statements in a separate file called
NEWC.H -- then we delete them from the main program and substitute the statement #include
<newc.h> in their place. When we compile the program, the contents of the file NEWC.H will be
added to the main program.

Line 4 is our function name. Remember, all C programs must contain the function main().

Line 5 marks the beginning of the function.

Line 6 declares a variable of type character.

Line 7 should look a bit strange to you. Here we're declaring two arrays of type character.
Remember, C doesn't have a data type for strings. We declare character arrays whenever we need a
string.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 24 / 321

In this example, we're declaring two character arrays, one to hold a first name and another to hold a
last name. We've set aside 20 bytes for each, which means the longest name each array can hold is
19 letters (one byte is used for the null char).

The syntax for declaring an array is the name of the array followed by the number of bytes (within
brackets) we wish reserved for it. As with any declaration, we may declare as many arrays as we like
on one line, as long as they are separated by commas. Remember, the line must end with a semi-
colon.

Line 9 brings us back to familiar territory. Here we are printing our first prompt.

Line 10 shows a new use for the scanf() function. The conversion specification %s tells scanf() to
expect the input of a string. The corresponding argument is the address where we wish the string
stored.

Notice something a bit different about this pointer? In the last chapter, when we were using this
function to get integer values, each variable name was preceded by an ampersand, telling the
compiler that we wanted the address of the variable not its value. There's no ampersand here,
though. That's because array names are pointers. The value of fname is the address of the first byte
of the array.

Line 11 prints a blank line after the first prompt.

Line 12 prints our second prompt, but with an extra something special. If you take a close look at this
line, you'll see that %s again. In the argument list, you'll also note the array fname. The %s works just
like %d except it tells printf() to substitute a string instead of an integer.

Line 13 calls scanf() again to allow input of the last name.

Line 14 prints another blank line.

Line 15 prints out our program's final message. Notice that there's no text in the control string -- only
conversion specifications and newline characters. So where's all the text coming from?

Look at the control string. The function is being instructed to print three strings, followed by two
newlines. The strings that'll be substituted for the conversion specifications are in the argument list.
The first string will be the string constant TEXT, which we defined at the beginning of the program.
The second and third strings are the first and second names we previously input with scanf().

Line 16 and 17 wait for a keypress.

Line 18 marks the end of the program.

Some Fancy Stuff

Now that we know how to use printf() and scanf() in their most basic form, it's time to take a look at
some of the tricks we can do with them.

All along, you've probably been wondering what the "f" in each of these function names stood for.
Well, your wondering is over. It stands for "formatted." Both printf() and scanf() allow us to format
input and output in various ways, as well as to do "type conversions." First, let's take a closer look at
printf().

In the last chapter I gave you a list of conversion specifications that could be used with printf() and
scanf(). The output of printf() can be edited by adding conversion specification modifiers. Here are
some examples:

%3d, %03d, %-5d, %ld, %5.3f.

The first of the specification modifiers above sets the minimum field width to 3. If the number or
string is smaller than the minimum length, the field will be padded with spaces. If the data to be
printed is larger than or equal to the minimum length, it'll be printed normally.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 25 / 321

In the second modifier the leading 0 in the conversion specification causes the field to be padded
with 0's rather than spaces. The -5 in the third causes the data to be left justified (-) in a minimum
field length of 5. The fourth tells printf() that the matching data should be interpreted as long rather
than int. The final example shows how to edit floating point numbers. Here, the data will be printed
with a minimum field length of five and with three decimal places following the whole number
portion.

The following is a program example that utilizes the above editing techniques.
#include <stdio.h>
main()
{
 int num=5555;
 char ch;

 printf (">%d<\n", num);
 printf (">%10d<\n", num);
 printf (">%010d\n", num);
 printf (">%3d<\n", num);
 printf (">%-10d<\n", num);
 printf (">%f<\n", 3.14159);
 printf (">%2.3f<\n", 3.14159);
 printf (">%10.4f<\n", 3.14159);
 printf (">%-10.4f<\n", 3.14159);
 ch = getchar();
}

When the above program is run, the output looks like this:
>5555<
> 5555<
>0000005555<
>5555<
>5555 <
>3.141590<
>3.142<
> 3.1416<
>3.1416 <

The arrows in the output mark the beginning and ending of each field. Notice that floating point
numbers are automatically rounded when we limit the size of the decimal portion. Also, take a look
at the way the variable num is defined in this listing. This form of the declaration allows you to assign
a value to the variable immediately.

The following program uses a similar technique to format strings.
#include <stdio.h>
#define TEXT "strings"
main()
{
 char ch;

 printf (">%s<\n", "strings");
 printf (">%10s<\n", TEXT);
 printf (">%-10s<\n", "strings");
 printf (">%10.5s<\n", TEXT);
 printf (">%-10.5s<\n", "strings");
 ch = getchar();
}

The output of the above program looks like this:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 26 / 321

>strings<
> strings<
>strings <
> strin<
>strin <

The formatting features work much the same way with strings as with numerical data. As a matter of
fact, the only real difference between the two is that, when we use the precision modifier (the
number after the decimal point), it refers to the number of characters we wish printed, rather than
the number of decimal places.

Type Conversions

One of C's handy -- and dangerous -- features is the ability to convert from one data type to another.
I say "dangerous" because C doesn't check for type mismatch and will allow us to do all sorts of
strange things without complaining in the least. If we're not careful, this can lead to some hard-to-
find problems.

The printf() function won't complain either, as long as we have the right number of arguments. We
can print our data out in just about any form we want. The trick is the proper use of the conversion
specifications. If we have a decimal number we'd like printed in an octal form, we just use the %o
conversion specification. We can even convert between decimal and character.

The following is an example of using printf() for type conversions.
#include <stdio.h>
main()
{
 char ch;

 printf ("Decimal: %d\n", 100);
 printf ("Hexadecimal: %x\n", 100);
 printf ("Octal: %o\n", 100);
 printf ("Character: %c\n", 100);
 ch = getchar();
}

The output of the program looks like this:
Decimal: 100
Hexadecimal: 64
Octal: 144
Character: d

Odds and Ends

In these beginning chapters, we've taken advantage of many I/O functions, such as printf() and
scanf(). These are handy for general use, but as we learn more about C -- especially about using C
with GEM -- we'll outgrow them.

You should note that the C language really doesn't support I/O routines at all. The functions we've
been using have been added for the programmer's convenience and shouldn't be considered an
integral part of the language.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 27 / 321

CHAPTER 3 - LOOPING AND IF STATEMENTS

I HOPE YOU'VE KEPT up with your studying, because in this chapter we're going to get down to
serious business. Looping structures are on our agenda, as well as more about functions. And, just so
we end up with something useful, the sample program I've chosen incorporates a function that
should prove useful in the future -- a sort routine.

Onward

It's typing time again. Type in the program shown at the end of this chapter (page 30) and compile it.

When you run the program, you'll be asked how many numbers you wish to sort. Enter a number
between 1 and 10, and then press Return. You'll be asked to enter each of the numbers. When you're
done, the numbers will be sorted in ascending order and printed to the screen. A program run looks
something like this:

How many numbers? 5
Enter number 1: 56
Enter number 2: 25
Enter number 3: 12
Enter number 4: 99
Enter number 5: 12
Sort complete!
12 12 25 56 99

Digging In

Now let's take a good look at this program's innards. Since this one's much longer than any of the
others we've done, you might want to number each line in your listing so you can follow the
explanation more easily. I include blank lines when numbering.

Lines 1 through 6 are comments. A comment starts with "/*" and ends with "*/". Everything the
compiler finds between the two is as good as invisible. Comments allow us to document our
programs within the source code itself.

Line 7 instructs the compiler to add the contents of the STDIO.H file to our program.

Line 8 instructs the compiler to add the contents of the OSBIND.H file to our program.

Line 9 defines the symbolic name MAX as 10. This is the maximum number of values to sort. Take a
quick look at the listing. MAX is referenced in three places. If we didn't use the define statement,
we'd have to substitute the number 10 for each occurrence of MAX. When we wanted a different
maximum, we'd have a lot of changes to make. The #define allows a modification by simply changing
the value assigned to MAX at the start of the program. See how handy this is? Imagine how much
time it would save you if you were working on a thousand-line program.

Line 16 is a function name.

Line 17 marks the beginning of the function.

Line 18 declares the variable num as type integer.

Line 19 declares val as an array of type integer. Because we used the symbolic name MAX to
dimension its size, this array will contain 10 elements, 0 through 9.

Line 20 declares the variable ch as type character.

Line 22 gives us something new to discuss. Here we're calling the function how_many(), Line 35, and
assigning the value it returns to the variable num. This will be the number of items we want to sort
(not to be confused with MAX, which is the maximum items). Notice that this function call has the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 28 / 321

same format as another we've used quite frequently, ch=getchar(). All function calls work the same,
whether we're calling a library routine like getchar() or our own function.

Line 23 calls another of our functions, get_nums(). Since this function doesn't return a value, we
aren't assigning its return to a variable. We simply call it by name, just like printf(). We do, however,
have to pass arguments to the function: num (the number of values we wish to sort) and val (the
beginning address of the array where we'll store the values).

Line 24 calls sort(), the function that does the sorting. This function doesn't return a value either, but
it must be passed the same arguments as get_nums().

Line 25 calls output(), the function that prints the sorted numbers to the screen. It requires the same
arguments as the two previous functions.

Line 26 waits for us to press a key. This statement probably looks pretty alien to you. I'm going to ask
you to take it on faith for now.

Line 27 marks the end of the function.

The Golden Moment

 We've now stumbled upon the perfect time to discuss structured programming techniques. Our
function main() is constructed so that anyone can easily see what's going on. Each function call
performs a logical step in the sequence of actions that must be completed in order to sort our
numbers.

This type of construction matches the way people think. When you're going to make a lunch of beans
and hot dogs, you don't consciously dwell over all the details in each step. Your thoughts would run
like this: First heat the beans, and then boil the hot dogs and put them in the buns.

But there are many details you take for granted: what about taking the pans out of the drawer and
placing them on the stove? Don't forget, you've got to open the can before you can get to the beans.
And where did the hot dogs come from? Did you open the refrigerator? Who turned on the stove?

We don't worry about these minor details, because, if we did, we'd get so confused we'd starve. A
programmer should think in this same structured way. Projects that seem impossible when we're
mired in details become a snap when viewed from a more general viewpoint.

It's this form of thinking that's the essence of structured programming. To get our sort routine
working, all we have to do is find out how many items there will be, get the items, sort them, and
then print them out. At this point, we're not concerned with how we're going to do each of these
steps. One thing at a time, slow and easy.

When we have the general logic worked out, then we can get into the details, taking each step and
writing a function to accomplish it. In large programs, this process becomes even more important.
Using structured techniques will make your job much easier and will result in very readable code.

Back to the Program

 Line 35 is a function name. This is the function called from Line 22.

Line 36 marks the start of the function.

Line 37 declares the variable n as type integer.

Line 39 sets n equal to the value of MAX+1, or, in this case, 11.

Line 40 is the start of a while loop. This type of loop will repeatedly perform a statement or series of
statements as long as the expression within the parentheses remains true. Here's another example:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 29 / 321

while (z > 2 && ch != 'e')

This line is read: while z is greater than 2 and ch doesn't equal the letter "e." C uses some unusual
character combinations for operators. The double ampersand (&&) is the equivalent to BASIC's AND.
The "!=" is the symbol for "not equal to." It's the opposite of another operator we learned a while
back, "==". Remember the difference between "==" and "="?

We're using a while loop here to insure the input of a value no larger than MAX. Looking back, Line
35 initializes n, the variable we're using in the conditional expression, to a value greater than MAX. If
we didn't do this, we might not get a chance to enter our number. Whatever garbage happened to
be in the memory location we labeled n would be used to evaluate the conditional expression. If it
was less than MAX, the loop would be skipped and whatever value n happened to contain would be
passed to the program.

If you don't initialize your variables, they'll contain whatever value happened to be in the address
they were assigned.

The brace following the while statement marks the beginning of the statements within the loop.
Whenever a loop contains more than one statement, the start and end of the loop are marked with
left and right braces, just like a function. The braces are not necessary if a loop contains only one
statement. Here's an example of a single statement while loop:

while (x < 5) x = x + 1;

Line 41 prints a prompt.

Line 42 accepts a number from the keyboard and assigns it to the integer n.

Line 43 prints a blank line.

Line 44 marks the end of the loop. At this point, the value of n is checked, and if it's greater than
MAX, the loop repeats. This will continue until the user enters a number less than MAX.

Notice the indenting of the statements that make up the loop. This isn't required, but makes our
programs much more readable, by clearly delineating the body of the loop.

Line 41 introduces us to the return statement. Whenever a return is encountered, control is passed
back to the calling function, along with the value in parentheses. The return may be anywhere within
the function. If you don't want to pass a value, delete the parentheses. In this case, we're sending the
value n back to main(), where it will be stored in the variable num.

The variable n in how_many() is a local variable. It's created when the function is called and
destroyed when control is passed back to the calling function. It has no relationship with other
variables in the program (except maybe num, which will get only its value). You could even have
another n elsewhere in your program without conflict.

Arguments in C are passed "by value" rather than "by reference." This means that only the values of
the arguments are passed, not their addresses. The original values are safe from change. If we want
to access a variable by reference, we must pass the address using a "pointer." We'll discuss pointers
a little later on.

Line 46 marks the end of the function.

Line 58 is a function name. This function is called by Line 21. Notice something a little different here?
There are two variables enclosed in the parentheses, which means two arguments are being passed
from the calling function. The argument's values will be stored in n and v and are passed between

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 30 / 321

the functions in the same order in which they appear in the function call; that is, n receives the value
of num, and v receives the value of val.

Line 59 tells get_nums() that it should interpret the data being passed into n as an integer. All
arguments within the function name's parentheses must be defined, and you must do so before the
beginning brace.

Line 60 tells the function that v is an integer array. We're not dimensioning the size of v, since it's
really the same array we dimensioned in Line 18 (val[]). How can that be? Aren't arguments in C
passed by value, not address? So how can v[] be the same array as val[]? Why am I asking all these
silly questions?

I'll tell you why. Because I'll bet you forgot that an array name without an index is an address. val is
being passed as I described previously, but its value is the address of the array's first byte. What does
this mean to us? It means that we're very definitely going to be monkeying with the contents of the
original array. It's not safely protected from our clumsy fingers like num is.

Line 61 marks the start of the function.

Line 62 declares some local variables. These variables exist only in the function. They're forgotten the
second we exit.

Line 64 gives you a look at a new looping technique. The for loop in C is very similar to the
FOR...NEXT loop in BASIC. Its syntax is the keyword for followed by three expressions within
parentheses which define the limits of the loop. The three expressions are separated by semicolons.

The first expression initializes the loop variable. In Line 56, we're setting x to 0. The second
expression is the condition that controls the loop. As long as this condition yields a true result, the
loop will continue executing. The third expression is the loop's step value or reinitialization. Line 56 in
BASIC would look like this:

FOR X=0 TO N-1 STEP 1

Of course, in BASIC we don't need the "STEP 1," since it's assumed. I just included it for purposes of
clarity.

What do you think of that ++x in Line 56? Got any ideas? This expression performs the same
calculation as x=x+1. As a matter of fact, we can use either form of the expression in C, although the
former is preferred because it's shorter. The two plus signs together form the C increment operator.
There is also a decrement operator which is, of course, made up of two minus signs. These operators
may be placed before or after the variable; however, there's a subtle difference. The expression ++x
increments x before the value is used. The expression x++ increments x after the value is used. For
example, let's say that x starts with a value of 1. Then z = ++x will set z equal to 2, whereas z = x++
will set z equal to 1.

The brace following the for statement marks the start of the loop.

Line 65 prompts the user for a number. The prompt uses the value of x to tell the user which value
he's entering.

Line 66 gets the number the user types from the keyboard and stores it in the variable num. Note
that this variable has nothing to do with the variable num declared in main().

Line 67 stores the number into the storage array's next element. In C, arrays are indexed just as in
BASIC. In our first pass through the loop, x has a value of 0. Therefore, the first element of the array
(in the context of our function, the first element is v[0], but this is really the element of our original

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 31 / 321

array, val[0]) gets the first number input. As x gets incremented, each consecutive element of the
array is filled with its appropriate value.

Line 68 moves the cursor to the next line.

Line 69 marks the end of the loop.

At this point, x is incremented, and the control statement is evaluated. If the result is true, then
another iteration of the loop is performed. This continues until the loop's condition evaluates to
false.

Line 70 passes control back to the calling function, main(). There are no parentheses in the return
statement because we aren't sending a value back.

Line 71 marks the end of the function.

Line 81 is a function name. This function is called from Line 22. The same arguments are being passed
as in our call to get_nums().

Line 82 defines the first argument as integer.

Line 83 defines the second argument as an integer array.

Line 84 marks the beginning of the function.

Line 85 defines some variables of type integer.

Line 87 initializes the variable used to evaluate the conditional expression in the following while loop.
This ensures that we enter the loop properly.

Line 88 is the beginning of our while loop.

Another Break in the Proceedings

Before we get too far into this function, I should give you a little background on the sort. We're going
to use a "bubble" sort, one of the simplest (and slowest). It works like this: We compare the first two
values in the array and switch them if they're in the wrong order. We then compare the second and
third values and switch them if necessary. We continue this process until the last value in the array
has been compared, at which point, the highest value will have been "bubbled" up to the top. We
then start all over, repeating the loop until we make it through the array without a switch.

Back To It

Line 89 marks the beginning of the body of the while loop.

Line 90 turns off the "switch" flag. If this variable retains the value of 0 through the next loop, then
the sort is complete.

Line 91 sets up a for loop; we will use the loop variable for an array index. This will move us through
the array, element by element.

Line 92 should be strangely familiar. This is C's version of the IF...THEN statement. Its construction is
very similar to its BASIC counterpart, but there are two differences. First, the expression that follows
the if is always within parentheses. Second, don't include the word "then." The body of the if
statement is constructed following the same rules that apply to loops. If you have more than one
statement, the entire block must be enclosed in braces. A single statement may be placed after the if
statement with no braces.

Our if statement compares two consecutive elements of the array that contains the values to be
sorted. If the first is larger than the second, the statements contained in the braces are executed,
switching the two array elements. If they're already in the proper order, the switching is skipped. The
next iteration of the for loop is then initiated.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 32 / 321

Line 93 marks the beginning of the body of the if statement.

Line 94 is the first step of the switch. The value in v[x] is placed in temp.

Line 95 stores array element v[x+1] into v[x].

Line 96 places temp (originally v[x]) into v[x+1], and the switch is complete.

 Line 97 sets the "switch" flag to its true condition, so the loop will be performed again.

Line 98 marks the end of the if statement.

Line 99 marks the end of the while loop.

Line 100 returns control to the calling function -- in this case, main().

Line 101 marks the end of the function.

Line 111 is a function name.

Line 112 declares the first argument passed to the function.

Line 113 declares the second argument passed to the function.

Line 114 marks the beginning of the function.

Line 115 declares the integer variable x.

Line 117 prints a message.

Line 118 initiates a loop to print the sorted array values.

Line 119 prints the array values using the loop variable as an index.

Line 120 prints a blank line.

Line 121 returns control to main(), the calling function.

Line 122 marks the end of the function.

Take a Breath

We covered a lot of material in this chapter. If you're still with me, pat yourself on the back; you've
learned most of what you need to know to write usable C programs. In the next chapter, we'll
continue studying, but we'll also have some fun.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 33 / 321

Program Listing #1
/**/
/* C-MANSHIP */
/* Chapter 3 */
/* Listing 1 */
/* Developed with Megamax C */
/**/
#include <stdio.h>
#include <osbind.h>
#define MAX 10

/***
* main ()
*
* Main program
***/
main ()
{
 int num;
 int val[MAX];
 char ch;

 num = how_many ();
 get_nums (num, val);
 sort (num, val);
 output (num, val);
 Cconin ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 34 / 321

/***
* how_many ()
*
* Retrieves from user the # of values to be
* sorted and returns that value to main ().
***/
how_many ()
{
 int n;

 n = MAX +1;
 while (n > MAX) {
 printf ("How many numbers? ");
 scanf ("%d", &n);
 printf("\n\n");
 }
 return (n);
}

/***
* get_nums ()
*
* Retrieves from user the values to be sorted
* and stores those values in the array v[].
* Input to the function is the number of values
* to be sorted and the address of the array in
* which to store the values.
***/
get_nums (n, v)
int n;
int v[];
{
 int x, num;

 for (x=0; x<n; ++x) {
 printf ("Enter number %d: ", x+1);
 scanf ("%d", &num);
 v[x] = num;
 printf ("\n");
 }
 return;
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 35 / 321

/***
* sort ()
*
* Uses a bubble sort to sort the #'s stored in
* the input array. Input to the function is the
* number of values to be sorted and the address
* of the array in which the values are stored.
***/
sort (n, v)
int n;
int v[];
{
 int swtch, x, temp;

 swtch = 1;
 while (swtch == 1)
 {
 swtch = 0;
 for (x=0; x<n-1; ++x)
 if (v[x] > v[x+1])
 {
 temp = v[x];
 v[x] = v[x+1];
 v[x+1] = temp;
 swtch = 1;
 }
 }
 return;
}

/***
* output ()
*
* Prints the sorted values to the screen. The
* input to the function is the # of values to
* print and the address of the array where the
* values are stored.
***/
output (n, v)
int n;
int v[];
{
 int x;

 printf ("Sort complete!\n\n");
 for (x=0; x<=n-1; ++x)
 printf("%d ", v[x]);
 printf("\n\n");
 return;
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 36 / 321

CHAPTER 4- FLOW OF CONTROL AND FUNCTIONS

Feeling lucky? Good. Get out all that green stuff that's been cluttering up your wallet and give Lady
Luck a wink. This chapter we're all going to learn how to play craps. (I know that was top priority on
your things-I've-got-to-do-today list.) If you haven't already done so, type in the program found at
the end of this chapter and compile it.

Now I admit that our program isn't the most stunning version of computer craps that'll cross your
eyeballs, but it's a good programming exercise and demonstrates a lot of new techniques. If you
already know the rules of craps (that's where you've been all those late nights, huh?), skip ahead to
the next section. For those who've led sheltered lives, craps is a dice game which has the dubious
reputation for making and breaking many a fortune. In our case, we'll try to leave your savings intact
-- only the rules remain the same.

Step one is to roll the dice. If on your first roll you get a seven or an eleven, you win. A two, three or
twelve, on the other hand, leaves you the loser. If you manage to avoid all lucky and unlucky
combinations, you must roll again...and continue to do so...until you either reroll your original
number (in which case you win) or you roll a seven or an eleven (in which case, you lose).

The Game's Afoot (Without Toes)

Now that you know how to play, take a moment to try the program out. Have a little fun and get a
general idea of how the program works.

Now let's take a look at the listing. You might want to number each line, so you can refer to them
more easily as we go through the program. Count blank lines too.

I don't think it's necessary to go through every line as we have in the past. You've had most of the
basics pounded into your head, right?

Let's skip up to Line 26. You've probably noticed that we usually use ch as a character variable. This
time, however, we have it declared as an int. Does that mean that we've abandoned our poor friend
ch to a new and unknown fate? No, we're still going to use it to hold character information, because
it just so happens that the only difference between a character variable and an integer is the number
of bytes they take up in memory.

You may remember that a character is stored in one byte and an integer is stored in two. For our
purposes, the two are really interchangeable. What you should be aware of is that, in C, character
variables are converted to integers for processing, and then truncated back to a single byte.

By declaring them as integers in the first place, you'll always be reminded of what's going on in your
machine's innards. And you may come across a time in your illustrious programming career where
the difference will be critical.

Now skip ahead to Line 30. This is the beginning of the main game loop. You remember the while
loop, right? The variable we're testing, play, was initialized to 1 (or true) in Line 28. As long as it
retains this value, the game loop will repeat.

Notice that we aren't using the statement while (play == 1). Any non-zero value is evaluated to true,
therefore play==1 and play are really the same expression from a Boolean point of view (when play
does indeed equal 1); they are both true. The way to test for a false condition (0) is with the not
operator: while (!play).

The game loop is another example of structured programming. Each major task of the program has
been allotted to a function. First we roll the dice; then we check to see if the player won, lost or has
to roll again. If the call to check_roll() leaves the variable win in its zero state, then the second while
loop is executed. The dice are rolled until win changes to 1 (win) or -1 (lose).

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 37 / 321

The variable win is then tested in an if statement, and the appropriate message is relayed to the
player. The percentage of games won is calculated, and the player is asked if he wishes to play again.
If he answers with a Y, then play remains true and the game loop repeats. Otherwise, play becomes
false, and the program terminates, returning you to the desktop.

Now the details, starting with Line 30. Here we initiate the main loop. As long as the expression in
parentheses is true, the loop will repeat. Since we initialized play to 1, we enter the loop. The first
thing we have to do in the loop is initialize a couple more variables. This is important, since the
values of first and roll are passed to the function that "rolls" our dice.

The variable first is used as a flag to indicate whether it's the player's first roll. What roll we're on is
important. For example, a seven on the first roll is a winner, but a seven on the second roll is a loser.
The variable roll will hold the value of the current roll (except the first one). Line 33 calls the function
roll_dice(), and the value returned is placed in first_roll.

Line 34 calls check_roll() and stores its return value in win. To evaluate the player's roll, check_roll()
needs some information; so we're passing the values of first, first_roll and roll to the function.

Line 35 sets the flag first to its false condition. If the player neither won nor lost with his first roll, the
value of win will still be 0, and the second while loop, which begins on Line 39, will be performed.

See the win==0? Why didn't we use the while (!win) construction mentioned previously? There's
really no reason, as far as the program goes. I used the former construction to make the program
more readable. Using !win might make someone looking at the source code think that if win was 0
the player lost. This isn't true. A value of 0 means that the player hasn't won -- and he hasn't lost
either. It's a neutral state. If you want to use !win, go right ahead. It'll work just fine.

Line 37 calls roll_dice() a second time. This time the variable roll is where its return value is stored.
We need this second variable, since we need to compare the first roll with all subsequent rolls.

Line 38 calls check_roll() again. If the value of win remains 0, meaning the player still hasn't either
won or lost -- the loop repeats. Once the player has managed to make his roll -- or has blown it, with
a seven or eleven -- we exit the loop.

Line 40 increments the game counter, num_games. We'll use this value to calculate the percentage
of games won.

Lines 41 through 45 make up an if statement. It uses the value contained in win to determine the
appropriate message to give to the player, as well as keep track of the number of wins. If win is -1,
the player has lost, and the program prints "You lose" -- deep, huh? If win equals 1, the player has
won the game, and a statement of equal profundity is printed. Also, the counter num_win is
incremented, keeping track of the number of games our lucky player has managed to win.

We're also calling a new library function here, puts(). This function prints the string argument
contained in the parentheses. The main difference between puts() and printf() is that the former has
no formatting options.

In the previous chapter we just touched on the format of the if statement. Now we're going to look
at some more complex examples. The if statement starting on Line 41 is a slight variation of the one
we saw before. The difference is the addition of the else portion.

Thinking back, you'll remember that the body of an if statement is performed only when the
expression in the parentheses is true. When we add the else, the rules change just a bit. We now
have a kind of "either/or" condition. If the expression being tested is true, the statements following
the if and preceding the else will be performed. If the expression tested is false, the statements
associated with the else are performed.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 38 / 321

The syntax rules for the else portion of the statement are the same as for the if. If the body of the
else portion consists of more than one statement, we must enclose them in brackets, and --
remember -- each statement must end with a semicolon.

Line 46 calls the function percent(), which prints out the percentage of games won.

Line 47 calls the function play_again() to find out whether the player wishes to continue or quit.

Digging Deeper

Now that we've taken a look at the general scheme of things, we can get into the details of each
function.

The function roll_dice() does exactly as its name implies. The first thing you should take note of is the
way this function is declared. There's something extra here. See what it is? Up till now, our functions
have been declared simply by the function name. Now the key word int has been added in front of
the name. This specifies that the value to be returned by the function will be an integer. We could
have left the int off, since the default is always integer.

But if we want to return some other data type from a function, we must declare the function at the
top of our program, as well as add the data type specification to the function name itself. For
instance, if we wanted to return a character from a function named ret_char(), we would first declare
the function name, with it's data type, at the top of our program like this:

char ret_char();

Then the beginning of the function itself might look like this:
char ret_char(l, b)
int l, b;

The variables l and b are the values being passed to the function and are included here only to
differentiate between the two examples.

Lines 60 through 66 declare some local variables, print a prompt and wait for Return to be pressed.

Line 67 gets a random number and places it in d1. Random() is a function specific to the ST and is an
extension of the BIOS (Basic Input/Output System). It returns a 24-bit random number. In our case,
we need an integer. Take a good look at Line 74. See the int in parentheses? This is a "cast" operator.
What we're doing is forcing the return of Random() into a 16-bit integer, rather than doing it
implicitly through automatic conversion (just leaving the cast operator out). In this particular case,
the statement would have worked either way, but sometimes the difference can be critical. Look at
these two code segments:

int i;
i = 3.4 + 7.8;

int i;
i = (int) 3.4 + (int) 7.8;

In the first example, the addition is performed, yielding a result of 11.2. Then, since the variable i is
defined as an integer, the conversion from float to int is done automatically by truncation, making i
equal to 11. In the second example, 3.4 and 7.8 are converted to integers before the addition is
performed. This yields a result of 10. Not quite the same answer.

Line 68 takes the value in d1 and converts it to a positive number between 1 and 6, using modulo
arithmetic and the absolute value function. The abs() function is defined in the STDIO.H file. It looks
and works exactly as in BASIC, returning the absolute value of a single argument.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 39 / 321

The percent sign is the modulus operator. It is used only in integer arithmetic and yields the
remainder when the number on the left is divided by the number on the right. For example, the
expression 6 % 4 gives a result of 2.

So, in Line 68, we're taking the absolute value of d1 (in case we got a negative number from
Random()), dividing it by 6, then adding 1 to the remainder. Using 6 in the modulo math assures us
we'll always get a remainder less than six (zero through five, to be exact). Adding one gives us our roll
of the die (one through six).

Lines 69 and 70 get a value for the second die in the same manner. The function then prints out the
value of each die, as well as the total. The total, t, is then passed back to main().

Line 89 declares the function check_roll() as returning an integer. Three values are being passed to
the function. Notice that the variables being passed (Line 34) and the variables accepting the values
have the same names. This is purely for reasons of clarity. They're still completely separate identities.

Now look at the body of the function. This is surely the most complex piece of code we've tackled
yet. Basically, the whole thing is an if statement, but with layer upon layer. This function will give you
great insight into the problems inherent in nested if statements.

Before we get too far into this function, I should introduce you to the else if construction. I
mentioned previously that, with the if...else statement, we have an either/or situation. The else if
takes this one step further, and allows us to add a test to the else portion of the statement. Look at
this example:

if (exp1) statement1;
else if (expr2) statement2;
else statement3;

If exp1 is true, statement1 will be executed and the elses ignored. If exp1 is false, exp2 is tested. If
we get a true result, statement2 is executed and the final else is ignored. Finally, if both exp1 and
exp2 are false, statement3 is executed.

In check_roll(), we're using the flag first to decide which set of "rules" apply to the player's roll. If it's
his first roll, first will be equal to 1, and we'll evaluate the second if statement, which checks to see
whether the roll was a seven or an eleven. If it was, the player wins. The flag wn is set to 1, and the
program continues at Line 103.

See those vertical bars in the middle of Line 96? That's the logical OR operator. Line 96 reads: if
first_roll equals seven or first_roll equals eleven. The logical OR operator yields a true result if one or
more of the expressions are true. Here are a couple of examples: If we assume that a equals 1, b
equals 2, and c equals 3, the following expressions evaluate as shown:

a==1 || b==6 TRUE
a==4 || b==2 TRUE
a==1 || b==2 TRUE
a==2 || b==5 FALSE
a==3 || b==3 || c==3 TRUE
a==1 || b==5 || c==3 TRUE
a==2 || b==3 || c==4 FALSE

Continuing with check_roll(), if the roll wasn't a seven or eleven, we evaluate the else if portion of
the statement. Here we check for a two, three or twelve. If we find one of these values, the player
loses. The flag wn is set to -1, and, as in the first case, program execution continues at Line 103. If

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 40 / 321

neither of the previous conditions are true, wn retains its initialized value of 0 (Line 94), and once
again, the program continues at Line 103, which returns the value of the flag to main().

Whew! All that's only if the player's on his first roll. If first is 0, program execution jumps to the else if
statement on Line 101.

Before we continue, I'd like to see if I can help you avoid a good deal of teeth-gnashing and hair-
pulling in your future C programming. Look at those brackets on Lines 95 and 100. They're absolutely
essential with nested if statements containing else constructions. Without those brackets the
compiler

has no way of knowing that the last two else if statements go with the outer if and not the inner.
Keep in mind that the indenting is only cosmetic; it means absolutely nothing to the compiler. This is
an easy trap to fall into, since the indenting makes everything so clear to the programmer. Just
remember -- use brackets.

Now let's take the second possible path in this function. If first is 0, all the stuff between the brackets
is skipped, and we continue at Line 101. This line checks to see whether the player's roll was equal to
his first. If it was, wn is set to 1 (win), and its value is returned to main() at Line 103.

If the first condition isn't true, we drop down to test the second. Line 102 checks for a roll of seven or
eleven. If it evaluates to true, wn is set to -1 (lose), and its value is returned at Line 103.

If none of the above conditions are met, the only thing that happens in this function is that wn is set
to 0 (Line 94) and its value is returned to main() (Line 103). The player has neither won nor lost and
must roll again. This process repeats until wn -- and, subsequently, win -- gets a non-zero value.

Moving on, Line 112 begins the function percent(). The word VOID in front of the function name
indicates to the programmer that the function doesn't return a value. Like the int in some of the
previous functions, it could've been left off. VOID is really just an empty comment. In other words,
even though we've labeled percent() as VOID, it's still capable of returning an integer value. We're
writing it this way for the sake of clarity only.

This function does nothing more than calculate the percentage of games won and print the result out
to the player. A few things should be said about Line 117, though.

First of all, in case it isn't obvious, the "/" (not to be confused with the backslash) is the division
operator. The value on the left of the operator is divided by the value on the right. You'll notice that
the integer variables num_win and num_games are being cast to floating point. This is critical in this
calculation.

When we divide integers in C, we get an integer result; the decimal portion is truncated. If we allow
this to happen with our percent calculation, we'll get two possible results, only one of which will be
accurate. If we've won every game, num_win/num_games will give us 1, which multiplied times 100
equals 100%. Fine and dandy. But what happens if we've only won one game out of two? In integer
division, num_win/num_games will give a result less than 1. When the decimal portion is truncated,
we'll end up with 0. And what's 0 times 100? It's certainly not 50%, the result we want.

Okay, we're almost done. Just one more function to look at. The function play_again() is responsible
for finding out if the player wants to play another game. There's really nothing very new here.
Something that we had a brief encounter with was the way we're using getchar() in Line 133. We
could rewrite this line as follows:

ch = getchar();
if (ch == 'Y' || ch == 'y');

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 41 / 321

One of the neat things about C is the way we can cram a lot of stuff on one line. Here, getchar() is
called, and its returned value is stored in ch and compared to the character "Y." The variable ch is
also compared to the character "y." If either of these compares finds a match, the flag p is set to true
and returned to main(), to be evaluated at Line 47. This way, the game repeats until the call to
play_again() results in a 0.

Breathing Time

That's it -- class dismissed. If any of the program is still fuzzy to you, study up on it, especially the
function check_roll(). When you feel you've got it all down pat, try your hand at writing a simple
game. How about that classic guess the number game? It should be fairly easy to write. Have the
computer pick a random number between 1 and 100. As the player tries to guess the number, have
the computer tell him whether he's too high or too low. When you've got the program working,
follow me over to the next chapter.

Program Listing #1
/***
* C-MANSHIP *
* Chapter 4 *
* Listing 1 *
* Developed with Megamax C *
***/

#include <stdio.h>
#include <osbind.h>
#define VOID /**/

/***
* main ()
*
* Main Program
***/
main()
{
 int first_roll, /* Value of player's first roll. */
 win, /* Win, loss or no change flag. */
 roll, /* Value of player's rolls. */
 play, /* Game play continue flag. */
 first; /* First roll flag. */
 int num_win = 0; /* Number of games won. */
 int num_games = 0; /* Number of games played. */
 int ch; /* Single character storage. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 42 / 321

 play = 1;
 win = 0;
 while (play) {
 first = 1;
 roll = 0;
 first_roll = roll_dice();
 win = check_roll (first, first_roll, roll);
 first = 0;
 while (win == 0) {
 roll = roll_dice();
 win = check_roll (first, first_roll, roll);
 }
 ++num_games;
 if (win == -1) puts("You lose. ");
 else {
 ++num_win;
 puts("You win! ");
 }
 percent(num_games, num_win);
 play = play_again();
 }
}

/***
* roll_dice ()
*
* Retrieves a random number from 1 to 6 for each die
* and calculates the total, reporting the sum to
* the player.
***/
int roll_dice()
{
 int d1, /* Value of die 1. */
 d2, /* Value of die 2. */
 t; /* Total of dice. */
 int ch; /* Character storage. */

 puts ("Press RETURN to roll:\n");
 ch = getchar();
 d1 = (int) Random();
 d1 = abs(d1) % 6 + 1;
 d2 = (int) Random();
 d2 = abs(d2) % 6 + 1;
 printf ("Die #1: %d ", d1);
 printf ("Die #2: %d\n\n", d2);
 t = d1 + d2;
 printf ("Your roll: %d\n\n", t);
 return (t);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 43 / 321

/***
* check_roll ()
*
* Checks to see whether the player has won, lost or
* must roll again. The input is a flag indicating
* whether this is the first roll of the game, the
* value of the first roll, and the value of the
* current roll if it applies. The output is a -1
* for a lose condition, 1 for a win condition, and
* a zero if the player must roll again.
***/
int check_roll(first, first_roll, roll)
int first, first_roll, roll;
{
 int wn;

 wn = 0;
 if (first == 1) {
 if (first_roll == 7 || first_roll == 11) wn = 1;
 else if (first_roll == 2 ||
 first_roll == 3 ||
 first_roll == 12) wn = -1;
 }
 else if (first_roll == roll) wn = 1;
 else if (roll == 7 || roll == 11) wn = -1;
 return (wn);
}

/**
* percent ()
*
* Calculates & reports the percentage of games won. The
* input is the # of games played & the # of games won.
**/
VOID percent (num_games, num_win)
int num_games, num_win;
{
 float pc;

 pc = ((float) num_win / (float) num_games) * 100.0;
 printf ("You've won %d %% of the games\n", (int) pc);
}

/***
* play_again ()
*
* Asks the player if he wants to play again, & returns
* a boolean value based on his answer: yes=1 and no=0.
***/
int play_again ()
{
 int p;
 int ch;

 puts ("Play again? ");
 if ((ch = getchar()) == 'Y' || ch == 'y') p = 1;
 else p = 0;
 puts ("\n\n");
 return(p);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 44 / 321

CHAPTER 5 - STORAGE CLASSES AND ARRAYS

Okay, Pass Your Homework to the front of the class. What was that? Did I hear someone in the back
say, "What homework?"

For those who need their memories refreshed, in the previous chapter I suggested that you try
writing a C version of a simple number-guessing game. You were to have the computer pick a
number from 1 to 100; then allow a player to enter guesses. With each guess, the player was to
receive a clue as to whether he was too high or too low.

My solution for this project is found in Listing 1. Does your program look something like this? Maybe,
maybe not. At this early point in your C career, I think the following qualities are most important.

First of all, does your program work? If you can give me an affirmative, you've earned 70 points. At
this stage of the game, getting programs up and running is a very large part of the battle.

Now, did you use a structured approach? Does the function main() concern itself with the major
steps of the game, allotting details to other functions? If so, give yourself 20 more points. When you
become more familiar with C, this area will be more pointworthy. In fact, eventually, an unstructured
program will be an automatic zero. Strict, huh?

Finally, how readable is your code? Have you used indentation? Are there blank lines between each
function? Did you use meaningful and descriptive names for your functions and variables? Are there
enough comments? Do the comments adequately describe the purpose of the function? Another 10
points to those who've added these touches of elegance.

Game Time Again

Now that you've tallied up your homework score, type in Listing 1 and compile it. To play the game,
run the program and follow the prompts. Everything work okay? Let's examine this program in detail.

main() is written in a manner that makes the program's general operation quite apparent. The details
are taken care of in other functions. Put simply, the program is structured.

We start off by initializing the flag play to TRUE. This will get us into the while loop at Line 23. As long
as play is true, this loop will repeat, allowing the user to play as many games as he wants without
rerunning the program each time.

Once in the loop, we must initialize some variables. The counter turns tallies the player's guesses.
The flag win tells main() when the player has made a correct guess.

After initializing the variables, we call the function getnum(), which returns a random number
between 1 and 100. Next, since we had the forethought to initialize win to FALSE, we enter the while
loop at Line 27. This loop will repeat until win becomes TRUE, keeping the player guessing until he
comes up with the right number.

In the body of the loop, we increment the turn counter, get the player's guess and check if he's right.
If he's not, win remains FALSE and the loop repeats. If the number has been guessed correctly,
program execution drops through to Line 32, where the player is told how many guesses were made.

Line 33 calls play_again() to see whether the player wants to continue. If so, the flag play remains
TRUE, and the outer while loop repeats. When play becomes FALSE, the program ends, and the user
is returned to the Desktop.

Easy, right? You should've followed all of the above explanation with little difficulty.

The other functions are just as simple. The function get_num() uses the same method we
incorporated last chapter in our dice game to get a random number. The only difference is that now
we're getting a number between 1 and 100 rather than one between 1 and 6.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 45 / 321

The function get_guess() incorporates a while loop, forcing the player to enter a number within the
proper range. The loop will repeat until the gamester bends to our will.

The function check_guess() checks whether the player's guess was too high, too low or right on the
money, and then prints the appropriate message. If the player has guessed right, then wn is set to
TRUE (and thus win becomes TRUE, too), and the game is over.

Finally, the function play_again() asks whether the player wants another whack at it. Once again, we
use a while loop to guarantee a proper response.

Some Classy Information

Before we take a look at the next two listings, we need to discuss a fun topic called "Storage Classes."
All the variables you define in your C programs have a storage class, whether you're aware of it or
not. In our previous program examples, the storage classes were set automatically. We didn't have to
concern ourselves with the details. That's all fine and dandy for a beginner, but sooner or later we're
going to have to know how our variables are treated by the system.

There are four C keywords that refer to the storage classes. They are: extern, auto, static and
register.

The keyword extern stands for external. Any variable that's not defined within a function, one that is
external to the function, falls into this class. Both Listing 1 and Listing 2 contain examples. Notice the
arrays week[] and weeks[].

Unlike local variables that disappear once we're through with them, external variables may be
accessed anywhere within your program. The only rule to remember is that, if their declaration
appears in another file or after a function that refers to them, they must be declared as external in
the function where they're used. Here's a declaration example:

extern int numbers;

Automatic (or auto) variables are those declared within a function. They remain healthy and happy as
long as we stay within the function where they were declared. The moment we exit, they vanish into
that great CPU in the sky. It's not necessary to declare these variables by their storage class (we
never have, right?)--but, if you wanted to, this is what the declaration would look like:

auto int number;

Variables of the class static are similar to automatic variables, except their values aren't forgotten
when the function is exited. Don't try to access them in other parts of your program, though; they're
still strangers there. Look at this code fragment:

main()
{
 for (x = 0; x < 5; ++x) counter();
}

counter()
{
 static int count = 1;

 printf("%d", ++count);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 46 / 321

The output from this example would be:

2 3 4 5 6

Each time we call counter(), the variable count is incremented and printed out. If we hadn't declared
count as a static variable, the output would have been a string of twos. Do you see why? When a
static variable is initialized as we did in counter(), it receives its initial value the first time we call the
function. Thereafter, the declaration and initialization is ignored. This is only logical, since what good
would a static variable be if it was reinitialized each time we called the function?

By not declaring count as static, by default, it becomes automatic. Each time we call the function, it
gets set to 1, and then it's incremented and printed. This gives us that string of twos.

One last note on static variables. An interesting variation of this class can be created by defining it
outside any function. This type of variable is called external static. This class varies from regular
external variables, in that it can be accessed only within the file where it appears and only in
functions following its declaration.

The last class we need to discuss are register variables. They're defined

like this:

register int number;

When we declare a register variable, we're requesting that the value be stored in one of the the
computers registers where processing is much quicker. Notice I used the word requesting. If there's
no register free in which to store our variable, it becomes an automatic variable.

Hip, Hip Array!

We took a brief look at arrays when we wrote our sort program a couple of chapters ago. Now we're
going to dig a little deeper.

First, let's tackle Listing 2. Suppose you're selling a peculiar product called a whamble (a what?) in
your small business. At the end of the week, you want to write a quick and dirty program that'll print
the number of units sold that week. Listing 2 is just such a program. When you run it, your output
should look like this:

Sales for day 1: 5
Sales for day 2: 7
Sales for day 3: 2
Sales for day 4: 10
Sales for day 5: 7
Sales for day 6: 1
Sales for day 7: 6
Total sales: 38

The first thing we must do in this program is initialize an array. In our sorting program, we didn't
worry about that. All we did was declare the array, and then fill it, later in the program, with the
numbers the user input. Sometimes, though, you'll need to have the array data stored and ready to
process at run time. Line 7 of Listing 2 shows you how to do this.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 47 / 321

To initialize an array as part of its declaration, the array name is followed by an equal sign, which, in
turn, is followed by the elements of the array, separated by commas and placed betweenbrackets.
Here are some more examples:

int numbers[] = { 1, 2, 4 };
int numbers[3] = { 1, 2, 4 };
float numbers[] = { 1.1, 2.2, 4.4 };

The first is just like the declaration on Line 7, and the second example is, in this case, functionally the
same as the first. However, it does present potential difficulties and can create some hard to locate
errors.

For instance, in the first example the compiler automatically makes the array size the same as the
number of values that follow. In the second example we're telling the compiler that, no matter what,
we want a three-element array.

Here's an odd one:

int numbers[4] = { 1, 2 };

What do you suppose happens here? Well, the compiler sets aside an array containing four
elements, then looks to see what we've got between the brackets. The first value goes into the first
element, the second into the second. After that, if it's an external or static array, the remaining
elements are set to 0. Otherwise, whatever garbage happens to be in those locations stays there.
Trouble, for sure.

Here's another problem maker:

int numbers[2] = { 1, 2, 4 };

There's no way you're going to get away with this. Your compiler is sure to present you with some
snide comments on your programming skills -- and they'll be well deserved. You can't get three data
items into a two-element array.

Continuing with Listing 2, after we've initialized our array, the program uses a for loop to access each
element, add it to the total and print it out. Except for a little nuance with the way we've initialized
the for loop, you've seen all this before. Just remember that an array starts at element 0.

Now, how about that nuance I mentioned? Look at Line 14. I hope you remember about for loops.
The first expression in the parentheses is the initialization, the second is the loop control, and the
third is the loop's step value.

In this example, we've taken the opportunity to initialize not only the loop variable, but the
accumulator total as well. This is a handy way to set variables used within a loop to their starting
values.

Line 15 offers a new assignment operator for your inspection, one that's quite similar to the
increment and decrement operators. Line 15 does the same work as this line of code:

total = total + week[i];

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 48 / 321

The right side of the expression is added to the left.

Another Dimension

C is also capable of handling multi-dimensional arrays. You can think of these as arrays of arrays.
Listing 3 illustrates how to handle them.

The declaration is similar to that of a one-dimensional array, except we've added another set of
brackets to tell the compiler how we would like the array set up. Look at Line 8. Here we're declaring
an array with two sets of seven elements. You can think of this as a matrix with two rows and seven
columns.

When we initialize the array, each row of data is placed within its own set of braces. The rows, just
like the data within, are separated by a comma. Finally, the entire array is enclosed with another set
of braces. This tells the compiler how we want each element placed. Take a look at this:

int a[2][3] = { { 1, 2 }, { 3, 4, 5 } } ;

Here, we've declared an array which contains two arrays of three elements each. But wait a minute!
In our initialization, we're missing a data element for the first subarray. How's this going to work out?
Is the first element of the second row going to end up as the third element in the first?

Nope. The 1 will be placed in the first element of the first row. The 2 will go in the second. The third
element of the first row will be initialized to 0. (Remember that rule about external data?) The
second row will be initialized just the way we want it. No mix-ups.

To tell you the truth, you don't need all those extra braces. We could've initialized weeks[][] by
placing all the data between one set of brackets, like this:

{ 3,6,7,4,3,8,9,5,3,7,9,3,2,6 }

The array will still function properly, but it's much harder to see how the data's divided up -- and
we've left ourselves open for possible errors. If we should accidentally (or deliberately, if you happen
to enjoy that sort of thing) leave out one of the data elements, the compiler will no longer sort it out
for us, making sure everything gets into its proper location. It'll assign each element consecutively
until it runs out of data, and then initialize the rest to 0. Our program is then sure to act peculiarly.
This type of error can be extremely difficult to locate.

Whambles For Sale

Okay, enough talk. Compile Listing 3. A program run looks like this:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 49 / 321

Sales for day 1: 3
Sales for day 2: 6
Sales for day 3: 7
Sales for day 4: 4
Sales for day 5: 3
Sales for day 6: 8
Sales for day 7: 9
Total sales: 40
Sales for day 1: 5
Sales for day 2: 3
Sales for day 3: 7
Sales for day 4: 9
Sales for day 5: 3
Sales for day 6: 2
Sales for day 7: 6
Total sales: 35
Total sales for month: 75

Two weeks; what a short month. Yes, I know there are usually four weeks in a month. The output
was limited, to fit the screen.

This program is an example of indexing a two-dimensional array. Lines 17 and 18 set up nested for
loops. The outer loop handles the indexing of the weeks; the inner loop indexes days.

The day loop is performed seven times for each iteration of the week loop. Line 19 shows how all this
relates to our array. The first subscript in weeks[w][d] refers to each row of data (weeks). The second
is the columns, or days. The first time we get to Line 19, w and d both equal 0, so we're looking at
weeks[0][0] -- that is, the data in row 0 and column 0. If we look at the array initialization, we see
that this is the value 3.

The day's total sales are printed, and then the inner loop is repeated, incrementing d and advancing
us to row 0's next element. Looking at the data, we see that weeks[0][1] equals 6. This loop repeats
until d is no longer less than 7. At that point we drop through to Line 22 and print the total for the
week, as well as add to our monthly total (in the next line).

When the program returns to the outer loop, w is incremented, and we re-enter the inner loop,
resetting d to 0. Now we're referencing weeks[1][0], row 1 and column 0, or the value 5. The inner
loop continues through row 1 just as it did with row 0.

When we return to the outer loop, the value of w is incremented again, and thus is no longer less
than 2. The looping is completed, and program execution continues at Line 32 where the monthly
total is printed.

That's it for this chapter. Sit back and relax. Put your feet up, massage your temples to get rid of that
thundering headache. (Arrays are like that; yeah, they are.) Next chapter, we'll start developing our
own input routines, so we won't be at the mercy of such functions as scanf(). In the meantime, fool
around a bit more with arrays. They're neat little critters.

Program Listing #1
/***
* C-MANSHIP *
* Chapter 5 *
* Listing 1 - Developed with Megamax C *
***/
#include <stdio.h>
#include <osbind.h>
#define TRUE 1
#define FALSE 0

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 50 / 321

/***
* MAIN PROGRAM
***/
main () {
 int num, /* Number to guess. */
 guess, /* Player's guess. */
 win, /* Game end flag. */
 turns, /* Number of guesses. */
 play; /* Repeat game flag. */

 play = TRUE;
 while (play) {
 turns = 0;
 win = FALSE;
 num = get_num ();
 while (!win) {
 ++turns;
 guess = get_guess ();
 win = check_guess (num, guess);
 }
 printf ("It took you %d turns.\n\n", turns);
 play = play_again ();
 }
}

/***
* get_num()
*
* Returns a random number from 1 to 100.
***/
int get_num ()
{
 int n;

 n = (int) Random ();
 n = abs(n) % 99 + 1;
 return (n);
}

/***
* get_guess ()
*
* Retrieve a number from 1 to 100 from the
* keyboard.
***/
int get_guess ()
{
 int g;
 g = 0;
 while (g<1 || g>100) {
 printf("Enter a number from 1 to 100: ");
 scanf ("%d", &g);
 printf ("\n\n");
 }
 return (g);
}

/***
* check_guess()
*

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 51 / 321

* Compare the player's guess with the random
* number, and print the appropriate message. The
* input to the function is the original number
* and the player's guess. This function returns
* a value of TRUE if the number has been guessed,
* and FALSE otherwise.
***/
int check_guess (num, guess)
int num, guess;
{
 int wn = FALSE;

 if (guess < num)
 printf ("Too low\n\n");
 else if (guess > num)
 printf ("Too high\n\n");
 else {
 printf ("You guessed it!\n");
 wn = TRUE;
 }
 return (wn);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 52 / 321

/***
* play_again()
*
* Asks the player if he wishes to play again and
* returns a value of TRUE if he does or FALSE if
* he doesn't.
***/
int play_again ()
{
 int ch, p;

 p = -1;
 ch = getchar ();
 while ((p!=TRUE) && (p!=FALSE)) {
 printf("Play again? ");
 if ((ch=getchar ()) == 'y' || ch == 'Y')
 p = TRUE;
 else if (ch == 'n' || ch == 'N')
 p = FALSE;
 }
 printf ("\n\n");
 return (p);
}

Program Listing #2
/***
* C-MANSHIP *
* Chapter 5 *
* Listing 2 - Developed with Megamax C *
***/
#include <stdio.h>
int week[] = { 5, 7, 2, 10, 7, 1, 6 };
main ()
{
 int i, /* Loop variable. */
 total, /* Sum of weekly sales. */
 ch; /* Character storage. */

 for (i=0, total=0; i<7; i++) {
 total += week[i];
 printf ("Sales for day %d: %d\n", i+1, week[i]);
 }
 printf ("\n");
 printf ("Total sales: %d", total);
 ch = getchar ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 53 / 321

Program Listing #3
/***
* C-MANSHIP *
* Chapter 5 *
* Listing 3 - Developed with Megamax C *
***/
#include <stdio.h>
int weeks[2][7] = { { 3, 6, 7, 4, 3, 8, 9 },
{ 5, 3, 7, 9, 3, 2, 6 } };
main()
{
 int w, /* Loop variable--weeks. */
 d, /* Loop variable--days. */
 mtot, /* Weekly total. */
 wtot, /* Monthly total. */
 ch; /* Character storage. */

 for (w=0, mtot=0; w<2; w++) {
 for (d=0, wtot=0; d<7; d++) {
 wtot += weeks[w][d];
 printf ("Sales for day %d: %d\n", d+1, weeks[w][d]);
 }
 printf ("\n");
 printf("Sales for week %d: %d\n\n", w+1, wtot);
 mtot += wtot;
 }
 printf ("\n\n");
 printf ("Total sales for month: %d\n", mtot);
 ch = getchar ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 54 / 321

CHAPTER 6 - FILE HANDLING AND CUSTOM INPUT ROUTINES

This chapter, as I promised, we'll get busy designing our own input routines. We're no longer going to
suffer with the limitations of such library routines as scanf(). And, to add a little spice to the
proceedings, how about learning a little about disk file handling?

Listing 1 is this chapter's sample program. Type it in and compile it. The program is an embarrassingly
simple text editor. When you run it, you'll be asked for a filename. If the filename you enter already
exists on the disk, you'll be asked if you wish to delete the file. If you answer Y, the file will be deleted
and a new one created. Any other response will let you enter a different filename.

The text is entered one line at a time. When you reach the right margin (medium resolution), press
Return for the next line. If you try to type beyond the right margin, the program will automatically
terminate the line. You'd be wise to avoid this, since the last character you typed will be lost. You
should also check each line for typos before pressing Return. There are no editing features (except
backspace) in this program.

Press CTRL-Z (that's the Control key and the Z, simultaneously) to close the file. You may then print or
view the text from the GEM desktop, by double-clicking the file you created.

The Innards

There's nothing fancy going on in this program -- just a couple of new functions to learn and, most
importantly, a new method for accepting input. No more scanf(). From now on, every key will be
under our control. First take a look at the #define statements at the top of the program. MAX is the
length limit for each line. RETURN, BACKSP and CTRL_Z are the ASCII values for some of the keys we'll
be checking for in our input routine. Don't pay any attention to NOFILE right now; we'll get to that
later. Notice, also, that here we're declaring an integer variable, code. Since it's defined outside of
any function, it's a global variable -- one we can access from anywhere in the program.

If you look at the function main(), you'll see that we've declared two character arrays, filename[] and
text[]. The first will hold the name of the disk file we'll be working with; the second will store each
line of text as it's typed.

The body of main() consists of only three statements. These represent the activities we must
complete to create our text file. The function call at Line 27 will open our file; Line 28 will allow us to
enter our text; and Line 29 will close the file. And you thought programming in C would be tough.
Only three function calls!

Well, if you've been following the lessons carefully, you're aware that main() is only the general
outline of the program; the trickier stuff is still to follow. But don't get panicky. Handling files in C is a
snap, not much tougher than in BASIC.

Doing it Our Way

In the past, we've been at the mercy of C's built-in I/O functions. Actually, these functions are not
part of C at all. They're small routines other programmers have put together, then gathered into a
library for our convenience. It's nice to have these functions lying around in case we need them, but
there's always a price to pay when we take a shortcut. The price is a loss of flexibility.

If we use library functions like scanf(), we have to follow the rules somebody else made up.
Frequently, these rules will be at odds with what we wish to accomplish. The solution? Write our
own input routines, using our own set of rules.

This might sound a bit scary, but, depending on how fancy we want to get, there's really nothing to it.
For our simple text editor, we don't need to convert strings to decimal values or perform any of the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 55 / 321

other tricks a complete input routine must be capable of. All we have to do is let the user type in one
character after another, terminating his line with a Return.

In Listing 1, down near the bottom, you'll see a function called get_str(). This is our input routine. The
body of the function is only 12 lines long (not counting comments) -- a veritable piece of cake. As you
can see by the function declaration, get_str() receives one argument from the calling function: the
address of the character array where we wish the string stored.

We start off at Line 124 by initializing n, our array index, to 0. Then, in order to slip neatly into the
while loop at Line 130, we get our first character from the console (the ASCII value), utilizing one of
the GEMDOS functions, conin. Note that this function is not a part of C; rather it is a call to the ST's
operating system. If we were to try to port this program to another system, we would have to
replace the call to conin with the new machine's equivalent function.

What's all this GEMDOS stuff? The ST's operating system (OS) is called TOS, right? It even says so
right there on my old boot disk. T-O-S. Well, TOS is an incredibly complex animal, made up of two
main parts: the BIOS (Basic Input/Output System) and GEMDOS (actually, there's also the XBIOS, but
that's just an extension of the BIOS). The BIOS is the lowest level of the OS, and handles all the ST's
primary input/output functions.

You can think of the BIOS as the software that runs the hardware, the meat in the sandwich between
GEMDOS and all those data buses and microchips. GEMDOS provides the programmer with
convenient access to the BIOS.

GEMDOS supplies over fifty functions, of which conin is function number one. In upcoming chapters,
we'll be exploring GEMDOS in more depth.

Notice that in Lines 130 and 154 we're calling a function named Cconin(). This is the function that will
get us those keystrokes. What happened to conin? One of the files we included at the beginning of
our program was OSBIND.H. If you get a print out of this file, you'll see that it's nothing more than a
long list of #define statements. About half-way down, you'll see this statement:

#define Cconin() gemdos(0x1)

You should be familiar with how the #define statement works. Wherever the compiler sees the word
Cconin() in our source code, it'll substitute gemdos(0x1). The word conin is just a name someone
came up with for GEMDOS function 1.

To access this function we must use the call gemdos(0x1). (Don't let the "0x" in front of the function
number throw you off. It just means the number should be interpreted as hexadecimal, rather than
decimal.) Using names like Cconin() for GEMDOS functions reminds us of what the function does. We
could have put the call gemdos(0x1) directly into our source code and not bothered with including
OSBIND.H.

A Bit of Construction

The function get_str() begins on Line 119. All this function does is get characters one by one and
place them in successive bytes of the character array. There's a small complication, however. Several
keys have special functions. For instance, Return ends a line, CTRL-Z closes the file, and the
backspace key allows the user to correct mistakes. We'll have to check for these keys as the user
types.

At Line 124, we initialize the array index n. We then get our first character and slip into the while
loop that follows. The loop checks for a Return or a CTRL-Z and makes sure we haven't gone past the
end of our array.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 56 / 321

Line 133 checks for a Backspace. If we didn't get one, the character that was typed is added to our
array, text[]. Line 134 accomplishes this, as well as incrementing the index n (notice that n is being
post-incremented; that is, the array is first indexed by n, then n is incremented). Program execution
then drops down to Line 151, where we get our next keystroke.

If a Backspace is entered, and we have at least one character in the array, we replace the last
character typed with a null (Line 141). We also have to adjust the screen display. This is done in Lines
144 and 147. Since the cursor was moved on top of the last character in the line when the Backspace
was typed, all we have to do is print a space (Line 143), then place the cursor back in its proper
position by printing a Backspace to the screen (Line 147). To print these characters to the screen,
we're using Cconin()'s counterpart, Cconout(), which writes a single character to the screen.

Sooner or later, the user will type a Return to end a line or a CTRL-Z to close the file, at which point
we exit get_str().

Disk Files

Fortunately for us struggling programmers, there are many functions for handling disk files. Four of
these functions concern us at the moment. They are: open(), creat(), write() and close().

The function open() opens a file already in existence. It requires two arguments: the address of the
filename and the type of access required. The latter may be one of three values: 0 (read only), 1
(write only), or 2 (read and write). We can add 8192 to any of these three values in order to open the
file in "untranslated" binary mode. Untranslated means that the data is interpreted as a continual
stream of bytes, rather than lines ending with carriage returns and line feeds. The difference
between the two modes can be critical, depending on our usage.

The function open() also returns a value. If it encounters an error and fails to open the file (the file
didn't exist), it'll return a -1. Now you know why I defined NOFILE at the top of the program equal to
this value. If the file is opened successfully, the function will return a file descriptor. We'll use this
number whenever we wish to access the file.

The function creat() starts a new file and also requires two arguments: the address of the filename
and a flag value. The flag must either be 0 or 8192, the latter meaning we want the file created for
use in the untranslated mode. If, when we call this function, the file we wish to start already exists on
the disk, the file's pointer will be moved to the beginning of the file, effectively deleting it. Just like
open(), a -1 is returned in the case of an error, or a file descriptor if successful.

The function write() saves data to a file. It requires three arguments: the file descriptor, the buffer
starting address (where the data is stored) and the number of bytes to write. A successful write will
return a value equal to the number of bytes actually written. Otherwise, a -1, indicating an error, will
be returned.

The function close() closes a file and requires the file descriptor as its argument. If the file is closed
successfully, a 0 will be returned. An unsuccessful close, meaning we used an unknown file
descriptor, will yield a -1.

Starting Our File

Look at the function start_file() in Listing 1. It receives one argument from main(), the address of the
character array, filename[]. This will be the first argument for open() and creat(). The variable file will
hold our file descriptor and is initialized to -1 (Line 47), so we can get into the while loop that follows.
As long as file is equal to -1, this loop will repeat, prompting the user for a filename until a file is
successfully created.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 57 / 321

Within the loop, we print a prompt, then call get_str() to allow the user to input the filename. At Line
57, if the file descriptor we receive from open() equals -1, we know the file doesn't already exist, so
we go ahead and create it (Line 60).

If we get a value other than -1, it means there's already a file by that name on the disk, and the
program continues at Line 67. Here we reinitialize file to -1, then ask the user if he wants to delete
the file. If he answers yes, the old file becomes the new file (Line 73), otherwise the loop repeats,
asking for another filename.

Writing Our File

 Now let's study the function get_text() in Listing 1. You should have little difficulty figuring it out.

First we prompt the user to input his text; then we initialize code (the global variable that'll contain
the ASCII value of each keystroke) to 0. We then call get_str() to get the first line of text. This function
will return the number of characters typed.

In Lines 103 and 104, a line feed and a null are added to the string (otherwise, when we try to print
the file, the lines will be concatenated). Finally, in Line 107, we write the text to disk. We repeat the
while loop until code equals 26 (a CTRL-Z), at which point the function terminates, and the file is
closed at Line 29.

Simple, but Cute

So there you have it. There's not much to this program, but it can be useful for creating small
README.DOC files for your disks. It's certainly easier than loading up a full-fledged word processor
when all you want to do is type in a couple of lines. Most importantly, we now know how to save
data to disk and how to get input from the user without relying on such undependable functions as
scanf().

Program Listing #1
/***
* C-MANSHIP *
* Chapter 5 *
* Listing 1 - Developed with Megamax C *
***/
#include <stdio.h>
#include <osbind.h>
#define TRUE 1
#define FALSE 0

/***
* MAIN PROGRAM
***/
main ()
{
 int num, /* Number to guess. */
 guess, /* Player's guess. */
 win, /* Game end flag. */
 turns, /* Number of guesses. */
 play; /* Repeat game flag. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 58 / 321

 play = TRUE;
 while (play) {
 turns = 0;
 win = FALSE;
 num = get_num ();
 while (!win) {
 ++turns;
 guess = get_guess ();
 win = check_guess (num, guess);
 }
 printf ("It took you %d turns.\n\n", turns);
 play = play_again ();
 }
}

/***
* get_num()
*
* Returns a random number from 1 to 100.
***/
int get_num ()
{
 int n;

 n = (int) Random ();
 n = abs(n) % 99 + 1;
 return (n);
}

/***
* get_guess ()
*
* Retrieve a number from 1 to 100 from the
* keyboard.
***/
int get_guess ()
{
 int g;
 g = 0;
 while (g<1 || g>100) {
 printf("Enter a number from 1 to 100: ");
 scanf ("%d", &g);
 printf ("\n\n");
 }
 return (g);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 59 / 321

/***
* check_guess()
*
* Compare the player's guess with the random
* number, and print the appropriate message. The
* input to the function is the original number
* and the player's guess. This function returns
* a value of TRUE if the number has been guessed,
* and FALSE otherwise.
***/
int check_guess (num, guess)
int num, guess;
{
 int wn = FALSE;

 if (guess < num)
 printf ("Too low\n\n");
 else if (guess > num)
 printf ("Too high\n\n");
 else {
 printf ("You guessed it!\n");
 wn = TRUE;
 }
 return (wn);
}

/***
* play_again()
*
* Asks the player if he wishes to play again and
* returns a value of TRUE if he does or FALSE if
* he doesn't.
***/
int play_again ()
{
 int ch, p;

 p = -1;
 ch = getchar ();
 while ((p!=TRUE) && (p!=FALSE)) {
 printf("Play again? ");
 if ((ch=getchar ()) == 'y' || ch == 'Y')
 p = TRUE;
 else if (ch == 'n' || ch == 'N')
 p = FALSE;
 }
 printf ("\n\n");
 return (p);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 60 / 321

Program Listing #2
/***
* C-MANSHIP *
* Chapter 5 *
* Listing 2 - Developed with Megamax C *
***/
#include <stdio.h>
int week[] = { 5, 7, 2, 10, 7, 1, 6 };
main ()
{
 int i, /* Loop variable. */
 total, /* Sum of weekly sales. */
 ch; /* Character storage. */

 for (i=0, total=0; i<7; i++) {
 total += week[i];
 printf ("Sales for day %d: %d\n", i+1, week[i]);
 }
 printf ("\n");
 printf ("Total sales: %d", total);
 ch = getchar ();
}

Program Listing #3
/**/
/* C-MANSHIP */
/* Chapter 6 */
/* Listing 1 - Developed with Megamax C */
/**/

#include <stdio.h>
#include <osbind.h>

#define RETURN 13
#define BACKSP 8
#define MAX 78
#define NOFILE -1
#define CTRL_Z 26

int code;

/**
* MAIN PROGRAM
**/
main()
{
 char filename[15], /* Filename for text file. */
 text[MAX]; /* Text entered by user. */
 int file; /* File ID. */

 file = start_file (filename);
 get_text (file, text);
 close (file);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 61 / 321

/**
* start_file ()
*
* Gets the filename from the user, and then opens the
* file. The input to the function is the address of
* storage for the filename. The function's output is
* the open file's file ID.
**/
start_file (filename)
char filename[];
{
 int file, /* File ID. */
 ch; /* Character storage. */

 /* Initialize file ID to error condition. */
 file = NOFILE;

 /* Continue trying to open a file until successful. */
 while (file == NOFILE) {
 /* Get filename from user. */
 printf ("Filename: \n");
 get_str (filename);
 /* Check if file already exists. */
 if ((file = open(filename,2)) == NOFILE)

 /* If it doesn't exist, create it. */
 file = creat (filename, 0);
 /* The file the user wants to open already exists. */
 else {

 /* Reset file ID to error condition in case user */
 /* doesn't want to delete already existing file. */
 file = NOFILE;

 /* Find out if user wants to delete the existing */
 /* file and create a new one. */
 printf ("File already exists! Delete it? ");
 if ((ch = getchar()) == 'Y' || ch == 'y')
 file = creat (filename, 0);
 }
 }
 printf ("\n");
 return (file);
}

/**
* get_text ()
*
* Get the text to be stored in the file from the user.
* The inputs to the function are the file's ID and
* the address of string storage.
**/
get_text (file, text)
int file;
char text[];
{
 int num_char; /* Number of characters in string. */

 printf("Type your message:\n\n");
 code = 0;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 62 / 321

 /* Get text from keyboard until user wants to exit. */
 while (code != CTRL_Z) {
 /* Get a string of text. */
 num_char = get_str (text);
 /* Add a LF and a null to the string. */
 text[num_char++] = '\n';
 text[num_char] = '\0';
 /* Save the text string to the file. */
 write (file, text, num_char);
 }
}

/**
* get_str ()
*
* Gets each of the strings that make up the text file.
* The input is the address of the string storage. The
* output is the number of characters in the string.
**/
get_str (text)
char text[];
{
 int n; /* Character count. */
 n = 0;

 /* Get character code from keyboard. */
 code = Cconin();

 /* Check if end of string or end of text. */
 while (code != RETURN && code != CTRL_Z && n <= MAX) {
 /* Add character to string if not a backspace. */
 if (code != BACKSP) {
 text[n++] = code;
 }
 /* Handle backspace character. */
 else if (n > 0) {

 /* Shorten string by one character. */
 text[--n] = '\0';

 /* Erase character on screen. */
 Cconout (' ');

 /* Move cursor back one space. */
 Cconout (BACKSP);
 }
 /* Get next character code. */
 code = Cconin ();
 }
 printf ("\n");
 return (n);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 63 / 321

CHAPTER 7 - POINTERS AND MACROS

Handling pointers can be confusing at times, though the basic concept is quite simple. Believe it or
not, we've been using pointers for several chapters now, whenever we referred to an array name.

What exactly is a pointer? Simply put, it's a variable containing the

address of a data item we wish to access. For example, look at this line of code:

pointer = &var;

After this line has been executed, pointer will contain the address of var, or to say it another way,
pointer will point to that section of memory where the value of var is stored.

So, what's all the hoo-ha? Why not use the & operator and be done with all this nonsense? Because
there's a subtle difference between pointer and &var. The first is a variable; the second is a constant.
Still not impressed? Okay, let me ask you a question: what makes variables so handy? Give up? We
can perform mathematical procedures on variables; not so with constants.

Another advantage to pointers is that, when declared properly, they're much "smarter" than
constants or run-of-the-mill variables. We'll see why in a minute.

A Point of Declaration

 In order for us to use a pointer, the compiler needs some information, namely the type of data the
pointer points to. We supply this information in the pointer's declaration:

int *p1;
char *p2;
float *p3;

The first example above tells the compiler that we want a pointer to an integer value. The second
sets up a pointer to character data. The third points our way to floating point information.

Each of these data types (as well as others) is stored in a special way in memory. A pointer to integer
won't function as we expect if we try to use it on character data. The "*" before the name identifies
the variable as a pointer and requests "special handling" from the compiler. Don't confuse this
symbol with the multiplication operator.

Once we've declared our pointer, we have to assign it a value. We want it to point to something,
don't we? We assign an address to a pointer in exactly as we would to any other variable. Take a look
at this segment of code:

int var, array[10];
int *p1, *p2, *p3;

p1 = &var;
p2 = array;
p3 = &array[5];

First, we've declared an integer variable and an integer array. Following that are the declarations for
three pointers to integer. After declaration, these pointers are still useless to us. We have to assign
them values -- addresses to point to.

In the first case, p1 is assigned the address of var (or &var). Don't forget the ampersand; without it,
we'd be assigning the value of var, not its address. In the second assignment, p2 gets the address of

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 64 / 321

the first element of the array array[]. What? No ampersand? Don't tell me you've forgotten already!
An array name is an address.

Ah, but what about the third assignment in our example? There's that address operator. No mistake
here. Once we add the brackets to the array name, we're referring to the contents of an element of
the array, not its address. Just remember: the only time we don't need the address operator is when
we're doing our assignment with an array name. The following two lines do exactly the same thing:

p1 = array;
p1 = &array[0];

Putting Them to Work

Okay, now we've got our pointers declared and assigned addresses. Now what? There are several
operations we can perform with pointers, including: assignment, getting the address, getting a value,
and incrementing or decrementing.

The first, assignment, we've already learned about. The second, getting the address, is nothing new,
either. To get the address of a pointer -- the place in memory where the pointer itself is stored --
place the address operator in front of the pointer name:

adrp1 = &p1;

A more useful operation is getting the value the pointer is pointing to:

var = 5;
p1 = &var;
z = *p1;

In the above example, z becomes equal to var. How? Our pointer, p1, is assigned the address of the
variable var. The third line is read "z gets the contents of the address pointed to by p1." The asterisk
is referred to as an "indirection operator," since it allows us to access data indirectly.

Of course, this is a pretty silly example. It would have been more efficient to directly assign the value
of var to z (z = var), but there are times when we can't get at variables in the conventional way.
Remember, C passes arguments between functions by value, not address.

Take, for instance, our bubble sort program from a couple of chapters ago. What if, instead of using
an array, we had three integer variables we wanted to sort, then pass back to the calling function?
The following lines show a function call and the first two lines of the function. Will it work?

sort(x, y, z);

sort(a, b, c)
int a, b, c;

Think about it for a minute. The three arguments passed to the sort function are placed in the three
automatic variables a, b and c. No problem there, so we go ahead and sort the three values (code not
shown), putting y into x, and z into y, and x into z -- or whatever's necessary to complete the sort.
Hurray! We did it.

Wrong.

We forgot one tiny detail. We now have to pass all three values back to the calling function. Any
suggestions? The return() statement will allow only one argument. Looks like we're stuck.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 65 / 321

What did we do wrong? Why is C being so obstinate? Shall we forget the whole thing and go back to
BASIC? Nope.

The solution to our dilemma is (drumroll, please): pointers.

Let's change our function call to this:

sort(&x, &y, &z);

We're still passing our arguments to automatic variables, but now those variables will contain the
addresses of the original three. And, to make things as efficient and elegant as possible, we're going
to make those automatic variables pointers. The first two lines of our function will look like this:

sort(p1, p2, p3)
int *p1, *p2, *p3;

Now we have access to the variables from the calling function. We can switch them around any way
we want, using code similar to this:

save = *p1;
*p1 = *p2;
*p2 = *p3;
*p3 = save;

In English, the above reads: "save gets the contents of the address pointed to by p1; the contents of
the address pointed to by p2 gets stored in the location pointed to by p1"; and so on. What we're
actually doing is this:

save = x;
x = y;
y = z;
z = save;

Once we've got the variables the way we want them, we exit the function. We don't have to return
any values now; we've done all our work on the variables themselves.

Incrementing and Decrementing

I stated earlier that pointers were much smarter than conventional variables. One reason is that
they're mathematical whizzes. When we perform addition or subtraction on a pointer, the compiler
does a lot of the work for us, taking into account the data type it's pointing to and the way that data
is stored in memory.

For instance, if we add 1 to an integer pointer, we don't end up with an address one byte higher in
memory; we actually move forward two bytes. The compiler knows that integers are two-byte
animals, and if we're going to end up with a usable address, the pointer we're incrementing had
better end up pointing to the beginning of the next integer.

Now let's have a short quiz. A character array has a beginning address of 73455. A pointer to
character, p1, has been initialized to the starting address of the array. What address will we get if we
increment the pointer? Answer: 73456. Character data requires one byte of storage for each element
in the array. Adding 1 to the pointer yields the address of the next element in the array. In this case,
the next element is one byte higher in memory.

The Proof

Now's a good time to dig into Listing 1. Type it in, compile and run it. The output should look
something like this:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 66 / 321

+0 p1=71926 &p1=72910 *p1=65

+0 p1=71926 &p1=72910 *p1=65
+1 p1=71927 &p1=72910 *p1=66
+2 p1=71928 &p1=72910 *p1=67

+0 p2=71930 &p1=72914 *p1=10
+1 p2=71932 &p1=72914 *p1=11
+2 p2=71934 &p1=72914 *p1=12

Press any key

The table this program prints sums up everything we've discussed about pointers. Take a look at the
first line of the table. Using what you've just learned, what's the address of the letter A (65) in the
character array array1[]? If you answered 71926, then you probably have a good basic understanding
of how pointers work.

For those of you who are still confused, don't fret. It'll sink in as you get accustomed to using
pointers. Let's go through the program and see what's going on.

Lines 9 and 10 declare the arrays and pointers, as well as initializing the arrays. Line 16 puts the
address of the first element of array1[] into the character pointer p1. Line 17 prints out the four
values in our table: the amount added to the pointer, the contents of the pointer, the address of the
pointer, and the contents of the address the pointer's pointing to. The first line of the table will be
printed again when we get into the loop at Line 18. The reason for this is to show you that setting the
pointer with the array name is equivalent to setting it with the address operator preceding an array
element. In this case, we're comparing array1 with &array1[0].

Lines 18 through 21 move the pointer through array1[], using the address operator. Each pass
through the loop prints one line of our table. Lines 23 through 26 accomplish the same thing, only
now we're cycling through an array of integers and incrementing the pointer itself, rather than
assigning a new address to it with the address operator.

A Glimpse of Macros

Notice that, in Listing 1, we've used printf() three times, in almost exactly the same way. In fact, the
only difference between them is the name of the pointer we're working with. If the programmer's
voice within you is screaming that it's stupid to code the same thing three times, then listen to it. It's
right. C provides us with a handy technique to avoid this type of redundant code. The technique
involves the use of macros.

Just as was true with pointers, you've already been exposed to macros -- though you were probably
unaware of it. Every time we use the #define statement, we're setting up a macro. We've done this
dozens of times, but only in the simplest fashion. Macros can be quite complex and are powerful
programming aids.

Listing 2 is a modification of Listing 1. Here, each occurrence of the printf() call has been replaced
with a macro call. The macro itself is defined in Line 9. Any legal variable name can be used as a
macro name.

See the parentheses? This macro contains an argument that will be passed when the macro is
expanded (when the substitution string replaces the macro's name in the code). In our example, the
argument will be the pointer name to be used in the table.

Of course, just placing the argument in the macro name isn't enough. We've got to tell the macro
where we want the argument used in the expansion. In our example, every Z in the replacement
string will be replaced by the argument supplied when the macro is called.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 67 / 321

Lines 19, 23 and 27 show the macro calls. In Lines 19 and 23, p1 will be substituted into the
replacement string. In Line 27, p2 will be substituted.

One interesting note: When I first wrote the program shown in Listing 2, I was using the C compiler
that was supplied with the Atari Developer's Kit (Alcyon C). That compiler allows the programmer to
place a macro argument within a string, so that the output of Listing 2 could be made identical to the
output of Listing 1. Unfortunately, Megamax C doesn't allow macro arguments to be used within a
string, so the outputs of Listing 1 and Listing 2 are slightly different.

Program Listing #1
/***
/* C-MANSHIP *
/* Chapter 7 *
/* Listing 1 - Developed with Megamax C *
/***/
#include <stdio.h>
#include <osbind.h>

char *p1, array1[] = "ABC";
int *p2, array2[] = {10, 11, 12};

main ()
{
 int x, ch;

 p1 = array1;
 printf("+0 p1=%ld &p1=%ld *p1=%d\n\n", p1, &p1, *p1);
 for (x=0; x<3; ++x) {
 p1 = &array1[x];
 printf("+%d p1=%ld &p1=%ld *p1=%d\n",x,p1,&p1,*p1);
 }
 printf("\n");
 for (x=0, p2=array2; x<3; ++x) {
 printf("+%d p2=%ld &p2=%ld *p2=%d\n",x,p2,&p2,*p2);
 ++p2;
 }
 printf ("\nPress any key\n");
 Cconin ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 68 / 321

Program Listing #2
/***
/* C-MANSHIP *
/* Chapter 7 *
/* Listing 2 - Developed with Megamax C *
/***/
#include <stdio.h>
#include <osbind.h>

#define PRINT(Z) printf("+%d p=%ld &p=%ld *p=%d\n",x,Z,&Z,*Z)

char *p1, array1[] = "ABC";
int *p2, array2[] = {10, 11, 12};

main()
{
 int x = 0, ch;

 p1 = array1;
 PRINT (p1);
 printf ("\n");
 for (x=0; x<3; ++x) {
 p1 = &array1[x];
 PRINT (p1);
 }
 printf ("\n");
 for (x=0, p2=array2; x<3; ++x) {
 PRINT (p2);
 ++p2;
 }
 printf ("\nPress any key\n");
 Cconin ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 69 / 321

CHAPTER 8 - STRUCTURES AND MORE ON POINTERS

Structures offer a way to keep related data items together, allowing easy access to each element.
Database applications are a perfect example. Suppose you're the owner of a store and want to keep
track of your receivables. You'll need to know, at a minimum, the customer's name, address and
amount owed. It would be nice if there were an array type that could store both character strings
and floating point numbers. Guess what? Structures to the rescue.

When we set up a structure, we're really defining a new data type, one that's custom designed for
our own use. Each "member" of the structure can be any data type we want, even another structure.
Let's set up a structure for our store's receivables:

struct account {
 char name[20];
 char address[36];
 char city[30];
 float balance;
};

The keyword struct, followed by the name account, tells the compiler we're setting up our own data
type, and that we're going to call this data type account. The structure's members are declared in the
same way we'd declare conventional variables, though enclosed with C's ubiquitous braces. The
structure declared above contains four members: a 20-element character array called name, a 36-
element character array called address, a 30-element character array called city, and a floating-point
variable called balance.

Now that we've declared our structure, we have a new data type at our disposal, but we still don't
have a variable of that type we can use. Think about it for a minute. If we want an integer variable,
we must declare it as type int. If we want a character variable, we must declare it as type char. So it
follows that, if we want an account variable (the name we gave our new data type), we must declare
it as type account:

struct account record;

We've just told the compiler we want a variable called record which is a

structure of type account. That's all there is to it -- almost.

Filling It In

We've got our variable record set up, but there's still one minor problem: it contains no data. As I'm
sure you suspect, initializing a structure is going to be different from initializing the simpler data
types. Well, yes...and no.

struct account record = {
 "Clay Walnum",
 "15 Notreallygonnagivemyaddress Ave.",
 "Atariland, MA 06116",
 155.97
};

The main difference between this initialization and that of other data types is that we don't have to
include the element's name along with the data. We have to fill in only the information. The compiler
knows the first element goes into the field called name, the second into the field called address, etc.
We gave it that information when we defined the structure type account.

When initializing a structure, be sure to enclose the data in braces and separate each element with a
comma.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 70 / 321

Getting It Out

We now have our structure declared and initialized with data. Just as we need access to each
element of an array, we need access to each member of a structure. How can we get at the data? We
simply refer to the name of the structure and the name of the element within the structure,
separating each with a period:

record.name
record.address
record.city
record.balance

The first example will give us the string "Clay Walnum." We can manipulate this data the same way
we would any string of characters. For example:

s = record.name;

will point the character pointer s to the string stored in the first member of the structure record.

The second and third examples are similar to the first. The fourth example will give us the floating-
point value of 155.97. We might want to use it in this way:

printf("Balance = %f\n", record.balance);

Layers Upon Layers

I stated that the elements of a structure could be of any data type, including another structure. Let's
take the structure we've created one step further. It might be nice to have the city, state, and zip
code in their own elements. We could, of course, just add a couple of members to our original
structure. But what if we wanted, for the sake of clarity, to keep all the information within the
member city? We'd do it like this:

struct where {
 char c[20];
 char s[2];
 char z[5];
};

struct account {
 char name[20];
 char address[36];
 struct where city;
 float balance;
};

struct account record;

Now take a deep breath, and we'll attempt to wade through the above example. Our structure
account still contains the same information. The difference is that the member city is now a structure
of type where, and where contains the members c, s, and z.

Got it? Imagine the structure account as a big box. Inside this box are three other boxes called name,
address, city, and balance. Inside the city box are three even smaller boxes called c, s, and z.

Now when we refer to the city member, we need to access the nested members c, s, and z:
record.city.c
record.city.s
record.city.z

In the first case, we're accessing c, which is a member of city, which is a member of record. In the
second, we end up with s, which is a member of city, which is a member of record. I bet you can
figure the third one out for yourself.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 71 / 321

More Layers!

I'm not through confusing you, yet. Just as you can have arrays of integers or arrays of characters,
you can have arrays of structures. In fact, in the case of the database for our imaginary store, arrays
of structures are a necessity. What good is a database with only one entry? We could leave things
the way they are and load the records from disk one at a time, but that would be inefficient. Imagine
trying to sort a database that way. Not me, buddy. I want them all in memory where I can play with
them fast.

Arrays of structures aren't as scary as they sound. One small change to our structure variable
declaration, and we've got it:

struct account record[100];

We now have room for one hundred records of type account.

Accessing each element of our structure array is just as simple:
record[index].name
record[index].address
record[index].city.c
record[index].city.s
record[index].city.z
record[index].balance

As we vary index from zero to the maximum number of elements in our array, we can access each
member as shown above. We also retain control over arrays that make up some of the members of
our structure. For instance, if we wanted the third letter in the character array name:

record[index].name[2]

An Important Point

In the last chapter, we talked about pointers. Can we use pointers with structures? Sure can. The first
step is to declare our pointer, a simple process:

struct account *sptr;

Now that we have our pointer, we must initialize it:
sptr = &record[0];

or
sptr = record;

The above assigns the address of the first byte of our array of structures to the pointer sptr. Suppose
this address turned out to be 72000. Using what you've learned about pointers and structures, see if
you can calculate the address we'd be pointing to if we added 1 to sptr.

The answer is 72096. How did you do? Remember that a pointer is kept well informed about the data
type it's associated with, even if that data type is one we made up, as is a structure. sptr knows that
there are 96 bytes in each of our array elements. We get this figure by adding together the length of
each structure member:

name 30
address 35
c 20
s 2
z 5
balance 4

 96 bytes

Let's say that x is the length, in bytes, of the data type to which we're pointing. Then, when we
increment a pointer, we're asking it to point to a location in memory which is x bytes ahead of our
current location. In the case of our array, we're pointing to the next element, record[1], which begins
at an address 96 bytes higher than our current address, or a final address of 72096.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 72 / 321

Pointing to a Member

A pointer to the first member of a structure is only slightly useful. We need to access all of the
members. As always, C is there with the answer. Assuming sptr equals &record[0], then:

(*sptr).name equals record[0].name
(*sptr).city.c equals record[0].city.c

A more popular (and less cryptic) way of writing the above would be:
sptr->name equals record[0].name
sptr->city.c equals record[0].city.c

Either method is fine and gives the same results.

Functions and Structures

The last thing we need to know in order to take full advantage of structures is how to pass them to
functions. As has been evident throughout this chapter, structures are handled the same, for the
most part, as any other data type.

The most obvious method of passing information from a structure to a

function is by value:
total = add_em(record[index].balance, record[index+1].balance);
float add_em(x, y)
float x, y;
{
 return(x + y);
}

Here, two values from our array of structures are passed into the parameters x and y. The values are
added and the result returned to the calling function.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 73 / 321

But what if we want to modify the contents of the structure directly? As in the past, we resort to
pointers:

change_em(&record[1]);

change_em(sptr)
struct account *sptr;
{
 sptr->name = "Felix";
}

In the above example, we've passed the address of the second member of our array of structures to
the function change_em(). This address is stored in the pointer sptr, where it's used to access the
member name.

The Listing

This chapter's sample program is larger than anything we've done so far. I wanted to offer something
moderately usable. There are many techniques in the program we haven't covered. In the next
chapter, we'll clear up some of the leftover mysteries. At any rate, the program contains working
examples of everything we've discussed here, as well as many other little tidbits you can sort
through.

What does it do? I thought you'd never ask. The program is a simple address database. You can enter
addresses from the keyboard or disk, then print them to the screen or to the printer in label format.
As I said, it's simple. There's plenty of room for enhancements. A sorting feature could be added, or
maybe a fancier input routine. To keep data from scrolling off the screen, labels are limited to a
maximum of eight. You could add code that would wait for a keypress each time the screen fills, then
increase the number of addresses in the database.

Program Listing #1
/***/
/* C-MANSHIP */
/* Chapter 8 */
/* Listing 1 */
/* Developed with Megamax C */
/***/
#include <stdio.h>
#include <osbind.h>

#define RETURN 13
#define BACKSPACE 8
#define MAX 8
#define PRINTER_OFF 0
#define NOFILE ((FILE *)0)

FILE *fopen();

int work_in[11];
int work_out[57];
int handle;
int contrl[12];
int intin[128];
int ptsin[128];
int intout[128];
int ptsout[128];

struct name {
 char fname[30];

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 74 / 321

 char lname[30];
};
struct rec {
 struct name names;
 char street[30];
 char city[30];
};

/***
* MAIN PROGRAM
**/
main ()
{
 int num_recs, /* Number of addresses in the file. */
 load; /* File flag. */
 char ch;
 struct rec address[MAX];

 /* Open virtual workstation. */
 open_vwork ();

 /* Get the address data from disk or keyboard. */
 num_recs = get_data (address, &load);

 /* Convert integer flag to character-type data. */
 ch=load;

 /* Output addresses to screen or printer. */
 output (address, num_recs);

 /* Save address data to disk if it was entered */
 /* from the keyboard rather than from disk. */
 if (ch=='N' || ch=='n')
 save_file(address, num_recs);

 /* Wait for a key press. */
 printf ("Press key\n");
 Cconin ();

 /* Close the virtual workstation. */
 v_clsvwk(handle);
}

/***
* open_vwork ()
*
* Initializes a virtual workstation.
**/
open_vwork ()
{
 int i;
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk(work_in, &handle, work_out);
}

/***
* get_data ()
*

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 75 / 321

* Allows the user to choose to enter address records
* either from disk or from the keyboard. The inputs
* are a pointer to the array of structures that will
* hold the data and a pointer to the flag that will
* tell the program whether the data has been loaded
* from disk or typed from the keyboard. The output
* is the total number of records entered.
/***/
get_data (recp, load)
struct rec *recp;
int *load;
{
 int num_recs;

 /* Print the prompt. */
 Cconws ("Load file? ");
 /* Loop until we get a proper keystroke. */
 while ((*load=Cconin())!='Y' && *load!='y'
 && *load!='N' && *load!='n');

 printf("\n\n");

 /* If the user answered "N" to the prompt, get the addresses
 from the keyboard, or else get the addresses from the disk. */
 if (*load == 'N' || *load == 'n')
 num_recs = get_records (recp);
 else
 num_recs = disk_file (recp);

 /* Return the number of addresses that were entered. */
 return (num_recs);
}

/***
* get_records ()
*
* Retrieves address data from the keyboard. The
* input is a pointer to the structure that will hold
* the address data. The output is the total number
* of records entered.
/***/
get_records (recp)
struct rec *recp;
{
 int ans, /* Character storage. */
 i; /* Record counter. */

 /* Initialize our variables. */
 ans = 'y';
 i = -1;

 /* Keep getting addresses until the user indicates */
 /* that he is finished or until we run out of room. */
 while ((ans=='Y' || ans=='y') && i+1<MAX) {
 ++i;
 Cconws ("FIRST NAME: ");
 get_str (recp->names.fname, 29);
 Cconws ("\n LAST NAME: ");
 get_str (recp->names.lname, 29);
 Cconws ("\n STREET: ");

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 76 / 321

 get_str (recp->street, 29);
 Cconws ("\n CITY: ");
 get_str (recp->city, 29);
 Cconws ("\n\nAnother (y/n)? ");
 ans = Cconin ();
 printf ("\n\n");
 ++recp;
 }

 /* Return the record count. */
 return (i+1);
}

/***
* disk_file ()
*
* Reads address records from a disk file. The input
* is a pointer to the structure in which to store
* the records. The output is the number of records
* read.
**/
disk_file(recp)
struct rec *recp;
{
 FILE *p_file;
 char filename[15];
 int num_recs, x, l;

 p_file = NOFILE;
 /* Get valid filename. */
 while (p_file == NOFILE) {
 Cconws("Filename: ");
 get_str(filename,14);
 printf("\n\n");
 p_file = fopen(filename, "r");
 if (p_file == NOFILE)
 printf("No such file!\n\n");
 }

 /* Read in number of records in file. */
 num_recs = getw(p_file);

 /* Read in all address records. */
 for (x=0; x<num_recs; ++x) {
 fgets(recp->names.fname, 30, p_file);
 l = strlen (recp->names.fname);
 recp->names.fname[l-1] = 0;
 fgets(recp->names.lname, 30, p_file);
 fgets(recp->street, 30, p_file);
 fgets(recp->city, 30, p_file);
 ++recp;
 }

 /* Return number of records read. */
 return(num_recs);
}

/***
* output ()

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 77 / 321

*
* Asks the user if the address records should be
* sent to the printer or to the screen. The inputs
* are pointer to the structure holding the records
* and the number of records in the structure.
**/
output(recp, num_recs)
struct rec *recp;
int num_recs;
{
 int status, device;

 /* Initialize loop variable. */
 status = PRINTER_OFF;

 /* Loop until records have been output. */
 while (status==PRINTER_OFF) {

 /* Get device from user. */
 Cconws("Print to screen or printer (s/p)? ");
 device = Cconin();
 printf("\n\n");

 /* Send address records to requested device. */
 if (device == 'p' || device == 'P')
 status = printer(recp, num_recs);
 else {
 screen(recp, num_recs);
 status = -1;
 }
 }
}

/***
* save_file ()
*
* Writes the address records out to a disk file. The
* inputs are a pointer to the structure holding the
* records and the number of records in the structure.
**/
save_file(recp, num_recs)
struct rec *recp;
int num_recs;
{
 FILE *p_file;
 char r,x;
 char filename[15];

 /* Ask if user wants to save file. */
 Cconws("Save file? ");
 while ((r=Cconin)!='Y' && r!='y' && r!='N' && r!='n');
 printf("\n\n");

 if (r == 'Y' || r == 'y') {
 p_file = NOFILE;

 /* Loop until we get a valid filename. */
 while (p_file == NOFILE) {
 Cconws("Filename: ");
 get_str(filename, 14);
 printf("\n\n");

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 78 / 321

 /* If file doesn't exist. open it. */
 if ((p_file=fopen(filename, "r")) == NOFILE)
 p_file = fopen(filename, "w");

 /* If file does exist, check if okay to delete. */
 else {
 p_file = NOFILE;
 Cconws("File already exists. Delete it? ");
 if ((r=Cconin()) == 'Y' || r == 'y')
 p_file = fopen(filename, "w");
 printf("\n\n");
 }
 }

 /* Write out the number of address records. */
 putw(num_recs, p_file);

 /* Write out all the address records. */
 for (x=0; x<num_recs; ++x) {
 fprintf(p_file, "%s\n", recp->names.fname);
 fprintf(p_file, "%s\n", recp->names.lname);
 fprintf(p_file, "%s\n", recp->street);
 fprintf(p_file, "%s\n", recp->city);
 ++recp;
 }
 fclose(p_file);
 }
}

/***
* screen ()
*
* Writes the address records out to the screen. The
* input is a pointer to the structure holding the
* records and the number of records in the structure.
**/
screen(recp, num_recs)
struct rec *recp;
int num_recs;
{
 int x;

 /* Enter alphanumeric screen mode. */
 v_enter_cur(handle);
 /* Write out each line of each record. */
 for (x=0; x<=num_recs-1; ++x) {
 pos_cur(x,0);
 printf("Record #%d\n", x+1);
 pos_cur(x,1);
 printf("%s %s\n", recp->names.fname, recp->names.lname);
 pos_cur(x,2);
 printf("%s\n", recp->street);
 pos_cur(x,3);
 printf("%s\n\n", recp->city);
 ++recp;
 }
}

/***

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 79 / 321

* printer ()
*
* Writes the address records out to a printer. recp
* is a pointer to the structure holding the
* records and num_recs is the number of records stored
* in the structure.
**/
printer(recp, num_recs)
struct rec *recp;
int num_recs;
{
 int x, status, i;
 FILE *p_file;

 /* Wait for printer to be turned on. */
 status = Cprnout(0);
 if (status == PRINTER_OFF) {
 printf("Turn on printer!\n");
 return(status);
 }

 /* Send each line of each record to the printer. */
 for (x=0; x<num_recs; ++x) {
 for (i=0; i<strlen(recp->names.fname); ++i)
 Cprnout(recp->names.fname[i]);
 Cprnout (' ');
 for (i=0; i<strlen(recp->names.lname); ++i)
 Cprnout(recp->names.lname[i]);
 Cprnout ('\n');
 Cprnout ('\r');
 for (i=0; i<strlen(recp->street); ++i)
 Cprnout(recp->street[i]);
 Cprnout ('\n');
 Cprnout ('\r');
 for (i=0; i<strlen(recp->city); ++i)
 Cprnout(recp->city[i]);
 Cprnout ('\n');
 Cprnout ('\r');
 Cprnout ('\n');
 Cprnout ('\r');
 Cprnout ('\n');
 Cprnout ('\r');
 Cprnout ('\n');
 Cprnout ('\r');
 ++recp;
 }
 return(status);
}

/***
* pos_cur ()
*
* Positions the cursor on the screen. i is
* the record number and l is the number of the line
* within the record being printed.
**/
pos_cur(i,l)
int i,l;
{
 int x, y;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 80 / 321

 /* If even-numbered record, position on */
 /* right side of screen. */
 if ((i+1)%2 == 0)
 x = 50;

 /* If odd-numbered record, position on */
 /* left side of screen. */
 else
 x = 10;
 /* Calculate vertical position of line. */
 y = ((i/2)*5)+4+l;

 /* Position cursor. */
 vs_curaddress(handle,y,x);
}

/***
* get_str ()
*
* Gets a string from the keyboard. s is a pointer
* to a character array and mx is the maximum allowable
* length of the string.
**/
int get_str(s, mx)
char s[];
int mx;
{
 int p, code;

 p = 0;

 /* Get character from console. */
 code = Cconin();

 /* Add character to string. */
 while (code != RETURN && p <= mx-1) {
 if (code != BACKSPACE) {
 s[p++] = code;
 }

 /* Handle backspace. */
 else if (p > 0) {
 s[--p] = '\0';
 putchar(BACKSPACE);
 putchar(' ');
 putchar(BACKSPACE);
 }

 /* Get next character. */
 code = Cconin();

 /* Add null to end of string. */
 s[p] = '\0';
 }
 if (p == mx)
 printf("\r\n");
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 81 / 321

CHAPTER 9 - MORE LOOPING STRUCTURES AND FILE I/O

Everyone give a hearty cheer. This chapter we'll be finishing up the most grueling details of
programming in C, so that next chapter we can start learning about GEM. It's been a long time
coming, but you can't bake a cake until you've heated the oven, right?

Chapter 8's program listing overflowed with new material. Let's tackle that first.

Unfinished Business

At the top of the listing, beneath the block of defines, you'll see a function, fopen(), being declared as
returning a pointer to type FILE. If you think back, you'll remember that any time a function is going
to return something other than an integer, it must be declared. But what the heck is FILE, anyway?
We've never discussed this data type, have we?

Actually, in a way, we have. In Chapter 8, we talked about structures, data types that are specifically
tailored by the programmer. FILE is a structure defined in the stdio.h file, containing the data
elements required to handle file I/O.

Wait a minute. That fopen() isn't our function. Except for the function calls, this guy is nowhere to be
found in our program listing.

True. fopen() is a library function. Now, one would think that, if whoever composed the stdio.h file
went to all the trouble to set up the FILE structure, he would have at least gone to the extra effort to
make fopen() "ready to go," by declaring it as returning a pointer to FILE.

For some strange reason, the version of stdio.h that comes with the Atari developer's kit doesn't
include the declaration, so we must do it ourselves. If you have the Megamax compiler, however, you
can delete this declaration from the program; they did award us the courtesy of finishing the job.

A Quick Look at GEM

Just beyond the file declaration for fopen(), there are declarations for a number of global arrays:
work_in[], work_out[], contrl[], intin[], ptsin[], intout[], and ptsout[]. If you've looked at some of the
C source code for various GEM programs in the public domain, or those published in magazines,
you've noticed that these arrays are almost always present. In fact, you've probably seen them used
in ST BASIC programs, as well.

All the above arrays have one thing in common: they provide GEM a place to store or retrieve
information about the program. This information can then be easily manipulated by the
programmer.

I know, I know. I told you we weren't going to be getting into GEM until Chapter 10. But we are going
to learn a little about initializing a GEM program, since the cursor control functions I used in Chapter
8's listing are found in the VDI portion of GEM.

What's VDI? GEM is made up of many libraries of functions, each of which is responsible for handling
a certain portion of the system's activities. These libraries are grouped into two major units, called
AES (Application Environment Services) and VDI (Virtual Device Interface). The libraries making up
the AES handle such things as windows, dialog boxes, menu bars and event processing. (An event is
some action from the user, such as typing a letter or moving the mouse.) The VDI contains the
subroutines to control the ST's graphics, as well as some mouse and cursor control functions.

Since GEM is capable of handling several programs at once (such as using a desk accessory with a
word processor), there has to be a way of keeping one job separate from another. GEM tackles this
by assigning each program and its associated device (in our case, the screen) a "workstation" which

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 82 / 321

can then be referred to by an identifier known as a "handle." The first thing any GEM application
must do is open a workstation.

Which brings us back to the arrays that started this discussion. When we open a workstation, we
have to tell GEM how we want the system's attributes initialized. What color should the text be? And
should it be shadowed? Or maybe bold? What style fill do we want? Solid? Checkered? All these
attributes should be placed in the array work_in[] before we open the workstation, since that's
where GEM is going to expect to find them.

We're not going to worry, at the moment, about which elements of the array hold information for
which attribute. We're just going to take it on faith that work_in[10] should be initialized to 2, and
the rest will be perfectly happy initialized to 1.

After we've set up the array, we tell GEM to open the workstation with the v_opnvwk[] call:

v_opnvwk(work_in,&handle,work_out);

The parameter work_in is the address of our array work_in[], which contains the attribute
information we wish to pass to GEM. And &handle is the address where GEM should store the
handle, the integer value that will allow us to refer to this program's workstation. In our sample
program, it's the address of the variable handle, which is defined after the work_in[] and work_out[]
arrays at the top of the listing. The parameter work_out is, of course, the address of our array
work_out[].

When we open the workstation, GEM will load the work_out[] array with all the information a
programmer needs about the workstation. For instance, work_out[12] will contain the number of
hatch styles available, while work_out[13] will contain the number of colors that can be displayed at
one time. We don't have to be concerned with this information now, but it is important that you
understand why we need these two arrays.

You can see the mechanics of opening a workstation in the open_vwork() function of Chapter 8's
program listing. Also, at the end of main(), notice the function call:

v_clsvwk(handle);

This closes the workstation to further output. The argument handle is the device handle passed to
you by the v_opnvwk() call.

And a Peek at VDI

The remaining five arrays -- contrl[], intin[], ptsin[], ptsout[] and intout[] -- are directly associated
with the VDI. The first three are used to pass information to the VDI routines, while the last two
provide a means for the VDI to return information to the program. These arrays are used by GEM for
its own purposes; you need do nothing more than declare them at the beginning of your program.

Moving Along

 If you spent the time to examine Chapter 8's program listing, you probably wondered what was
going on with this call:

Cconws("FIRST NAME: ");

This function does nothing more than write a string to the screen. Why didn't I just use printf() and
avoid all this confusion? It has to do with another discovery I made concerning Megamax C. With
Megamax, printf() will print only when it encounters a \n. This makes handling prompts tricky, if you
want the user's input on the same line as the prompt. Resorting to Cconws() solved this problem.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 83 / 321

Three other new function calls, getw(), fgets(), and strlen(), were used in the sample program in the
disk_file() function.

value = getw(file);
fgets(string, n, file);
l = strlen(s);

The function getw() reads a word (integer) from a disk file and stores it in value. The argument file is
a pointer to a FILE structure. In our program, this function call is retrieving the number of records in
our address file.

The function fgets() reads a string from a disk file. In the above example, string is a pointer to a
character array, n is the maximum number of characters to read from the file, and file is a pointer to
a FILE structure. When fgets() is called, it will continue to read until it has read n-1 characters, finds a
newline character (which is added to the end of the string), or gets an EOF. A null character is tacked
onto the string after the read is complete. In our program, we're using fgets() to read in the strings
that make up each record in our address file.

Finally, the function strlen() simply returns the length of string s. We're using strlen() to find the
location of the newline character that was read in by fgets(), which we have to replace with a null.
Let's say we just read in the name FRED. In our character array s, we now have the letters F, R, E, D,
followed by a \n and a null. The function call

l = strlen (s);

will return the length of the string up to the null, which in this case is 5. But our \n isn't really in s[5],
is it? Remember: arrays start counting at 0. So to replace the \n with a null we do this:

s[l-1] = 0;

Another new function, fprintf(), can be found in our program within the function save_file():

fprintf(p_file, "%d\n", num_recs);
fprintf(p_file, "%s\n", recp->city);

This function is almost identical to printf(), the only change being the extra argument, the pointer to
the FILE structure.

In the first example, we're printing to the file the integer value stored in num_recs, followed by a
newline. In the second, we're printing to the file the character string stored in the structure member
city, also followed by a newline.

The VDI Cursor Stuff

If you look at the functions screen() and pos_cur() in the program listing, you'll see the cursor control
function calls I mentioned earlier. In order to take advantage of these functions, we must first make
this call:

v_enter_cur(handle);

This function call gets us out of graphics mode and into text mode. In this function, as with all the
following, handle is the workstation identifier that was returned to us by the v_opnvwk() call.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 84 / 321

We can position the cursor anywhere on the screen by passing the X,Y-coordinates to the function
vs_curaddress():

vs_curaddress(handle,y,x);

Notice that the coordinates are passed in the opposite order of what you'd expect; that is, Y followed
by X. Also, keep in mind that we're now in text mode. The cursor location is based on character
positions, not raster coordinates. In medium-resolution text mode, the screen's size is interpreted as
80x24, whereas in graphics mode it's 640x200. Quite a difference!

Printer Output

Take a look at the function printer() in the sample listing. The first thing we have to do is check to see
if the printer is on.

status = Cprnout(0);

The line above accomplishes its task by sending a null character to the printer. If the printer times
out, a 0 will be returned by the function. Another way to check the printer is with the function
Cprnos() which returns a nonzero value if the printer is ready to receive:

status = Cprnos();

Once we know that the printer is ready to respond, we can start sending text. There are several ways
of doing this. The method I chose uses a function called Cprnout(), which sends characters to the
printer one at a time. The format for this function call is:

status = Cprnout (ch);

Here, the value returned into status will be -1 if the character was sent okay, or 0 if, for some reason,
the printer didn't respond. The variable ch is the character we want printed.

In our program, we've omitted status. Since we've already checked the printer status, it's probably
not necessary to check it again. However, in a real application program, we must be sure to check the
value of status. How would we know if the printer ran out of paper or went off-line unexpectedly?

Note also that we can send a character literal to the printer, as well as the character stored in a
variable. In our program, for example, we're printing a space like this:

Cprnout (' ');

Because we need to print full strings rather than only a single character, we've set up a for loop for
each of the strings, using the loop variable as an index into the character array. In this way, we loop
through the string, sending it to the printer one character at a time.

Finally, notice that we're ending each string by printing a \n and a \r. Without a line feed and carriage
return, the strings will be printed side by side rather than one above the other.

Odds and Ends

That covers all the material from Chapter 8's sample program. Now we have a final task to complete
before we can move on to GEM: touching on a few details of the C language we haven't yet covered.

What do you make of the following line?
z = (x<4) ? x : y;

Believe it or not, this is nothing more than a shortcut version of:
if (x < 4)
 z = x;
else
 z = y;

The ?: is a conditional operator that requires three operands. The first operand (within the
parentheses) is the expression to be tested. If the expression is true, the statement yields the
evaluation of the second operand (between the ? and :). If the first expression is false, the statement

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 85 / 321

yields the evaluation of the third operand (between the : and ;). Here's another example that'll get
the highest value of two variables:

highest = (x > y) ? x : y;

C also has a construction similar to BASIC's ON...GOTO:

switch (exp) {
case 1 :
 printf("exp = 1");
 break;
case 2 :
 printf("exp = 2");
 break;
case 3 :
 printf("exp = 3");
 break;
default :
 printf("exp < 1 or > 3");
}

The switch statement works by first evaluating the expression in the parentheses, then checking the
following labels to see if there's one that matches the expression's value.

If there is, program execution jumps to the matching line and continues until it encounters the
statement break.

But what if there's no match? What if, in the above example, exp is not 1, 2, or 3? That's where the
label default comes in. Program execution will jump to this line if none of the other labels match.
Otherwise, if there's no default, program execution will jump to the next line following the end of the
switch statement (after the closing brace).

What happens if we leave out the break statements? Remember I said that, once the expression
following switch is evaluated, the program jumps to the matching label and continues until it
encounters a break. The program doesn't care if there's no break before the next label. It'll go on,
past the succeeding labels (ignoring them), and execute every statement it finds -- until it either finds
a break or reaches the closing brace. In the example above, if we left out all the break state- ments
and exp evaluated to 2, the output would look like this:

exp = 2exp = 3exp < 1 or > 3

Similarly, if exp evaluated to 3, we would see:

exp = 3exp < 1 or > 3

A New Loop

We've become used to the while and for loop constructions. Both are entry condition loops; that is,
the loop conditional is checked before each iteration of the loop. There's another loop construct
we've ignored so far, the do while loop.

The do while construct is an exit condition loop. The loop conditional is evaluated after each
iteration:

x = 0;
do {
 ++x;
 printf("x = %d\n", x);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 86 / 321

} while (x < 4);

The above prints values of x from 1 to 4. Contrast that with:

x = 0;
while (++x < 4) {
 printf("x = %d\n", x);
}

which will print values of x from 1 to 3.

Break, Continue, and Goto

We talked about the break statement earlier, in conjunction with switch, but it can also be used to
get out of for, while, and do while loops. When used in a nested loop construction, it only terminates
the loop in which it's used. The outermost loops will continue normally.

while (x < 10) {
 if (x == 5) break;
 else printf("x is not 5\n");
}

Another method of affecting loop execution is with continue. When continue is encountered within a
loop, the loop doesn't terminate, but, instead, starts the next iteration.

x = 0;
while ((ch = getchar()) != '*') {
 if (ch = ' ') continue;
 s[x++] = ch;
}

Finally -- although I hate to mention it, due to its inevitable abuse -- C has a goto statement. The
keyword goto is followed by the label identifying where program execution should continue:

goto print_name;

print_name: printf("Name: %s", name);

Frankly, there's little or no use for the goto statement in a structured language like C. The same goes,
though not as strongly, for break and continue, except when the former is used within a switch
statement. There's almost always a more structured and elegant way to get around the use of these
statements. If you're a BASIC programmer, it will take you a while to get accustomed to structuring
your programs in such a way as to avoid the use of a goto. But, trust me, it can be done, and the
results are much more readable than BASIC's typical tangle.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 87 / 321

CHAPTER 10 - THE FIRST LOOK AT GEM AND THE VDI

Hurray! The long wait is over. This chapter, as promised, we're going to start digging into GEM and
learn how to get the most out of our STs. You've worked hard getting familiar with C, so give yourself
a quick pat on the back for a job well done. Now put those thinking caps back in place. All set?

A Review of GEM

In Chapter 9, we took a brief look at what GEM really is. We stated that GEM (Graphics Environment
Manager) is made up of many libraries of functions, each of which handles certain portions of the
system's activities. These libraries are grouped into two major units, called the AES (Applications
Environment Services) and the VDI (Virtual Device Interface). The AES contains the functions we need
to handle windows, dialog boxes, menu bars and event processing. The VDI controls most of the ST's
graphic capabilities, as well as providing some mouse and cursor control functions.

What's so hot about GEM, anyway? Why all the hoo-hah? You've been using your computer for quite
a while now, and you know one great advantage of GEM already: its ease of use. The system is
designed in a logical, almost real-world sort of way, supplying icons that represent activities we're
used to in everyday life, like file drawers and trash cans. That's why GEM's main screen is called a
desktop. We can access calculators, documents, writing utensils, clocks, calendars, appointment
books, and any of a hundred other items you might find on your desk.

But another advantage of programming in GEM is its portability. It's been said that GEM is the most
portable operating system in existence. This means your programs can easily be ported to other
machines using the GEM environment, so your programming efforts are even more valuable.

Presenting the VDI

The VDI plays an important role in making your graphics programs operate on many different
devices. Unfortunately, one of the crucial elements in the graphics interface, GDOS (Graphics Device
Operating System) is not built into the current operating system. GDOS is the portion of the VDI
which links the graphics functions to the drivers needed to assure that the graphics operate properly
on all graphics devices. GDOS also makes it possible to load different fonts into your ST, using the
standard VDI functions.

At this time, however, we're concerned only with one device: the screen.

The VDI functions

The VDI provides the programmer with a series of functions that let him quickly draw many graphic
shapes. This makes development of programs that rely heavily on graphics a breeze. If you
programmed an 8-bit Atari (or still do), think of all the work involved in drawing a circle. The VDI
provides a function that will draw any size circle we want -- with a single call. There are also functions
for drawing ellipses, lines, rectangles, rounded rectangles, arcs, pie slices and a number of other
useful graphics.

And it doesn't stop there. Each graphic function has a group of related attributes that may be set
before the graphic is drawn, allowing various types of lines, fill patterns and colors.

This chapter's sample program shows how to call most of the VDI's graphics functions. It was
developed using the Megamax C compiler, but is also compatible with Alcyon C, the compiler that
comes with the Atari Developers Kit.

When the program is run, the first screen will show the different types of line styles available to you
through the VDI. Each time you press a key, the program will display another set of graphics
generated by a VDI function.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 88 / 321

The Sample Program

Let's take a look at the listing and see what's going on. The first thing we must do when writing a
GEM program is initialize the application. We do this with the call:

appl_int();

This tells the AES about our application and sets aside the resources the AES needs to function. Next,
we must make the call:

handle=graf_handle(&gr_hwchar, &gr_hhchar, &gr_hwbox, &gr_hhbox);

This returns the handle for the currently open device or workstation, as well as the size of the system
font. Because GEM is capable of having many programs in memory at once, each requires some
identification, to keep commands for one program from messing up another. This is accomplished by
assigning each program a handle. The variable handle in the above call is an integer value that
identifies the current workstation.

The graf_handle() call also returns some information about the system font. We must declare four
variables of type integer to hold this information, then pass their addresses to the function. In the
above call, gr_hwchar will get the width of a character cell in pixels; gr_hhchar will get the height of a
character cell in pixels; gr_hwbox will get the width, in pixels, of a box large enough to hold a single
character; and gr_hhbox will get the height, in pixels, of a box large enough to hold a single
character. We won't be using any of this information now, but you should be aware of why we supply
these variables.

Let's Get Virtual

The graf_handle() call returns the handle to the physical workstation. What we really need for our
program is a handle to a virtual workstation. It's kind of tough to explain the difference, but I'll give it
a shot.

A particular device may have many virtual workstations, but only one physical workstation. The
physical workstation is directly associated with the device itself, usually the screen. You can think of a
virtual workstation as a "pretend" device. It has its own section of memory, and keeps its data and
status completely separate from all other virtual workstations. When you activate an application
(such as clicking on a desk accessory), it is bound to the physical workstation. In a sense, it becomes
the physical workstation.

We get the handle for our virtual workstation with the call:
v_opnvwk(work_in,&handle,work_out);

This function expects the system attributes to be in the work_in[] array. If you're not sure why we
need the arrays work_in[] and work_out[], review Chapter 9.

Polylines

Now that we've got our workstation set up, we can get down to business. The first graphic we'll
experiment with is called polylines. Those of you who are up on your linguistics know that the prefix
poly means "many." Polylines are one or more lines connected from point to point, which allow the
programmer to draw complex shapes with a single function call. The function call looks like this:

v_pline(handle,num_pairs,pxy);

The variable handle is, of course, the handle returned from the v_opnvwk() call. Every function we
use requires this handle. That way, we're sure we won't mess with another application which may be
in memory at the same time. If we're writing a desk accessory to be used with a word processor, for
example, we want to be positive we don't change anything in the word processor application.
Otherwise, we're liable to have an irritated user, to say the least.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 89 / 321

The parameter pxy is a pointer to an array of integers which holds each of our polyline's end points in
X,Y pairs. For instance, if we wanted to draw a box, pxy[] might look like this:

int pxy[]={24,18,176,18,176,118,24,118,24,18}

The integer parameter num_pairs is the number of coordinate pairs in the pxy array. By the way, the
pxy values are pixel values; in other words, in a low resolution screen we'd have possible values of 0-
319 for the X-coordinates and 0-199 for the Y-coordinates.

As I mentioned previously, there are a number of attributes we can set for each of the VDI graphics
functions. For polylines, we can set the color, type and width, and the end style. We set the color
with:

vsl_color(handle,color);

Here, color is an integer from 0 to the device maximum (low resolution=15, medium resolution=3,
and high resolution=1). If we use a number higher than the maximum, the function will default to
color 1. On the ST, the default color palette, starting with 0 and ending with 15, is white, black, red,
green, blue, cyan, yellow, magenta, white, black, light red, light green, light blue, light cyan, light
yellow and light magenta. The function will return the color value chosen.

If we're drawing a line at the smallest width, we can choose between six system line types with:
vsl_type(handle,type);

Here, type is an integer value from 1 to 7 as follows:

Type 7 lets you set up your own line types, but we're not going to get into that now.

When you're drawing lines, you can also choose an end style with the call:
vsl_ends(handle,end1,end2);

In this case, end1 and end2 are integer values from 0 to 2. A value of 0 will yield a square end, 1 will
get you an arrow, and 2 will result in a rounded end. The variable end1 is the beginning style, and
end2 is the ending style.

Finally, we can set the thickness of our lines with the call:

vsl_width(handle,width);

The variable width must be an odd positive integer. The line will be set to the closest width less than
or equal to the value of width. The value chosen is returned from the function.

Rounded Rectangles

We can employ v_pline() to draw a standard square-cornered box, but the VDI also supplies a
function which will let us draw rectangles with rounded corners. The function
is called in this manner:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 90 / 321

v_rbox(handle,pxy);

Once again, we tell GEM where to draw our rectangle with the pxy array, except this time we must
supply only the pixel coordinates of the lower-left and upper-right corners. The line attributes --
color, style and width -- are used with v_rbox(), allowing a wide variety of rectangles.

Filled Rounded Rectangles

If you want a solid, rounded rectangle, you can make this function call:

v_rfbox(handle,pxy);

The pxy array is used the same way as in v_rbox(), supplying the function
with the lower-left and upper-right corners. The body of the rectangle is filled with the active fill
pattern, which we'll see how to set later on. The default is a solid fill.

Circles

Want to draw a circle? No sweat! Just use this function call:

v_circle(handle,x,y,radius);

The integer parameters x and y are the pixel coordinates of the circle's center, and
radius is, obviously, the circle's radius (also an integer). The v_circle() function, like v_rfbox(), uses
the current fill attributes.

Polymarkers

Polymarkers are a number of predefined shapes you can use in your graphics. You call the function
this way:

v_pmarker(handle,number,pxy);

The integer parameter number is the number of markers you wish to draw. Coordinates for each
marker are stored in the pxy array, one X,Y pair for each marker.

But what do these markers look like? You have a choice of six predefined
shapes which (from 1 to 6, respectively) are dot, plus sign, asterisk, square,
diagonal cross) and diamond.

To set the polymarker type, call:

vsm_type(handle,type);

Here, type is an integer from 1 to 6. If you should choose a value out of this range, the function will
select the asterisk as a default. The value chosen will be returned from the function.

There are two other attributes which affect polymarkers: color and height. Color is set with the call:

vsm_color(handle,color);

Here, color is an integer from 0 to the device maximum. All the rules of the vsl_color() call apply in
this case.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 91 / 321

You can change the size of all polymarkers, except the dot (which always appears in the smallest
size), with the call:

vsm_height(handle,height);

Here, the integer parameter height is the polymarker's size on the Y-axis. Actual height will be the
greatest height available on the device, less than or equal to the height parameter.

Filled Rectangles

Solid rectangles can be drawn with the call:

v_bar(handle,pxy);

As usual, the lower-left and upper-right corners are stored in the pxy array. The
active fill attributes are used to color the body of the rectangle.

Ellipses

An ellipse looks something like a squashed circle or a solid oval. You can draw
it with the call:

v_ellipse(handle,x,y,xrad,yrad);

Here, the integers x and y denote the ellipse's center point, and the integers xrad and yrad are the X-
and Y-radii in pixels. Once again, the active fill attributes are used.

Arcs

Arcs are simple to draw, with this call:

v_arc(handle,x,y,radius,bang,eang);

The integers x, y, and radius are the X,Y-coordinates of the center and the
radius, respectively. The integers bang and eang are the beginning and ending angles of the arc, in
tenths of a degree. The following diagram illustrates the possible angle values:

Pie Slices

Here's a handy function that'll help you draw those fancy pie charts. To draw
a pie slice, use the call:

v_pieslice(handle,x,y,radius,bang,eang);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 92 / 321

The parameters are the same as those for the arc function. The body of the pie slice will be colored
by whatever fill pattern is active.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 93 / 321

Fill Patterns

GEM supplies us with many patterns we can use to fill our figures. There's a series of functions to let
us set these patterns up the way we want them. The first step is the function call:

vsf_interior(handle,style);

Here, style is an integer 0 to 4. The values are interpreted as follows:
0 Hollow (background color)
1 Solid
2 Pattern
3 Hatch
4 User-defined

If you choose style 0 or 1, you need go no further, but style 2 allows you to choose between 24
different patterns, and style 3 provides 12 hatch styles. You choose the pattern you wish to use, with
the call:

vsf_style(handle,style);

Here, style is an integer value from 0 to 23. Consult your reference manual to see what these styles
look like (or run the sample program).

The color of your fill is selected with the call:

vsf_color(handle,color);

All the rules for the vsl_color() function apply here, also.

Finally, you can choose between a visible or invisible border for your fill, with the call:

vsf_perimeter(handle,vis);

Here, vis is any integer. A value of 0 will give you an invisible border; any other value will cause the
border to be drawn in the current fill color.

Use Those Tools!

Now that you've been introduced to many of the graphics functions available to you through the VDI,
study the sample program to see them in action, then take some time and experiment with the VDI
on your own. See if you can write a program to draw a simple picture, maybe a graph or two.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 94 / 321

Program Listing #1

/***/
/* C-MANSHIP, LISTING 1 */
/* CHAPTER 10 */
/* DEVELOPED WITH MEGAMAX-C */
/***/
#include <osbind.h>

int work_in[11], work_out[57];
int handle;
int contrl[12], intin[128];
int ptsin[128], intout[128], ptsout[128];
int gr_hwchar, gr_hhchar, gr_hwbox, gr_hhbox;

main()
{
 appl_init();
 open_vwork();
 do_pline();
 do_roundrec();
 do_froundrec();
 do_circle();
 do_pmarker();
 do_bar();
 do_ellipse();
 do_arc();
 do_pieslice();
 do_fills();
 v_clsvwk(handle);
 appl_exit();
}

open_vwork()
{
 int i;

 for (i=0; i<10; work_in[i++] = 1);
 work_in[2] = 2;
 handle = graf_handle(&gr_hwchar,&gr_hhchar,&gr_hwbox,&gr_hhbox);
 v_opnvwk(work_in, &handle, work_out);
}

do_pline()
{
 int pxy[4];
 int color, end, type, width;

 pxy[0] = 30; pxy[1] = 20;
 pxy[2] = 280; pxy[3] = 20;
 end = 0; width = 1;
 v_clrwk(handle);
 for (color=1; color<5; ++color) {
 vsl_color(handle,color);
 vsl_ends(handle,end,end);
 vsl_width(handle,width);
 v_pline(handle,2,pxy);
 pxy[1] += 10; pxy[3] += 10;
 end += 1; width += 2;
 }

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 95 / 321

 vsl_width(handle,1);
 vsl_ends(handle,0,0);
 vsl_color(handle,1);
 for (type=1; type<7; ++type) {
 vsl_type(handle,type);
 pxy[1] += 10; pxy[3] += 10;
 v_pline(handle,2,pxy);
 }
 Cconin();
}

do_roundrec()
{
 int pxy[4];
 int color, width;

 pxy[0] = 10; pxy[1] = 10;
 pxy[2] = 300; pxy[3] = 190;
 width = 1;
 v_clrwk(handle);
 vsl_type(handle,1);
 for (color=1; color<7; ++color) {
 vsl_width(handle,width);
 vsl_color(handle,color);
 v_rbox(handle,pxy);
 width += 2;
 pxy[0] += 20; pxy[1] += 20;
 pxy[2] -= 10; pxy[3] -= 10;
 }
 Cconin();
}

do_froundrec()
{
 int pxy[4];
 int color;

 pxy[0] = 10; pxy[1] = 10;
 pxy[2] = 300; pxy[3] = 190;
 v_clrwk(handle);
 for (color=1; color<7; ++color) {
 vsf_color(handle,color);
 v_rfbox(handle,pxy);
 pxy[0] += 20; pxy[1] += 20;
 pxy[2] -= 10; pxy[3] -= 10;
 }
 Cconin();
}

do_circle()
{
 int color, radius;

 v_clrwk(handle);
 radius = 100;
 for (color=1; color<8; ++color) {
 vsf_color(handle,color);
 v_circle(handle,150,100,radius);
 radius -= 15;
 }
 Cconin();

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 96 / 321

}

do_pmarker()
{
 int color, height, type;
 int pxy[2];

 v_clrwk(handle);
 pxy[1] = 10;
 for (type=1; type<7; ++type) {
 vsm_type(handle,type);
 height = 2; pxy[0] = 10;
 for (color=1; color<6; ++color) {
 vsm_color(handle,color);
 vsm_height(handle,height);
 v_pmarker(handle,1,pxy);
 height += 16; pxy[0] += 60;
 }
 pxy[1] += 35;
 }
 Cconin();
}

do_bar()
{
 int pxy[4], color;

 pxy[0] = 10; pxy[1] = 190;
 pxy[2] = 300; pxy[3] = 10;
 v_clrwk(handle);
 for (color=1; color<6; ++color) {
 vsf_color(handle,color);
 v_bar(handle,pxy);
 pxy[0] += 25; pxy[1] -= 20;
 pxy[2] -= 20; pxy[3] += 10;
 }
 Cconin();
}

do_ellipse()
{
 int color, xradius, yradius;

 v_clrwk(handle);
 xradius = 150; yradius = 100;
 for (color=1; color<11; ++color) {
 vsf_color(handle,color);
 v_ellipse(handle,150,100,xradius,yradius);
 xradius -= 15;
 }
 Cconin();
}

do_arc()
{
 int color, radius, bang, eang;

 v_clrwk(handle);
 vsl_width(handle,3);
 bang = 900; eang = 0; radius = 10;
 for (color=1; color<6; ++color) {

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 97 / 321

 vsl_color(handle,color);
 v_arc(handle,150,100,radius,bang,eang);
 bang += 60; eang -= 60; radius += 20;
 }
 Cconin();
}

do_pieslice()
{
 int color, radius, bang, eang;

 v_clrwk(handle);
 radius = 100; bang = 3200; eang = 600;
 for (color=1; color<6; ++color) {
 vsf_color(handle,color);
 v_pieslice(handle,150,100,radius,bang,eang);
 radius -= 15; bang -=200; eang -= 100;
 }
 Cconin();
}

do_fills()
{
 int pxy[4], style, i, num, x;

 pxy[0] = 50; pxy[1] = 30;
 pxy[2] = 250; pxy[3] = 170; num = 25;
 for (i=2; i<4; ++i) {
 vsf_color(handle,i);
 vsf_interior(handle,i);
 for (style=1; style<num; ++style) {
 vsf_style(handle,style);
 v_clrwk(handle);
 v_bar(handle,pxy);
 for (x=0; x<32000; ++x);
 }
 num = 13;
 }
 Cconin();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 98 / 321

CHAPTER 11 - VDI TEXT FUNCTIONS

Those of you who programmed the 8-bit Ataris were limited in your text displays. Sure, you had
graphics 1 and 2, which endowed your computer with oversized text in four colors, and you could,
when in graphics 0, inject life with some inverse video.

If those alternatives did nothing to satisfy your critical eye, you could always take refuge in a
redesigned character set. And, if you were into self-brutalization -- or were desperate to the point
where opened wrists seemed preferable to another moment of programming -- you could draw your
characters pixel by pixel, line by line, until your masterwork emerged amidst the ruins of your mental
health.

But those are bygone times. Now you own an ST. Because the ST's screen is bit-mapped rather than
character-mapped, you may fire your shrink and discard all schemes of self-destruction. Text, like any
other graphic, is drawn on the screen.

Stop right there! Wasn't it the drawing of text on the 8-bits -- that ghastly alternative to the normal
displays -- that forced many talented bit-and-byte managers to take up residence in the local
Institute for the Incredibly Nervous? Yes, indeed. But, on the ST, GEM's VDI takes on the task,
supplying the programmer with simple functions to graphically manipulate text. There are about two
dozen text sizes available, as well as numerous special effects, which can be combined in any way the
programmer sees fit.

To get a quick introduction to the VDI text functions, type in this chapter's program listing, compile
and run it. Use the mouse to click on the menu options. Clicking the left button when viewing a demo
screen returns you to the menu; clicking the right button when at the menu returns you to the GEM
desktop.

Who's a Dummy?

 Now that you've seen some of the things you can do with text on an ST (I suspect you've seen this
stuff before), let's dig into the listing. The program first calls appl_init(), after which it opens a virtual
workstation. We discussed these procedures in Chapter 10, but take a look at the parameters for the
graf_handle() call. See something a little strange? Four of the parameters are the address of the
variable dummy.

In Chapter 10, I told you that graf_handle() returns information about the system font. This
information is stored in four variables whose addresses you pass with the call. In this chapter's demo
program, we've no need for this information, so why clutter up the program with extra variables?
The graf_handle() call doesn't care where it stores the information, as long as you give it an address.
In fact, it doesn't even care if you give it the same address for all four values. It'll happily store one
value on top of the previous one (wiping the older value out, of course; you'll have no way to retrieve
any but the last).

The integer variable dummy is used throughout the program in just this way. Anytime we must
supply storage for a dispensable value, we'll use the dummy variable.

Converting Between Resolutions

After we've got our workstation opened, function init() sets up the program for our current
resolution, then changes the mouse pointer to the hand icon. In order to do this, we first need to get
the resolution. We do this with the call:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 99 / 321

res = Getrez();

This returns an integer from 0 to 2. A value of 0 means the screen is currently in low resolution; a
value of 1 indicates medium resolution; and a value of 2 tells you you're in high resolution. This
function is defined in the osbind.h file, and is a part of the XBIOS.

In low resolution, the screen dimensions are 320x200. In medium, the horizontal resolution is
doubled, giving us a screen 640x200. Finally, in high resolution, both the horizontal and vertical
resolutions are doubled (as compared to low resolution), yielding a screen 640x400. These
relationships are important if we're going to write software compatible with all three resolutions.

Let's say we're in low resolution. We draw a rectangle with the coordinates 20 20, 60 20, 60 40, 20 40
and 20 20 (these are the coordinate pairs you would load into the pxy array before calling v_pline()).
Now we switch to medium resolution and draw the same rectangle.

What happened? The rectangle is only half as long, right? This is because the horizontal resolution
has been increased by a factor of 2; the screen pixels are half as wide, so they produce a rectangle
half as long. If we want the rectangle the same size in medium resolution as in low (and in the same
place on the screen), we have to double the value of the horizontal coordinates. A rectangle drawn in
medium resolution between the coordinates 40 20, 120 20, 120 40, 40 40 and 40 20 will look like one
drawn with the previous coordinates in low resolution.

Now let's use the medium resolution coordinates to draw the same rectangle in high resolution.
Whoops! The figure is the same length, but now it's only half as high. No surprise, right?

The vertical dimension of a high resolution screen is twice that of low or medium resolution screens.
If we want to draw that same rectangle yet again, but in high resolution, we must multiply the
vertical coordinates by a factor of 2, giving us 40 40, 120 40, 120 80, 40 80 and 40 40.

Text output is affected by changes in resolution, too. In medium resolution, text is half as wide as in
low. High resolution, which uses a different font, yields text the same width as that in medium
resolution, but half as high.

How's all this handled in init()? Well, let's see. Once we get the resolution with a call to Getrez(), we
use the returned value in a switch statement to set h_factor (horizontal factor), v_factor (vertical
factor) and t_factor (text factor) to their appropriate values. We'll use these values in calculating
screen coordinates for the resolution we're in.

Some of the shapes to be drawn by our program have coordinates hard coded into arrays. This saves
us from setting up a pxy array each time we draw one of these shapes; we can, instead, pass the
address of the array that contains the coordinates.

To avoid calculations later on in the program, we immediately modify these arrays for our current
resolution. The for loop near the bottom of init() accomplishes this, by multiplying each element of
the array by one of the factors initialized by the switch statement. The figures whose coordinates are
stored in these arrays will then be displayed properly in any resolution.

Of Mice and C

 The function init()'s last task is to change the mouse form from the arrow to the hand. The call that
accomplishes this is:

graf_mouse (form,mouse_form);

Here, form is an integer value from the table below and mouse_form is the address of a 35-element
array containing the data for the mouse form. At this point, we're not going to discuss this array,

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 100 / 321

since it pertains to user-defined mouse forms rather than those supplied by the system. We'll discuss
custom mouse forms in an upcoming chapter.

The acceptable values for form are as follows:

0 Arrow

1 Line cursor

2 Bee

3 Pointing hand

4 Flat hand

5 Thin crosshair

6 Thick crosshair

7 Outlined crosshair

255 User-defined mouse form

256 Hide mouse form

257 Show mouse form

Any value from 0 to 7 will yield the mouse form shown. A value of 255 directs the function toward a
user-defined mouse form stored in the mouse_form array. A value of 256 removes the mouse form
from the screen, and a value of 257 restores it. As we'll see later, the ability to hide the mouse form
is critical when drawing on the screen.

The graf_mouse() function is a part of GEM's AES libraries.

Menus and Varmints with Buttons

The main program loop, found in do_menu(), utilizes the mouse for menu selection. The outer while
loop repeats the menu process until the user wishes to exit the program, while the inner while loop
samples the mouse until one of the buttons is pressed.

Also within the inner loop is a call to mouse_print(). This function (found at the end of the listing)
prints the coordinates of the mouse in the upper-left corner of the screen (actually, it'll print any two
integers). I use this function to help me find the mouse X,Y-positions I need for my test statements.
For instance, when writing this chapter's sample program, I used mouse_print() to determine what
coordinates fell within each of the menu selections. Once the program was completed, I thought
that, rather than delete mouse_print() from the listing, I'd leave it for you to fool with. What a guy,
huh?

Also, there are a couple of interesting function calls in mouse_print(). One of them, v_gtext(), we'll be
using extensively, since it's the VDI function that displays text. The syntax for this call is:

v_gtext (handle,x,y,string);

The integers x and y are the location the text is to be printed, and string is a pointer to the text. (You
may use a string literal within the call by enclosing it in quotes.) Remember that an array name (a
string is an array of character) is a pointer. Since v_gtext() will handle only strings, how do we output
other forms of data to the screen? What if we're writing a game and need to display a score? No
problem. All we have to do is convert the data we want to print into a string. The following example
will prepare an integer for printing with v_gtext():

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 101 / 321

sprintf (s,"%d",i);

The parameter s is the address of the string where the function is to store the converted data. (Don't
forget to leave space for the null!) The rest of the parameters are the same as for printf(). If you're a
little fuzzy on printf(), review Chapter 1.

Getting back to do_menu(), once a button press is detected, a series of if/else statements check
which button was pushed and the location of the mouse at the time. The VDI function that returns
the mouse status is:

vq_mouse (handle,&button,&mx,&my);

The parameter handle is, of course, the handle that was returned by the v_opnvwk() call. The
parameters &button, &mx, and &my are the addresses of integer variables that will hold the button
pushed, the mouse's X-position, and the mouse's Y-position, respectively. The value returned in
button will be 0 if no button is pressed, 1 if the left button is pressed, 2 if the right button is pressed,
and 3 if both buttons are pressed.

After we exit the inner while loop, we check for a button value of 1 (left button pressed). If the left
button was pressed, we then check the mouse coordinates at the time the button was pressed, to
see if the pointer was within one of our menu selections. If it wasn't, repeat retains its true condition,
and the outer while loop is repeated.

If the mouse pointer was within the menu, we perform the appropriate function, redraw the menu,
then return to the main while loop (repeat is still true). If button equals 2 (right button pressed), we
set repeat to 0, which breaks us out of the main loop and returns us to main(), where we close the
virtual workstation and return to the desktop.

Notice that, when checking for mouse coordinates, we're utilizing h_factor and v_factor. Just as
when drawing a shape, the horizontal and vertical mouse coordinates are dependent on the current
resolution. We must multiply each coordinate in the if statements by the appropriate factor.

Text Effects

The ST has several built-in text effects you can use to enhance your programs. Text can be printed
bold, light intensity, skewed, underlined, outlined, or any combination of the above. The function
do_effects() in the sample program demonstrates these effects.

First, a call to v_hide_c() hides the mouse form, then v_clrwk() clears the screen. The text color is set
with the call:

vst_color (handle,color);

Here, color is an integer from 0 up to the maximum colors available for the current resolution. (You
know what handle is, right?) Next, we set the text height (we'll cover this function a little later) and
enter the loop that prints the text. The different effects are set with the call:

vst_effects (handle,effect);

Here, the bits of the integer effect are set as below:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 102 / 321

Note that the value in the bit column is the number of the bit to set, not the value to send to the
function. You need to do some binary arithmetic to arrive at the decimal values shown in the second
column. Any combination of effects can be used by adding the values together. For instance, if you
want just bold text, the parameter effect in the above call should be set to 1; if you want underlined
and bold text, effect should be set to 9 (1+8); for skewed, outlined, bold text, effect needs the value
21, and so on.

Text Height

 As I mentioned earlier, the ST is capable of displaying text in many different heights. Best of all, you
may mix these heights on the screen in any way you wish. To set the height of text to be printed, use
the call:

vst_height(handle,height,&char_w,&char_h,&cell_w,&cell_h);

The integer height is the requested height, and the parameters &char_w, &char_h, &cell_w, and
&cell_h are pointers to integer. Respectively, the values returned in these addresses are the
character width, the character height (from the base line to the top of the cell), the cell width, and
the cell height. In the sample listing, since we don't need this information, we just return all these
values to our old standby, dummy.

Another function we can use to set text height is:

vst_point(handle,point,&char_w,&char_h,&cell_w,&cell_h);

Here, point is the height of text in points (a point equals 1/72 inch). The other parameters are the
same as for vst_height().

Text Rotation

 The GEM operating system allows text to be printed at any angle. Unfortunately, the ST
implementation of GEM allows rotation in 90-degree increments only. To set the base line rotation of
the text, use the call:

vst_rotation (handle,angle);

The integer angle is the angle of rotation in tenths of degrees. Because of the limitation placed on
this function for the ST, this value must be 0, 900, 1800 or 2700.

In the sample listing, the function do_rotate() demonstrates the use of text rotation. Handy for
graphs!

Mouse Prestidigitation

In all cases, before we draw something on the screen, we must hide the mouse form. If we don't, we
may find a block of the old screen pasted in over the new one as soon as the mouse is moved. This

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 103 / 321

may seem peculiar at first, but the logic behind it is simple. In order to allow mouse movement, the
operating system must save for later redraw the section of the screen covered by the mouse cursor.
When the mouse is again moved, the screen is restored by "pasting" back the saved block. The saved
screen block remains unchanged if we draw to the screen, so when the mouse is moved, and GEM
pastes in the old block, we may find a portion of the old screen coming back to haunt us.

The VDI provides the following functions for turning the mouse form on and off:

v_hide_c (handle);
v_show_c (handle);

There's something to keep in mind when using these functions. Every call to v_hide_c() must have a
corresponding call to v_show_c() -- unless, of course, you don't plan to see your mouse again. This
doesn't mean you can't call v_hide_c() twice in a row; it just means that if you do call it twice in a
row, you must also call v_show_c() twice to get your mouse back.

Break Time

 Now that you've learned a good deal about the VDI and how to use a mouse, you have the tools to
begin some serious GEM programming. The best way to become confident with these tools is to use
them. So, practice what you've learned.

Program Listing #1
/***/
/* C-MANSHIP, LISTING 1 */
/* CHAPTER 11 */
/* DEVELOPED WITH MEGAMAX-C */
/***/
#include <osbind.h>

#define BLACK 1
#define RED 2
#define GREEN 3
#define HOLLOW 0
#define SOLID 1
#define HAND 3
#define NORMAL 0

int work_in[11], work_out[57];
int contrl[12], intin[128];
int ptsin[128], intout[128], ptsout[128];
int mouse_form[35];
int rec1[] = {106,150,206,50};
int rec2[] = {108,148,204,52};
int line1[] = {108,84,204,84};
int line2[] = {108,116,204,116};

int res, h_factor, v_factor, t_factor;
int handle, dummy;

main()
{
 appl_init();
 open_vwork();
 init();
 do_menu();
 v_clsvwk(handle);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 104 / 321

 appl_exit();
}

do_menu()
{
 int repeat, button, mx, my;

 repeat = 1;
 draw_menu();
 while (repeat) {
 button = 0;
 while (button == 0) {
 vq_mouse(handle,&button,&mx,&my);
 mouse_print (mx,my);
 }
 if (button == 1) {
 if (mx>112*h_factor && mx<199*h_factor) {
 if (my>54*v_factor && my<81*v_factor) {
 do_effects();
 draw_menu();
 }
 else if (my>86*v_factor && my<113*v_factor) {
 do_height();
 draw_menu();
 }
 else if (my>118*v_factor && my<145*v_factor) {
 do_rotate();
 draw_menu();
 }
 }
 }
 else if (button == 2)
 repeat = 0;
 }
}

do_effects()
{
 int x, y, effect, b_effect, n_effect, height;

 v_hide_c (handle);
 v_clrwk (handle);
 vst_color (handle,BLACK);
 if (res == 0)
 height = 4;
 else
 height = 8;
 vst_height (handle,height,&dummy,&dummy,&dummy,&dummy);
 b_effect = 1;
 for (x=5*h_factor; x<260*h_factor; x+=62*h_factor) {
 n_effect = 1;
 for (y=25*v_factor; y<126*v_factor; y+=25*v_factor) {
 effect = b_effect | n_effect;
 vst_effects (handle,effect);
 v_gtext (handle,x,y,"EFFECTS");
 n_effect <<= 1;
 }
 b_effect <<= 1;
 }

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 105 / 321

 v_show_c (handle);
 button_wait();
}

do_height()
{
 int height, x, y;

 v_hide_c (handle);
 v_clrwk (handle);
 vst_effects (handle,0);
 for (height=1; height<27; ++height) {
 x += 8; y += 7;
 vst_height (handle,height,&dummy,&dummy,&dummy,&dummy);
 v_gtext (handle,x*h_factor,y*v_factor,"Height");
 }
 v_show_c (handle);
 button_wait();
}

do_rotate()
{
 int angle;

 v_hide_c (handle);
 v_clrwk (handle);
 vst_height (handle,8,&dummy,&dummy,&dummy,&dummy);
 for (angle=0; angle<2701; angle+=900) {
 vst_rotation (handle,angle);
 v_gtext (handle,160*h_factor,96*v_factor,"ROTATION");
 }
 vst_rotation (handle,0);
 v_show_c (handle);
 button_wait();
}

draw_menu()
{
 int height;

 v_hide_c (handle);
 v_clrwk(handle);
 draw_rec (rec1,GREEN,SOLID,0);
 draw_rec (rec2,BLACK,HOLLOW,0);
 v_pline (handle,2,line1);
 v_pline (handle,2,line2);
 vst_height (handle,10,&dummy,&dummy,&dummy,&dummy);
 vst_color (handle,RED);
 vst_effects (handle,NORMAL);
 v_gtext (handle,110+152*t_factor,72*v_factor,"EFFECTS");
 v_gtext (handle,116+152*t_factor,104*v_factor,"HEIGHT");
 v_gtext (handle,116+152*t_factor,136*v_factor,"ROTATE");
 v_show_c (handle);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 106 / 321

draw_rec(rec,fcolr,inter,style)
int rec[];
int fcolr,inter,style;
{
 int rxc[4];
 int x;

 for (x=0; x<4; ++x)
 rxc[x] = rec[x];
 vsf_color(handle,fcolr);
 vsf_interior(handle,inter);
 vsf_style(handle,style);
 v_bar(handle,rxc);
}

open_vwork()
{
 int i;

 handle = graf_handle(&dummy,&dummy,&dummy,&dummy);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

init()
{
 int x;

 res = Getrez();
 switch (res) {
case 0 :
 h_factor = 1;
 v_factor = 1;
 t_factor = 0;
 break;
case 1 :
 h_factor = 2;
 v_factor = 1;
 t_factor = 1;
 break;
case 2 :
 h_factor = 2;
 v_factor = 2;
 t_factor = 1;
 }
 for (x=0; x<4; ++x)
 if (x == 0 || x == 2) {
 rec1[x] = rec1[x] * h_factor;
 rec2[x] = rec2[x] * h_factor;
 line1[x] = line1[x] * h_factor;
 line2[x] = line2[x] * h_factor;
 }
 else {
 rec1[x] = rec1[x] * v_factor;
 rec2[x] = rec2[x] * v_factor;
 line1[x] = line1[x] * v_factor;
 line2[x] = line2[x] * v_factor;
 }
 graf_mouse (HAND,mouse_form);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 107 / 321

button_wait()
{
 int button, mx, my;

 button = 0;
 while (button == 0)
 vq_mouse(handle,&button,&mx,&my);
 while (button > 0)
 vq_mouse(handle,&button,&mx,&my);
}

mouse_print(mx,my)
int mx, my;
{
 char tx[5], ty[5];

 vst_height (handle,6,&dummy,&dummy,&dummy,&dummy);
 sprintf(tx,"%d ",mx);
 sprintf(ty,"%d ",my);
 v_gtext(handle,20,30,tx);
 v_gtext(handle,52,30,ty);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 108 / 321

CHAPTER 12 - ALERT BOXES AND CUSTOM MOUSE FORMS

We've spent the last couple of chapters examining GEM's VDI. We didn't cover everything, but we
managed to touch upon most of the major functions. Some of the ones we glossed over are easy
enough to figure out from the documentation supplied with your compiler; others, we'll get to as we
need them, particularly the raster functions.

In this chapter, we'll get started with GEM's AES (Application Environment Services). We'll learn how
to create GEM alert boxes, a little about the interaction of the AES with the VDI, and how to define
our own mouse forms.

Getting to Work

When you run this chapter's program, you'll be presented with an alert box like the one shown in
Figure 1. Use the mouse to click on the first button (the one labeled "New"). The screen will clear,
and the mouse pointer will change to a custom form. (You may have seen this cursor before. I used it
in Moonlord ST, a game that was published some time ago in ST-Log.) Clicking the left button will
return you to the alert box.

Now, click the button labeled "System." The mouse form will change to one of the system cursors,
the pointing finger. The last button is self-explanatory (I hope).

A Small Matter of Incompatibility

Before we get started with the nitty-gritty material, there's something you should be aware of
whenever you're going to use AES or VDI mouse routines. The AES has close ties with the VDI; in fact,
it relies on the VDI to do much of the dirty work. For instance, when you call the AES window-
drawing functions, the window is created, in part, using VDI graphics. That's why some of the VDI
routines are referred to as "graphics primitives." They're the foundation upon which all the
sophisticated ST graphics are built. The VDI is, in a way, a subordinate of the AES.

In most cases, when dealing with graphics, there's no problem with this hierarchy, but when you
start handling mouse events (a fancy name for mouse input), it's easy to confuse the AES. Basically,
you can use the mouse-handling routines in the AES or in the VDI, but not both at the same time. If
you want to be on the safe side, use only the AES mouse functions.

That's why button_wait() in Listing 1, a function that appeared in a different form in Chapter 11, had
to be modified, replacing the VDI calls in the original with the AES calls found in this chapter's
version. The AES alert box routines must, obviously, also handle the mouse. If we tried to use the VDI
mouse routines, we'd have trouble. (Try it if you like; replace the new button_wait() with the old one.
Then, if you leave the mouse in one place when clicking on a button, you'll find that the mouse will
reclick the alert box with no help from you). If you look at button_wait(), you'll see that we've
replaced the VDI call vq_mouse() with an AES call, evnt_button().

The function evnt_button() is a higher-level call and, as a result, is more complicated and flexible.
When called, the function waits for a mouse button to be pressed. The call looks like this:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 109 / 321

n_times = evnt_button(n_clicks,btn,state,&mx,&my,&ex_state,&k_state);

All the parameters, including the return parameter, are integers or pointers to integers, and are
described here:

n_times The number of times the button attained the desired state.

n_clicks The number of times the button must be clicked.

button The button (left or right) which must be clicked. A value of1
indicates the left button, a value of 2, the right.

state The state the mouse button must attain. A value of 0 is up, and a
value of 1 is down.

mx The X-coordinate of the mouse when the button event occurred.

my The Y-coordinate of the mouse when the button event occurred.

ex_state The state of the mouse buttons after exiting the function.

k_state The keyboard's state after exiting the function.
The values1, 2, 4 or 8 indicate that the right shift, left shift, control
key or alternate key were pressed, respectively.

As you can see, this call is more complicated than our old friend vq_mouse(), but allows us more
options.

Alert Boxes

The alert box is the simplest of GEM's form library to use, since the system handles virtually
everything for you. All you need to do is provide the proper information for the function call. To draw
an alert box:

choice = form_alert(deflt,string);

Here, choice is the button number pressed (returned from the function), deflt is the number of the
default button (the button, if any, that will respond to the Return key), and string is a pointer to a
string containing the alert box description. You may also use a string literal for the second parameter,
by enclosing it in quotes. In fact, it's done that way in the sample program.

The alert box description contains all the information GEM needs to draw your box: the icon that will
be displayed, and the text for both the box and the buttons. The string actually has three segments
separated by square brackets:

 [icon #][box text][button text]

The icon # is the number of the icon you wish displayed, defined as follows (a value of 0 will not
display an icon):

1 2 3

The text for the box may be up to thirty-two characters per line, with a maximum of five lines. How
does GEM know where to divide the text? We tell it, by placing an OR symbol between each line:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 110 / 321

[line1|line2|line3|line4|line5]

Each alert box you design must have at least one button, but you may have up to three. The
information for the buttons comes after the box text and consists of the text to be printed within
each button. The buttons' texts are placed between square brackets, with each buttons' text
separated by an OR symbol:

[button1|button2|button3]

The text for each exit button must be less than twenty characters. You can see the completed string
in this chapter's sample program in the function do_alert(), found about halfway down the listing.
Notice that, due to the length of the string, it had to be wrapped around to the next line. Normally,
you can't divide a string, but by using a backslash (at the end of the first portion of the string), we can
get around that limitation. When the C preprocessor sees the backslash, it knows that the rest of the
string will begin at the left margin of the next line. If you want to use a backslash within a string, you
must type two.

They Don't Fit!

When the form_alert() function is called, it uses the information you've supplied to figure out the
number of buttons and the size of the box. Almost everything is taken care of for you, but you may
find it necessary to "clean up" the box description a bit, in order to force GEM to do exactly what you
want.

For instance, the number of buttons that will fit in the box is largely dependent on the length of the
text and the size of the icon (if any) printed in the box. If the resultant alert box is only slightly
smaller than the space needed for the buttons, GEM will place the buttons so that they overlap the
box's borders. This type of box is not particularly attractive but will be fully functional. If the box is
significantly undersized, GEM will start leaving buttons out, and you can't live with that.

These problems don't usually crop up with single-button alert boxes (unless the button text is
unusually long), but when you start dealing with three exit buttons, the glitches will likely introduce
themselves.

How can we force GEM to do what we want? Remember that the size of the box is dependent on the
length of the text lines and the size of the icon, while the size of the buttons is dependent on the text
printed within them. The icon size is unchangeable; it's set by the system, and the only way we can
manipulate the icon is either to print it or not. But the box text and button text is fully under our
control.

One way, then, to help fit the required buttons into the box is to shorten the text within them. If the
button text is just the way we want it, and we still can't fit all the buttons, we have to resort to the
second method: padding the beginning or end of the box text with spaces. This will force GEM to
draw the box larger. You can see an example of this in the form_alert() call in Listing 1. Try removing
the additional spaces and recompiling the program. You'll find that, in medium resolution, the left-
most button will overlap the box's border; in low resolution, the button is missing.

Custom Mice

GEM provides us with a number of built-in mouse forms, but we may sometimes find a need for
something better suited to our application. When this occurs, graf_mouse() comes to the rescue. We
discussed this function in Chapter 11, but didn't cover the method for designing custom mouse
forms. Now, you'll be pleased to know, we're going to make up for that lack.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 111 / 321

A mouse form is actually two graphics, 16x16 pixels in size, placed one on top of the other. The first
graphic is the shape of the pointer itself. The second is the pointer's mask, which enhances its
visibility. If you examine a mouse form, you'll notice that there's a one-pixel wide border around it.
The border is a different color so that the mouse pointer won't "vanish" if it should be moved over
something of the same hue. This border is the mask.

The first step in designing a mouse form is to draw the form and its associated mask on a sheet of
graph paper, each within a 16x16 grid. We must then translate the graphics to something the
computer can understand.

Our C program is going to need the data for the new form in some sort of numerical notation.
Hexadecimal notation is best for our purposes, if for no other reason than the ease with which it's
calculated from the binary representation of our graphics. If you don't know how to make these
conversions, I suggest you go to your local library or bookstore for something which explains binary
to hexadecimal conversions.

The binary version of our graphic is simple enough to explain, though. Each grid location not filled in
is an "off" bit; the others are "on." Each of these bits is represented in binary, by a 0 for off or a 1 for
on. Figures 2 and 3 illustrate the conversion of our custom pointer from its graphic state to
hexadecimal.

Coding It

Once we've done the conversion, we must incorporate the result into our program. The easiest way
to do this is to storethe data for the form and its mask in two integer arrays. If you look at the sample
listing, you'll see our custom mouse pointer in the arrays mouse_data[] and mouse_mask[]. The "0x"
preceding each value tells the
compiler that the number should be
interpreted as hexadecimal.

Just above the mouse form data in
the sample listing is the declaration
for a structure named mfrmstr
(mouse form structure). To be more
precise, it's not a structure
declaration, but the declaration of a
new data type consisting of a
structure. We've defined this new
data type by prefacing the structure
definition with the C keyword
typedef. Right below the declaration
is where the actual structure
variable, mouse, is declared.

This structure will hold all the
information GEM needs to enable
our new mouse form. As you can see,
the block contains 37 words of
information. The first two words will
hold the X- and Y-coordinates of the
form's "hot spot." (Sounds pretty
sleazy, doesn't it?) This is the location
within the form which determines
the X- and Y-coordinates for the
entire mouse cursor. The third word will contain the number of bit planes. For high, medium, and

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 112 / 321

low resolutions, this value will be 1, 2, and 4, respectively. The fourth word will indicate what color
the mouse form should be, and the fifth word will hold the color for the mask. The next thirty-two
words are storage for the actual mouse form data. We'll move the values found in the arrays
mouse_data[] and mouse_mask[] into these locations.

To change the mouse form now, all we need do is fill in each member of the structure with the
appropriate information and perform the following call:

graf_mouse(255,&mouse);

We went over this function in Chapter 11. What's important here, is that the parameter 255 tells
GEM that we want to change to a user-defined mouse form. The parameter &mouse is the address
of the block of data containing the form's description.

Mission Accomplished

There you have it: everything you need to know, to get the most out of alert boxes and to design
your own mouse forms. As soon as you tear your eyes from this page, yank out your C compiler and
fool around with the form_alert() function. Try different combinations of text and buttons, until you
feel comfortable with the function. Then, design some alternate mouse pointers and modify Listing 1
(or write your own code from scratch; that's really the best way to learn) to install your new forms.
How about changing Listing 1, so the alert box buttons allow you to alternate between two custom
mouse forms? That will mean having two sets of data, one for each form, and changing the
new_mouse() function so you can pass it the address of the form description for the cursor you want
to implement.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 113 / 321

Program Listing #1
/***/
/* C-MANSHIP, Listing 1 */
/* CHAPTER 12 */
/* Developed with Megamax C */
/***/

#define TRUE 1
#define FALSE 0
#define FINGER 3
/* Required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* A couple of global int variables */
int handle, dum;

/* Mouse form definition block */
typedef struct mfrmstr
{
 intx_hot; /* x-coordinate of pointer hot spot. */
 inty_hot; /* y-coordinate of pointer hot spot. */
 intplanes; /* number of bit planes. */
 intfg_color; /* mouse form color. */
 intbg_color; /* mouse mask color. */
 intmask[16]; /* Data for mouse mask. */
 intdata[16]; /* Data for mouse form. */
} MOUSEFORM;
MOUSEFORM mouse;

/* Data for the new mouse form */
int mouse_data[] = {0x0000,0x07C0,0x0FE0,0x1930,
0x3118,0x610C,0x600C,0x7C7C,
0x600C,0x610C,0x3118,0x1930,
0x0FE0,0x07C0,0x0000,0x0000};

int mouse_mask[] = {0x07C0,0x0820,0x1010,0x26C8,
0x4AA4,0x9292,0x9D72,0x8282,
0x9D72,0x9292,0x4AA4,0x26C8,
0x1010,0x0820,0x07C0,0x0000};

main() /* Main program */
{
 appl_init(); /* Initialize our application. */
 open_vwork(); /* Go set up our workstation. */
 do_alert(); /* Go to the main loop. */
 appl_exit(); /* Back to the desktop. */
}

open_vwork() /* Initialize a virtual workstation */
{
 int i;
 handle = graf_handle(&dum,&dum,&dum,&dum);
 for (i=0; i<10; work_in[i++] = 1);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 114 / 321

 work_in[10] = 2;
 v_opnvwk(work_in, &handle, work_out);
}

do_alert() /* This is the main loop. It calls the alert box */
{ /* function and the functions to change the mouse */
 /* form. The loop repeats until REPEAT == false. */

 int choice, /* Will hold button choice. */
 repeat, /* Loop control variable. */
 deflt; /* Holds default button choice. */

 repeat = TRUE; /* We set this so the loop will repeat. */
 deflt = 3; /* Set default button to Quit (see below). */
 while (repeat) {
 choice = form_alert (deflt,
 "[1][MOUSE FORM DEMO | C-manship|\
 Chapter Twelve][New|System|Quit]"); /* Draw alert box. */
 if (choice == 1) { /* CHOICE contains the button pressed. */
 new_mouse(); /* If button was NEW, show new form. */
 button_wait();
 deflt = 2; /* Change default button to 2. */
 }
 if (choice == 2) { /* If the second button was pressed, */
 graf_mouse (FINGER,&dum); /* then change to Hand icon. */
 button_wait();
 deflt = 1; /* Change default button to 1. */
 }
 if (choice == 3)
 repeat = FALSE; /* When REPEAT == false (0), we get out
*/
 } /* of the while loop and go to main(). */
}

new_mouse() /* Changes mouse form to the user-defined form */
{ /* found in the global arrays at top of listing */
 int x;

 mouse.x_hot = 8; /* These two assignments set "hot spot" */
 mouse.y_hot = 8; /* to the center of the mouse form. */
 mouse.planes = 4; /* Set to 1 for high res and 2 for med. */
 mouse.fg_color = 0; /* Mouse form drawn with color 0. */
 mouse.bg_color = 2; /* Mouse mask drawn in color 2. */
 for (x=0; x<16; ++x) { /* This loop moves the data from */
 mouse.mask[x] = mouse_mask[x]; /* global arrays into the */
 mouse.data[x] = mouse_data[x]; /* mouse form def'n block */
 }
 graf_mouse(255,&mouse); /* Presto! Our new mouse lives. */
}

button_wait() /* Waits for left button to be pressed and released. */
{
 int dum;

 evnt_button(1,1,1,&dum,&dum,&dum,&dum);
 evnt_button(1,1,0,&dum,&dum,&dum,&dum);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 115 / 321

CHAPTER 13 - THE FILE SELECTOR AND RASTER OPERATIONS

As I Mentioned Before, GEM's AES contains a number of libraries, one of which is the form library. In
Chapter 12, we were briefly exposed to the form library when we learned how to handle alert boxes,
the simplest of the ready-to-use forms. However, most of the forms you'll employ once you get used
to programming with GEM will be dialog boxes.

Dialog boxes are complex and can be put together in almost any form imaginable. In an upcoming
chapter, we'll sit down and have a long talk about these puzzling creatures, but for now, there's still
one other ready-to-use form that we haven't explored yet: the file selector.

FIGURE 1 - The File Selector Box

At first glance, one might think the file selector is difficult to handle (from a programmer's point of
view), what with those slider bars and the editable text fields, and the exit buttons. The truth is that
file selectors aren't much more difficult to program than alert boxes, because, just as with alert
boxes, GEM handles much of the busy work for us.

Picking a File

 Listing 1 shows how to use a file selector within a C program. When you run the program, you'll be
presented with a file selector that looks something like Figure 1 (unless, of course, you've got one of
those fancy file selector replacements in your AUTO folder). Choose one of the files. Then press an
exit button. The file selector will be replaced with two lines of text showing the chosen file and the
exit button you clicked.

At this point, you're probably a little fuzzy on exactly what a file selector does for you. What kind of
information does it return? Even though the file selector looks complicated, and allows the user to
fiddle with scroll bars and buttons and text fields, all it really does is return a filename and the
number of the exit button pressed. It's up to the programmer to decide what to do with the
information. In most cases, the user will be selecting a data file -- such as a document for a word
processor -- and we'll use the filename returned to open that file and read the data into the program.

Calling Up a File Selector

 One simple call will get the file selector box up on your screen:

fsel_input (path,file,&button);

But there's a bit of preparation that must be done first. In the above function call, path is a pointer to
a string in which the default pathname is stored, and file is a pointer to a string containing the default

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 116 / 321

filename (the text field to the center right of the box). The integer button will contain the value of
the exit button chosen, where 0 equals the cancel button and 1 equals the OK button.

The pointers path and file actually serve a dual purpose. Both of the text fields they represent are
editable. Upon exit from the selector, they'll contain the strings typed by the user (if nothing was
typed, they'll still contain whatever you put there). This is how we can find the file or path the user
selected.

But there are still a couple of things you need to know before you can start using file selectors. For
instance, how are the strings pointed to by path and file formatted? The answer can be found in the
function sel_file() in Listing 1.

File Selector Housekeeping

The first thing we must do in sel_file() is declare the variables we need and set aside some space for
filenames. It's important that you reserve enough memory. Otherwise, strings typed by the user may
overrun their allotment and tromp over other data. The storage area for the default pathname,
path[50], is probably larger than we'll need, but it's better to be safe.

Let's see what might happen if the array were smaller, say only 20 bytes (path[20]). Now, what if the
file the user wants to select is found buried within two folders? We could end up with a pathname
like:

A:\FOLDER.ONE\FOLDER.TWO\FILENAME.EXT

That gives us a pathname that's 37 bytes long. Our storage area will hold only twenty characters.
Watch out for that.

The storage for the default filename, file[13], isn't as tricky, since no filename will ever exceed
thirteen characters (including the \0 terminator).

After we've set up our variables and storage space, we must do some initialization. First, we fill the
default path and filename areas with nulls, getting rid of all the junk. We then ask the system for the
default drive (the one the program was loaded from; any filename that doesn't specify a drive will
use the default), convert it to ASCII, and store it in the first element of path[] with the line:

path[0] = Dgetdrv() + 65;

Dgetdrv() is a GEM DOS call (gemdos(0x19) for those who are interested) and returns the number of
the default drive as an integer where 0 means drive A, 1 means drive B, and so on. Since our
pathname must be a string, we need to convert the drive number to the ASCII equivalent. And what's
ASCII for A? Sixty-five, right? So all we have to do is add 65 to the drive number, then place this value
in the first element of our string, and we're on our way to creating the default pathname.

We finish our pathname with the statement:

strcpy (&path[1],":*.*");

The function strcpy() copies the string (including the null) pointed to by the second argument to the
string pointed to by the first argument. In the example above, the colon will be copied into the
second element of our pathname, with the rest of the characters in the string literal following. This is
just one of many handy string-handling functions available with Megamax C.

Other string-handling functions include strcat() and strncat() which concatenate strings; strcmp() and
strncmp() which compare strings; strlen() which returns the number of characters in a string; and

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 117 / 321

index() and rindex() which return a pointer to the first or last occurrence of a character in a string,
respectively. The details of these functions can be found in your compiler manual.

Finally, in sel_file() we open the file selector, then print the results of the user's selections.

Now that we've got the file selector mastered, let's move on to something really challenging.

Raster Operations

 Many of you may have heard the term Bit Block Transfer, or BITBLT as it's more commonly known.
This is the name sometimes given to the VDI's raster operations. What's a raster operation? Simply,
it's the movement of blocks of memory, usually from screen memory to someplace else in RAM or
vice versa. Many of the programming techniques you'll be learning will require a good knowledge of
raster operations. Rastering is used to draw icons and sprites, and also to update windows.

GEM's VDI contains a number of functions that help the programmer perform this memory juggling,
but in order to take advantage of these functions, we must first have a way to describe the blocks of
memory we want to move. We supply this information with a Memory Form Definition Block
(MFDB).

The MFDB consists of ten words of information: the address of the memory we want to move; its
height and width; the coordinate system we're using (raster or normalized); and the number of bit
planes that make up our screen. (There are also several words that, although ignored, must be
present.)

C provides a handy way to group this information into a single unit: the structure. Our MFDB, then,
looks something like this:

typedef struct mfrmblk {
 long f_addr;
 int f_w;
 int f_h;
 int f_wdwidth;
 int f_stand;
 int f_nplanes;
 int f_r1,f_r2,f_r3;
} MFDB;

Here, f_addr is the address of the memory block, f_w and f_h are the width and height of the block in
pixels, f_wdwidth is the width of the block in words, f_stand is the coordinate system (0 for raster, 1
for normalized), and f_nplanes is the number of bit planes. The integers f_r1, f_r2 and f_r3 are
reserved for future use and may be ignored (I usually set them to 0 just to be safe).

Filling in the Blanks

 Confused yet? I thought you might be. All this talk of coordinate systems and bit planes can be -- if
you've never been exposed to it before -- daunting. Bit planes were mentioned in Chapter 12, when
we designed our own mouse forms, but now it's time to learn a little more about the way your ST's
screen memory works.

The ST reserves 32K of memory for the screen, no matter what resolution you're in. In high
resolution, the organization of this memory is simple: each bit in memory represents one pixel on the
screen.

The first 640 bits (80 bytes) represent the first row of the screen; the second 640 bits represent the
second row of the screen; and so on, for 400 rows. If we multiply 80 bytes per row times 400 rows,
we get the magical number 32,000, the size of screen memory. If a bit is on, the corresponding pixel
will be a black dot; if a bit is off, the pixel will be white.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 118 / 321

When we talk about low or medium resolution, however, we throw in an extra complication: color.
Now, we have to know more than just whether a pixel is on or off; we need to know its color. And we
still need to get all this information into 32K.

In medium resolution, we're allowed four colors. It takes two bits to store this information (four
possible combinations: 00, 01, 10, 11) versus the one bit needed to represent black and white, which
means 32K of screen memory can hold only enough information for 128,000 pixels instead of the
256,000 pixels we had in monochrome. (Wow! A quarter of a million!) In order to compensate for
this, the designers of the ST decided to halve the vertical resolution, giving us a screen 640x200.
Eighty bytes (640 bits) times 200 lines times two bit planes per pixel gives us a total screen memory
of 32K.

In low resolution, we have 16 colors to work with. Since it takes four bits to represent 16
combinations, we find that we must again cut the number of pixels in half, to 64,000. This time, the
ST's designers made up the difference by halving the horizontal resolution and the vertical resolution
(as compared to high resolution), to give us a screen 320x200.

That's not the end of the story. In the color modes, the screen memory is divided into bit planes (see
Figure 2). You can think of the bit planes as transparencies laid one on top of the other. In order to
get the color value for the first pixel on the screen, you must combine the first bit of each plane. The
second bit of each plane forms the color value for the second pixel; the third for the third; etc. In
medium resolution, there are two bit planes. In low, there are four.

FIGURE 2 - Bit planes for low resolution

Now that we understand (yeah, right) all this nonsense about bit planes, what's with these
coordinate systems? When programming in GEM, there are two coordinate systems you may choose
between when you open a new workstation: Normalized Device Coordinates (NDC) or Raster
Coordinates (RC).

The NDC system divides the screen into a grid that's 32,768x32,768 with the origin (point 0,0) in the
lower-left corner. Moving to the right from the origin increases the value of the X-coordinate, while
moving upward from the origin increases the value of the Y-coordinate.

The RC system is the one we usually use on the ST, where the origin is in the upper-left corner of the
screen, and the width and height of the screen depend on the current resolution. The sample
program (Listing 2) uses the RC system.

The Next Listing

When you compile and run Listing 2, the infamous ANALOG "A" (in multicolors) will appear. Use the
mouse to point and click anywhere on the screen. The "A" will move to that location. When you're
through, press the right mouse button to return to the desktop.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 119 / 321

The "A" that you've been moving around the screen is an example of an icon, and is an image we've
stored in memory. An icon is usually designed by drawing it with a graphics program, such as
NeoChrome or DEGAS, then converting the image to its hexadecimal equivalent. This can be a
complicated procedure, especially if you're dealing with a color mode and all those bit planes. Your
best bet is to get hold of one of the public domain icon editors floating around. At any rate, the icon
editor will take the image you've created and convert it to data which can be merged with your
source code.

Take a look at Listing 2. About a third of the way down, you'll find the array, icon[]. See all that data?
That's the hexadecimal representation of our ANALOG icon as it appears in low resolution
(remember -- four bit planes). The data would look different in medium or high resolution, because
we wouldn't be dealing with as many bit planes. In fact, in high resolution, there would be only one-
fourth as much data, since there would be no colors to keep track of.

Now, take a look at the function do_icon(), where the main logic for the demo program is found.
First, we change the mouse form to the pointing finger and initialize some variables. Then, after
setting our control variable, repeat, to true, we enter the main while loop.

Once in the loop, we adjust the mouse coordinates (X and Y) so the icon will be drawn in the right
place. We have to do this, because the coordinates we get from the mouse are the location of the
mouse's hot spot (oooh, I love it when we talk dirty); the coordinates we need for the raster
functions are the upper-left and lower-right corners (actually, any diagonally opposed corners) of the
block of screen memory. If we didn't do this extra calculation, the icon would always be drawn below
and to the right of the mouse pointer.

We then save the coordinates so that when we get a new mouse X and Y, we will be able to erase the
first drawing. Finally, we turn off the mouse and call the function draw_icon() to actually draw the
icon on the screen.

The Raster Details

 Which brings us to the point of this lengthy discussion (you knew there had to be a point, right?): the
VDI call vro_cpyfm(). This function actually performs the rastering (there's a second VDI raster
function, vrt_cpyfm(), which is very similar except that it's used to copy forms designed for
monochrome onto a color screen). The function is called like this:

vro_cpyfm(handle,mode,pxy,&mfdb1,&mfdb2);

Here, the integer handle is the handle returned when we opened the virtual workstation; the integer
mode is the raster writing mode; the pointer pxy is the address of an array of integers describing
coordinates of the two rectangles; and &mfdb1 and &mfdb2 are pointers to the two MFDBs that
describe the areas to be rastered. Gasp!

The parameter mode can be any number from 0 to 15. The writing mode is the logical operation
that's used to combine the source and destination values. There are 16 logical operations available to
us. In the sample program, we're exclusive ORing the source and destination. This way, an image can
be easily erased by redrawing it in the same (exclusive OR) mode. The disadvantage to this mode is
that, if we're not working with a blank screen, our image will be transparent, allowing the
background to bleed through.

I'm not going to spend a lot of time describing the different writing modes. You should look them up
in your manual or experiment with them. You'll probably find that there are only a couple you'll use;
the rest are there should you need them.

The pxy array holds our rectangles' coordinates: the upper-left and lower-right corners of both the
source and destination rectangles. They should be stored in this order:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 120 / 321

sx1,sy1,sx2,sy2,dx1,dy1,dx2,dy2

Now that we understand the vro_cpyfm() call, let's take a look at draw_icon() for the details. First,
we must initialize the two MFDBs. We don't have to talk much about this, since the MFDBs are fairly
well described above. However, there are a couple of things that should be clarified.

For one thing, if you look at the data for the icon in the source code, it would appear to be 6 long
words wide or 192 bits -- a big icon! Now, anyone who can tell me why our data is 192 bits wide,
raise your hand. Those of you who are slinking down under your desks in embarrassment can relax;
I'm not going to call on you. But do the words "bit planes" jar any memories?

"Yes!" you say. "Yes! That's why we've got 192 bits. We're dealing with 4 bit planes, and 192 divided
by four is...is...is..."

Forty-eight.

"Yeah...thanks."

You're welcome. Now you know why we've made icn_w equal to 48 instead of 192. But here's
another question for you: How come the icon, when it's on the screen, appears only 23 pixels wide?

"I don't know," you mumble, climbing back under your desk.

Well, climb back into the light, my friend; it's not your fault that you can't answer the last question.
There's something I haven't told you. Because of the way the raster functions move data, the width
of a data block must be a multiple of 16 (this allows more efficient movement of data). In the case of
our "A" icon, we've had to pad the left and right of the image with "off bits" in order to bring the
width up to the next highest multiple of 16 which is, of course, 48.

Now, we get to the screen MFDB. If you look at draw_icon(), you'll see that each member of the
icon's MFDB, s_m, had to be initialized properly. Yet, for the screen MFDB, scr_m, we've only one line
of code:

scr_m.F_addr = 0L;

Why? Whenever the form address element (f_addr) of the MFDB is set to 0, the system knows it will
be dealing with the screen and will automatically handle everything for you. You don't have to fill in
the rest of the MFDB. You can if you want, but, unless you're the type of person who enjoys painting
houses with a hair, why bother?

Off Again

I know I say this at the end of just about every chapter, but I'm going to say it again: practice!
Everything you're learning builds upon what has gone before. Just like a course in mathematics, if
you miss a lesson or don't understand it completely, you'll get more and more confused as you try to
go on.

Try designing your own icons and raster them to the screen, experimenting with the different writing
modes to see the results (there's an excellent illustration of the 16 modes on page 228 of the
Programmer's Guide to GEM, published by Sybex, for those of you who have that book). Of course, in
order to experiment with the writing modes, you're going to need some sort of graphic in the
background. Looks like you'll be getting some more practice with the VDI, eh?

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 121 / 321

Program Listing #1

/***/
/* C-MANSHIP, Listing 1 */
/* CHAPTER 13 */
/* Developed with Megamax C */
/***/

#include <osbind.h>

/* The usual required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum;

/* Main program */
main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 sel_file (); /* Go select file. */
 button_wait (); /* Wait for a mouse button press. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

/* Initialize a virtual worksation. */
open_vwork ()
{
 int i;

 handle = graf_handle (&dum,&dum,&dum,&dum); /* Get handle. */
 for (i=0; i<10; work_in[i++] = 1); /* Init GEM arrays. */
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out); /* Open virtual
 workstation.
*/
}

/* Do file selector box. */
sel_file ()
{
 int button, /* File selector button value. */
 i; /* Loop variable. */
 char path[50], /* Storage for filenames. */
 file[13];

 for (i=0; i<20; path[i++]='\0'); /* Fill filename w/ nulls. */
 for (i=0; i<13; file[i++]='\0');
 path[0] = Dgetdrv() + 65; /* Make drive # a char. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 122 / 321

 strcpy (&path[1],":*.*"); /* Complete the pathname. */
 fsel_input (path,file,&button); /* Open file selector box. */
 prnt_info (file,button); /* Go print results. */
}

/* Print out the user's choices. */
prnt_info (file,button)
char *file; /* Pointer to the chosen filename. */
int button; /* Value of the button pressed. */
{
 v_gtext (handle,28,50,"The file you chose was: ");
 v_gtext (handle,220,50,file);
 v_gtext (handle,28,66,"And you pressed the ");
 if (button == 0)
 v_gtext (handle,188,66,"CANCEL button.");
 else
 v_gtext (handle,188,66,"OK button.");
}

/* Waits for left button to be pressed and released. */
button_wait()
{
 evnt_button (1,1,1,&dum,&dum,&dum,&dum);
 evnt_button (1,1,0,&dum,&dum,&dum,&dum);
}

Program Listing #2
/***/
/* C-MANSHIP, Listing 2 */
/* CHAPTER 13 */
/* Developed with Megamax C */
/***/

#include <osbind.h>

#define S_XOR_D 6
#define TRUE 1
#define FALSE 0
#define LEFT 1
#define RIGHT 2
#define HAND 3
#define OFF 256
#define ON 257

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 123 / 321

/* The required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum;

/* Memory Form Definition Block */
typedef struct mfrmblk {
 long f_addr; /* Addr of form data. */
 int f_w; /* Width of the form in pixels. */
 int f_h; /* Height of the form in pixels. */
 int f_wdwidth; /* Width of the form divided by 16. */
 int f_stand; /* 0 = raster (RC); 1 = normalized (NDC). */
 int f_nplanes; /* Number of bit planes (1, 2 or 4). */
 int f_r1; /* The last three words are reserved. */
 int f_r2;
 int f_r3;
} MFDB;

/* Data for the ANALOG "A" icon. */
long icon[] = {
 0x00000000,0x00000000,0x1FFF1FFF,0x1FFF1FFF,0xF000F000,0xF000F000,
 0x00000000,0x00000000,0x35552CCB,0x3C3823F8,0x58003800,0xF8000800,
 0x00000000,0x00000000,0x55554CCB,0x7C3843F8,0x58003800,0xF8000800,
 0x00000000,0x00000000,0xD555CCCB,0xBC3883F8,0x58003800,0xF8000800,
 0x00010001,0x00010001,0x57FDCFFF,0x3FFC07FC,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5803C803,0x38020802,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5803C803,0x38020802,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5403CC03,0x3C020402,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x57F3CFF3,0x3FF207F2,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x555BCCCB,0x3C3A03FA,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x555BCCCB,0x3C3A03FA,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x55F3CDF3,0x3DF203F2,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5503CD03,0x3D020302,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5583CC83,0x3C820382,0x58003800,0xF8000800,
 0x00030002,0x00020002,0x5583CC83,0x3C820382,0xF800F800,0xF800E800,
 0x00030002,0x00020002,0x5543CCC3,0x3C4203C2,0xF800F800,0xF800E800,
 0x00030002,0x00020002,0x5543CCC3,0x3C4203C2,0xF800F800,0xF800E800,
 0x00030002,0x00020002,0x5563CCE3,0x3C2203E2,0x58003800,0xF8000800,
 0x00010001,0x00010001,0xFFC1FFC1,0xFFC1FFC1,0xF000F000,0xF000F000
};

int icn_w = 48, /* Width of icon. */
icn_h = 18; /* Height-1 of icon. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 124 / 321

/* Main program. */
main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 graf_mouse (OFF,&dum); /* Shut off mouse. */
 v_clrwk (handle); /* Clear the screen. */
 graf_mouse (ON,&dum); /* Bring the critter back. */
 do_icon (); /* Go draw icon. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to desktop. */
}

/* Initialize a virtual workstation. */
open_vwork ()
{
 int i;

 handle = graf_handle (&dum,&dum,&dum,&dum); /* Get handle. */
 for (i=0; i<10; work_in[i++] = 1); /* Init GEM arrays. */
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out); /* Open v. workstation.
 */
}

/* Main program loop */
do_icon ()
{
 int button, /* Mouse button pressed. */
 x, /* Mouse X coordinate. */
 y, /* Mouse Y coordinate. */
 ox, /* Old Mouse X coordinate. */
 oy, /* Old Mouse Y coordinate. */
 repeat; /* Loop flag. */

 graf_mouse (HAND,&dum); /* Switch mouse forms. */
 x = 50 ; y = 50; /* Init loc. of icon */
 repeat = TRUE; /* Get into WHILE loop. */
 while (repeat) { /* Begin WHILE loop. */
 x -= 30; y -= 20; /* Adjust mouse coords */
 ox = x; oy = y; /* Save old coords. */
 graf_mouse (OFF,&dum); /* Turn off mouse. */
 draw_icon (icon,S_XOR_D,icn_w, /* Go draw icon. */
 icn_h,x,y,x+icn_w,y+icn_h);
 graf_mouse (ON,&dum); /* Turn on mouse. */
 button = 0; /* Get into WHILE loop. */
 while (button == 0) /* Begin WHILE loop. */
 vq_mouse (handle,&button,&x,&y); /* Get mouse status. */
 if (button == LEFT) { /* If left button pushed... */
 graf_mouse (OFF,&dum); /* Turn off mouse. */
 draw_icon (icon,S_XOR_D,icn_w, /* Erase old icon. */
 icn_h,ox,oy,ox+icn_w,oy+icn_h);
 graf_mouse (ON,&dum); /* Turn mouse back on. */
 }
 if (button == RIGHT) /* If right button pushed...*/
 repeat = FALSE; /* get out of loop. */
 }
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 125 / 321

/* Perform raster operation. */
draw_icon (data,mode,width,height,dx1,dy1,dx2,dy2)
long data[];
int mode, /* Raster writing mode. */
width, /* Icon width. */
height, /* Icon height. */
dx1, /* Upper left X coordinate of dest'n rectangle. */
dy1, /* Upper left Y coordinate of dest'n rectangle. */
dx2, /* Lower right X coord of dest'n rectangle. */
dy2; /* Lower right Y coord of dest'n rectangle. */
{
 MFDB s_m, /* Form definition block for source. */
 scr_m; /* Form definition block for screen. */
 int pxy[8]; /* Coords for source and dest'n rectangles. */

 s_m.f_addr = (long) data; /* Put addr of icon data in MFDB */
 s_m.f_w = width; /* Store width of icon in MFDB */
 s_m.f_h = height; /* Store height of icon in MFDB */
 s_m.f_wdwidth = width/16; /* Store icon width/16 in MFDB */
 s_m.f_stand = 0; /* Raster coordinates. */
 s_m.f_nplanes = 4; /* Low res (4 bit planes). */
 s_m.f_r1 = s_m.f_r2 = s_m.f_r3 = 0;/* Zero reserved words. */
 scr_m.f_addr = 0; /* Set up screen MFDB. */
 pxy[0] = 0; /* Upper left X coord of source block. */
 pxy[1] = 0; /* Upper left Y coord of source block. */
 pxy[2] = width; /* Lower right X coord of source block. */
 pxy[3] = height; /* Lower right Y coord of source block. */
 pxy[4] = dx1; /* Upper left X coord of dest'n block. */
 pxy[5] = dy1; /* Upper left Y coord of dest'n block. */
 pxy[6] = dx2; /* Lower right X coord of dest'n block. */
 pxy[7] = dy2; /* Lower right Y coord of dest'n block. */
 vro_cpyfm(handle,mode,pxy,&s_m,&scr_m); /* Do the raster op. */
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 126 / 321

CHAPTER 14 - OBJECT TREES AND DIALOG BOXES

Now that we know how to handle the two simplest of GEM's forms, the alert box and the file
selector, it's time to move on to the granddaddy of them all: the dialog box. Because the dialog box is
so versatile, we could discuss its uses endlessly and still not exhaust its possibilities. For that reason,
this chapter's discussion should not be considered as a complete guide to dialog boxes, but only as
an introduction. Once you understand the way dialogs work, the only limit will be your imagination.

The Definitions

 Before we get into a detailed discussion of dialog boxes, we must first define a couple of terms:
objects and trees. Objects are used to visually represent each item that makes up a dialog box.
You've seen them hundreds of times: boxes and buttons and text strings. Each object has its own set
of attributes that tailor it to the programmer's (and eventually, the user's) needs.

From a programming point of view, an object is a data structure, the members of which describe the
object, storing all the necessary information to bring that object up on the screen.

The objects of a dialog box are connected in an object tree. A tree is a way to link items in a
hierarchical manner. That is, there's one main item (the tree's root), which has connected to it other
items (which, relative to the tree's root are called children, and relative to each other are called
siblings). The children may also have children of their own (and thus become parents), and so on
down the line, each new group of siblings subordinate to the ones that have gone before.

An object tree is an array of objects, the attributes of which are stored in the previously mentioned
data structure. Three elements of an object's data structure determine the way the object fits in with
the rest of the tree. Specifically, each object contains, among other things, a pointer to the next
sibling, a pointer to the first child (the head) and a pointer to the last child (the tail).

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 127 / 321

Figure 1 illustrates the principles of this type of tree structure, using a simple dialog box as an
example. As you can see, even a simple dialog box has quite a maze of connections. Because of this
complexity, few programmers bother to try and design dialog boxes from scratch. They instead use
the resource construction program that came with their compiler.

FIGURE 1 - Tree Structure of a Dialog Box

RCP: A Mini Tutorial

Currently, the two most popular resource construction programs are the ones included with the Atari
Developer's Kit and the Megamax C compiler. Since the programs in this column are developed with
Megamax, we'll use the Megamax Resource Construction Program (RCP) to build our dialog box. If
you're using the Atari Developer's Kit, don't fret; the Resource Construction Set (RCS) that came with
your kit will work equally well for our purposes. The only difference is the operation of the programs.

So, everybody load up their resource construction programs, and let's get busy. Figure 2 is the dialog
box we'll be building. You should refer to this illustration as you construct your version.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 128 / 321

FIGURE 2

Once you have your resource construction program loaded, go to the File option of the menu bar and
select New. A window titled NONAME will appear. To the left of this window are the types of
resources we can build, represented in icon form. Place the mouse pointer over the dialog icon, press
and hold down the left button, and drag the icon into the window. Release the button, and a dialog
box will appear, asking you for the name of the new tree. Clear the NAME field by pressing Escape.
Then type SAMPLE and press Return.

Now double click the new dialog icon (the one you dragged to the window). This will open the dialog,
presenting you with a "blank slate." The icons to the left will change to a dialog box "parts kit." The
parts shown are icon representations of the types of objects you can use to build your dialog box.
The types are are as follows:

Button A box containing centered text

String A line of text

FText Formatted text

FBoxText A box containing formatted text

IBox An invisible graphic box

Box A graphic box

Text Graphic text

BoxChar A graphic box enclosing a single character

BoxText A graphic box enclosing text

Icon Description of an icon

Now let's start filling out our dialog box with objects.

Crankin' with the RCP

Step 1: Drag the STRING object onto your dialog box, and then double-clickit. A dialog box
containing a number of attributes will appear. At the bottom will be a line labeled TEXT.
Clear the line by pressing the escape key. Then enter (without the quotes) "THIS IS A
SAMPLE DIALOG BOX," and press Return. Drag your new string to the top of the dialog box
and center it, as shown in Figure 2.

Step 2: Drag an ICON object onto your dialog box, and double-click it. Click the EDIT ICON button
from the dialog box that appears, and draw the ST-Log icon (or any icon you like) with your

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 129 / 321

mouse. When complete, click the OK button. Drag the icon to the left of the text created in
Step 1 and position it as shown in Figure 2.

Step 3: If the icon is not shown in inverse (selected), give it a single mouse click. When the icon is
selected, type Control-C (copy), point the mouse to the right-hand side of your dialog box,
and type Control-V (paste) twice (the first keystroke deselected the original icon). You
should now have a duplicate of the first icon. Drag it into position, to the right of the string,
as shown in Figure 2.

Step 4: Drag the BOX object (the empty rectangle) onto your dialog box. Place the mouse cursor on
the lower-right corner of the box and, holding down the left button, stretch the box until
it's about the same size as the box labeled RADIO BUTTONS in Figure 2. Position the box,
and double-click it. An attribute dialog box will appear. Use the mouse to select the
SHADOWED attribute. Then click the OK button.

Step 5: Using the same method as in Step 1, create a string that reads "RADIO BUTTONS," and
position it at the top of the box created in Step 4.

Step 6: Drag a BUTTON object into the box created in Step 4, and double-click it. When the
attribute dialog appears, select the following options: SELECTABLE, RADIO BUTN and
TOUCHEXIT. (Note that sometimes an attribute -- in this case, SELECTABLE -- has already
been activated for you.) Modify the text field to read "#1." Then click the OK button. While
the radio button is still highlighted (shown in inverse), type Control-N, and name the object
"RADIO1." Position this button in the upper left of the "Radio Button" box, beneath the
string, as shown in Figure 2.

Step 7: Use the copy and paste functions (as in Step 2) to place another radio button to the right of
the one created in Step 6. Change the button's text to read "#2" and change the object's
name to "RADIO2."

Step 8: Using the method in Step 7, create four buttons labeled "#3," "#4," "#5," and "#6," and
name them "RADIO3," "RADIO4," "RADIO5," and "RADIO6," respectively. See Figure 2 for
placement.

Step 9: Drag the EDIT:______ (not the one surrounded by a box) object into your dialog box, and
double click it. If it isn't already selected, turn on the EDITABLE option. Clear the PTMPLT
field with the escape key, and then type "NAME:" followed by one space and 10 underline
characters. Use the down arrow on your keyboard to move the text cursor to the PVALID
field. Then press Escape to clear the field. Type "aaaaaaaaaa." Use the down arrow key to
move the text cursor to the PTEXT field. Then backspace till you reach a tilde (~) character.
Now type "@" followed by nine spaces. Click the OK button. Then name the object "NAME."
Position the object as shown in Figure 2.

Step 10: Drag a second EDIT:______ object into your dialog box, and double-click it. Make sure the
EDITABLE option is set. Change the PTMPLT field to "AGE:" followed by one space and two
underlines. Change the PVALID field to "99." Move to the PTEXT field and backspace until
you reach a tilde character. Then type "@" followed by one space. Click the OK button,
name the object "AGE," and then position it as shown in Figure 2.

Step 11: Drag another BUTTON object into your dialog box, and double-click it. Select the attributes
SELECTABLE, SHADOWED and TOUCHEXIT. Change the button's text to "OPTION 1." Click
the OK button, name the object "OPTION1," and position it as shown in Figure 2.

Step 12: Use the copy and paste functions to create a duplicate of the button created in Step 11.
Change the button's text to "OPTION 2," name the object "OPTION2," and position it as
shown in Figure 2.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 130 / 321

Step 13: Drag the BOXTEXT object into your dialog box, and double-click it. Select the SHADOWED
attribute. Clear the PTMPLT and PVALID fields (if necessary). Then change the PTEXT field to
four spaces followed by four 0s and four more spaces. Using the method shown in Step 4,
stretch the box one segment higher (as you pull down on the mouse, the box will
automatically "snap" to the next size). Name the object "NUMBERS," and position it as
shown in Figure 2.

Step 14: Drag another BOXTEXT icon onto your dialog box, and double-click it. Set the TOUCHEXIT
option. Make sure the PTMPLT, PVALID and PTEXT fields are clear. Then, when positioned
on the PTEXT field, hit space, Control-A, space (the keys, not the words). Resize the object
as in Step 13, and name it "UPARROW." Position it on top of the box created in Step 13 as
shown in Figure 2.

Step 15: Use the copy and paste functions to create a duplicate of the UPARROW object. Then clear
the PTEXT field and press space, Control-B, space. Name the object "DWNARROW." Then
position it on top of the NUMBERS object as shown in Figure 2.

Step 16: Drag another BUTTON object into your dialog box, and double-click it. Set the SELECTABLE,
DEFAULT and TOUCHEXIT options. Change the text field to "OK." Resize and position the
object as shown in Figure 2 and name it "OK."

Step 17: Drag yet another button into your dialog box, and double-click it. Set the SELECTABLE and
TOUCHEXIT options. Then change the TEXT field to "CANCEL." Resize and position the
object as shown in Figure 2. Then name it "CANCEL."

And that's it. You've just created your first dialog box. Now, to save all your hard work, close the
dialog box by clicking on the upper-left corner of the window. Then select the SAVE AS option from
the FILE menu. Name the file "SAMPLE," and you're on your way. To leave the RCP, select the Quit
option from the File menu.

You should now have three files on your disk: SAMPLE.H, SAMPLE.DEF and SAMPLE.RSC. These are
the files that the RCP created. SAMPLE.H contains all your object and tree names as a series of
#defines. If you want to refer to the objects by name in your program, you must #include this file in
your source code.

The SAMPLE.DEF file contains information the RCP uses for its own purposes, and the SAMPLE.RSC
file is the tree data for our dialog box. We'll load this data into memory when we run our program.

So How About Some Details?

That was a fast course in the use of a resource construction program. You probably have many
unanswered questions. For example, what do all those attributes do?

SELECTABLE simply means that the user can select the object. When the object is selected, it will be
displayed in inverse video. If you set the DEFAULT option when editing an object, the object will be
selectable with the Return key, as well as with a mouse click. Obviously, only one object at a time can
be set as a default.

The EXIT and TOUCHEXIT attributes are similar: they both cause the dialog box to be exited when
selected. The difference is that, with TOUCHEXIT, the mouse button need not be released to exit the
dialog box.

What did you think about the RADIO BUTN option? Radio buttons are handy devices, allowing the
programmer to set up a series of related buttons, only one of which may be selected at a time. As
soon as a button is selected, the previously selected button is turned off. They get their name from
those old car radio tuners with the push buttons to select the channel. An important note: In order
for radio buttons to operate properly, they must have the same parent object; that is, they all must
be "on top of" the same object.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 131 / 321

The CHECKED, SHADOWED, OUTLINED, CROSSED and DISABLED options affect the way the objects
will be graphically represented on the screen. You can easily see their effect by using your RCP to set
them for various objects. The options' names describe their effect fairly accurately.

An EDITABLE object may be modified in some manner by the user.

Editable Text

Now, what's the story behind those strange text fields PTMPLT, PVALID, and PTEXT? These three
strings combine in such a way as to tell GEM which part of the text is editable and what characters
the user is allowed to input.

PTMPLT is used as an input mask. Any text entered here will be displayed on the screen and will be
unchangeable (except underline characters) by the user. PTMPLT also tells GEM where the user can
edit the text. We indicate this with underline characters. In Step 9 above, the unalterable text is
"NAME:" and the editable area, where the user will enter his or her name, is represented by the 10
underlines.

The PVALID field tells GEM what type of characters we want the input restricted to. Each underline
character in the PTMPLT field must have an entry in the PVALID field as follows:

Code Characters Allowed

9 0 to 9

A A to Z, space

A A to Z, a to z, space

N 0 to 9, A to Z, space

N 0 to 9, A to Z, a to z, space

F DOS filename characters, plus ? * :

P DOS filename characters, plus \ ? * :

p DOS filename characters, plus \ :

X Any character

In Step 9 we entered 10 lowercase A's in the PVALID field, limiting the user's input to upper- and
lowercase letters. A logical choice for a person's name.

Finally, the PTEXT string will be combined with PTMPLT when the latter is printed. Unlike the text in
PTMPLT, the string stored in PTEXT is editable. This is handy when you want an editable text field
displayed with a default setting. For example, in Step 9, if we had made the PTEXT string "FRED,"
when the dialog box appeared on the screen, the text cursor would appear to the right of the string
"FRED." We could then just leave the string as it is, and thus select FRED as our name, or we could
backspace over it (or use the escape key to clear it) and type in something new. When the user exits
the dialog box, the new information will be found in PTEXT, replacing what we had stored there
previously.

When we set up our editable text objects in Steps 9 and 10, however, we wanted to end up with the
text cursor to the left of a blank field, ready for the user's input. To do this, we must either enter an
"@" or a null as the first character of the PTEXT string. To reserve space for any text the user may
enter, we must fill the rest of the PTEXT string with blanks (actually, any character will work; once
GEM sees the "@" or null, it'll ignore the rest of the string and go on its merry way).

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 132 / 321

Your First Dialog Box

When you run this chapter's program (make sure the SAMPLE.RSC file is on the disk!), you'll be
presented with the dialog box you created with the RCP. Clicking on the OK or CANCEL buttons will
exit you from the dialog. Clicking on the up or down arrows will cause the value displayed in the
NUMBERS object to change. Clicking any of the other buttons will cause the name of the object
selected to be printed at the top of the screen. Notice that, with the radio buttons, only one may be
selected at a time, while the OPTION 1 and OPTION 2 buttons can be on or off in any combination.

You may enter your name and age (lie if you want to) in the text fields. Use the arrow keys on your
keyboard to move between the two fields (or click on them with the mouse), since, due to the OK
button being set up as a default, pressing Return will exit the dialog box. Try to enter something
other than upper- or lowercase letters in the name field, or something other than a number in the
age field. No dice, right?

When you exit the dialog box, the name and age fields -- as well as the final value of the NUMBERS
object -- will be printed to the screen. Notice that whatever is in the PTEXT field is what gets printed.
If you left the name and age fields blank, you'll see exactly what we put there to start off with, a line
of spaces preceded by the "@" character.

After exiting the dialog box, click the left mouse button to return to the desktop.

Taking It Apart

Now that we've created our dialog box and played with it a little, it's time to dig into the program a
bit.

The first things we should look at are the two structures, object and text_edinfo found near the top
of the listing. I said earlier that an object, from the program's point of view, was a data structure
containing the object's description. The data is organized within a C structure as follows:

typedef struct object {
 int ob_next;
 int ob_head;
 int ob_tail;
 unsigned int ob_type;
 unsigned int ob_flags;
 unsigned int ob_state;
 char *ob_spec;
 int ob_x;
 int ob_y;
 int ob_w;
 int ob_h;
} OBJECT;

Here, ob_next is the index of the object's next sibling, ob_head is the index of the object's first child,
and ob_tail is the index of the object's last child. (Remember that the objects are stored in an array
of structures. The indices mentioned above are the location of the object within the array.)

The member ob_type is the object type and will contain one of the following values:

Object Type Value Object Type Value
Box 20 BoxChar 27
Text 21 String 28
BoxText 22 FText 29
Image 23 FBoxText 30
ProgDef 24 Icon 31

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 133 / 321

IBox 25 Title 32
Button 26

The member ob_flags contains the object flags and will be one of the values shown below:
NONE 0x0000
SELECTABLE 0x0001
DEFAULT 0x0002
EXIT 0x0004
EDITABLE 0x0008
RBUTTON 0x0010
LASTOB 0x0020
TOUCHEXIT 0x0040
HIDETREE 0x0080
INDIRECT 0x0100

You should recognize most of these from your work with the RCP.

The member ob_state holds the current state of the object as follows:
NORMAL 0x0000
SELECTED 0x0001
CROSSED 0x0002
CHECKED 0x0004
DISABLED 0x0008
OUTLINED 0x0010
SHADOWED 0x0020

You've seen most of these before, right?

The member ob_spec contains object specific information and changes depending on the type of
object that's being described. The possible values of this field are as below:

Object Type Contents of ob_spec
Box Object's color and thickness
Text Pointer to TEDINFO structure
BoxText Pointer to TEDINFO structure
Image Pointer to BITBLK structure
IBox Border's color and thickness
Button Pointer to text string
BoxChar Object's color and thickness, and the character to display
String Pointer to text string
FText Pointer to TEDINFO structure
FBoxText Pointer to TEDINFO structure
Icon Pointer to ICONBLK structure
Title Pointer to text string

Notice that the value stored in ob_spec can be a pointer to another structure containing additional
information on the object. We'll take a look at one of the structures, TEDINFO, shortly.

Finally, ob_x, ob_y, ob_w, and ob_h contain the object's coordinates, width and height.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 134 / 321

The Mysterious TEDINFO

The second structure type in the sample program, text_edinfo, is the declaration for the previously
mentioned TEDINFO. Whenever our object has an editable text field, we need to store information
about it in a TEDINFO structure (actually, when using an RCP, we don't have to worry about storing
information in the structure; it's done for us) as follows:

typedef struct text_edinfo {
 char *te_ptext;
 char *te_ptmplt;
 char *te_pvalid;
 int te_font;
 int te_junk1;
 int te_just;
 int te_color;
 int te_junk2;
 int te_thickness;
 int te_txtlen;
 int te_tmplen;
} TEDINFO;

Here, te_ptext is a pointer to the PTEXT string, te_ptmplt is a pointer to the PTMPLT string, te_pvalid
is a pointer to the PVALID string, te_font is the text font (3 = system font; 5 = small font), te_just is
the justification (0 = left; 1 = right; 2 = centered), te_color is the color and pattern type, te_thickness
is the thickness in pixels of the border (0 = no border; 1 to 128 = thickness inward from the edge; -1
to -127 = thickness outward from the edge), te_txtlen contains the length of the string pointed to by
te_ptext, and te_tmplen contains the length of the string pointed to by te_ptmplt.

As the Fear Sets In

Relax. In most cases, when using the RCP to put together your dialog box, you won't have to worry
about the contents of the above structures. But, in case you want to do something more
sophisticated, you do need to understand where to find information about your dialog box. An
example of this is the NUMBERS object in the sample dialog. In order to get the up and down arrows
to change the value shown, we have to be able to get at the displayed strings. This is just one
example of the creative ways you can use a dialog box.

Breathing Time

Your head is probably spinning from all this technical talk. We'll take a break here and give you a
chance to ponder what you've learned. Spend some time with your resource construction program,
experimenting with different attribute settings on different objects. As you continue with your career
as a GEM programmer, the RCP is going to become one of your most valued tools.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 135 / 321

Program Listing #1

/***/
/* C-manship, Listing 1 */
/* CHAPTER 14 */
/* Developed with Megamax C */
/***/

#include "SAMPLE.H"
#include <OSBIND.H>

#define FMD_START 0
#define FMD_GROW 1
#define FMD_SHRINK 2
#define FMD_FINISH 3
#define R_TREE 0
#define FINGER 3

/* The usual required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum;

int dial_x, /* Dialog x coordinate. */
 dial_y, /* Dialog y coordinate. */
 dial_w, /* Dilaog width. */
 dial_h, /* Dialog height. */
 num, /* Value of number option. */
 n_x, /* NUMBERS object x coord. */
 n_y; /* NUMBERS object y coord. */

char number_str[13] = " 0000 "; /* NUMBERS string. */

char *find_str(); /* Function declaration. */

/* Structure to hold an object's description. */
typedef struct object
{
 int ob_next; /* Next sibling of object. */
 int ob_head; /* Head of object's children. */
 int ob_tail; /* Tail of object's children. */
 unsigned int ob_type; /* Type of object. */
 unsigned int ob_flags; /* Flags. */
 unsigned int ob_state; /* State of object. */
 char *ob_spec; /* Miscellaneous information. */
 int ob_x; /* x pos of object upper left */
 int ob_y; /* y pos of object upper left */
 int ob_w; /* Width of object. */
 int ob_h; /* Height of object. */
} OBJECT;
OBJECT *tree_addr; /* Pointer to our object structure. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 136 / 321

/* Structure to hold object text information. */
typedef struct text_edinfo
{
 char *te_ptext; /* Pointer to text. */
 char *te_ptmplt; /* Pointer to template. */
 char *te_pvalid; /* Pointer to validation chars. */
 int te_font; /* Font. */
 int te_junk1; /* Unused. */
 int te_just; /* Justification. */
 int te_color; /* Color information. */
 int te_junk2; /* Unused. */
 int te_thickness; /* Border thickness. */
 int te_txtlen; /* length of text string. */
 int te_tmplen; /* length of template string. */
} TEDINFO;

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_dialog(); /* Go do the dialog box. */
 button_wait(); /* Wait for mouse button. */
 rsrc_free (); /* Release resource memory. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */

 handle = graf_handle (&dum,&dum,&dum,&dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_dialog ()
{
 int choice; /* Button choice from dialog. */

 /* Here we load the resource file. If the file is missing, */
 /* we warn the user with an alert box then terminate the */
 /* program by skipping the code following the else. */

 if (! rsrc_load ("\SAMPLE.RSC"))
 form_alert (1,"[1][SAMPLE.RSC missing!][I'll do better!]");

 /* If the resource file loads OK, we get the address of the* /
 /* tree, get the coords for centering the dialog, save the */
 /* portion of the screen that'll be covered by the dialog, */
 /* and draw the dialog. The mouse pointer is changed to */
 /* pointing finger. */

 else {
 rsrc_gaddr (R_TREE, SAMPLE, &tree_addr);
 form_center(tree_addr, &dial_x, &dial_y, &dial_w, &dial_h);
 objc_offset (tree_addr, NUMBERS, &n_x, &n_y);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 137 / 321

 form_dial(FMD_START, 0, 0, 10, 10,
 dial_x, dial_y, dial_w, dial_h);
 form_dial(FMD_GROW, 0, 0, 10, 10,
 dial_x, dial_y, dial_w, dial_h);
 objc_draw(tree_addr, 0, 2, dial_x, dial_y, dial_w, dial_h);
 graf_mouse (FINGER,&dum);

 /* Here we allow the user to interact with the dialog then,*/
 /* based on the chosen button, perform the necessary action.*/
 /* The form_do function is repeated until the user chooses */
 /* either the OK button or the CANCEL button. */
 num = 0;
 do {
 choice = form_do (tree_addr, NAME);
 if (choice == RADIO1) v_gtext(handle,160,20,"Radio 1 ");
 if (choice == RADIO2) v_gtext(handle,160,20,"Radio 2 ");
 if (choice == RADIO3) v_gtext(handle,160,20,"Radio 3 ");
 if (choice == RADIO4) v_gtext(handle,160,20,"Radio 4 ");
 if (choice == RADIO5) v_gtext(handle,160,20,"Radio 5 ");
 if (choice == RADIO6) v_gtext(handle,160,20,"Radio 6 ");
 if (choice == OPTION1) v_gtext(handle,160,20,"Option 1");
 if (choice == OPTION2) v_gtext(handle,160,20,"Option 2");
 if (choice == UPARROW) do_up();
 if (choice == DWNARROW) do_down();
 }
 while (choice != CANCEL && choice != OK);

 /* Once the CANCEL or OK buttons have been pressed, we clean */
 /* up after ourselves by performing the "shrinking box" and */
 /* then redrawing the screen. */

 form_dial(FMD_SHRINK, 0, 0, 10, 10,
 dial_x, dial_y, dial_w, dial_h);
 form_dial(FMD_FINISH, 0, 0, 10, 10,
 dial_x, dial_y, dial_w, dial_h);
 print_results(tree_addr); /* Print user's choices. */
 }
}

do_up ()
{

 /* First we increment our value and make sure it stays in */
 /* range. If the value has become larger than 9999, we must */
 /* also reinitialize display string for the object NUMBERS. */
 /* We then call our function to update the NUMBERS object. */

 num += 1;
 if (num > 9999) {
 num = 0;
 strcpy (number_str," 0000 ");
 }
 edit_object ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 138 / 321

do_down ()
{

 /* Here we decrement the value and check for its range, */
 /* after which we update the NUMBERS object. */

 num -= 1;
 if (num < 0) num = 9999;
 edit_object ();
}

edit_object ()
{
 TEDINFO *ob_tedinfo;
 char temp_str[10];

 /* Here we edit the string we're using for the text display */
 /* in the object NUMBERS so that it reflects the new value. */

 sprintf (temp_str,"%d",num);
 strcpy (&number_str[8 - strlen (temp_str)],temp_str);
 strcpy (&number_str[8]," ");

 /* Then we find the object NUMBERS' TEDINFO and point the */
 /* te_ptext member to our updated string, after which we */
 /* redraw the object NUMBERS. */

 ob_tedinfo = (TEDINFO *) tree_addr[NUMBERS].ob_spec;
 ob_tedinfo -> te_ptext = number_str;

 /* For high resolution, change the 16 below to 32. */
 objc_draw (tree_addr, NUMBERS, 1, n_x, n_y, 96, 16);
}

print_results (tree_addr)
OBJECT tree_addr[];
{
 char *string;

 /* Here we call the function that locates the string, then */
 /* print the user's input to the screen. */

 string = find_str (NAME, string);
 v_gtext (handle, 160, 20, "Your name is ");
 v_gtext (handle, 264, 20, string);
 string = find_str (AGE, string);
 v_gtext (handle, 160, 36, "Your age is ");
 v_gtext (handle, 264, 36, string);
 string = find_str (NUMBERS, string);
 v_gtext (handle, 160, 52, "Final number value: ");
 v_gtext (handle, 320, 52, &string[4]);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 139 / 321

char *find_str (object, string)
int object;
char *string;
{
 TEDINFO *ob_tedinfo;

 /* In this function, we locate the object's TEDINFO */
 /* structure then set our string pointer to the pointer */
 /* found in the te_ptext member. */

 ob_tedinfo = (TEDINFO *) tree_addr[object].ob_spec;
 string = ob_tedinfo -> te_ptext;
 return (string);
}

/* Waits for left button to be pressed and released. */
button_wait()
{
 evnt_button (1,1,1,&dum,&dum,&dum,&dum);
 evnt_button (1,1,0,&dum,&dum,&dum,&dum);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 140 / 321

CHAPTER 15 - MORE ON DIALOG BOXES

In chapter 14 we looked at the process of creating a dialog box. In this chapter, we'll tie up some
loose ends by taking a close look at Chapter 14's sample program. You'll want to refer to that listing
during the following discussion.

The Workings

 At the top of the listing, we include the file SAMPLE.H. This file contains the name of the object tree
that represents our dialog box, as well as the names of all the objects within the tree. Each object is
given a number. This number is the index used to find the object within the array. (A tree is an array
of objects, remember?) For those of you who don't have a resource construction program (RCP),
Listing 1 at the end of this chapter shows what the SAMPLE.H file contains.

If you do have an RCP, and you put together Chapter 14's dialog box, you may find that your objects
are numbered differently than those in the example. Don't worry about it. That just means we
constructed our dialog boxes a little differently. For instance, the example's object numbers don't run
in perfect order. Some numbers are missing because, in the course of constructing the dialog, I
removed a couple of objects from the screen without actually deleting them from the tree. Those
objects were assigned numbers, but since they remain unnamed (and unused), they don't appear in
the .H file.

The #defines in Chapter 14's listing assign to logical names the values of various parameters we'll be
using when handling the dialog. Following that, we have the required GEM array declarations and
some global variables.

The character array number_str[] is the string we'll use to change the displayed value of the
NUMBERS object, in response to one of the arrows being clicked.

Finally, we get to the two structure types we discussed in Chapter 14, OBJECT and TEDINFO. Of
course, these are not standard C data types, right? These are our own data types, and we told the
compiler this by using the typedef keyword in front of the declaration.

We also declare a pointer to our object structure. This pointer does not, at this time, contain an
address. We've told the compiler only that when there is an address in *tree_addr, it'll be the
address of a block of data of the type OBJECT. Also, we don't have an OBJECT or TEDINFO structure in
memory yet. In our source code, we've only described what they'll look like. If you're confused, take
a little time to review structures and their declarations.

And Speaking of the Program...

 Finally, we get to main(). There's not much to discuss here. In keeping with structured style, there's
only a general "outline" of the program contained in this function. As you can see, our program must
execute seven main steps. We've left the details of those steps to other functions. The function
do_dialog() is where the action really begins.

The first thing we must do to get the dialog box on the screen is load into memory the resource file
containing all the dialog's information. We do this with the call:

rsrc_load("filename.rsc");

Here, filename.rsc is the name of the resource file that was created by the RCP (note that the
extension .RSC is a convention you should stick to when naming resource files). This call returns a 0 if
an error was encountered and a nonzero number if the file loaded okay.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 141 / 321

Simple, no? In our case, we've used an if statement to prevent the program from continuing if the
.RSC file is missing. If a 0 is returned, the conditional becomes true, in which case we call up an alert
box, informing the user that the SAMPLE.RSC file was missing, then skip over the rest of the program
and exit to the desktop. Once we've got our resource file loaded, we need to find its address. We do
this with the call:

rsrc_gaddr(type, index, tree_addr);

Here, type is the type of data structure loaded, index is the index of the object within the tree (in our
case, the "object" is a tree), and tree_addr is the address of the information (the tree) loaded from
the .RSC file. The parameter type should be a value from the following table:

0 object tree
1 OBJECT
2 TEDINFO
3 ICONBLK
4 BITBLK
5 string
6 image data
7 obspec (object specification)
8 te_ptext (pointer to text)
9 te_ptmplt (pointer text template)
10 te_pvalid (pointer to text validation string)
11 ib_pmask (pointer to icon image mask)
12 ib_pdata (pointer to icon image data)
13 ib_ptext (pointer to icon text)
14 ib_pdata (pointer to bit image)
15 address of a pointer to a free string
16 address of a pointer to a free image

The next thing we must do is modify the coordinates of our dialog box so that it'll appear in the
center of the screen. This is done with the call:

form_center(tree_addr, &x, &y, &w, &h);

Here, tree_addr is the address of the object tree (returned from rsrc_gaddr()), and &x, &y, &w, and
&h are the addresses of the integer variables that will contain the dialog's centered X,Y-coordinates,
width, and height, respectively.

Since we'll be doing some work by hand, as it were, on the NUMBERS object in order to update the
number it displays, we must find its eventual position on the screen. We do this with the call:

objc_offset (tree_addr, index, &x, &y);

Here, tree_addr is the address of the tree that contains the object, index is the object's index within
the tree, and &x and &y are the addresses of the integer variables that will contain the object's
coordinates returned from the function.

Now we must reserve space on screen for the dialog. We have to do this so that, when we remove
the dialog from the screen, GEM will be able to restore the display. The call

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 142 / 321

form_dial(flag,s_x,s_y,s_w,s_h,l_x,l_y,l_w,l_h);

takes care of this, where flag is the operation you wish the function to perform (in this case, it should
be 0); s_x, s_y, s_w, and s_h are the X,Y coordinates, width, and height of the smallest rectangle
(we'll talk about this in a moment); and l_x, l_y, l_w, and l_h are the X,Y coordinates, width, and
height of the largest rectangle (the actual size of the dialog). The acceptable values for flag are:

0 FMD_START reserves screen space
1 FMD_GROW draws expanding box
2 FMD_SHRINK draws shrinking box
3 FMD_FINISH releases screen space and does a redraw

Next, we call form_dial() to perform operation 1, drawing the expanding box. The call looks exactly
the same as above, except the value of flag is 1. The expanding box is drawn starting with the
coordinates and size of the smallest rectangle, and ending with the coordinates and size of the
largest rectangle. Note that the drawing of both the expanding and shrinking boxes is optional. If you
wish, you can skip over this step and go directly to the call below, which actually draws the dialog.
One reason you might want to do this is to bring the dialog up faster.

Finally, we're ready to draw our dialog, with the call:

objc_draw(tree_addr, object, depth, x, y, w, h);

Here, tree_addr is the address of the object tree; object is the number of the object to draw; depth is
how many levels deep the object should be drawn; and x, y, w, and h are the X,Y coordinates, width,
and height, respectively, of the area of the screen in which the object will actually be drawn, also
called the "clipping rectangle."

The clipping rectangle is the portion of the display to which all our screen output is limited. For
instance, if we print text that'll extend beyond the rectangle's border, the text will be "clipped" to fit;
anything that would be drawn outside the clipping rectangle will be ignored. Thus we can protect the
integrity of the rest of the display.

When we set object to 0 in the above call, we're asking for the first object in the tree to be drawn.
The first object in a tree is the root -- in our case, the box containing the rest of the objects that make
up our dialog. To be sure all the objects contained within the dialog are drawn, we must set depth to
the proper value. If we had set it to 0, only the main box would have been drawn. If we had set it to
1, only the main box and its children would have been drawn, meaning that our radio button box
would be missing its buttons and our number box would be missing its arrows. By setting depth to 2
in the sample program, the main box plus its children and grandchildren (the children of the children)
are drawn, thus completing our dialog. If you want to be sure you get everything, just set depth to its
maximum value of 8.

Now that our dialog is on the screen, how do we find out what the user is doing with it? Simple!

form_do(tree_addr, object);

Here, tree_addr is the address of the object tree, and object is the index of an editable text field (0 if
there are no editable text fields). The value in object tells form_do() the number of the text editable
field we want to be active at the time of the call.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 143 / 321

Now that we've made our call to form_do(), GEM will handle the dialog for us, highlighting any
selectable fields clicked on and letting us enter text into any editable text field. When an exit button
is clicked, the dialog will be terminated and form_do() will return the number of the button clicked.
The button number is the only piece of information it returns directly. If we want to see what was
entered in the strings, we have to hunt.

Obviously, only EXIT buttons will ever have their values returned from the form_do() call, so if you
want to know when a button is clicked, make sure, when you design your dialog, that one of the
button's attributes is EXIT or TOUCHEXIT.

Actually, that's not entirely true. There is another way to get this information. Each time we click a
button or fiddle with the dialog in some other way, the object's status is changed and recorded in the
ob_state member of the OBJECT structure. We'll see how to access the OBJECT structure in a while.

Because the only time we want to close our sample dialog box is when the OK or CANCEL button is
clicked, we place the form_do() call within a do/while loop. In the body of the loop, we check to see
which button was clicked, and perform the necessary action. The loop repeats, continually activating
and deactivating the dialog, until OK or CANCEL is clicked. Note that the call to form_do() doesn't
redraw the dialog; it only notifies GEM to accept more input from the form.

When the user has finished with the dialog, we must remove it from the screen. We do this by
performing two more form_dial() calls: one to display the shrinking box (flag=2), and one to restore
the screen (flag=3).

Finding the Data

 In our sample dialog, when a button is clicked, all the program does is print the object's name. But
when the user clicks on one of the arrows, we have to find a way to change the value shown in the
NUMBERS object. This is where things get a little sticky. Your knowledge of pointers and structures is
about to be pushed to the limit.

Think back to when you created the dialog. The object NUMBERS is a BOXTEXT object -- a graphic box
containing a string. It's this string that displays the value of num (the variable that holds the most
current value selected by the arrows). When the user clicks on one of the arrows, we must increment
or decrement num, then modify the string displayed in the object NUMBERS. In our program, the
string we'll be modifying is number_str. But, until we change the pointer contained in te_ptext, the
dialog doesn't know anything about our string. It's perfectly happy with the string we gave it at the
beginning.

So...

In Chapter 14 we discussed the OBJECT and TEDINFO structures. I told you that the OBJECT structure
contained a field called ob_spec that holds object-specific information. When the object being
described is of type BOXTEXT, ob_spec holds a pointer to a TEDINFO structure. (See the ob_spec
chart in Chapter 14.) And guess where we'll find that pointer we want to fiddle with?

Yep.

So, let's say the user clicks on the up arrow. At that point, program execution jumps to the function
do_up(), where num is incremented. The if statement makes sure the displayed value doesn't exceed
9999. If num gets too big, we reset it to 0 and copy a new string reflecting this change into
number_str. We then call edit_object(), the function that'll force NUMBERS to display the string we
want it to, instead of its own.

Dealing with TEDINFO

This is where things get tricky, so make sure your thinking caps are in working order.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 144 / 321

The first thing we do in edit_object() is to declare a pointer, *ob_tedinfo, to a TEDINFO structure.
Also, at the beginning of this function, we declare a 10-character string to temporarily hold the text
we'll be setting up.

The first three lines of actual code in edit_object() convert the value in num to string form, then place
this new string into number_str. We have to do all that fancy string handling to make sure the
numbers are placed in the proper position, retaining any leading zeros, as well as the four spaces
before and after the number.

That was the easy part. Now we have to find the pointer that points to the string contained in the
NUMBERS object, so that we can change it to point to our own string. Remember that our tree,
which is now pointed to by tree_addr, is an array of structures, each structure describing one of the
objects within the tree. Just like any other array, it lets us get to a particular element by using an
index. The object whose structure we wish to locate is NUMBERS, and, thanks to our handy RCP,
NUMBERS has been #defined in the SAMPLE.H header file to the value of the index we need.

The ob_spec member of the structure that describes NUMBERS contains a pointer to the TEDINFO
structure that holds the pointer to our string. Yikes! I feel an illustration coming on. Figure 1 ought to
help you sort this tangle out.

Got it?

So the address of NUMBERS's TEDINFO structure is:

tree_addr[NUMBERS].ob_spec

This is the address we store in ob_tedinfo (after casting it into a pointer to TEDINFO).

Now that ob_tedinfo points to NUMBERS's TEDINFO structure, it's a simple matter to get at the
address of the string.

FIGURE 1 - Locating an object's text

The address is contained in the element te_ptext, so the statement below changes this pointer to
point to our own string.

ob_tedinfo->te_ptext = number_str;

Once we have the string we created included as part of NUMBERS, all we have to do is redraw the
object with the call:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 145 / 321

objc_draw(tree_addr, NUMBERS, depth, x, y, w, h);

Here, the parameters are the same as those described above. The height value of 16 used in the
program is for medium resolution. To get the dialog to work properly in high resolution, since the
monochrome screen has twice the resolution, you must change this value to 32. To make your dialog
work automatically in any resolution, you can get the values for w and h from the ob_w and ob_h
members of the object's OBJECT structure.

Releasing Resource Memory

When we load a resource file, we are obviously using up some of our system's memory. The memory
that has been reserved for our resource file should be returned to the system before we exit the
program or before we try to load another resource file. We release the memory occupied by a
resource file with this function call:

rsrc_free();

If you look at our sample program from Chapter 14, in main(), you'll see that we are releasing the
resource before we close the virtual workstation and exit the program.

Knowing Who Your Friends Are

In Chapter 14 I said that the resource construction program was going to be one of your most valued
tools. It saves the programmer an immense amount of time, by generating most of the data needed
to bring a dialog box (or any other object tree) up on the screen.

But you don't have to use an RCP to program a dialog. You can do it directly from C -- if you're the
type of person who likes outrageously meticulous tasks.

Listing 2 at the end of this chapter will give you some idea of what I'm talking about. This listing was
created by the Resource Construction Set that comes with the Atari Developer's Kit. Compare what
you see with all you've learned about dialog boxes, especially with respect to OBJECT and TEDINFO
structures. You should be able to identify many of the components of our dialog.

For instance, right at the top of the listing, immediately after the #define statements, are all the
strings we need, including templates and string validation fields. Below that is the data for the
ANALOG "A" icons. Each icon consists of the actual data plus a mask, so we end up with four arrays,
two for each icon. A little farther down, you can see the arrays of TEDINFO and OBJECT structures.
Each line of these arrays makes up the data for one of the structures. Compare what you see with
the structures illustrated in Figure 1.

Listing 2 appears here in exactly the same form as it was output from the RCS. There's still some
information that needs to be filled in by the programmer. For instance, look at the first line of the
TEDINFO array. The "11L" is the first TEDINFO's string pointer (te_ptext). Right now, this value is just
an offset from the beginning of the strings defined at the top of the listing. If you start at zero and
count down to eleven, you'll find that this te_ptext is associated with the string "@_________" (each
"_" represents a space character), which is the blank field for our NAME object.

The array of objects that make up our dialog is found right below the TEDINFOs. Just like the
TEDINFO array, each line here consists of the data for each object's structure. Isn't this fun? How'd
you like to code all this stuff by hand?

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 146 / 321

Closing Up Shop

This finishes up our introduction to dialog boxes. By now, you should have a good idea of how
versatile they can be. With a little creativity, you could write an entire program that used nothing but
dialog boxes for all its input and output. Don't be afraid to experiment. Get as outrageous as you like!

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 147 / 321

Program Listing #1
#define SAMPLE 0
#define OK 4
#define CANCEL 3
#define RADIO2 6
#define RADIO1 8
#define RADIO4 7
#define RADIO3 9
#define RADIO5 10
#define RADIO6 11
#define NAME 17
#define AGE 18
#define OPTION2 14
#define OPTION1 13
#define NUMBERS 19
#define DWNARROW 16
#define UPARROW 15

Program Listing #2
#define T0OBJ 0
#define FREEBB 0
#define FREEIMG 4
#define FREESTR 29

BYTE *rs_strings[] = {
 "",
 "",
 "CANCEL",
 "OK",
 "#2",
 "#4",
 "#1",
 "#3",
 "#5",
 "#6",
 "RADIO BUTTONS",
 "@ ",
 "NAME: __________",
 "aaaaaaaaaa",
 "@ ",
 "AGE: __",
 "99",
 "OPTION 1",
 "OPTION 2",
 " 0000 ",
 "",
 "",
 " | ", /* this contains 'SPACE CONTROL-B SPACE' */
 "",
 "",
 " + ", /* this contains 'SPACE CONTROL-A SPACE' */
 "",
 "",
 "THIS IS A SAMPLE DIALOG BOX"
};

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 148 / 321

WORD IMAG0[] = {
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF
};
WORD IMAG1[] = {
 0x7, 0xFFFF, 0xFFFC, 0xF,
 0xFFFF, 0xFFFE, 0x1F, 0xFFFF,
 0xFFFE, 0x3F, 0xFFFF, 0xFFFE,
 0x7F, 0xFFFF, 0xFFFE, 0xFF,
 0xFFFF, 0xFFFE, 0xFF, 0xF000,
 0xFFE, 0xFF, 0xF000, 0xFFE,
 0xFF, 0xF000, 0xFFE, 0xFF,
 0xFFFF, 0x8FFE, 0xFF, 0xFFFF,
 0xCFFE, 0xFF, 0xFFFF, 0xCFFE,
 0xFF, 0xFFFF, 0x8FFE, 0xFF,
 0xF000, 0xF1E, 0xFF, 0xF800,
 0xE0E, 0xFF, 0xFC00, 0xE0E,
 0xFF, 0xFE00, 0xF1E, 0xFF,
 0xFF00, 0xFFE, 0xFF, 0xFF00,
 0xFFE, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0
};
WORD IMAG2[] = {
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,
 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF
};

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 149 / 321

WORD IMAG3[] = {
 0x7, 0xFFFF, 0xFFFC, 0xF,
 0xFFFF, 0xFFFE, 0x1F, 0xFFFF,
 0xFFFE, 0x3F, 0xFFFF, 0xFFFE,
 0x7F, 0xFFFF, 0xFFFE, 0xFF,
 0xFFFF, 0xFFFE, 0xFF, 0xF000,
 0xFFE, 0xFF, 0xF000, 0xFFE,
 0xFF, 0xF000, 0xFFE, 0xFF,
 0xFFFF, 0x8FFE, 0xFF, 0xFFFF,
 0xCFFE, 0xFF, 0xFFFF, 0xCFFE,
 0xFF, 0xFFFF, 0x8FFE, 0xFF,
 0xF000, 0xF1E, 0xFF, 0xF800,
 0xE0E, 0xFF, 0xFC00, 0xE0E,
 0xFF, 0xFE00, 0xF1E, 0xFF,
 0xFF00, 0xFFE, 0xFF, 0xFF00,
 0xFFE, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0,
 0x0, 0x0, 0x0, 0x0
};

LONG rs_frstr[] = {0};

BITBLK rs_bitblk[] = {0};

LONG rs_frimg[] = {0};

ICONBLK rs_iconblk[] = {
 0L, 1L, 0L, 4096,0,0, 0,0,48,24, 4,21,40,2,
 2L, 3L, 1L, 4096,0,0, 0,0,48,24, 4,21,40,2
};

TEDINFO rs_tedinfo[] = {
 11L, 12L, 13L, 3, 6, 0, 0x1180, 0x0, 255, 11,17,
 14L, 15L, 16L, 3, 6, 0, 0x1180, 0x0, 255, 3,8,
 19L, 20L, 21L, 3, 6, 2, 0x1180, 0x0, 255, 13,1,
 22L, 23L, 24L, 3, 6, 0, 0x1180, 0x0, 255, 4,1,
 25L, 26L, 27L, 3, 6, 2, 0x1180, 0x0, 255, 4,1
};

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 150 / 321

OBJECT rs_object[] = {
 -1, 1, 20, G_BOX, NONE, OUTLINED, 0x21140L, 0,0, 58,14,
 2, -1, -1, G_ICON, NONE, NORMAL, 0x0L, 4,1, 6,3,
 3, -1, -1, G_ICON, NONE, NORMAL, 0x1L, 47,1, 6,3,
 4, -1, -1, G_BUTTON, 0x41, NORMAL, 0x2L, 48,11, 8,2,
 5, -1, -1, G_BUTTON, 0x43, NORMAL, 0x3L, 48,8, 8,2,
 13, 6, 12, G_BOX, NONE, SHADOWED, 0xFF1100L, 2,4, 24,9,
 7, -1, -1, G_BUTTON, 0x51, NORMAL, 0x4L, 13,3, 8,1,
 8, -1, -1, G_BUTTON, 0x51, NORMAL, 0x5L, 13,5, 8,1,
 9, -1, -1, G_BUTTON, 0x51, NORMAL, 0x6L, 3,3, 8,1,
 10, -1, -1, G_BUTTON, 0x51, NORMAL, 0x7L, 3,5, 8,1,
 11, -1, -1, G_BUTTON, 0x51, NORMAL, 0x8L, 3,7, 8,1,
 12, -1, -1, G_BUTTON, 0x51, NORMAL, 0x9L, 13,7, 8,1,
 5, -1, -1, G_STRING, NONE, NORMAL, 0xAL, 5,1, 13,1,
 14, -1, -1, G_FTEXT, EDITABLE, NORMAL, 0x0L, 28,4, 16,1,
 15, -1, -1, G_FTEXT, EDITABLE, NORMAL, 0x1L, 28,6, 7,1,
 16, -1, -1, G_BUTTON, 0x41, SHADOWED, 0x11L, 27,8, 9,2,
 17, -1, -1, G_BUTTON, 0x41, SHADOWED, 0x12L, 37,8, 9,2,
 20, 18, 19, G_BOXTEXT, NONE, SHADOWED, 0x2L, 31,11, 12,2,
 19, -1, -1, G_BOXTEXT, TOUCHEXIT, NORMAL, 0x3L, 0,0, 3,2,
 17, -1, -1, G_BOXTEXT, TOUCHEXIT, NORMAL, 0x4L, 9,0, 3,2,
 0, -1, -1, G_STRING, LASTOB, NORMAL, 0x1CL, 15,1, 29,1
};

LONG rs_trindex[] = {0L};

struct foobar {
 WORDdummy;
 WORD*image;
} rs_imdope[] = {
 0, &IMAG0[0],
 0, &IMAG1[0],
 0, &IMAG2[0],
 0, &IMAG3[0]
};

#define NUM_STRINGS 29
#define NUM_FRSTR 0
#define NUM_IMAGES 4
#define NUM_BB 0
#define NUM_FRIMG 0
#define NUM_IB 2
#define NUM_TI 5
#define NUM_OBS 21
#define NUM_TREE 1

BYTE pname[] = "SAMPLE.RSC";

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 151 / 321

CHAPTER 16 - MENU BARS

Now that we know everything there is to know about dialog boxes (well, maybe not everything), it's
time to move on to menu bars. Second only to windows, menu bars are one of the most
characteristic features of GEM. Because they're an excellent way to organize the large number of
options complex programs offer the user, virtually every GEM program uses them.

You'll be surprised to hear that menu bars are actually much easier to program than dialog boxes. In
fact, they're so easy that we can cover them in a single chapter, rather than the two it took for dialog
boxes.

Another RCP Tutorial

Before we can go any further, you're going to have to load up your Resource Construction Program
and create the object tree for the sample menu bar. The following steps will guide you through the
entire construction process. It's not as detailed as the instructions I gave in the last RCP tutorial; you
should be familiar with using the RCP by now. I can't hold your hands forever -- they get too sweaty.

So get to work, and I'll meet you after Step 24.

Steppin' Through the Menu Bar

Step 1: Click on the "New" selection from the File menu. A window titled NONAME will be opened.
Just as when we constructed our dialog box a couple of chapters ago, this window is where
we'll work on our menu bar.

Step 2: Drag the menu icon from the left of the screen into the newly created window. A dialog box
will appear, prompting you for the name of the menu tree. Press Return to select the
default name of TREE00. The menu tree icon will appear in the work window.

Step 3: Double-click the menu tree icon. The beginnings of your menu bar will appear in the work
window.

Step 4: Give the Desk menu selection (on your menu bar, not the RCP's) a single click, and then
press Control-N. The dialog box for naming objects will appear. Name this object "DESK."

Step 5: Repeat Step 4 for the File menu selection, naming this object "FILE."

Step 6: Drag the word TITLE from the parts list and place it to the right of the File title. Double-click
this new menu bar title. A dialog box will appear. Change the text to two spaces followed by
the word "Options," followed by another two spaces.

Step 7: Place the mouse pointer on the lower right-hand corner of the title's shaded area and,
holding down the left button, expand the shading to the right, centering the title within it.
Click once on the options title to select it. Then press Control-N and name the object
"OPTIONS."

Step 8: Set up another menu title in the same way, entering the text as two spaces followed by the
word "Selections," followed by two more spaces. Name the object "SELECTS."

Step 9: Give the Desk menu selection a single click. Then double-click the "Your message here"
entry. Change the text to two spaces followed by "C-manship info..." and press Return.
Press Control-N, and name the entry "INFO."

Step 10: Give the File menu selection a single click. Then place the mouse pointer on the lower-right
corner of the QUIT object. Holding down the left button, reduce the length of the object by
dragging the corner to the left. You have to do this in order to uncover the menu box
beneath.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 152 / 321

Step 11: Place the mouse pointer on the lower-left corner of the menu box and, holding down the
left mouse button, drag the box downward, enlarging it so that it can accommodate three
more entries.

Step 12: Place the mouse pointer on the QUIT object and, holding the left button down, move the
object to the bottom-most position of the menu box.

Step 13: Drag the word "ENTRY" from the parts list and place it in the top position of the File menu
box, making sure you place it as far to the left as it'll go. Double-click it, and change the text
to two spaces followed by "Load...", followed by two more spaces. Name the object
"LOAD."

Step 14: Create another menu entry below LOAD. The text should be two spaces followed by
"Save...", followed by two more spaces. Name this object "SAVE."

Step 15: Drag the ---------- icon from the parts list and place it below the SAVE entry, all the way to
the left. Then move the QUIT object just below it and name it "QUIT."

Step 16: Reduce the menu box to its smallest size using the same method as when you enlarged it
(Step 11). Add enough dashes to the ---------- object (by double-clicking on it and changing
the text) to extend it to the right-hand margin of the menu box.

Step 17: Single-click the Options menu title, and enlarge the menu box to accommodate three
entries.

Step 18: Drag an ENTRY icon to the top of the Options menu box. Set the text to two spaces
followed by "Option 1," followed by two more spaces. Before closing the dialog, set the
CHECKED option in the attributes list. Name the object "OPTION1."

Step 19: Create two more entries in the options menu box, named "OPTION2" and "OPTION3," and
place them in order below OPTION1. The spacing of the text will be the same as in Step 18.
Do not set the CHECKED attribute for these two objects. Reduce the Options menu box to
its smallest possible size.

Step 20: Single-click the Selections title. Then stretch the menu box to accommodate five entries.

Step 21: Create an entry in the Selections menu named "ONOFF," and enter into the text field five
spaces followed by "On" followed by five more spaces.

Step 22: Drag the ---------- icon to a position below the ONOFF entry. Add two dashes to the already
existing ten in the text field.

Step 23: Create three entries below the dashed line. The entries should be named "SELECT1,"
"SELECT2," and "SELECT3." Their text fields should contain two spaces followed by "Select
n" (where n is the entry's number as indicated by the names above), followed by two
additional spaces.

Step 24: Reduce the Selections menu box to its smallest possible size.

The Program

Now that you've got your version of the menu bar saved in a resource file, compile Listing 1, found at
the end of this chapter. When you run the program, the menu bar you created will come up on the
screen (make sure you have the MENU.RSC file on the same disk as your .PRG file). First pull down
the Desk menu and click on "C-manship info..." An alert box should appear, giving you a little
information about C-manship (very little, actually).

There are two GEM menu conventions used here. First, you should always place the "Info" selection
of your menu bar as the first choice of the Desk menu. Second, any menu entry that will lead to a
dialog box of some sort should be followed by ellipsis dots (three periods).

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 153 / 321

If you had any accessories on your program disk when you booted it, they should also be available on
the desk menu. Go ahead; check them out.

Now pull down the File menu. There are a few more conventions to take note of here. If you plan to
allow the loading and saving of files from your application, this is where the appropriate menu
entries should go. Ditto for Quit commands. When you follow these conventions, users will always
know where in a menu bar to find these basic functions. Any other disk handling activities, such as
Delete, should also be located here.

In our sample menu, clicking on Load or Save just prints a message to the screen. Quit, of course,
returns you to the desktop. Note that the Load and Save entries are followed by ellipsis dots, even
though, in this case, they don't lead to a dialog box. Why? Well, when you use them in a real
program, they'll almost certainly lead to a file selector box, right?

Now we get to the Options menu. The three entries found here may be turned on and off by clicking
them with the mouse. Any options that are active will have a checkmark next to them. You can have
as many of them active as you wish (especially considering, due to the stripped-down nature of the
demo program, they don't really do anything, anyway!)

Moving right along, we get to the Selections menu. The top entry will toggle between the words ON
and OFF each time it's clicked. When the entry is "on," the selections below will be selectable, and
will print a message to the screen when they're clicked.

When the entry is "off," the other selections will be "grayed out." This means they have been
disabled. No amount of clicking on a disabled menu entry will give you the slightest response, except
removing the drop-down menu from the screen. This is why we can get away with those dashes
separating different sections of the menus. Since they're disabled, the user can't do anything with
them.

Menu Bars in Your Program

Now that you've had a chance to fiddle with your creation, let's see how the program works. All the
action is in the function do_menu(), so let's skip over the other stuff. You should be familiar enough
by now with how to initialize GEM.

First, we declare menu_adr, a longword that'll contain the address of our menu tree. The actual code
begins with the initialization of some flags we'll use to keep track of the status of the various menu
options. Then we set the mouse pointer to the arrow form.

Next, we load the resource file from disk, using rsrc_load(), which I described in Chapter 15. If the
MENU.RSC file is missing, we warn the user with an alert box, then return to the desktop.

If the resource file loads okay, we find the address of the menu tree, using the rsrc_gaddr() call --
which we also discussed in Chapter 15 -- storing the returned address in menu_adr.

To display our menu bar, we call:

menu_bar(menu_adr, flag);

Here, menu_adr is the address of the menu's object tree and flag is a Boolean value indicating
whether the menu should be displayed (a nonzero value) or removed (a zero value).

A Nifty Message System

Up until now we've been able to get our user's input with either specific calls to the mouse or
keyboard, or by using dialog and alert boxes. We've now gotten to the point in our GEM
programming careers where the simple calls just won't do the job. What if we want to be alerted to
more than one form of input? What if we want to know about the mouse and the keyboard at the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 154 / 321

same time? More to the point for this chapter, how do we know what the user is doing with the
menu bar?

GEM supplies us with a single function call that will monitor the entire system for us and tell us
everything we need to know about the user's actions. Are you ready? Take a deep breath, because
you're going to need it. The call (as shown in the Megamax manual) is:

evnt_multi(mmflags, mbclicks, mbmask, mbstate, mm1flags, mm1x, mm1y,
 mm1width, mm1height, mm2flags, mm2x, mm2y, mm2width,
 mm2height, mmgpbuff, mtlocount, mthicount, mmox, mmoy,
 mmobutton, mmokstate, mkreturn, mbreturn);

Sheesh! I warned you! But before you burn your compilers and open your wrists, you should know
that, at this point, there are only a few of the above parameters we're interested in. We'll be
discussing this function a lot in upcoming chapters. We'll cover the parts we need bit by bit. For now,
let's just say that you don't need to use all the parameters. We can send 0s for any outgoing
parameters we're not interested in, and supply dummy locations for any unneeded information
being sent back. In our menu bar program, the evnt_multi() call looks like this:

evnt_multi(MU_MESAG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 msg_buf, 0, 0, &dum, &dum, &dum, &dum, &dum, &dum);

MU_MESAG is the event we want to watch for (in this case, a message event), and msg_buf is the
address of a 16-byte message buffer where our messages will be stored.

There are six event types we can wait for. To wait for more than one type of event at a time, we just
OR the appropriate flags together. For example, to wait for a message event, a keyboard event, and a
mouse button event, our first parameter in the evnt_multi() call would be:

MU_MESAG | MU_KEYBD | MU_BUTTON

Here, MU_MESAG has been defined as 0x0010, MU_KEYBD has been defined as 0x0001, and
MU_BUTTON has been defined as 0x0002. This sets the proper bits, as shown in the following table.

Set bit # Event
0 Keyboard
1 Mouse button
2 Mouse event 1
3 Mouse event 2
4 Message event
5 Timer event

Note that, even though we're not using the call this way in the sample program, since we're only
waiting for one type of message, evnt_multi() returns a word value that will have bits set based on
the events that occurred. These bits follow the same format as the table above. It's possible to have
more than one event detected by a single call to evnt_multi(), so it's up to the programmer to check
each bit in the returned integer, in order not to miss events. If you're checking for more than one
event, your evnt_multi() call should look something like this:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 155 / 321

event = evnt_multi(...);

Here, event is the integer that will contain bits set based on the events detected by the call. Of
course, the "..." in the parentheses will be replaced by that horrendous parameter list. When we
make the evnt_multi() call, everything comes to a stop until the event we're waiting for occurs. If the
event is a message event, information about the message is stored in the message buffer. In our
program, we've set up the array msg_buf[] to handle this duty. The type of message will be returned
into msg_buf[0]. There are thirteen possible messages, but the only one we're interested in right
now is the menu selected message, which has a value of 10. When the user makes a selection from
the menu, therefore, msg_buf[0] will contain 10.

Since this is the only type of message we're waiting for, we don't have to check msg_buf[0]. We can
just assume that we've received the message we expected.

If this discussion is getting confusing, you might not be sure of the differences between an event and
a message. They are not the same thing. A message is received only when a message event -- one of
six different events -- is detected.

Enough of this Event Junk

Now that we have an idea of how evnt_multi() works, the program's workings are fairly simple. The
object number of the chosen menu title is stored in msg_buf[3], and the object number of the
chosen menu entry is stored in msg_buf[4]. Once we have that information, we set up nested switch
statements to perform the appropriate actions.

The outer switch tests msg_buf[3] to see which menu title was selected. In the sample listing, you'll
see that there's a case for each menu title. Within each menu title's case is a switch to test
msg_buf[4], the object number of the selected menu entry. This is the best way to handle menu
messages -- the code looks very much like the menu bar it represents, and so is clear and easy to
follow.

Now, let's look at this code in a little more detail, starting with DESK. Since we have only one action
we have to take care of, we really didn't need the inner switch statement; we could have used an if,
but I wanted to keep that "menu-looking" structure I mentioned before. Here, if the user clicks on
the "C-MANSHIP INFO..." entry, we just call up an alert box. Simple. We don't have to handle any
desk accessories the user might run; GEM does that for us -- almost. I say almost, because, if a desk
accessory is called up, it's up to your program to redraw the screen after the accessory has done its
thing. Since we don't have anything special happening in the sample program, we can ignore this
bothersome detail.

The File menu selections do nothing fancy, just print a message to the screen. But look at the case
statements. Where's Quit? Wasn't that part of the File menu? Yes, indeed. And you'll find it at the
very bottom of the sample listing. We're using it to break out of the do/while loop.

The Options selections must handle the check marks that indicate active options. We use the call:

menu_icheck(menu_adr, OBJECT, flag);

Here, menu_adr is the address of the menu's object tree, OBJECT is the number of the entry you wish
to check or uncheck, and flag is a Boolean value that indicates whether a check mark should be
drawn (a nonzero value) or removed (a zero value).

In our menu_icheck() calls, we're taking care of not only the check marks, but also the flags --
reversing them within the function call with the statement below:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 156 / 321

op1=!op1

How does this work? First, the flag is changed to its opposite state with the NOT operation. Then this
new value is passed as the flag to the function. This is one of the advantages of C, being able to nest
assignments and expressions.

In the Selects menu section, if the ONOFF entry is selected, we must first change the text in ONOFF,
then either enable or disable the other selections. To change the text of the entry, we use the call:

menu_text(menu_adr, OBJECT, s);

Here, menu_adr is the address of the menu bar's object tree, OBJECT is the entry's object number,
and s is the address of the string you wish placed in the object. You should make sure that you've left
room in the menu for the largest string you'll be using. Otherwise, you'll mess up the desktop. Also,
you must make sure that the string is statically allocated; that is, it's global, not declared within a
function. You never know when the user is going to activate that particular menu selection, and if
your string isn't available globally, it may not be there when the menu is displayed. What a surprise
that'll be.

Finally, we use the flag on to determine if we should enable or disable the rest of the menu entries.
To perform this function, we use the call:

menu_ienable(menu_adr, OBJECT, flag);

Here, menu_adr is (you guessed it) the address of the menu tree, OBJECT is the object of the entry
you wish to modify, and flag is a Boolean value that indicates whether the entry is to be enabled (a
nonzero value) or disabled (a zero value). In the sample program, we're using the same trick we used
with menu_icheck() to handle the flag, but since we have three calls to menu_ienable(), we reverse
the flag only in the first one.

When the user moves the mouse pointer over a menu selection, the title of that selection is
highlighted, and the associated menu drops down. Once the user has clicked on an entry, the drop-
down menu is removed, but the title remains highlighted. The highlighting reminds the user which
menu selection is currently being processed. By leaving the title highlighted even after the user has
made his selection, we can perform the actions required by the user's choice, then turn the
highlighting off when we're ready. We turn off the highlighting with the call:

menu_tnormal(menu_adr, title, flag);

Here, menu_adr is the address of the menu tree, title is the object number of the menu title we wish
to unhighlight, and flag is a Boolean value that indicates if the title is to be highlighted (a nonzero
value) or unhighlighted (a zero value). The value for title will be the one found in msg_buf[3].

And, last but not least, once we're through with the menu bar, we must remove it from memory. We
just use the menu_bar() call discussed previously to do this. Just change the flag to false.

Another Lesson Learned

Your repertoire of GEM programming tricks is building fast. It won't be long before you'll be ready to
put together some professional looking software. Learning to handle menu bars is an important step
in that direction. Without them, you can't really consider yourself a GEM programmer.

Of course, there's still a lot more we have to cover before we can consider GEM a challenge met. But
we're getting there.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 157 / 321

Program Listing #1
/***/
/* C-manship, Listing 1 */
/* CHAPTER 16 */
/* Developed with Megamax C */
/***/

#include "MENU.H"

#define MU_MESAG 0x0010
#define ARROW 0
#define R_TREE 0
#define TRUE 1
#define FALSE 0

/* The usual required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum;
int msg_buf[8], op1, op2, op3, on;

char *alrt = "[1][C-manship, Chapter 16|by Clayton \
 Walnum][Okay]";
char *on_str = " On ";
char *off_str = " Off ";

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_menu(); /* Go do the MENU. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_menu ()

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 158 / 321

{
 long menu_adr; /* Address of the tree containing our menu. */

 /* First, we initialize our option flags, so we can keep */
 /* track of which ones are active. Also, we change the */
 /* mouse pointer to an arrow. */
 op1 = TRUE;
 op2 = FALSE;
 op3 = FALSE;
 on = TRUE;

 graf_mouse (ARROW, &dum);

 /* Here we load the resource file. If the file is missing,*/
 /* we warn the user with an alert box then terminate the */
 /* program by skipping the code following the ELSE. */

 if (! rsrc_load ("\MENU.RSC"))
 form_alert (1, "[1][MENU.RSC missing!][Okay]");

 /* If the resource file loads OK, we get the address of the*/
 /* tree, then handle menu messages from evnt_multi(). */

 else {
 rsrc_gaddr (R_TREE, TREE00, &menu_adr);
 menu_bar (menu_adr, TRUE);
 do {
 evnt_multi (MU_MESAG,0,0,0,0,0,0,0,0,0,0,0,0,0,msg_buf,
 0,0,&dum,&dum,&dum,&dum,&dum,&dum);

 switch (msg_buf[3]) {

 case DESK:
 switch (msg_buf[4]) {
 case INFO:
 form_alert (1, alrt);
 break;
 }

 case FILE:
 switch (msg_buf[4]) {
 case LOAD:
 v_gtext (handle, 20, 120, "Load file ");
 break;
 case SAVE:
 v_gtext (handle, 20, 120, "Save file ");
 break;
 }

 case OPTIONS:
 switch (msg_buf[4]) {
 case OPTION1:
 menu_icheck (menu_adr, OPTION1, op1=!op1);
 break;
 case OPTION2:
 menu_icheck (menu_adr, OPTION2, op2=!op2);
 break;
 case OPTION3:
 menu_icheck (menu_adr, OPTION3, op3=!op3);
 break;
 }

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 159 / 321

 case SELECTS:
 switch (msg_buf[4]) {
 case ONOFF:
 if (on)
 menu_text (menu_adr, ONOFF, off_str);
 else
 menu_text (menu_adr, ONOFF, on_str);
 menu_ienable (menu_adr, SELECT1, on=!on);
 menu_ienable (menu_adr, SELECT2, on);
 menu_ienable (menu_adr, SELECT3, on);
 break;
 case SELECT1:
 v_gtext (handle, 20, 120, "Select 1 ");
 break;
 case SELECT2:
 v_gtext (handle, 20, 120, "Select 2 ");
 break;
 case SELECT3:
 v_gtext (handle, 20, 120, "Select 3 ");
 break;
 }
 menu_tnormal (menu_adr, msg_buf[3], TRUE);
 }
 }
 while (msg_buf[4] != QUIT);
 menu_bar (menu_adr, FALSE);
 }
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 160 / 321

CHAPTER 17 - WINDOWS - PART 1 - DRAWING

So far, we've talked about dialog boxes (including alert boxes and file selector boxes) and menu bars.
That leaves us with one important area of GEM we've yet to touch upon: windows. This is a complex
subject, one that we'll need several chapters to cover. The subject of windows can get as complex as
you'd like. There's almost no end to the ways we can use them.

What Are Windows Really?

 We've all used them, but how many of us have sat down and thought about what a window really
is? From the user's point of view, a window truly lives up to its name, allowing him to move a
transparent opening over information that may be too lengthy to fit on his screen, giving him a
glimpse at data stored somewhere beyond the borders of our desktop.

But this "windowness" is just an illusion, the result of some programmer's tedious and careful work.
A window is not a magical creation; it's just a box.

Imagine, if you will, a child's slate on which you've written as many film titles as will fit. Now some
guy comes up to you and says, "The movie I'm looking for isn't on that list. Let me see some more."
So you take out your eraser, erase the slate, and chalk some more titles onto its surface. The man
shakes his head, mumbles something like "Maybe it wasn't a movie after all," and tells you to put the
slate down on a table with several others. He then points to a different slate and asks you to pick it
up. On this one are written book titles. The man smiles (Gee, look! There's a piece of spinach in his
teeth!) and points to the title Foundation and Earth by Isaac Asimov. You erase the slate, set it back
on the table, then go to the library and retrieve the book. The end.

Who's the bossy guy in the story? The user, of course. And "you" are the programmer, manipulating
the "windows" in the manner the user requests.

Okay, maybe windows are a little fancier than a chalk slate. They do have some extra parts (if we
want to use them), such as sliders, movers, fullers, closers, etc., and GEM does provide a small
amount of help with handling windows. But, for the most part, a window is just what I said before: a
box -- a box that you, the programmer, have to maintain in accordance with messages received from
your program's user.

Figure 1 shows all the components contained in a complete window. You can use any or all of these
parts, depending on your application's needs.

The Window Demo

When you run this chapter's program, a simple window will come up on the screen. This window
won't contain all of the parts shown in Figure 1; it will have only a title bar, an information bar, a
mover bar (actually the same as the title bar), a fuller button and a closer button -- the parts we're
going to cover in this chapter.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 161 / 321

FIGURE 1 - Window Components

Clicking on the fuller button causes the window to fill the entire desktop workspace. Clicking it a
second time will return the window to its previous size. If you place the mouse pointer on the mover
bar, then press and hold the left button, you can drag the window to any location you like on screen -
- even off the screen, if you want. However, if you do move part of the window off the screen, when
you move it back again, you'll notice that the window's workspace isn't redrawn. We'll see why this
happens in an upcoming chapter.

When you're through experimenting, click on the closer button. The window closes, and you're
returned to the desktop.

Drawing a Window

Now let's take a look at this chapter's program listing in detail and see how all this window stuff
works. The function do_wndw() is where most of the fun takes place, so we'll start there.

The first thing we must do is decide what our window's maximum allowable size will be. We can limit
the size to anything we want, but, in most cases, a window's maximum size is equal to the desktop
workspace. The desktop is actually a window itself, the workspace of which is all the area of the
screen, excluding the menu bar. The size of this workspace, measured in pixels, varies with the
resolution, so we need a way to find out what the actual coordinates are. Luckily, GEM provides us
with a function that'll supply the information we need. The call below will return requested
information about a window:

wind_get(w_h, flag, &x, &y, &w, &h);

Here, w_h is the window's handle (in the case of the desktop, the handle is always 0), the integer flag
is a flag telling the function what information we want, and &x, &y, &w, and &h are the addresses
where the returned information will be stored. What information is actually placed in these locations
depends on the value of flag. To get the work area's rectangle, we need to make flag equal to
WF_WORKXYWH, which is defined in the Megamax header file, GEMDEFS.H.

The function wind_get() can provide us with much information about our window, including the size
of the work area, the size of the entire window, the window's maximum allowable size, the previous
window's size, the position or size of either the vertical or horizontal sliders, and the coordinates of

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 162 / 321

the first or next rectangle in the rectangle list (something we'll cover in another chapter). All the flags
you need to request any of this information are already set up for you in the GEMDEFS.H header file
that came with your compiler.

Now, where were we? Oh, yes! To get the size of the desktop's work area (which we'll use as our
window's maximum allowable size), our call to wind_get() should look like this:

wind_get(0,WF_WORKXYWH,&fullx,&fully,&fullw,&fullh);

Remember: window handle 0 is always the desktop.

Now we know the maximum allowable size for our window, and we've stored that information in
fullx (X-coordinate of the window's upper left corner), fully (Y-coordinate of the window's upper left
corner), fullw (the window's width), and fullh (the window's height). Next, we need to generate the
window, as well as get its handle. (A window's handle is its name; that way we can differentiate it
from other windows that may also be in use.) We do this with the call:

w_handle=wind_create(PARTS,fullx,fully,fullw,fullh);

Here, the integer w_handle will receive the window's handle (a negative value indicates that the
window couldn't be opened), PARTS is a flag representing the components we want included in the
window, and fullx, fully, fullw, and fullh are the window's maximum allowable size. A call to
wind_create() does not actually draw the window; it only sets up the window in memory.

In our sample listing, PARTS is defined as:
NAME|CLOSER|FULLER|MOVER|INFO

The definitions for these labels (and all the others needed for a complete window) are defined in the
Megamax header file GEMDEFS.H as on the next page.

Label Value
NAME 0x0001
CLOSER 0x0002
FULLER 0x0004
MOVER 0x0008
INFO 0x0010
SIZER 0x0020
UPARROW 0x0040
DNARROW 0x0080
VSLIDE 0x0100
LFARROW 0x0200
RTARROW 0x0400
HSLIDE 0x0800

As you can see, each of the above values sets a particular bit in the flag. To select the parts you wish
included in your window, you OR the appropriate values together. Though you may include as many
or few of the parts as you need for your application, you should never include in a window parts you
don't plan on handling in your code. It tempts the user to play around with things he shouldn't, even
though, in most cases, it won't do any harm; only your program can actually change a window.

Since we've included the title and information bars in our window, we need to tell GEM where the
associated strings can be found. If we neglect to do this, we'll get unpredictable results; we may even
end up staring at a row of bombs across our screen (nasty old things). The call below fits the bill
nicely:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 163 / 321

wind_set(w_handle, WF_NAME, title, 0, 0);

Here, w_handle is the window's handle, WF_NAME (defined in the Megamax header file
GEMDEFS.H) is a value indicating the field we wish to change, title is the address of the string we
want displayed, and the two 0s are dummy arguments.

Just as with wind_get(), wind_set() has many possible values for its flag (represented by WF_NAME in
the above call), each of which lets you change one of your window's attributes, including the title or
information text, the window's position, the window's components, the sliders' size or position, and
whether or not the window is the topmost (active) window. All the flags for this function are defined
in your GEMDEFS.H file.

The above call takes care of the title bar. We must make another call to wind_set() for the
information line. The call is exactly as above except you would replace WF_NAME with WF_INFO and
title with a pointer to the window info string.

Now we're ready to actually bring the window up on the screen. First, we make a call to draw the
animated, expanding box:

graf_growbox(startx, starty, startw, starth,endx,endy,endw,endh);

Here, the integers startx, starty, startw, and starth are the X- and Y-coordinates of the upper-left
corner and the width and height, respectively, of the box's starting rectangle. The integers endx,
endy, endw, and endh are the equivalent values for the box's ending rectangle.

The call below opens and draws a window:

wind_open(w_h, x, y, w, h);

Here, w_h is the window's handle, and the integers x, y, w, and h are the X- and Y-coordinates of the
upper-left corner and the width and height of the window, respectively. You can open the window to
any size less than or equal to the maximum you set with the wind_create() call.

Next, we call our own function, draw_backgrd(), to fill in the new window's work area. The call to
wind_open() actually draws only the window's borders and whatever parts we requested when we
created the window. The work area is the programmer's responsibility. It's there for us to do with it
what we like.

Let's follow the flow of the program now by taking a look at the function draw_backgrd(). First, we
turn off the mouse so the pointer doesn't interfere with our drawing. Then we call wind_get(), as we
did before, to get the coordinates and size of the work area of the window we just opened. Now that
we know this information, we simply draw a filled rectangle at the coordinates returned. A piece of
cake!

Handling a Window

Okay, our window's on the screen. Now what do we do with it? We get information about what the
user is doing with our window the same way we did with menu bars -- through messages. Since
we're interested only in one type of message in the sample program, we're not going to bother with
that bulky evnt_multi() call. There's an easier way:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 164 / 321

evnt_mesag(msg_buf);

This call allows us to wait for messages without all of evnt_multi()'s extra and burdensome baggage.
Here, msg_buf is the address of a 16-byte buffer where the message will be stored. Every time the
user does something with our window, evnt_mesag() will notify us.

The messages we'll receive are limited to those generated by the parts we included in our window
when we created it. More specifically, in Listing 1, the only actions we're looking for are: the window
was moved, the fuller button was clicked or the close button was clicked.

When one of these actions occurs, a message is written to our message buffer. The first word,
msg_buf[0], will contain the message type received. We'll use this value in a switch statement to
choose the appropriate action.

Window Moved

If the window is moved, we'll receive a WM_MOVED (defined in the Megamax GEMDEFS.H file)
message, telling us we have to reposition the window. The handle of the window moved will be
found in msg_buf[3]. The coordinates and size will be found in msg_buf[4] through msg_buf[7] (X, Y,
W and H, respectively). We move the window with the call:

wind_set(msg_buf[3], WF_CURRXYWH,
 msg_buf[4],msg_buf[5],msg_buf[6], msg_buf[7]);

The label WF_CURRXYWH is defined in the Megamax GEMDEFS.H file and tells wind_set() that we
want to change the current window's coordinates, automatically moving the window to the new
position.

What if the user moved the window and we ignored the message by not calling wind_set()? The user
would be able to move the window's outline around the screen all he wanted, but as soon as he
released the button, the outline would vanish, leaving the window in its original location.

Full Size or Previous Size?

Another message we might receive in our sample program is WM_FULLED message. We get this
message when the user clicks on the fuller button, at which time we must either expand the window
to its maximum size or, if it's already at its maximum, return it to its previous size. It's up to the
programmer to figure out which size is the right one.

The first thing we do is call our own function, full_wind(), to set full_flag to its proper state. All
full_wind() does is get the coordinates of the current and full-size windows and compare them. If any
of the current coordinates don't match the full-size coordinates, we know that the window is not at
its maximum, and we return a value of TRUE. If all the coordinates match, we're already at maximum
and need to set the window back to its previous size. We signal this by setting our flag to FALSE.

If we need to reduce the window to its old size, we first need to know the original coordinates. A call
to wind_get(), where the second argument is WF_PREVXYWH takes care of that. Once we have the
old coordinates, we call:

graf_shrinkbox(startx, starty, startw, starth, endx, endy, endw, endh);

to animate the shrinking box (the parameters are the same as for graf_growbox()), then reposition
the window with wind_set().

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 165 / 321

The process of setting the window to its full size is similar, except we draw an expanding box instead
of a shrinking one and use the full-size coordinates for the call to wind_set(). Also, when expanding
the window to its maximum, we have to perform a window redraw (in this case, it's just a matter of
drawing that rectangle in the work area).

Closed For Business

Now, all we have to do is provide a way for the user to get out of our program. The window's close
button is perfect for this. When the user clicks it, we'll receive a WM_CLOSED message, which will
cause us to exit our do/while loop.

When we exit the loop, we find the coordinates of the current window with a call to wind_get(). Then
we use those coordinates in a call to graf_shrinkbox(). To get rid of the window, we must first close it
with the call:

wind_close(w_handle);

Here, the integer w_handle is the window's handle. Then we must remove the window from memory
with the call:

wind_delete(w_handle);

More to Come

In the following chapters, we'll learn what to do with redraw messages, how to handle sliders and
arrows, and how to deal with multiple (gasp!) windows. Betcha can't wait, huh?

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 166 / 321

Program Listing #1
/***/
/* C-manship, Listing 1 */
/* CHAPTER 17 */
/* Developed with Megamax C */
/***/

#include <osbind.h>
#include <gemdefs.h>
#include <obdefs.h>

#define TRUE 1
#define FALSE 0
#define PARTS NAME|CLOSER|FULLER|MOVER|INFO

/* The usual required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum, fullx, fully, fullw, fullh,
curx, cury, curw, curh, oldx, oldy, oldw, oldh;

int msg_buf[8];

char *title = "C-manship - Chapter 17";
char *info = "Learning about windows";
main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_wndw(); /* Go do the window stuff. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_wndw ()

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 167 / 321

{
 int w_handle, full_flag;

 /* Find the size of the desktop's (handle 0) work area. */
 wind_get (0, WF_WORKXYWH, &fullx, &fully, &fullw, &fullh);

 /* Create window in memory. */
 w_handle = wind_create (PARTS, fullx, fully, fullw, fullh);

 /* Set the window's title and info text. */
 wind_set (w_handle, WF_NAME, title, 0, 0);
 wind_set (w_handle, WF_INFO, info, 0, 0);

 /* Draw the window on the screen. */
 graf_growbox (10, 10, 10, 10, 50, 50, 250, 200);
 wind_open (w_handle, 50, 50, 250, 150);
 draw_backgrd (w_handle);

 /* Change mouse to arrow. */
 graf_mouse (ARROW, 0L);

 /* Receive event messages until the closer is clicked. */
 do {
 evnt_mesag (msg_buf);
 switch (msg_buf[0]) { /* msg_buf[0] is message type.

 /* If window is moved, set window at new
 location found in msg_buf[4] through
 msg_buf[7]. The handle of the
 window moved is in msg_bug[3]. */

case WM_MOVED:
 wind_set (msg_buf[3], WF_CURRXYWH, msg_buf[4],
 msg_buf[5], msg_buf[6], msg_buf[7]);
 break;

 /* If the fuller button has been clicked, set window to
 appropriate size based on full_flag. */

case WM_FULLED:
 full_flag = full_wind (w_handle);
 if (!full_flag) {
 wind_get (w_handle, WF_PREVXYWH,
 &oldx, &oldy, &oldw, &oldh);
 graf_shrinkbox (oldx, oldy, oldw, oldh,
 fullx, fully, fullw, fullh);
 wind_set (msg_buf[3], WF_CURRXYWH,
 oldx, oldy, oldw, oldh);
 }
 else {
 wind_get (w_handle, WF_CURRXYWH,
 &curx, &cury, &curw, &curh);
 graf_growbox (curx, cury, curw, curh,
 fullx, fully, fullw, fullh);
 wind_set (msg_buf[3], WF_CURRXYWH,
 fullx, fully, fullw, fullh);
 draw_backgrd (w_handle);
 }
 break;
 }
 }

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 168 / 321

 while (msg_buf[0] != WM_CLOSED);

 /* Get current size of window for use in graf_shrinkbox, */
 /* then close and delete the window. */

 wind_get (w_handle, WF_CURRXYWH, &curx, &cury, &curw, &curh);
 graf_shrinkbox (10, 10, 10, 10, curx, cury, curw, curh);
 wind_close (w_handle);
 wind_delete (w_handle);
}

/* This function calculates if the window should be drawn to */
/* its maximum size or reset to its previous size. */

full_wind (w_h)
int w_h;
{
 int c_x, c_y, c_w, c_h,
 f_x, f_y, f_w, f_h;

 wind_get (w_h, WF_CURRXYWH, &c_x, &c_y, &c_w, &c_h);
 wind_get (w_h, WF_FULLXYWH, &f_x, &f_y, &f_w, &f_h);
 if (c_x != f_x || c_y != f_y || c_w != f_w || c_h != f_h)
 return (TRUE);
 else
 return (FALSE);
}

/* This function draws a white background in a window's */
/* work area. w_h is the window's handle. */

draw_backgrd (w_h)
int w_h;
{
 int wrk_x, wrk_y, wrk_w, wrk_h;
 int pxy[4];

 /* Turn off mouse for all drawing operations. */
 graf_mouse (M_OFF, 0L);

 /* Get the size of the window's work area. */
 wind_get (w_h, WF_WORKXYWH, &wrk_x, &wrk_y, &wrk_w, &wrk_h);

 /* Set the color and fill style. */
 vsf_interior (handle, 1);
 vsf_color (handle, WHITE);

 /* Draw the rectangle in the window work area. */
 pxy[0] = wrk_x;
 pxy[1] = wrk_y;
 pxy[2] = wrk_x + wrk_w - 1;
 pxy[3] = wrk_y + wrk_h - 1;
 vr_recfl (handle, pxy);

 /* Drawing over, so turn mouse back on. */
 graf_mouse (M_ON, 0L);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 169 / 321

CHAPTER 18 - WINDOWS - PART 2 - SIZING

In our last gem experiments, we learned some of the basic functions used to manipulate windows.
We discovered how to initialize, open and close a window, as well as draw its interior (the work
area), and handle the messages GEM sends to our application when the user wishes to move the
window or make it full-size.

As I'm sure you've guessed, there's still more to learn before we can call ourselves window experts --
much more. We still need to know how to handle many other types of window messages, not the
least of which is the redraw message. We also need to know how to use the window's sizer button,
scroll bars and arrow buttons. And then there's the matter of multiple windows!

In the next couple of chapters, we'll tackle all of the above topics, giving you a fairly complete
understanding of programming with windows.

The Demo Program

When you run this chapter's program, a full-screen window containing some text will be opened. You
can drag the window around the screen by placing the mouse pointer on the title bar and holding
down the left button. You can change the size of the window, using the mouse to click and drag on
the sizer button. When you're through experimenting with the window, exit the program by clicking
the closer button.

It doesn't seem as if there's much more going on here than in Chapter 17's program, does it? But
there is...there is...

Any Size You Like

The GEM window form provides a button that is used to set a window to any size the user requests.
When the user activates the sizer button (by click/dragging it), an outline of the window appears on
the screen. The outline expands and contracts with the movement of the mouse pointer -- as long as
the left button is held down. The moment the button is released, the window is redrawn at the size
selected by the outline.

Handling the sizer button is simple (well, there are a couple of complications that we'll get to in a
minute). First, of course, when initializing the window, you must tell GEM to include the sizer button
in its parts list. Then it's just a matter of waiting for the WM_SIZED message and using the call:

wind_set(msg_buf[3], WF_CURRXYWH,
 msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);

This sets the window's current size to that returned in the message buffer. (If you've forgotten how
this message stuff works, review the last couple of chapters.) Easy.

However, (have you noticed that there's always a "however"?) there are two things we have to
watch out for. The first is a redraw message. We will receive one of these when the window is moved
from a partially off-screen position back to the desktop, or when it's increased in size, either
horizontally or vertically. Also, it's up to us, the programmers, to keep the size of a window within
certain limitations.

The maximum size of a window really isn't a problem. The window will never be larger than the
desktop, anyway. It's just nice to know that, if we ever decide we want the window kept below a
certain maximum size, we can.

The minimum size, however, is important. If we don't check the requested size of the window before
setting it, we may find we've left the user with a tiny, unusable blob on the screen. It's the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 170 / 321

programmer's responsibility to make sure the window isn't set to a size too small to contain the parts
it needs to function.

Take a look at the do_wndw() function in Listing 1. It's here that we handle the messages GEM sends
us. You'll notice that both WM_MOVED and WM_SIZED messages are dealt with the same way, via a
call to our function do_move(). The reason is that both these window events are handled with the
wind_set() call.

In the function do_move(), the first thing we do is check the requested window size, returned to us in
msg_buf[4] through msg_buf[7]. If the height or width of the requested window is smaller than the
minimums we've set (the actual values can be found in the #defines at the top of the listing), we
replace the unacceptable values with our minimum values. The user can try to set the window as
small as he likes, but it will never be drawn at a size smaller than our minimum.

If we need to control the window's maximum size, we would do it the same way, adding another set
of if statements to check for compliance with whatever maximum values we wished to force on the
window.

Redraw Messages

As we move our window around the screen, and as long as we stick to certain limitations, GEM is
perfectly happy to redraw the window and its contents for us. But there are times when GEM stops
right in its tracks, scratches its silicon head and says, "Here! You figure it out!" To understand why
this happens, we need to know a little about how GEM does its window tricks.

Basically, GEM has no trouble redrawing a window's contents (its work area), as long as all the data
needed is present on the screen. For instance, let's say we've drawn a small window in the center of
the screen and filled Vx´Éwork area in with a white background. Now we move that window a little to
the right. GEM can redraw the window because all the information it needs is still on the screen.
When it does the redraw, all it does is "blit" the old screen information to its new location. The
complication begins when we do one of two things with our window: move it on to the screen from a
partially off-screen position, or enlarge it.

In both of the above cases, as I'm sure you can see, the information GEM needs to redraw the
window isn't available on the screen. GEM will make the attempt and redraw as much information as
it can, but when it gets to the missing data, it'll give up and tell us to handle it, by sending a redraw
message.

This description is, of course, an over simplification. Things get much more complicated when you
start dealing with multiple windows, since any movement of the active window (the topmost
window) will surely result in redraw messages for some or all windows underneath.

Redrawing a window is not, unfortunately, a simple process. To do it properly, you must perform the
following steps:

Step 1 Lock the window for an update.

Step 2 Get the first rectangle to be redrawn from the rectangle list.

Step 3 Check whether the rectangle returned from the redraw message (stored in
msg_buf[4] through msg_buf[7]) intersects the rectangle obtained from the
rectangle list.

Step 4 If there's an intersection, set the clipping rectangle equal to the rectangle obtained
from the rectangle list, and redraw the window.

Step 5 Get the next rectangle from the rectangle list.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 171 / 321

Step 6 Perform steps 3 through 5 until the rectangle list is empty (width and height both
equal to 0).

Step 7 Unlock the window.

Sound like fun? Let's take an in-depth look at each step.

Lock the Window

The first thing we must do before updating a window is lock it away from GEM. This prevents the
user from doing anything to "pollute" the screen -- such as activating the menu bar or a desk
accessory -- while we're trying to get the window redrawn. Essentially, it stops two applications from
writing to the screen at the same time. To lock a window, we use the call:

wind_update (BEG_UPDATE);

The integer BEG_UPDATE (defined as 1) tells GEM we're going to start updating the window and that
other writes to our window should be disallowed. The wind_update() call also supports three other
functions, depending on the value of the flag. The four flags and their values as defined in the
GEMDEFS.H header file are as follows:

END_UPDATE 0 Unlock window
BEG_UPDATE 1 Lock window
END_MCTRL 2 Lock mouse control
BEG_MCTRL 3 Begin mouse control

The Rectangle List

In order to facilitate redrawing, GEM divides each window into a series of complete rectangles, then
stores the coordinates of these rectangles in a rectangle list. We'll be discussing the rectangle list in
greater depth in Chapter 19, when we start working with multiple windows; for now, it's enough to
say that each time we get a redraw message, we must read each rectangle in the list, compare it to
the rectangle returned from the redraw message, and redraw those rectangles that need updating.

In Listing 1, the function do_redraw() demonstrates how to handle the rectangle list. We get the first
rectangle in the list with the call:

wind_get(msg_buf[3],WF_FIRSTXYWH,&x,&y,&w,&h);

Here, the integer msg_buf[3] is the window's handle (returned from the redraw message) and &x,
&y, &w, and &h are the addresses of integers in which the coordinates of the rectangle will be
stored. The flag WF_FIRSTXYWH is defined as 11 in the GEMDEFS.H file.

We know we're at the end of the rectangle list when both w and h are 0. So, after getting the first
rectangle, we enter a while loop that tests for this condition.

Once we have a rectangle, we must test to see if it lies within the "dirty" area of the screen (usually
the full area of the window that generated the redraw message). We use the call:

rc_intersect(rec1, rec2);

Here, rec1 and rec2 are pointers to data of type GRECT. This returns a 1 if the rectangles intersect
and a 0 if they don't. GRECT is defined in the GEMDEFS.H file and is nothing more than a structure
consisting of four integers: the X- and Y-coordinates of the rectangle, and its width and height.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 172 / 321

The Clipping Rectangle

If the two rectangles intersect, we've found an area of the screen that must be redrawn. In order to
be sure the data we're going to write doesn't overflow its area, we set a clipping rectangle.

A clipping rectangle confines all writing to a specific portion of the screen. Anything that we try to
draw outside of this area will be "clipped" off. Once we've set a clipping rectangle, we don't have to
worry about figuring out exactly what to draw and where; we just redraw the entire window and let
the clipping function do the hard part. To set a clipping rectangle, we use the call:

vs_clip(handle, flag, pxy);

Here, handle is our application's handle; flag is an integer that, when FALSE (0), turns clipping off,
and, when TRUE (1), turns clipping on; and pxy is a pointer to an array of four integers where the
coordinates of the upper-left and lower-right corners of the clipping rectangle have been stored.

See a small problem? The rectangle we want to redraw is given to us in the usual AES form of X, Y,
width, and height; yet the clipping rectangle must be set using the VDI type of rectangle form. That's
why, in our function set_clip(), we first have to do some simple conversions.

Once the clipping rectangle is set, we just redraw the window's interior, letting the clipping function
figure out where and where not to place data. When we're through updating the window, we call
vs_clip() a second time with flag set to FALSE to turn off clipping.

Emptying the Rectangle List

In order to be sure we've updated the entire screen (wherever it needed it), we must "walk the
rectangle list." That is, check every rectangle in the list against the rectangle returned from the
redraw message. To get the remaining rectangles in the list, we use the call:

wind_get(msg_buf[3],WF_FIRSTXYWH,&x,&y,&w,&h);

The parameters here are the same as for the call we used to get the first rectangle, except that the
flag is now WF_NEXTXYWH, which is defined as 12 in the GEMDEFS.H file.

We continue pulling rectangles from the list and redrawing them, if necessary, until the width and
height values we get are both 0. At that point, we know we've checked all the rectangles. Once we've
completed the rectangle list, the only thing left to do is unlock the window with the call:

wind_update(END_UPDATE);

Something of Interest

At the top of Listing 1, we've defined the text we need for our window work area like this:

char *text[] = {
 "This is some sample text",
 "for use in the C-manship",
 "window demonstration found",
 "in Chapter 18."
};

This is a way to simulate string arrays in C. The array text[] is actually an array of pointers to
character, each containing the address of one of the strings found within the quotes. The element
text[0] contains the address of "This is some sample text"; element text[1] contains the address of
"for use in the C-manship," and so on.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 173 / 321

In Listing 1, the function draw_interior() shows how to access this array to print the text to the
window. We simply use a for loop to advance through each element of the array, while in each
iteration of the loop, we use the current array element as an argument to v_gtext().

The Agenda

That's enough book work for now. Next time around, we'll look at some sample code for handling
more than one window at a time. We'll also dig deeper into this confusing rectangle business. And,
who knows? Maybe we'll find some other trouble to get into, as well.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 174 / 321

Program Listing #1

/***/
/* C-manship, Listing 1 */
/* CHAPTER 18 */
/* Developed with Megamax C */
/***/

#include <gemdefs.h>
#include <obdefs.h>

#define TRUE 1
#define FALSE 0
#define PARTS NAME|CLOSER|MOVER|SIZER
#define MIN_WIDTH 64
#define MIN_HEIGHT 64

/* GEM global arrays */
int work_in[11],
 work_out[57],
 pxyarray[10],
 contrl[12],
 intin[128],
 ptsin[128],
 intout[128],
 ptsout[128];

/* Global variables */
int handle, fullx, fully, fullw, fullh, wrkx, wrky,
 wrkw, wrkh, curx, cury, curw, curh, w_handle,
char_w, char_h, box_w, box_h;

int msg_buf[8];

char *title = "C-MANSHIP #17";

char *text[] = {
 "This is some sample text",
 "for use in the C-manship",
 "window demonstration found",
 "in Chapter 18."
};
int num_lines = 4;

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_wndw(); /* Go do the window stuff. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 175 / 321

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */
 handle = graf_handle (&char_w, &char_h, &box_w, &box_h);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_wndw ()
{
 /* Initialize and open our window. */
 open_window();

 /* Change mouse to arrow. */
 graf_mouse (ARROW, 0L);

 /* Receive event messages until the closer is clicked. */
 do {
 evnt_mesag (msg_buf);
 switch (msg_buf[0]) { /* msg_buf[0] is message type. */

case WM_MOVED:
case WM_SIZED:
 do_move();
 break;

case WM_REDRAW:
 do_redraw ((GRECT *) &msg_buf[4]);
 break;
 }
 }
 while (msg_buf[0] != WM_CLOSED);

 /* Close and delete the window. */
 close_window();
}

do_move()
{
 /* Set window at new location. Also disallow any */
 /* window sizes less than our minimum allowable size. */

 if (msg_buf[6] < MIN_WIDTH)
 msg_buf[6] = MIN_WIDTH;
 if (msg_buf[7] < MIN_HEIGHT)
 msg_buf[7] = MIN_HEIGHT;
 wind_set (msg_buf[3], WF_CURRXYWH,
 msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 176 / 321

draw_interior (clip)
GRECT clip;
{
 int pxy[4], y, x;

 /* Turn mouse off prior to drawing. */
 graf_mouse (M_OFF, 0L);

 /* Calculate clip rectangle and turn clipping on. */
 set_clip (TRUE, clip);

 /* Get coordinates of window's work rectangle. */
 wind_get (w_handle, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);

 /* Set the color and fill style. */
 vsf_interior (handle, 1);
 vsf_color (handle, WHITE);

 /* Draw the background in the window's work area. */
 pxy[0] = wrkx;
 pxy[1] = wrky;
 pxy[2] = wrkx + wrkw - 1;
 pxy[3] = wrky + wrkh - 1;
 vr_recfl (handle, pxy);
 /* Write the text to the window. */
 y = wrky + box_h;
 for (x=0; x<num_lines; ++x) {
 v_gtext (handle, wrkx+8, y, text[x]);
 y += box_h;
 }

 /* Drawing over, so turn the clipping */
 /* off and turn the mouse back on. */
 set_clip (FALSE, clip);
 graf_mouse (M_ON, 0L);
}

do_redraw (rec1)
GRECT *rec1;
{
 GRECT rec2;

 /* Lock window for update. */
 wind_update (BEG_UPDATE);

 /* Get first rectangle from list. */
 wind_get (msg_buf[3], WF_FIRSTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);

 /* Loop through entire rectangle list, */
 /* redrawing where necessary. */
 while (rec2.g_w && rec2.g_h) {
 if (rc_intersect (rec1, &rec2))
 draw_interior (rec2);
 wind_get (msg_buf[3], WF_NEXTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);
 }
 /* Unlock window after update. */
 wind_update (END_UPDATE);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 177 / 321

set_clip (flag, rec)
int flag;
GRECT rec;
{
 int pxy[4];

 /* Convert rectangle to pxy coords. */
 pxy[0] = rec.g_x;
 pxy[1] = rec.g_y;
 pxy[2] = rec.g_x + rec.g_w - 1;
 pxy[3] = rec.g_y + rec.g_h - 1;

 /* Turn clipping on or off. */
 vs_clip (handle, flag, pxy);
}

open_window()
{
 /* Find the size of the desktop's work area. */
 wind_get (0, WF_WORKXYWH, &fullx, &fully, &fullw, &fullh);

 /* Create window in memory. */
 w_handle = wind_create (PARTS, fullx, fully, fullw, fullh);

 /* Set the window's title. */
 wind_set (w_handle, WF_NAME, title, 0, 0);

 /* Draw the window on the screen. */
 graf_growbox (10, 10, 10, 10, fullx, fully, fullw, fullh);
 wind_open (w_handle, fullx, fully, fullw, fullh);
}

close_window()
{
 /* Get current size of window for use in graf_shrinkbox, */
 /* then close and delete the window. */

 wind_get (w_handle, WF_CURRXYWH, &curx, &cury, &curw, &curh);
 graf_shrinkbox (10, 10, 10, 10, curx, cury, curw, curh);
 wind_close (w_handle);
 wind_delete (w_handle);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 178 / 321

CHAPTER 19 - WINDOWS - PART 3 - THE RECTANGLE LIST

I'd wager that you're a little perplexed about the rectangle handling that we started discussing in
Chapter 18. Don't feel bad. Not only is it a complex topic, but it's also virtually impossible to find
complete documentation on it anywhere. Most of the books I've seen merely gloss over the subject,
as if the reader were born with an intimate knowledge of GEM's rectangle list.

Well, friends and neighbors, I, for one, was not born with that knowledge. I spent a month in
research, trying to dig out all the facts I could about rectangle lists, not only because I wanted to
clarify the issue for myself, but because I wanted to put together a decent tutorial to help you, the
reader, understand this mysterious process. This chapter's program is based on what

I've discovered.

Rectangles Revealed

In the course of my research, I spoke with Frank Cohen of Regent Software, and he told me that one
method he used to sort out this rectangle nonsense was to update each rectangle returned from the
redraw message with a different fill pattern. I told him I thought that idea was sheer genius (well,
slightly clever, anyway), and as soon as I hung up the phone, I set about stealing his idea.

Steal it, I did (with his blessings, I
hope). The demo program at the end
of this chapter uses Frank's method to
graphically illustrate the process of
walking the rectangle list. Figures 1
through 12 take you step by step
through the following tutorial. These
screens were taken from a
monochrome monitor, so if you have a
color system, you may get slightly
different results.

When you run the program, you'll first
see the screen shown in Figure 1.
Three windows have been opened,
and, since the windows need to have
their work areas drawn, GEM has sent
the program three redraw messages, one for each window. Because I inserted a call to Cconin() in
the rectangle list processing loop, nothing further will happen until you press Return.

But before we let GEM do its thing, take a look at the top line of the screen. Here you'll see the
handle of the window for which the redraw message was sent and the number of the rectangle from
the rectangle list we're currently working on. In Figure 1, we see that window 1 is waiting for a
redraw, and that we're about to process rectangle 1 from the list.

We can't go blindly ahead and fill in window 1's workspace because part of that space is covered by
the other two windows; we don't want to erase them. For this reason, when GEM created the
redraw message for window 1, it took that window's workspace (only those areas not covered by the
other two windows) and divided it into a series of non-overlapping rectangles. It then loaded the
coordinates and sizes of those rectangles into the rectangle list where we can get at them for
processing.

Now press Return once. The first rectangle from the list will be processed, the screen will be
updated, and the program once again waits for a key press. But before we give it that key press, let's
take a closer look at what happened with that first rectangle.

Figure 1

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 179 / 321

If you think back to Chapter 18, you'll remember that, when processing the rectangle list, we're
always dealing with two rectangles: one returned in the redraw message and one retrieved from the
list. In the case of the rectangle we just processed, the rectangle received from the redraw message
was window 1's complete work area. The rectangle returned from the list was the one you just saw
filled in (the light gray rectangle at the top of Figure 2). The first thing we had to do when we got
these rectangles was check whether they overlapped. You'll remember that the call

rc_intersect(rec1, rec2);

accomplishes this for us. What I didn't
mention in Chapter 18 was that, after
the call, the rectangle found in rec2
may not be the same one we started
with; it'll actually be a rectangle
representing the intersection of the
two original rectangles.

Now, do our first two rectangles
intersect? Sure enough! We know
we've found an area that must be
updated, and we send the rectangle
found in rec2 to draw_interior(), our
actual drawing routine. Note that, in
this case, the rectangle returned in
rec2 was the same rectangle we
started out with, because its entire
area is in intersection with the one returned in the redraw message.

Look at the information at the top of the screen. We're now ready to process rectangle 2 from
window 1's list. Press Return, and this area will be updated. Keep pressing Return, filling in each of
window 1's rectangles, until you hear the computer's bell ring, indicating you've reached the end of
the rectangle list and completed the processing of the first redraw message.

Now the information at the top of the screen will show that we're about to process a redraw
message for window 2. Before you press Return, see if you can figure out how many rectangles it'll
take to do the job (hint: nothing should be drawn in window 3's workspace). Figured it out? Everyone
who guessed that we need to update two rectangles may look into a mirror and tell yourself how
clever you are. Press the
return key twice to update
window 2. The bell should ring
after the second press, leaving
us ready to process the redraw
message for window 3.

How many rectangles for
window 3? One. Window 3 is
the topmost window, so has
nothing covering it; we need
only fill in the entire work
area.

Now your screen should look
similar to Figure 2. Grab
window 3 by the mover bar,

Figure 2

Figure 3

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 180 / 321

and drag it into the upper-right corner of the screen, as shown in Figure 3. Notice that, even though
the image of the old window 3 is still
on the screen, we didn't have to
redraw the window in its new
position. Since its complete image was
on the screen, GEM did the job for us,
blitting the image to its new location.

After blitting the window image, GEM
then redrew window 2, not including
the workspace. Why not the
workspace, too? Before we moved
window 3, window 2 was partially
hidden, so after the move, GEM didn't
know what we wanted to put in the
uncovered area. It happily dropped
the whole mess -- including a
rectangle list -- into our laps. Our
status line at the top of the screen now tells us that we've received a redraw message for window 2,
and we're waiting to process rectangle 1.

Now think for a minute. (Aw, come
on, it won't hurt much.) What
portion of window 2 is going to be
redrawn when we press the return
key? Any guesses? The entire work
area, you say? Wrong! Why take the
time to update the entire work area
when only a small section -- that that
was covered by window 3 -- needs
redrawing? Because it's easy? Well,
yes, but it's just as easy to do it right,
because, after our call to
rc_intersect, we have the area of
intersection -- the exact rectangle we
need -- in rec2. Press Return to see
this rectangle get its due.

Since GEM wants to get rid of the
rest of window 3's old image, we
now have a redraw message for
window 1. Press Return.
Hmmmmmm. Nothing happened. If
you look at the rectangle number in
our status display, though, you'll see
that something did happen, because
we're now on rectangle 2. So what
happened to rectangle 1? We
processed it just as all the others, but
because it didn't intersect the dirty
area (the rectangle returned in the
redraw message) we skipped over it.
If you look at the screen, you can see

Figure 4

Figure 5

Figure 6

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 181 / 321

that rectangle didn't need to be
redrawn.

Continue pressing Return until the bell
rings, watching to see which rectangles
are redrawn and which are skipped.
Your screen should end up resembling
Figure 4.

As you may recall, another way to
generate a redraw message is to
increase the size of a window. Grab
window 2's sizer button and enlarge the
window as shown in Figure 5.
Predictably, a redraw message for
window 2 is sent. How many rectangles
this time? Only one. Sorry, but I guess it

was a trick question. Go ahead and
press Return. The entire work area of
window 2 is redrawn, leaving your
screen looking like Figure 6. Strange,
considering I just said it was a waste of
time to redraw portions of a window
that didn't need it. That top, left-hand
corner didn't need to be redrawn, did
it? The fact is, whenever you enlarge a
window or make it uppermost, the
rectangle returned in rec2 will be the
entire work area. I never promised
GEM was consistent.

Next step in our experimentation:
move window 2 to the lower, right
corner of the screen, below window 3
(not over-lapping). Then press Return
until the bell rings, watching as window
1 is updated. Figure 7 shows the
results. Now click the mouse pointer on
window 1's workspace, making it
uppermost. Press Return, and your
screen will look like Figure 8. Using
window 1's sizer button, reduce the
window to it's smallest size, as shown in
Figure 9.

Note that, when we reduced window 1,
GEM cleaned up the desktop on its
own, leaving only the work areas of
windows 2 and 3 for us to worry about.
As they stand now, both windows 2 and
3 contain information left behind by
window 1. Press Return twice to update
both windows.

Figure 7

Figure 8

Figure 9

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 182 / 321

Move window 1 around the desktop,
without overlapping any of the other
windows or going off screen. We get no
redraw messages. GEM is delighted to
blit window 1 from one place to
another with no help from us.

Now place window 1 in the center of
window 2, as shown in Figure 10. Still
no redraw messages. GEM blitted the
window to its new location then erased
the old image, just like before. Windows
2 and 3 don't get redraw messages
because none of their visible data has
been corrupted. Sure, we covered some
of it up, but that's not a problem until
we move window 1 out of the way
again. Do so now, as shown in Figure
11. Whoops! GEM did the blit all right,
but it left a mess behind. Press Return
to conclude this fascinating journey
through GEM's rectangle lists, leaving
the screen shown in Figure 12.

Out of the Fog

Hopefully, our experiment has taken
some of the mystery out of GEM's
rectangles and how the system
works. Play around with the program
all you want, moving and changing
windows, all the while watching to
see how GEM sets up its rectangle list
and how the program processes it.
There are an infinite number of
possibilities. It'll be a long time
before you exhaust them.

If you want the program to run
without waiting for a key press,
remove the call to Cconin() found in
the function do_redraw(). The
information printed at the top of the
screen won't do you much good if
you do, though. You'll never be able to read it as fast as our program can update those rectangles.

Figure 10

Figure 12

Figure 11

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 183 / 321

Sidelines

Before we close up shop for this chapter, there are a couple of things in Listing 1 we ought to go
over.

This is the first time we've handled the WM_TOPPED message in a program. We get this message
from GEM whenever the user clicks the mouse over an inactive window. The call

wind_set(msg_buf[3], WF_TOP, 0, 0);

is all it takes to "top" the window, make it uppermost and active. Here, msg_buf[3] is, as usual, the
window's handle; WF_TOP is the function we want wind_set() to perform, defined in GEMDEFS.H as
10; and the two zeros are dummy arguments.

Another nuance worthy of note is the way we're using arrays to cut down the window handling code
in the program. Wherever we perform the same function concurrently on all windows, we can use a
for loop, the control variable of which becomes an index into an array (one element for each
window).

If you look at the function open_window() in Listing 1, you'll see the loop that opens the windows
and places their handles into the array w_h[]. We need only one set of wind_create() and wind_set()
calls. However, when we actually open the windows, we use a separate wind_open() call for each
window. Why? Because each window is opened at its own set of coordinates, and for the sake of
clarity, I decided to "hardcode" those coordinates into the function calls rather than use arrays.

Another Day, Another Dollar

In Chapter 20 our subject will be...Yes! You guessed it. Windows, again. Maybe we'll figure out how
to use those sliders and arrows to change the contents of a window's workspace. Sounds like a good
idea to me. How about you?

Program Listing #1

/***/
/* C-manship, Listing 1 */
/* CHAPTER 19 */
/* Developed with Megamax C */
/***/

#include <gemdefs.h>
#include <obdefs.h>
#include <osbind.h>

#define TRUE 1
#define FALSE 0
#define PARTS NAME|CLOSER|MOVER|SIZER
#define MIN_WIDTH 64
#define MIN_HEIGHT 64
#define PATTERN 2
#define BELL 7
#define HIGH 2

/* GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 184 / 321

ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, fullx, fully, fullw, fullh, wrkx, wrky,
wrkw, wrkh, res, char_w, char_h, box_w, box_h, fill;
int msg_buf[8];
int w_h[3];
char *titles[] = {"#1", "#2", "#3"};

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_wndw(); /* Go do the window stuff. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */

 handle = graf_handle (&char_w, &char_h, &box_w, &box_h);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_wndw ()
{
 /* Clear screen. */
 graf_mouse (M_OFF, 0L);
 v_clrwk (handle);
 graf_mouse (M_ON, 0L);

 /* Find screen resolution. */
 res = Getrez();

 /* Initialize and open our windows. */
 open_window();

 /* Change mouse to arrow, and initialize fill style. */
 graf_mouse (ARROW, 0L);
 fill = 0;

 /* Receive event messages until the closer is clicked. */
 do {
 evnt_mesag (msg_buf);
 switch (msg_buf[0]) { /* msg_buf[0] is message type. */

 case WM_MOVED:
 case WM_SIZED:
 do_move();
 break;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 185 / 321

 case WM_TOPPED:
 wind_set (msg_buf[3], WF_TOP, 0, 0);
 break;

 case WM_REDRAW:
 do_redraw ((GRECT *) &msg_buf[4]);
 break;
 }
 }
 while (msg_buf[0] != WM_CLOSED);

 /* Close and delete the windows. */
 close_window();
}

do_move()
{
 /* Set window at new location. Also disallow any */
 /* window sizes less than our minimum allowable size. */

 if (msg_buf[6] < MIN_WIDTH)
 msg_buf[6] = MIN_WIDTH;
 if (msg_buf[7] < MIN_HEIGHT)
 msg_buf[7] = MIN_HEIGHT;
 wind_set (msg_buf[3], WF_CURRXYWH,
 msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);
}

draw_interior (clip)
GRECT clip;
{
 int pxy[4], y, x;

 /* Turn mouse off prior to drawing. */
 graf_mouse (M_OFF, 0L);

 /* Calculate clip rectangle and turn clipping on. */
 set_clip (TRUE, clip);

 /* Get coordinates of window's work rectangle. */
 wind_get(msg_buf[3],WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);

 /* Set the color and fill style. */
 vsf_interior (handle, PATTERN);
 fill += 1;
 if (fill>24)
 fill = 1;
 vsf_style (handle, fill);
 vsf_color (handle, BLACK);

 /* Draw the background in the window's work area. */
 pxy[0] = wrkx;
 pxy[1] = wrky;
 pxy[2] = wrkx + wrkw - 1;
 pxy[3] = wrky + wrkh - 1;
 vr_recfl (handle, pxy);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 186 / 321

 /* Drawing over, so turn the clipping */
 /* off and turn the mouse back on. */
 set_clip (FALSE, clip);
 graf_mouse (M_ON, 0L);
}

do_redraw (rec1)
GRECT *rec1;
{
 GRECT rec2;
 int rec_cnt, y;

 /* Init rectangle count, and set y coord for text. */
 rec_cnt = 0;
 if (res == HIGH)
 y = 15;
 else
 y = 8;

 /* Lock screen for update. */
 wind_update (BEG_UPDATE);

 /* Get first rectangle from list. */
 wind_get (msg_buf[3], WF_FIRSTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);

 /* Loop through entire rectangle list, */
 /* redrawing where necessary. */
 while (rec2.g_w && rec2.g_h) {
 test_print ("handle", msg_buf[3], 150, y);
 rec_cnt += 1;
 test_print ("rec #", rec_cnt, 20, y);
 Cconin();
 if (rc_intersect (rec1, &rec2))
 draw_interior (rec2);
 wind_get (msg_buf[3], WF_NEXTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);
 }
 /* Unlock screen after update. */
 wind_update (END_UPDATE);
 Cconout (BELL);
}

set_clip (flag, rec)
int flag;
GRECT rec;
{
 int pxy[4];

 /* Convert rectangle to pxy coords. */
 pxy[0] = rec.g_x;
 pxy[1] = rec.g_y;
 pxy[2] = rec.g_x + rec.g_w - 1;
 pxy[3] = rec.g_y + rec.g_h - 1;

 /* Turn clipping on or off. */
 vs_clip (handle, flag, pxy);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 187 / 321

open_window()
{
 int x;

 /* Find the size of the desktop's work area. */
 wind_get (0, WF_WORKXYWH, &fullx, &fully, &fullw, &fullh);

 /* Create the windows. */
 for (x=0; x<3; ++x) {
 w_h[x] = wind_create (PARTS, fullx, fully, fullw, fullh);
 wind_set (w_h[x], WF_NAME, titles[x], 0, 0);
 }

 /* Draw the windows. */
 wind_open (w_h[0], fullx, fully, fullw, fullh);
 wind_open (w_h[1], 50, 65, 100, 100);
 wind_open (w_h[2], 100, 90, 100, 100);
}

close_window ()
{
 int x;

 /* Close and delete the windows. */
 for (x=0; x<3; ++x) {
 wind_close (w_h[x]);
 wind_delete (w_h[x]);
 }
}

test_print (label, number, x, y)
int number, x, y;
char *label;
{
 char t[100];

 sprintf (t ,"%s = %d%s", label, number, " ");
 v_gtext (handle, x, y, t);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 188 / 321

CHAPTER 20 - WINDOWS - PART 4 - SLIDERS AND ARROWS

We've stated previously that a window is just a box that allows us to display data in a convenient
manner, and the programmer is completely responsible for what is done with the window's work
area. One of the things that GEM's windows provide, to help the user manipulate the displayed data,
is the slider/arrow system. By moving the sliders or clicking the arrows, the user can "move" the data
within the window to any position he likes.

This convenience is paid for by the programmer, however, because, when a slider or arrow is used,
GEM does nothing but send a message to the program. It's up to the programmer to decide what to
do with the message and how to update the window's display.

When this chapter's program is run, a window will be opened, the directory of the default drive (the
one you ran the program from) will be read, and the filenames found there displayed in the window's
work area. You may then use the sliders and arrows in their conventional way to move the data
within the window. You can also enlarge or shrink the window by dragging (with the mouse, of
course) the lower-right corner of the window.

Note that the example program provides only the vertical arrows and sliders. I didn't include the
horizontal ones because they're handled almost exactly the same way as their vertical counterparts.

Getting a Directory

The first item of interest in the sample program is the method with which we can read a disk's
directory. The code to accomplish this can be found in the get_fnames() function in Listing 1. Let's
take a look at that now.

First, we must initialize a couple of variables. We'll be using the integer p as an array index, and the
integer files.count (this is a member of the structure files, which is declared near the top of the
listing) will contain the number of filenames read from the directory.

Next, we set an important address with the call:

Fsetdta(dta);

Here, dta is a pointer to character data (in our case, the address of the character array dta[]). The
function Fsetdta() is GEMDOS function 0x1a and is declared in OSBIND.H. It sets the address of the
DTA (Disk Transfer Address), a 44-byte buffer in which the directory data is stored. We supplied the
buffer by defining the array dta[].

When we get around to actually reading a filename, the DTA will contain all sorts of useful
information, as shown here:

Byte Contains
0 – 20 For OS use only
21 File attribute
22 – 23 Integer, file time stamp
24 – 25 Integer, file date stamp
26 – 29 Long integer, file size
30 – 43 Filename

So let's fill that DTA, shall we? We get the first filename with the call:

end = Fsfirst(p, a);

Here, p is the pathname you want to use for the file search and a is an integer whose bit settings
determine the search's attributes. The function call returns a negative integer in the case of an error

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 189 / 321

(for instance, when there are no more file-names to be read). In the sample listing, we placed the
path-name string, "*.*," directly into the call. This pathname takes advantage of "wild cards," so the
search will match any file.

The attributes set by a are determined as follows:

Bit Result
0 Search limited to normal files
1 Read-only files included
2 Hidden files included
3 System files included
4 Folder names included
5 Subdirectory files included

By setting bits 0 and 4 in the search attributes argument, we'll read all the file and folder names from
the root directory (and, because of the pathname, these will be read from the default drive), just as if
you had just opened the drive from the desktop.

Now that we've got the first filename, we set up a while loop to get the rest, as well as to process the
filenames into the form we need, later storing them into the two-dimensional array files.fnames[][].
All we're doing in the processing is making sure each entry in the filename array is exactly 15
characters long: the filename padded with spaces and ending with a null.

The rest of the filenames are retrieved, one by one, with the call:

end = Fsnext ();

This function (GEMDOS 0x4f), defined in OSBIND.H, also returns a negative value for an error
condition. We continue executing the while loop until end becomes negative, or files.count becomes
greater than MAX.

Slipping and Sliding

Now that we've got all those filenames stored, we're ready to open our window. We've done all this
stuff before; there's nothing new here, except the use of the integer top to keep track of where in
the filename list the window's data display is to start (remember, the topmost filename in the display
won't necessarily be the first one in our list), and setting up the sliders.

Once we open the window, we need to set the size and position of the slider. Our function calc_slid()
takes care of this, and requires three integers as arguments: the handle of the window; the total
number of text lines (in this case, the number of filenames in the list); and the total width of the text
in columns.

The function first calls wind_get() to get the size of the window's work area, then calculates the
number of lines and columns that'll fit that area. The size of the slider is then calculated like this:

size = 1000*lines_avail/line_count;

The size of the slider can range anywhere from 1 to 1000, and represents the relative portion of the
document displayed. By dividing the number of lines available in the window by the number of lines
in the "document," we end up with a value representing the portion of the document that'll fit the
window. Multiplying this value by 1000 will give us the equivalent size of the slider.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 190 / 321

For example, let's say we have 10 lines to display, but the window can hold only 6. Dividing 6 by 10
gives us .6 -- the portion of the document that the window can display. When we multiply this value
by 1000, we get 600 -- the slider's relative size. Keep in mind that, for greater accuracy, you might
want to use floating-point math, rather than integer math.

Once the size of the slider is calculated, it's set with the call:

wind_set(w_h,WF_VSLSIZE,size,0,0,0);

Here, w_h is the window's handle, WF_VSLSIZE is the function's operation flag (WF_HSLSIZE for
horizontal sliders) as defined in GEMDEFS.H, size is an integer value between 1 and 1000, and the
three zeroes are unused arguments.

Next, we need to calculate the slider's position within its track, which is also a value between 1 and
1000. The following calculation, done with floating-point math, the result of which is cast to an
integer, does this:

pos=(int)(float)top/(float)(line_cnt-lines_avail)*1000;

The integer top is the number of the uppermost displayed line in the window, line_cnt is the total
number of lines in the document, and lines_avail is the number of lines that'll fit the window.

The slider's position is then set with the call:

wind_set(w_h,WF_VSLIDE,pos,0,0,0);

Here, w_h is the window's handle, WF_VSLIDE is the function's operation flag (WF_HSLIDE for
horizontal sliders) as defined in GEMDEFS.H, pos is an integer between 1 and 1000, and the three
zeroes are unused arguments.

Me and My Arrow

Whenever the user clicks on one of the arrows, or in the slider's tracks, the program will receive a
WM_ARROWED message. This message is a little different from the others we've worked with. It
actually contains a sub-message, which GEM stores in msg_buf[4]. This forces us to do a little more
work before we can take care of the user's request. This extra work is tackled in the function
do_arrow(), where we use the value stored in msg_buf[4] to determine exactly what the user wants
to do.

If the user has clicked on the down arrow, msg_buf[4] will contain a WA_DNLINE message, and
program execution will continue with the function do_dnline().

Before we look at that function, let's stop and think about what we're doing. What exactly is the user
requesting when he clicks on the down arrow? Generally, it means that we must move the
window's display one unit upward and the slider one unit downward. Exactly what that "unit" is
depends on your application. If our window contained some sort of graphic information, such as a
map, a unit could be anything from a single scan line to dozens of scan lines. Luckily, our decision is a
little easier. We're working with text, so the obvious unit of measurement is a text line.

We know now what we want to do, but how are we going to go about it? The easy way of updating
the display would be just to increment top, then call draw_interior() to redraw the window's work
area. The problem with that is that it's too slow, too sloppy. We're going to need something much
more elegant.

When you're working with the desktop's file windows, the text displays move neatly upward one line
each time you click on the down arrow; you can't see the redrawing.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 191 / 321

Almost all the information we need is on the screen, right? Only the bottom of the new list isn't
shown. You know what that means? We can update most of the window using raster operations. All
we have to do is "blit" the area of the window from the second filename down to a position one text
line higher, then fill in the bottom with the new filename. And that's exactly what we do in
do_dnline.

Let's run through that function now. First, we use wind_get() to get the size of the window's work
area. Then we calculate the number of text lines that'll fit. Armed with that information, we use an if
statement to make sure we don't bother updating the window if there are no filenames left to
display. In other words, if the last file in our list is already shown in the window, we want to ignore
the request to scroll downward.

If our calculations show that the arrow message is okay to process, we increment top, calculate
where in our list of filenames we'll find the new data that needs to be displayed, set clipping to on,
turn off the mouse and do our raster stuff.

Because -- depending on the size of the window -- we may have a partial filename displayed at the
bottom, we actually have to print two filenames, and if we're at the end of the list, the second
filename should be a line of spaces. Here's what happens in our function:

If the window is a size in which an even number of filenames will fit, our code will blit the display up
one line, then print at the bottom the next two filenames in the list. The first will go at the very
bottom line, and the second won't appear at all, because we're trying to print it outside of the
clipping area.

Now, let's take a case where the size of the window allows a partial filename to show at the bottom.
When we do our calculations for the number of lines that'll fit the window, the result is an integer,
which means the decimal portion has been truncated (i.e., rounded down to the nearest integer).
Because of this, only the number of complete lines that'll fit the window are counted. That's why we
always want to print two filenames, since the second may represent one that is only partially visible.

In the case of a partially displayed filename, we'll actually have to print one and a half filenames.
Sound tricky? Naw. The clipping rectangle makes this little complication easy to handle. We just print
two filenames, and anything that lies outside of the area gets clipped off, leaving us with a partial
filename (the second one we printed) at the bottom.

Once we've gotten our display written, we have to recalculate the position of the slider. This is done
the same way we did it when we first opened our window, with a call to our function calc_slid().

That completes the processing of the down-arrow request. The function do_upline() does the same
thing for the WA_UPLINE message as do_dnline() did for the WA_DNLINE message, except the
process is reversed -- and a little simpler.

In do_upline() we're rastering the window's work area down one line, then printing the next filename
(thinking backwards) at the top. Because we'll never have a partial line here, we don't have the extra
complications we had with do_dnline().

Paging All Sliders

Two other messages we may receive from the original WM_ARROWED message (not including
messages for horizontal sliders and arrows, which are WA_LFPAGE, WA_RTPAGE, WA_LFLINE, and
WA_RTLINE) are WA_DNPAGE and WA_UPPAGE. These are sent to us by GEM whenever the user
clicks in the slider's track, indicating that he wants the next "page" of information, the next
windowful of lines following that already shown in the window.

Because the information we want displayed in the window is not available anywhere on the screen,
we can't use raster operations. We have to do it the sloppy way: figure out the new line for the top
of the window, then call our function draw_interior() to do the work. But there are a couple of things

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 192 / 321

we have to watch out for when calculating the new top. We have to make sure that top doesn't end
up less than zero and that it doesn't become a value that will cause our display to go beyond the
bottom of our text.

Let's look at the function do_dnpage(). First, we use a wind_get() call to find the size of the window's
work area. Then we calculate the number of lines that'll fit. Since we want to move down that
number of lines in the document, all we have to do to calculate the new value for top is to add
lines_avail to its existing value. The only thing to check for is the bottom of the document. If our new
top, plus the number of lines in the display equal a value greater than the total number of lines in the
document, we have to set back the value of top in such a way that the last line of our document will
also be the bottom line of the window. Not too tricky, really.

The function do_uppage() (which executes when we receive a WA_UPPAGE message) works in the
same manner, except we subtract lines_avail from top, then check to make sure top isn't less than
zero.

Anywhere You Like

Another way the user can change the window's display is to grab the slider with the mouse pointer
and move it to a new position. When this occurs we get a WM_VSLID message from GEM (or
WM_HSLID, if it's a horizontal slider).

This message is almost as easy to handle as the WA_UPPAGE and WA_DNPAGE messages. The key
thing to know here is that the slider's new position is returned in msg_buf[4]. To find the
corresponding position in our document, all we have to do is get the size of the window's work area,
calculate the number of lines that'll fit the window, then perform the following calculation:

top=msg_buf[4] * (line_cnt - lines_avail) / 1000;

We then set the slider to its new position with the call:

wind_set(w_h,WF_VSLIDE,msg_buf[4],0,0,0);

A call to our function draw_interior() (which will use the new value calculated for top) completes the
task.

An Important Note

You should be aware that, many times, the calculations for finding the size and position of the sliders
may have to be done with 32-bit math (using long integers) to avoid overflow problems, or with
floating-point math when you need greater accuracy. Ignoring these possibilities could give you some
perplexing results. If ever you find your sliders behaving mysteriously -- and you're sure your logic is
correct -- check your math.

Program Listing #1
/***/
/* C-manship, Listing 1 */
/* CHAPTER 20 */
/* Developed with Megamax C */
/***/

#include <gemdefs.h>
#include <obdefs.h>
#include <gembind.h>
#include <osbind.h>

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 193 / 321

#define TRUE 1
#define FALSE 0
#define PARTS NAME|CLOSER|SIZER|UPARROW|DNARROW|VSLIDE
#define MAX 50
#define SOLID 1
#define MIN_WIDTH 64
#define MIN_HEIGHT 64

/* GEM arrays. */
int work_in[11],
work_out[57],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables. */
int handle, w_h, top,
fullx, fully, fullw, fullh,
char_w, char_h, box_w, box_h,
wrkx, wrky, wrkw, wrkh;

/* Message buffer. */
int msg_buf[8];

struct {
 char fnames[MAX][15]; /* Char array for filenames. */
 int count; /* Number of filenames read. */
} files;

/* Window title. */
char *title = "C-manship";

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_wndw(); /* Go do the window stuff. */
 v_clsvwk (handle); /* Close virtual workstation. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 handle = graf_handle (&char_w, &char_h, &box_w, &box_h);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_wndw ()
{
 top = 0;

 get_fnames ();

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 194 / 321

 wind_get (0, WF_WORKXYWH, &fullx, &fully, &fullw, &fullh);
 w_h = wind_create (PARTS, fullx, fully, fullw, fullh);
 wind_set (w_h, WF_NAME, title, 0, 0);
 wind_open (w_h, 100, 20, 150, 151);
 calc_slid (w_h, files.count, 14);
 graf_mouse (ARROW, 0L);

 do {
 evnt_mesag (msg_buf);
 switch (msg_buf[0]) { /* msg_buf[0] is message type. */

 case WM_SIZED:
 do_move ();
 break;

 case WM_ARROWED:
 do_arrow ();
 break;

 case WM_VSLID:
 do_vslide ();
 break;

 case WM_REDRAW:
 do_redraw ((GRECT *) &msg_buf[4]);
 break;
 }
 }
 while (msg_buf[0] != WM_CLOSED);

 wind_close (w_h);
 wind_delete (w_h);
}

do_arrow ()
{
 switch (msg_buf[4]) {

 case WA_UPPAGE:
 do_uppage ();
 break;

 case WA_DNPAGE:
 do_dnpage ();
 break;

 case WA_UPLINE:
 do_upline ();
 break;

 case WA_DNLINE:
 do_dnline ();
 break;

 }
}

do_vslide ()
{

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 195 / 321

 GRECT r;
 int lines_avail;

 wind_get (w_h, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 lines_avail = r.g_h / char_h;
 top = msg_buf[4] * (files.count - lines_avail) / 1000;
 wind_set (w_h, WF_VSLIDE, msg_buf[4], 0, 0, 0);
 draw_interior (r);
}

do_uppage ()
{
 GRECT r;
 int lines_avail;

 wind_get(w_h, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 lines_avail = r.g_h / char_h;
 top -= lines_avail;
 if (top < 0)
 top = 0;
 draw_interior (r);
}

do_dnpage ()
{
 GRECT r;
 int lines_avail;

 wind_get (w_h, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h
);
 lines_avail = r.g_h / char_h;
 top += lines_avail;
 if (top > files.count - lines_avail)
 top = files.count - lines_avail;
 draw_interior (r);
}

do_upline ()
{
 FDB s, d;
 GRECT r;
 int pxy[8];

 if (top != 0) {
 top -= 1;
 wind_get(w_h, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 set_clip (TRUE, r);
 graf_mouse (M_OFF, 0L);
 s.fd_addr = 0L;
 d.fd_addr = 0L;
 pxy[0] = r.g_x;
 pxy[1] = r.g_y + 1;
 pxy[2] = r.g_x + r.g_w;
 pxy[3] = r.g_y + r.g_h - char_h - 1;
 pxy[4] = r.g_x;
 pxy[5] = r.g_y + char_h + 1;
 pxy[6] = r.g_x + r.g_w;
 pxy[7] = r.g_y + r.g_h - 1;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 196 / 321

 vro_cpyfm (handle, S_ONLY, pxy, &s, &d);
 v_gtext (handle, r.g_x+char_w, r.g_y+char_h,
 &files.fnames[top][0]);
 set_clip (FALSE, r);
 calc_slid (w_h, files.count, 14);
 graf_mouse (M_ON, 0L);
 }
}
do_dnline ()
{
 FDB s, d;
 GRECT r;
 int pxy[8];
 int lines_avail, index;

 wind_get (w_h, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 lines_avail = r.g_h / char_h;
 if ((top + lines_avail) < files.count) {
 top += 1;
 index = top + lines_avail - 1;
 set_clip (TRUE, r);
 graf_mouse (M_OFF, 0L);
 s.fd_addr = 0L;
 d.fd_addr = 0L;
 pxy[0] = r.g_x;
 pxy[1] = r.g_y + char_h + 1;
 pxy[2] = r.g_x + r.g_w;
 pxy[3] = r.g_y + r.g_h - 1;
 pxy[4] = r.g_x;
 pxy[5] = r.g_y + 1;
 pxy[6] = r.g_x + r.g_w;
 pxy[7] = r.g_y + r.g_h - char_h - 1;
 vro_cpyfm (handle, S_ONLY, pxy, &s, &d);
 v_gtext (handle, r.g_x+char_w, r.g_y+(lines_avail)*char_h,
 &files.fnames[index][0]);
 if (index != files.count-1)
 v_gtext (handle, r.g_x+char_w,
 r.g_y+(lines_avail)*char_h+char_h,
 &files.fnames[index+1][0]);
 else
 v_gtext (handle, r.g_x+char_w,
 r.g_y+(lines_avail)*char_h+char_h,
 " ");
 set_clip (FALSE, r);
 calc_slid (w_h, files.count, 14);
 graf_mouse (M_ON, 0L);
 }
}

get_fnames ()
{
 char dta[44];
 int end, p, x, null_found;

 p = 0;
 files.count = 0;
 Fsetdta (dta);
 end = Fsfirst ("*.*", 17);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 197 / 321

 while ((end > -1) && (files.count <= MAX)) {
 null_found = FALSE;
 files.count += 1;
 for (x=0; x<14; ++x) {
 if (dta[30+x] == 0)
 null_found = TRUE;
 if (null_found)
 dta[30+x] = ' ';
 files.fnames[p][x] = dta[30+x];
 }
 files.fnames[p][14] = 0;
 p += 1;
 end = Fsnext ();
 }
}

calc_slid (w_h, line_cnt, col_cnt)
int w_h, line_cnt, col_cnt;
{
 int lines_avail, cols_avail, vslid_siz, pos;

 wind_get (w_h, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);
 lines_avail = wrkh / char_h;
 cols_avail = wrkw / char_w;
 vslid_siz = 1000 * lines_avail / line_cnt;
 wind_set (w_h, WF_VSLSIZE, vslid_siz, 0, 0, 0);
 pos = (int) ((float)(top)) /
 ((float)(files.count - lines_avail)) * 1000;
 wind_set (w_h, WF_VSLIDE, pos, 0, 0, 0);
}

do_move()
{
 if (msg_buf[6] < MIN_WIDTH)
 msg_buf[6] = MIN_WIDTH;
 if (msg_buf[7] < MIN_HEIGHT)
 msg_buf[7] = MIN_HEIGHT;
 wind_set (msg_buf[3], WF_CURRXYWH,
 msg_buf[4], msg_buf[5], msg_buf[6], msg_buf[7]);
 calc_slid (w_h, files.count, 14);
}

draw_interior (clip)
GRECT clip;
{
 int pxy[4];
 int x, lines_avail, lines_shown;

 graf_mouse (M_OFF, 0L);
 set_clip (TRUE, clip);
 wind_get(msg_buf[3], WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);

 vsf_interior (handle, SOLID);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 198 / 321

 vsf_color (handle, WHITE);
 pxy[0] = wrkx;
 pxy[1] = wrky;
 pxy[2] = wrkx + wrkw - 1;
 pxy[3] = wrky + wrkh - 1;
 vr_recfl (handle, pxy);

 lines_avail = wrkh / char_h;
 lines_shown = files.count - top;
 if (lines_avail > lines_shown) {
 top = files.count - lines_avail;
 if (top < 0)
 top = 0;
 }

 for (x=top; x<files.count; ++x)
 v_gtext (handle, wrkx+8, wrky+(x+1-top)*char_h,
 &files.fnames[x][0]);

 set_clip (FALSE, clip);
 calc_slid (w_h, files.count, 14);
 graf_mouse (M_ON, 0L);
}

do_redraw (rec1)
GRECT *rec1;
{

 GRECT rec2;

 wind_update (BEG_UPDATE);
 wind_get (msg_buf[3], WF_FIRSTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);

 while (rec2.g_w && rec2.g_h) {
 if (rc_intersect (rec1, &rec2))
 draw_interior (rec2);
 wind_get (msg_buf[3], WF_NEXTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);
 }

 wind_update (END_UPDATE);
}

set_clip (flag, rec)
int flag;
GRECT rec;
{
 int pxy[4];

 pxy[0] = rec.g_x;
 pxy[1] = rec.g_y;
 pxy[2] = rec.g_x + rec.g_w - 1;
 pxy[3] = rec.g_y + rec.g_h - 1;
 vs_clip (handle, flag, pxy);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 199 / 321

CHAPTER 21 - D.E.G.A.S. PICTURE VIEWER

Everyone who's getting tired of studying GEM's windows please raise your hand. Yeah, that's what I
thought. Okay, it's time to take up a new subject, something that, though it'll give you a lot of
information on how your computer works, it won't give you a headache trying to understand it.

One of the more useful things about the ST is the ability to have many screens of data in memory at
once and flip between them as you like. I thought this would be a good subject to tackle since it
enables us to see not only how we can accomplish "screen flipping" (which is really a simple process),
but how to apply some of the other techniques we've learned, such as the programming of file
selectors. We'll also take a look at some new information, such as the D.E.G.A.S. picture file format.

We're going to load two D.E.G.A.S. format pictures into memory, and then use an alert box to choose
which picture to view. We'll have to tell the program which files to load, so the first thing the
program will do is bring up a file selector. Use it in the normal way to select two D.E.G.A.S. pictures
for loading.

While you're doing this, keep in mind that the program presented here is a stripped down model. In
other words, it doesn't incorporate much in the way of error checking. In fact, it'll let you load just
about any type of file into memory, whether it's D.E.G.A.S. or not. So do your own error checking,
and make sure you're selecting the right type of file.

If you click on the file selector's Cancel button for either picture, or if the program gets a file error,
you'll be returned to the desktop. Once you get two files loaded, an alert box with three buttons will
appear. Clicking on the first button will cause the first loaded picture to be displayed. Clicking on the
second button will show the second picture. The Quit button should be used to leave the program
and return to the desktop. Once a picture is displayed on the screen, clicking the left button will bring
the alert box back, allowing you to make another choice or quit the program.

Hey! That Space is Reserved!

The first step in getting our picture files loaded into the computer is figuring out where we're going
to store them. We need a lot of space -- 32K for each picture -- and we have to make sure that,
wherever we store the picture information, it doesn't get in the way of our program or its data. Also,
since we're going to be displaying a couple of different screens, we have to make sure we store the
address of the original screen, as well as its color palette, so we can restore it when the program's
finished.

Take a look at the function init_screens() in Listing 1. The first thing we do here is store the desktop's
color palette with the line:

for (x=0; x<16; desk_palette[x++] = Setcolor(x,-1));

The function Setcolor() is an XBIOS function and is defined in the OSBIND.H file. This function
requires two integers as arguments. The first is the color you want to change (from 0 to 15), and the
second is the color to change it to.

Colors on the ST are formed by mixing the correct proportions of red, green, and blue, each of which
can have a value from 0 (minimum) to 7 (maximum). The color value for blue is placed in the first
nibble (four bits) of the integer; the value for green is placed in the second nibble; and the value for
red is placed in the third. This works out well in hexadecimal: 0x007 is the brightest blue, 0x070 is the
brightest green, and 0x700 is the brightest red. White is all the values at their maximum (0x777),
while black is formed by setting all colors to the minimum (0x000). By combining the three basic
colors in varying intensities, we can conjure up any of the ST's 512 possible colors.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 200 / 321

But all that is beside the point (go ahead and boo; I deserve it). We don't want to change the colors
(at least, not yet); we want to know what value they're currently set at, so we can store them for
later retrieval. One thing I didn't tell you about the Setcolor() function is that it always returns a
color's previous setting (its color value before we changed it). If we make the second argument a
negative number, it won't change the color register at all; it'll just return the color's setting.

Now you can see how the above code segment works. We use a for loop to step through all 16
possible elements of the color palette, calling Setcolor() in each iteration with a color value of -1, in
order to have the current color returned to us. Each of these colors is stored in the array
desk_palette[], where they'll be when we're ready to restore the desktop's colors. Now that we've
gotten that taken care of, we have to store the address of the desktop's screen (we do want to get
back there eventually, you know). This line will do the job:

scrn = Physbase();

Here, the variable scrn is a long integer that'll hold the address returned from Physbase(). The
function Physbase() returns the address of the physical screen, the area of memory currently
displayed on your monitor. The function Logbase() returns the address of the logical screen, an area
of memory where all output to the screen is to go.

In most cases, the physical and logical screens are in the same location. For example, as I'm writing
this article, I can see the new text I'm typing appearing on the screen. That means that the displayed
screen and the one the program is sending text to are at the same address. Sometimes, though, we
may find it handy to be able to direct screen data to a different place in memory, so we can update
the screen "behind the user's back." Once the logical screen has been set up the way we want it, we
can simply flip to it, creating the illusion of the screen being instantly updated. We'll see how all this
works a little later.

Now that we know where our physical screen is, we're ready to allocate some memory for a couple
of logical screens. We can have only one physical screen, but we can have as many logical screens as
you can store in memory. In the function init_screens(), we set up a while loop that first allocates a
block of screen memory, then calls a function to read the picture data into it. To allocate a block of
memory, we use the call:

addr = Malloc(bytes);

Here, the pointer addr will hold the address of the block of memory, and the long integer bytes is the
number of bytes we wish to reserve. This function returns a 0 if the amount of memory we've
requested is unavailable. One variation on the Malloc() call, making bytes equal to -1L, will return the
total amount of memory available.

You've probably noticed, though, that our call to Malloc() in Listing 1 looks quite a bit more complex:

pic[x] = (Malloc(32768L) & 0xffffff00) + 0x0100;

Am I just trying to show off? No; not at all.

First, even though pic[x] doesn't look like a pointer, it is. In fact, pic[] is an array of pointers (actually,
long integers, but for our use that amounts to the same thing). For programming purposes, it's very
convenient to store the addresses of our screens in an array, so that we can get at them easily with
some sort of loop.

Next comes that strange looking Malloc() call. It looks strange to you because there's one little detail
I've yet to mention, the fact that the ST's screen memory must always start on a 256-byte boundary.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 201 / 321

And, since Malloc() doesn't know or care about this little requirement, it's up to us to smooth things
over.

The first step in getting to a safe 256-byte boundary is to use C's AND operator to mask off the eight
right-most bits of the address, using the hex value 0xFFFFFF00 as our mask. This value has every bit
set except the right-most eight. The AND operator compares the bits of two values, returning a true
(1) when both bits are on and a false (0) when either or both the bits are off. What that means for us
is that every bit we have off in the mask will result in a 0 in the bit it's being ANDed with. Let's say the
address returned from Malloc() was 0x034CC3E2. After ANDing it with our mask, we'd have
0x034CC300, which is an address on a 256-byte boundary.

But even though we're now on the boundary we wanted, it's not a safe boundary. Why? Because the
address we have now is lower than the one returned from Malloc(). That means we're no longer in
the area we just reserved; we're actually before it. If we try to load data there, we'll probably end up
clomping all over our program -- and getting a delightful string of bombs up on the screen.

That's why, after completing the AND operation, we add 0x00000100 (256 decimal) to the resultant
address. That pushes it back into our reserved area.

"Ah!" you cry, in that smug manner you use when you think you've caught the professor with his foot
in it. "If we're pushing the address forward, doesn't that mean that, when we load our picture data,
the last few bytes will be placed outside the reserved area, beyond the other end?"

Nope. You see, we've reserved 32,768 bytes (that's a full 32K), and we really need only 32,000 bytes
for our picture data. When people tell you that screen memory on the ST is 32K, they're not telling
you the whole truth. It's actually a bit short of a full 32K. We just like to round it off when we speak.
(You ever hear people refer to the SF314 disk drive as a one meg drive, even though you can only
store 720,000 bytes on the disk? Same idea.)

One thing we do have to watch out for, though, is how we handle any subsequent calls to Malloc(),
because it doesn't know we've finagled the address it gave us the first time around. The next time we
allocate some memory, we have to remember to add the same amount to the returned address, or
we're sure to make digital footprints in the previous areas. And digital footprints often result in the
Big Kablooey. (In our case, since we're using those areas only for a screen display, we'd simply end up
with some funny looking pictures.)

Okay, we've got the memory we need to store our pictures. Now let's think about how we're going to
load them. The first step is to get the picture's filename, and the obvious way to do that is with
GEM's handy file selector box. Included in Listing 1 is a function called select_file(). This is a generic
file-selector routine that I came up with that you can use in your own programs. It handles some of
the minor details for you, allowing you to just call a file selector and have the complete filename
(including the path) returned to you. (You're welcome.)

If you look at the function get_pic(), you'll see how we get started. First, because it's required by
select_file(), we have to come up with a default filename. This will appear tacked on to the end of the
pathname field in the file selector and allows us to narrow the number of files shown when the box
first comes up. In our example, we start with the string "* .PI " then finish the default name by adding
the proper D.E.G.A.S. resolution indicator. Adding the ASCII value of "1" to the value returned from
Getrez() performs that trick.

Our file selector function, select_file(), returns the complete chosen filename and the button that
was clicked to exit the file selector. The call to the function looks like this:

select_file(path,file,default,flag);

Here, path is a pointer to a 64-byte character array and is where the function will store the
completed filename. The pointer file is the address of a 13-byte character array that'll hold the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 202 / 321

selected filename after the call to fsel_input(). We may also, before the function call, store a
filename here that we want to appear in the filename field of the file selector box. The pointer
default contains the address of a string containing the text we want added to the selector's
pathname field. And finally, flag is a Boolean value that tells the function whether we want the string
pointed to by file to appear in the file selector's file field.

It sounds complicated at first, but I've found that using this function is a lot easier than trying to
remember how to handle the file selector each time I need it.

As I mentioned before, select_file() returns the value of the file selector button that was clicked.
Strangely enough (or perhaps it was done purposely), these values also correspond to obvious
Boolean values: the Cancel button returns 0, and the OK button returns 1. In the function get_pic(),
we use this returned value as a Boolean to evaluate an if statement. In other words, if the user clicks
on the file selector's Cancel button for either of the two files we're going to be loading, we'll know
not to read the file and, instead, exit the program.

If the user clicks the file selector's OK button, we call the function read_degas() to attempt to load
the file chosen. If the file loads all right, this function will return a value of TRUE. If an error is
encountered (maybe the file doesn't exist), it returns a value of FALSE. We use this returned value in
another if statement to determine whether we should continue or return to the desktop. In a full-
scale application program, you would want to give the user a message if you ran into an error, but for
the sake of brevity, we've kept things to a minimum in the example program.

Let's turn our attention now to read_degas(). It's here that we actually read the selected picture file
into memory. This function needs to know which picture we're loading and the complete filename.
The first thing we must do is open the file, but we have to make sure we open it to "read binary." We
covered the open() function previously, but we didn't talk about the O_BINARY flag. When we open
the file with this flag (it's defined at the top of the listing as 8192), we're telling the system that we
want the file read from the disk in an untranslated form, as a continuous block of data, rather than a
series of lines ending with carriage returns and line feeds.

Before we go any further, we need to discuss the format in which D.E.G.A.S. (the unsqueezed variety)
pictures are saved to disk. If you've ever looked at a disk directory containing these picture files,
you've undoubtedly noticed that they are 32,034 bytes. In order to get the picture up on the screen
properly, we have to know what each of these bytes are.

The first two bytes of a D.E.G.A.S. file indicate the picture's resolution. It's interpreted as a word
value: 0x0000, 0x0001, or 0x0002, for low, medium or high resolution, respectively. Normally, we'd
want to check the resolution of the picture against the computer's current resolution, to make sure
they match, and if they don't, give the user an error message. But, as I said before, for the sake of
brevity, we're going to do things quick and sloppy and just throw away those two bytes after we've
read them.

The next 32 bytes (16 words) are the picture's color palette. That we don't want to throw away; we
want to read it into the array we've set up for storing this information.

Finally, the last 32,000 bytes are the actual picture data. We read that information into the area of
memory starting at the address stored in the appropriate element of the pic[] array.

Now that we've got all the data read, we close the file and return a value of TRUE to the calling
function. Notice that, in the function read_degas(), we're using the value returned from the open()
function in an if statement. Doing this guarantees, in the case of a file error, that we skip over all the
subsequent file handling code, and just return from the function a value of FALSE.

Once we get two picture files loaded okay, program execution is turned over to the function
flip_screens(), where we get a chance to actually view the pictures. We begin by calling up an alert
box with three buttons, one button for each picture plus a Quit button. We use the value returned

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 203 / 321

from the alert box as an index into the pic[] array, where the pointers to the screens are stored. To
flip between the different screens, we use the call:

Setscreen(log,phys,res);

Here, log is the address of the logical screen, phys is the address of the physical screen, and res is the
screen resolution we want to switch to. If we don't want to switch screen resolutions, we just give
res a negative value. In fact, all parameters with a negative value will be ignored.

In most cases, you would set both the logical and physical screen to the same address. As for the
resolution, you'll almost always want to leave it unchanged (use a negative value) because GEM is
never informed of resolution changes, and that can lead to nasty complications.

After flipping the screen, we wait for a mouse button click using a call to evnt_button(), after which
we bring up the alert box to get another choice. We keep displaying the selected picture until the
Quit button is clicked, after which we close things up and return to the desktop.

Putting It Back Where We Found It

But we can't just go blithely on our way, returning to the desktop by just closing the virtual
workstation and calling appl_exit(). Nosiree. We've got cleaning up to do. We've allocated a bunch of
memory for our picture files, and before we leave, we have to give it back. Not a tough thing to do.
The following call will return a block of memory (one that was allocated with Malloc()) to the system:

Mfree(adr);

The pointer adr is the address of the block we want to de-allocate. You need to make a separate call
to Mfree() for each block allocated, and you must return the blocks in the reverse order you
allocated them.

Once we've returned all the memory to the system, we can exit the program in the usual manner.
You can see all this being done in Listing 1 in the function clean_up().

Mission Complete

Now that you know how all this screen flipping stuff works, why don't you modify the program so
that you can load more than two D.E.G.A.S. pictures? Use the mouse to flip through them. When you
get to the last of the pictures, use an alert box to ask the user whether he wants to see the pictures
again or quit. Practice makes perfect!

Program Listing #1
/***/
/* C-manship, Listing 1 */
/* CHAPTER 21 */
/* Developed with Megamax C */
/***/

#include <osbind.h>

#define TRUE 1
#define FALSE 0
#define O_BINARY 8192
#define QUIT 3
#define LEFT_BUTTON 1
#define DOWN 1

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 204 / 321

/* The usual required GEM global arrays */
int work_in[11],
work_out[57],
pxyarray[10],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

/* Global variables */
int handle, dum;

long pic[2], /* Pointers to logical screens. */
scrn; /* Pointer to physical screen. */

int desk_palette[16]; /* Desktop color palette. */
int pic_palette[2][16]; /* Picture color palettes. */

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_pictures (); /* Go do the picture stuff. */
 clean_up (); /* Get everything back to normal. */
 appl_exit (); /* Back to the desktop. */
}

open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open */
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

do_pictures ()
{
 /* If the pictures are loaded okay, */
 /* then allow user to view them. */

 if (init_screens ())
 flip_screens ();
}

init_screens ()
{
 int x, /* Index variable. */
 okay; /* File load flag. */

 /* Store the desktop's color palette. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 205 / 321

 for (x=0; x<16; desk_palette[x++]=Setcolor (x, -1));

 /* Store the address of the desktop's screen. */
 scrn = Physbase ();

 /* Reserve memory for pictures and load them */
 /* into the allotted space, storing pointers */
 /* to them in the pic[] array. */

 okay = TRUE;
 x = 0;
 while ((okay == TRUE) && (x < 2)) {
 pic[x] = (Malloc (32768L) & 0xffffff00) + 0x0100;
 okay = get_pic (x++);
 }
 return (okay);
}

flip_screens ()
{
 int choice; /* Button number clicked in alert box. */

 choice = 1;
 /* View pictures until QUIT button is clicked. */
 while (choice != QUIT) {

 /* Call up alert box to get user's picture choice. */
 choice = form_alert (0, "[2][Choose picture to \
 view][One|Two|Quit]");

 /* We only want to show a picture if the */
 /* QUIT button hasn't been clicked. */

 if (choice != QUIT) {

 /* Set the screen to show the chosen picture. */
 Setscreen (pic[choice-1], pic[choice-1], -1);

 /* Set the palette to the picture's settings. */
 Setpalette (&pic_palette[choice-1][0]);

 /* Wait for a button click. */
 evnt_button(1,LEFT_BUTTON,DOWN,&dum,&dum,&dum,&dum);
 }
 }
}

get_pic (num)
int num; /* Number of picture to load. */
{
 char path[64], /* Storage for picture's pathname. */
 file[13], /* Storage for picture's filename. */
 pictype[6]; /* Storage for default picture filename. */

 /* Build default picture filename. */
 strcpy (pictype, "*.PI ");

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 206 / 321

 pictype[4] = Getrez () + '1';

 /* If file selector CANCEL button wasn't clicked, */
 /* read the chosen DEGAS file into memory. If an */
 /* error is returned, the program will abort. */

 if (select_file (path, file, pictype, FALSE))
 if (read_degas (num, path))
 return (TRUE);
 else
 return (FALSE);
 else
 return (FALSE);
}

read_degas (num, pathname)
int num; /* Picture number to read. */
char *pathname; /* Picture's pathname. */
{
 int f_h, /* File handle. */
 buf[10]; /* Temp buffer for unused bytes. */

 /* Process file only if no error is returned when opening. */
 if ((f_h = open (pathname, O_BINARY)) != -1) {

 /* First two bytes is resolution data. */
 read (f_h, buf, 2);

 /* Next 32 bytes (16 words) is the color palette. */
 read (f_h, &pic_palette[num][0], 32);

 /* Finally, we have 32K of picture data. */
 read (f_h, pic[num], 32000);

 /* Close file and tell calling function */
 /* that everything went all right. */

 close (f_h);
 return (TRUE);
 }
 /* In case of error opening the file. */
 else
 return (FALSE);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 207 / 321

select_file (path, fnme, deflt, display)
char *path, /* Address for path storage. */
fnme, / Address for filename storage. */
deflt; / Address of default filename. */
int display; /* Display default filename? */
{
 int x, /* Loop variable. */
 choice, /* Button clicked from file selector box. */
 len; /* String length. */
 char ch; /* Temp character storage. */

 /* Clear filename string if not to be displayed. */
 if (display == FALSE)
 for (x=0; x<13; fnme[x++] = '\0');

 /* Build file selector box pathname. */
 Dgetpath (path, 0);
 len = strlen (path);
 path[len] = '\\';
 strcpy (&path[len + 1], deflt);

 /* Call up file selector box to get user's choice. */
 fsel_input (path, fnme, &choice);

 /* Find last significant character in pathname in */
 /* order to delete the filename portion of the path. */

 len = strlen (path);
 x = len-1;
 while (path[x] != '\\' && path[x] != ':' && x > 0)
 --x;
 strcpy (&path[x+1], fnme);

 return (choice);
}

clean_up ()
{
 /* Setscreen back to desktop. */
 Setscreen (scrn, scrn, -1);

 /* Restore original color palette. */
 Setpalette (desk_palette);

 /* Return the reserved memory back to the system. */
 Mfree (pic[1]);
 Mfree (pic[0]);

 /* Close virtual workstation. */
 v_clsvwk ();
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 208 / 321

CHAPTER 22 - THE INTERNAL CLOCK/CALENDAR

This time around we'll tackle a subject we've managed to avoid so far -- the Atari ST's real-time clock.
Actually, "avoid" probably isn't a good word to use here, since reading and setting the ST's clock is
really not very hard. You just need to become proficient with handling data in a bitwise fashion
rather than as words or bytes. And as we'll soon see, attaining those skills will not require an
inordinate amount of effort, and those same skills will be a valuable addition to your future C
programming projects.

But first you should get this chapter's sample program up and running, and that involves a little more
work than usual. You're going to need to create the dialog box shown in Figure 1. There's two ways
you can do this. The first is to type in Listing 3 with ST BASIC (make sure you check your typing with
ST Check, see Appendix A), and then run it. The program will create the necessary resource file for
you.

Figure 1

The other way to produce the dialog box is to use a resource construction program. The dialog
contains only four objects, but they must be created and named carefully. The objects are the
editable text fields that show the time and date and the two exit buttons. If you want to create your
own dialog box, here is the information you need to know:

The dialog box itself is named DATEDIAL. The OK button is named OKBUTN and is simply a shadowed,
exit button. The CANCEL button is named CANBUTN and is a shadowed, exit button, but it is also set
as the default. The "Time" field is an unboxed, editable text string that is named TIMEFLD. Its ptmplt,
pvalid, and ptext strings, shown in order, are:

Time: __:__:__ __
999999AA
000000AM

The "Date" field is also an unboxed, editable text field. It's named DATEFLD, and its ptmplt, pvalid,
and ptext strings, also in their respective order, are:

Date: __/__/__
999999
000000

That's all you need to know to reproduce the dialog box shown in Figure 1 (except that you must
name the RSC file DATE.RSC). If all of this sounds confusing, then either review Chapters 14 and 15,
which cover dialog boxes, or use Listing 3 to create your resource file.

Now that you've created your resource file, you may type in Listing 1 and compile it. If you used the
ST BASIC program to create your resource file, you must also type in Listing 2, before you try to
compile the program, and save it to disk as DATE.H.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 209 / 321

Now run the program. If you've got the resource file in the same directory as the program, you'll see
the dialog box shown in Figure 1. (If you're missing your resource file, the program will warn you, and
then return to the Desktop.) The time and date shown in the dialog box are the current settings of
your system clock. If you'd like to reset the clock, just edit the time and date strings and click on the
OK button. If the strings you've entered are valid, the program will reset your system's clock and
return to the Desktop. Otherwise you'll receive an error alert box, and you'll have to reenter the
information. If you're satisfied with the time as it is, click on the CANCEL button or simply press
Return.

Computer Dating

Let's take a look at Listing 2 and see what's going on here. Most of what's being done in the program
you should already be familiar with. For instance, we long ago discussed how to load a resource file
and get a dialog box up on the screen. In case you've gotten a little rusty, the program listing is
commented enough so that you can easily see what's being done.

Take a look at the function get_date(). It's here that we retrieve the system date from the computer's
clock and convert it into a form that we can use in our dialog box. First we get the date with the call

date = Tgetdate();

where date is an integer. The function Tgetdate() is defined in your OSBIND.H file as gemdos(0x2a)
and returns all the information we need to figure out the current date. Piece of cake, right? Not
quite. If your noodle is active today, you'll remember that our dialog box displays the date by month,
day, and year. However, the Tgetdate() call returned only one value. See a problem here?

In order to simplify the process of storing and passing the system date, the people who designed
your ST's OS decided to cram all the information we need to extract the current month, day, and year
into a single integer; and if you're really on the ball today, you'll realize that that means we're going
to have to finagle some bits in order to separate the information we want from the information we
don't care about.

The system date returned from the Tgetdate() function is formatted in the following manner: Bits 0
to 4 (counting from right to left, remember) contain the day, bits 5 to 8 contain the month, and bits 9
to 15 contain the year since 1980, or, in other words, the current year minus 80. Figure 2 illustrates
this format. What we have to do is figure out a way to extract the day, month, and year from the
entire integer. Thank heavens for bitwise operations!

Year Month Day

0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1

Hour Minutes Seconds

0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1

FIGURE 2

A Bit About Bits

The C programming language supplies us with five operators that can manipulate the bits that make
up a piece of data. Some of them you've seen before; a couple of them are new to you. Those
operators are:

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 210 / 321

 & Bitwise AND

 ^ Bitwise exclusive OR

 | Bitwise inclusive OR

 << Left shift

 >> Right shift

We've already had experience with the bitwise AND and bitwise inclusive OR operators. The AND
operator compares the bits of two values and places into the result a 1 in any position where both
bits of the compared values are set and a 0 in every other case. This allows us to "mask" out the bits
in a value that we're not interested in. We create a mask by setting the bits of the mask that
correspond to the information we wish to extract from the value of interest. Every other bit is turned
off.

Let's say we wanted to get the value of the low byte of a word. We would create a mask that looked
like this: 0000000011111111. Suppose the value from which we want to extract information is called
number and the binary representation of number is 0010110101100110. The calculation would look
like this:

0010110101100110 <-- number
0000000011111111 <-- Mask

0000000001100110 <-- Result

As you can see, the result contains only the bit values we wanted to retain. In a C program the above
calculation would be written as follows:

result=number&0x00ff

The inclusive OR operator is almost the opposite of the AND operator. Rather than extracting
portions of a value, it lets us insert them. When you inclusive OR two values together, the result will
have a bit set wherever there was a bit set in either one or both of the compared values. Let's say we
wanted to merge the values contained in two variables called var1 and var2. The binary
representation of var1 is 0000000010101011, and the binary representation of var2 is
1101101100000000. The inclusive OR operation looks like this:

0000000010101011 <-- num1
1101101100000000 <-- num2

1101101110101011 <-- result

You can see from the result that we've combined the low byte of num1 with the high byte of num2.
There's one important thing you must be aware of, though. This combining of values will work only
when the positions that will hold the merged value all contain zeroes. In other words, we would not
get the proper result in the above operation if the high byte of num1 was not cleared:

1111111110101011 <-- num1
1101101100000000 <-- num2

1111111110101011 <-- result

The same problem would crop up if the low byte of num2 hadn't been cleared.

A bitwise exclusive OR is similar except that the result will contain a 1 only in those positions where
either one or the other bit is set. If both bits are set or both bits are cleared, the result will be a 0.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 211 / 321

The left shift operator causes the bits in the first operand to be shifted to the left the number of
times found in the second operand. The right-hand, emptied bits will be filled with zeroes. For
instance, let's take a variable named num that contains the binary value 1011010110101101. If we
were to perform the operation num<<5, the result would be 1011010110100000.

The right shift operator works much the same way, except that the emptied left-hand bits may or
may not be zero-filled, depending on the machine and data type you're using. The rule is if the data
type is unsigned, you are guaranteed to get a zero fill; otherwise, the left-hand bits may be filled with
the value of the sign bit (the most significant bit).

But What About the Date?

So here we are, finally back to the original problem of extracting the day, month, and year from the
single integer returned by the Tgetdate() call. Think about it for a minute. Have you got it figured out
yet? No?

Let me explain, then. The information we need to get the day is contained in bits 0 through 4, right?
So, what we need to do is mask out bits 5 through 15. Then our result will contain only the value
stored in the lower five bits -- and that value is current day. (Of course, whether this value matches
your calendar or not depends on whether your system clock has been set properly.) Let's say the
value returned from Tgetdate() is the one shown in Figure 2. Figure 3a then illustrates the operation
involved in extracting the day.

0001000101110101

 & 0x001f

0000000000010101 21

FIGURE 3a

First, we create a mask to AND with our integer, a mask that will clear bits 5 through 15, while at the
same time maintain the values of the lower five bits. The proper mask is 0000000000011111 in
binary or 0x001f in hexadecimal. (Note that it's much easier to create your mask in binary first then
convert it to hexadecimal. That way you can easily see which bits you're setting.) Then all we have to
do is AND the system date with our mask. In Listing 1, the line that does this is:

day = date & 0x001f;

Say! That was pretty easy, wasn't it? The next step is to get the month, but we run into a little
complication with that one. If we were to just AND out the bits we weren't interested in, we'd end up
with the value 0000000101100000 which translates to a decimal value of 352! Ouch! Aren't there
only 12 months? To get the value we really want, we have to move the four bits we're interested in
to the right five places. Sounds to me like a good job for the right shift operator.

But let's perform the shifting first and then mask out the unnecessary bits. That way we're sure we
get no garbage in the upper bits as a result of the shift operation. Theoretically, it would work either
way, since our sign bit will be a zero. But I learned a long time ago that, when it comes to computers,
you can only trust what you know. And I know that if I do the AND operation last, I'll have the result
I'm looking for. In Listing 1, the line that gets us our month looks like this:

mnth = (date >> 5) & 0x000f;

This operation is illustrated in Figure 3b.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 212 / 321

0001000101110101
>>5
0000000010001011
& 0x000f
0000000000001011 11

FIGURE 3b

Finally, to get the year, we have to perform the same operation, only we'll be shifting the bits down
nine places instead of five, and we'll be using a different mask because we're interested in a different
number of bits. Figure 3c illustrates this operation, and the equivalent line in Listing 1 looks like this:

year = ((date >> 9) & 0x007f) + 80;

0001000101110101
>>9
0000000000001000
& 0x007f
0000000000001000 8

FIGURE 3c

Although Figure 3c doesn't show it, we have to remember to add 80 to the result because, as I
mentioned before, the year returned from the Tgetdate() call is the year since 1980.

Some Timely Information

Now let's look at the function get_time() in Listing 1. We get the system time with the call

time = Tgettime();

where time is an integer. Bits 0 through 4 of this value will contain the seconds divided by two, bits 5
through 10 will contain the minutes, and bits 11 through 15 will contain the hour. We can extract this
information in the same way we calculated the date -- by shifting the bits in which we're interested
all the way to the right, and then using a mask and the AND operation to clear the bits in which we're
not interested.

I don't think we need to go into a lot of detail here, but there is one thing I want to mention --
something that we didn't have to deal with when we calculated the date. The value for the hour
portion of the system time is in 24-hour format; that is, it'll be a value from 0 to 23. Values from 0 to
11 represent the hours of midnight to 11 a.m., and the values from 12 to 23 represent the hours
from noon to 11 p.m. In order to make the time more readable, our function get_time() does some
converting so that the time will be displayed in the manner we're most used to seeing it. (Of course,
if you're in the military, you may not approve of this conversion!)

Also, keep in mind that the value for the seconds is the number of seconds divided by two. This
means that you must multiply times two the value for the seconds that was returned by the
Tgettime() function. This also means that your ST's clock is only accurate to the nearest even second.

Setting the Time and Date

Setting the system's time and date requires only that we reverse the process we used to get the time
and date. Instead of using an AND operation, we'll be using the inclusive OR, and instead of shifting
bits to the right, we'll be shifting them to the left.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 213 / 321

In Listing 1, the function set_date() handles both the setting of the time and the setting of the date.
To set the time, we use this call:

Tsettime(time);

where the integer time uses the same bit format we studied when we discussed the Tgettime() call.
To set the date, we use this call:

Tsetdate(date);

where the integer date used the same bit format we learned about when we discussed the
Tgetdate() call. These functions are defined in your OSBIND.H file. Let's take just a quick look at how
we prepare the integers for these calls. Let's use time as our example this time around. Suppose the
time we wanted to set the system clock to was 14:36:34 (that's 2:36 p.m. for those of you who could
never get the hang of a 24-hour clock). Setting the seconds is easy:

time = seconds;

Here, seconds is equal to 17. (Remember that the number of seconds must be divided by two; that's
the only way the designers of the OS could get the time to fit into an integer.)

Now time contains the binary value 0000000000010001, which equals 17 in decimal. Our value for
minutes is 36, which is 0000000000100100 in binary. We have to move this information up into bits 5
through 10. The operation minutes=minutes<<5 gives us a result of 0000010010000000 which is
exactly what we want.

Now we have to combine the seconds (the value of which is already stored in time) with the minutes.
The operation time=time|minutes does the trick handily. On a binary level that operation looks like
this:

0000000000010001 <-- time (seconds)
0000010010000000 <-- minutes

0000010010010001 <-- time (seconds and minutes)

To add the hours, we do the same sort of operation, only we'll be shifting the value for hours 11
places to the left. I might also add that it doesn't matter in what order we store the seconds, minutes
and hours, as long as we follow the general procedure outlined above. If you look at Listing 1, you'll
see that I started with the hours instead of the seconds.

All Ashore Who's Going Ashore

That about covers it. As you peruse this chapter's program, you may come across a couple of
functions that aren't familiar to you. If so, just look them up in your manual. There's nothing
complicated with any of them, and you should be easily able to figure out how everything in the
sample program works.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 214 / 321

Program Listing #1
/**/
/*C-manship, Listing 1*/
/* CHAPTER 22 */
/*Developed with Megamax C*/
/**/
#include <osbind.h>
#include <gemdefs.h>
#include <obdefs.h>
#include "date.h"

#define TRUE 1
#define FALSE0
#define MATCH0

/* GEM arrays */
int work_in[11],
work_out[57],
contrl[12],
intin[128],
ptsin[128],
intout[128],
ptsout[128];

int handle,/* Application handle. */
dum; /* Dummy storage.*/

char *get_tedinfo_str ();

/**
* Main program.
**/
main ()
{
 appl_init (); /* Init application. */
 open_vwork ();/* Open virtual workstation. */
 do_date (); /* Go do our thing.*/
 rsrc_free (); /* Release resource memory.*/
 v_clsvwk (handle);/* Close virtual workstation.*/
 appl_exit (); /* Back to the desktop.*/
}

/***
* do_date ()
* Loads the resource file and handles the dialog box.
***/
do_date ()
{
 int dial_x, /* Dialog's X coord.*/
 dial_y, /* Dialog's Y coord.*/
 dial_w, /* Dialog's width.*/
 dial_h, /* Dialog's height. */
 choice, /* Exit button clicked from dialog. */
 okay; /* Flag indicating if entered date valid. */

 OBJECT *datedial_addr; /* Address of dialog box. */

 char date_str[8],/* String to hold date. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 215 / 321

 time_str[10]; /* String to hold time. */

 char *string; /* Temp string pointer. */

 graf_mouse (ARROW, 0L);

 /* Load resource file. */
 if (!rsrc_load ("\date.rsc"))
 form_alert (1, "[1][date.rsc missing!][OK]");

 else {

 /* Get address of dialog and init time and date strings. */
 rsrc_gaddr (R_TREE, DATEDIAL, &datedial_addr);
 get_time (time_str);
 get_date (date_str);

 /* Copy system time and date into dialog box, */
 string = get_tedinfo_str (datedial_addr, TIMEFLD);
 strcpy (string, time_str);
 string = get_tedinfo_str (datedial_addr, DATEFLD);
 strcpy (string, date_str);

 /* Prepare dialog box for drawing, and init flag. */
 form_center(datedial_addr,&dial_x,&dial_y,&dial_w,&dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 okay = TRUE;

 /* This loop repeats until the user clicks CANCEL */
 /* or until the user enters a valid date and clicks OK. */
 do {
 /* Draw dialog and allow user to manipulate it. */
 objc_draw(datedial_addr,0,8,dial_x,dial_y,dial_w,dial_h);
 choice = form_do (datedial_addr, TIMEFLD);

 /* Reset the state of the chosen button. */
 datedial_addr[choice].ob_state = SHADOWED;

 /* If OK clicked, check entered date and set system */
 /* date if date entered is valid, */
 if (choice == OKBUTN) {
 okay = chk_date (datedial_addr);
 if (okay)
 set_date (datedial_addr);
 }
 }
 while (okay == FALSE && choice == OKBUTN);

 /* Get rid of the dialog box. */
 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 }
}

/***
* chk_date ()
* Examines the strings in dialog for a valid date
* and valid time.
***/
chk_date (dial_addr)
OBJECT *dial_addr; /* Address of dialog box. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 216 / 321

{
 int mnth, day, year, /* Date and time broken into integers.*/
 hour, min, sec,
 space, /* Flag for bad chars in time string.*/
 okay,/* Flag indicating valid time & date. */
 x; /* Loop variable. */

 char m[3], d[3], y[3], /* Date & time as character arrays. */
 h[3], mn[3], s[3],
 ap[3];/* "AM" or "PM" */

 char *date_str, /* Pointer to string containing date. */
 time_str; / Pointer to string containing time. */

 /* Init date and time integers to error condition. */
 mnth = day = year = hour = min = sec = -1;

 /* Get address of string containing date. */
 date_str = get_tedinfo_str (dial_addr, DATEFLD);

 /* Convert date string to integer format. */
 if (strlen (date_str) == 6) {
 strncpy (m, date_str, 2);
 m[2] = 0;
 strncpy (d, &date_str[2], 2);
 d[2] = 0;
 strncpy (y, &date_str[4], 2);
 y[2] = 0;
 mnth = atoi (m);
 day = atoi (d);
 year = atoi (y);
 }

 /* Get address of string containing time. */
 time_str = get_tedinfo_str (dial_addr, TIMEFLD);

 /* Check for spaces in time string. */
 space = FALSE;
 for (x=0; x<6; ++x)
 if (time_str[x] == ' ')
 space = TRUE;

 /* Convert time string to integer format. */
 if ((strlen (time_str) == 8) && !space) {
 strncpy (h, time_str, 2);
 h[2] = 0;
 strncpy (mn, &time_str[2], 2);
 mn[2] = 0;
 strncpy (s, &time_str[4], 2);
 s[2] = 0;
 hour = atoi (h);
 min = atoi (mn);
 sec = atoi (s);
 strcpy (ap, &time_str[6]);
 }

 /* Examine time and date for validity. */
 if (mnth < 1 | mnth >12 | day < 1 | day > 31
 | year < 0 | year > 99 | hour < 0 | hour > 23 | min < 0
 | min > 59 | sec < 0 | sec > 59 |
 ((strcmp(ap,"AM")!=MATCH) && (strcmp(ap,"PM")!=MATCH))) {

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 217 / 321

 okay = FALSE;
 form_alert (1, "[1][Date or time not valid!][CONTINUE]"
);
 }
 else
 okay = TRUE;

 return (okay);
}

/***
* set_date ()
* Sets the system time and date to the values
* entered into the dialog box.
***/
set_date (dial_addr)
OBJECT *dial_addr; /* Address of dialog box. */
{
 char *string; /* Temporary string pointer. */
 char s[3];/* Temporary string storage. */
 int h,/* Work variable.*/
 time, /* Time in system format.*/
 date; /* Date in system format.*/

 /* Get address of string containing time. */
 string = get_tedinfo_str (dial_addr, TIMEFLD);

 /* Extract "hours" portion and convert to integer. */
 strncpy (s, string, 2);
 h = atoi (s);

 /* Adjust hour to the 24-hour clock format. */
 if ((strcmp (&string[6], "PM") == MATCH) && (h != 12))
 h += 12;
 if ((strcmp (&string[6], "AM") == MATCH) && (h == 12))
 h = 0;

 /* Shift bits into the proper position and place them */
 /* into the time integer. */
 h = h << 11;
 time = h;

 /* Get the "minutes" portion, convert to integer, */
 /* shift bits and place them into the time integer. */
 strncpy (s, &string[2], 2);
 h = atoi (s);
 h = h << 5;
 time = time | h;

 /* Process the "seconds" portion of the time. */
 strncpy (s, &string[4], 2);
 h = atoi (s) / 2;
 time = time | h;

 /* Set the system clock to the new time. */
 Tsettime (time);

 /* Get the address of the string containing the date. */
 string = get_tedinfo_str (dial_addr, DATEFLD);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 218 / 321

 /* Process the "month" portion. */
 strncpy (s, string, 2);
 h = atoi (s);
 h = h << 5;
 date = h;
 /* Process the "day" portion. */
 strncpy (s, &string[2], 2);
 h = atoi (s);
 date = date | h;

 /* Process the "year" portion. */
 strncpy (s, &string[4]);
 h = atoi (s) - 80;
 h = h << 9;
 date = date | h;

 /* Set the system to clock to the new date. */
 Tsetdate (date);
}

/***
* get_time ()
* Gets system time and converts it to string format.
***/
get_time (string)
char *string; /* Pointer to string in which to store time. */
{
 int time, /* Time in system format. */
 hour, min, sec; /* Time broken down into separate ints. */

 char s[3];/* "AM" or "PM" */

 /* Get system time & break down into individual components. */
 time = Tgettime ();
 sec = (time & 0x001f) * 2;
 min = (time >> 5) & 0x003f;
 hour = (time >> 11) & 0x001f;

 /* Convert system 24-hour format to regular 12-hour format. */
 if (hour > 11) {
 strcpy (s, "PM");
 if (hour > 12)
 hour -= 12;
 }
 else {
 strcpy (s, "AM");
 if (hour == 0)
 hour = 12;
 }

 /* Convert and add hours to time string. */
 if (hour < 10) {
 string[0] = '0';
 sprintf (&string[1], "%d", hour);
 }
 else
 sprintf (string, "%d", hour);

 /* Convert and add minutes to time string. */
 if (min < 10) {

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 219 / 321

 string[2] = '0';
 sprintf (&string[3], "%d", min);
 }
 else
 sprintf (&string[2], "%d", min);

 /* Convert and add seconds to time string. */
 if (sec < 10) {
 string[4] = '0';
 sprintf (&string[5], "%d", sec);
 }
 else
 sprintf (&string[4], "%d", sec);

 /* Add "AM" or "PM" to time string. */
 strcpy (&string[6], s);
}

/***
* get_date ()
* Gets system date and converts it to string format.
***/
get_date (string)
char *string; /* Pointer to string that will contain the date. */
{
 int date,/* Date in system format. */
 day, mnth, year; /* Date broken into components. */

 /* Get system date and convert to individual components. */
 date = Tgetdate ();
 day = date & 0x001f;
 mnth = (date >> 5) & 0x000f;
 year = ((date >> 9) & 0x007f) + 80;
 year = year % 100;

 /* Convert and add "months" portion to date string. */
 if (mnth < 10) {
 string[0] = '0';
 sprintf (&string[1], "%d", mnth);
 }
 else
 sprintf (string, "%d", mnth);

 /* convert and add "days" portion to date string. */
 if (day < 10) {
 string[2] = '0';
 sprintf (&string[3], "%d", day);
 }
 else
 sprintf (&string[2], "%d", day);

 /* Convert and add "year" portion to date string. */
 sprintf (&string[4], "%d", year);
}

/***

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 220 / 321

* get_tedinfo_str ()
* Returns a pointer to an editable string in a
* dialog box.
***/
char *get_tedinfo_str (tree, object)
OBJECT *tree; /* Address of dialog box. */
int object; /* Object that contains the string. */
{
 TEDINFO *ob_tedinfo; /* Pointer to a tedinfo structure. */

 ob_tedinfo = (TEDINFO *) tree[object].ob_spec;
 return (ob_tedinfo->te_ptext);
}

/***
* open_vwork ()
* Opens a virtual workstation.
***/
open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open*/
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

Program Listing #2
#define DATEDIAL 0/* TREE */
#define TIMEFLD 2/* OBJECT in TREE #0 */
#define DATEFLD 3/* OBJECT in TREE #0 */
#define OKBUTN 4/* OBJECT in TREE #0 */
#define CANBUTN 5/* OBJECT in TREE #0 */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 221 / 321

Program Listing #3

ST Basic

100 OPEN"R",#1,"A:DATE.RSC",16:FIELD#1,16 AS B$
110 A$="":FOR I=1 TO 16:READ V$:IF V$="*" THEN 140
120 A=VAL("&H"+V$):PRINT "*";:A$=A$+CHR$(A):NEXT
130 LSET B$=A$:R=R+1:PUT 1,R:GOTO 110
140 CLOSE 1:PRINT:PRINT "ALL DONE!"
1000 data 00,00,00,D4,00,80,00,80,00,80,00,00,00,24,00,80
1010 data 00,00,01,64,00,06,00,01,00,03,00,00,00,00,00,00
1020 data 00,00,01,68,44,41,54,45,20,41,4E,44,20,54,49,4D
1030 data 45,00,00,00,30,30,30,30,30,30,41,4D,00,54,69,6D
1040 data 65,3A,20,5F,5F,3A,5F,5F,3A,5F,5F,20,5F,5F,00,39
1050 data 39,39,39,39,39,41,41,00,30,30,30,30,30,30,00,44
1060 data 61,74,65,3A,20,5F,5F,2F,5F,5F,2F,5F,5F,00,39,39
1070 data 39,39,39,39,00,4F,4B,00,43,41,4E,43,45,4C,00,00
1080 data 00,00,00,24,00,00,00,32,00,00,00,33,00,03,00,06
1090 data 00,02,11,80,00,00,FF,FF,00,0E,00,01,00,00,00,34
1100 data 00,00,00,3D,00,00,00,4F,00,03,00,06,00,00,11,80
1110 data 00,00,FF,FF,00,09,00,12,00,00,00,58,00,00,00,5F
1120 data 00,00,00,6E,00,03,00,06,00,00,11,80,00,00,FF,FF
1130 data 00,07,00,0F,FF,FF,00,01,00,05,00,14,00,00,00,30
1140 data 00,02,11,21,00,00,00,00,00,29,00,0C,00,02,FF,FF
1150 data FF,FF,00,16,00,00,00,20,00,00,00,80,00,02,00,01
1160 data 00,25,00,01,00,03,FF,FF,FF,FF,00,1D,00,08,00,00
1170 data 00,00,00,9C,00,0C,00,03,00,11,00,01,00,04,FF,FF
1180 data FF,FF,00,1D,00,08,00,00,00,00,00,B8,00,0D,00,05
1190 data 00,0E,00,01,00,05,FF,FF,FF,FF,00,1A,00,05,00,20
1200 data 00,00,00,75,00,02,00,09,00,11,00,01,00,00,FF,FF
1210 data FF,FF,00,1A,00,27,00,20,00,00,00,78,00,16,00,09
1220 data 00,11,00,01,00,00,00,D4,00,00,00,00,00,00,00,00
1230 data *

Program Listing #4

ST Check BUG Data for Listing #3

100 data 469,544,391,421,536,623,487,693,656,884,5704
1050 data 644,872,720,503,703,556,707,710,686,685,6786
1150 data 679,860,716,758,875,677,722,530,196,6013
•

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 222 / 321

CHAPTER 23 - Desk Accessories with Built-In Resource Trees

In chapter 22 we looked at a short utility that will set the ST's date and time. Although that program
works fine when run from the Desktop, it would be more convenient to have it as a desk accessory,
so that it would be available to us from within other GEM programs. Programming a desk accessory
isn't much more complicated than programming any other GEM application, but, in the case of our
Date/Time utility, there arises one complication.

How often have you seen a desk accessory that requires a .RSC file? Not too often. Oh, there's a
couple of them floating around, but it is not a good programming practice to force a desk accessory
to rely on a .RSC file -- and for a very good reason.

A desk accessory, once it has been loaded, is constantly active. Even if you haven't selected it from
the Desk drop-down menu, it is still running, waiting for the cue that will set it in motion. In fact, the
only way to terminate a desk accessory is to shut off your machine.

Now think about what we know about .RSC files. They have to be loaded into the ST's memory with a
call to rsrc_load(), but more importantly, the memory the resource file takes up has to be returned to
the system at the termination of a program by a call to rsrc_free(). Since a desk accessory is always
"running," when do we return the memory used by our resource trees?

I know what you're thinking. "What difference does it make whether or not we ever call rsrc_free()
when the only way to terminate a desk accessory is to turn the machine off? I mean, last time I
heard, turning off the machine was a great way to release all the memory!" Right you are. But there
is one situation where a desk accessory gets reinitialized: when you switch resolutions. If your desk
accessory has to load a resource file, then each time you switch resolutions, more memory will be
taken up, because the resource is being reloaded, even though the old one hasn't been released.

So before we can convert our Date/Time utility to a desk accessory, we have to build our resource
tree right into the program. How complicated this process will be depends on what tools you have
available. If you have a resource construction program that'll save your object trees out in source
code form, then you're three-quarters of the way there. All you have to do is plug in a few addresses,
and you're on your way. If you don't have access to an RCP that will do this for you, you'll have to
write your resource by hand, a tedious project indeed.

In either case, though, we're going to have to have a clear understanding of resource trees in order
to get our desk accessory's dialog box working. This means we'll be doing a review of some material
and applying what we learn directly to our Date/Time utility.

Our Resource Tree

Take a look at Listing 1. Near the top you'll see some data labeled "Resource tree." This is all the data
for our dialog box as it was saved from Atari's RCS2 in source code form. (Actually, RCS2 isn't too
bright and saves data for everything, even data structures not used in our tree. I've already deleted
the unneeded data for the sake of clarity.)

At the top of the data, you'll see an array of pointers called rs_strings[]. (Even though the strings
themselves are shown in this array, we still have an array of pointers here, each pointer holding the
address of its associated string.) These pointers point to all the strings we need for our dialog box,
with some of the objects being allotted three strings. (The first nine strings shown are actually three
groups of three.) Why three? Because editable text fields require not only a text string but a format
template and validation string, as well. Remember?

The first string shown in rs_strings[] is our dialog box's title line. We don't want an editable text field
here so the format and validation strings (the second and third strings shown in rs_strings[]) are
empty. The next group of three strings is for the time field of our dialog box. First is the te_ptext

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 223 / 321

string (the text that will be displayed when the dialog box is first drawn and the area where the text
the user enters will be found after he exits the dialog box), followed by the te_ptmplt string (the
uneditable text that is displayed in the text field), and the te_pvalid string (the string that determines
what type of data is allowable in each position of the string). If all of this is confusing, please review
Chapters 14 and 15 on dialog boxes.

The next three strings are the te_ptext, te_ptmplt, and te_pvalid strings for our dialog box's date
field. And finally there is the text for our OK and CANCEL buttons.

Following rs_strings[] is another array called rs_tedinfo[]. As you can tell by the name of the array,
the data here makes up the tedinfo structures for the editable text strings in our dialog box. If you
think back, you'll remember that a tedinfo structure contains all the information GEM needs to draw
and handle editable text fields. There are three tedinfos contained in rs_tedinfo[], one each for our
dialog's title, time, and date fields.

The first three long words of a tedinfo structure are pointers to the object's te_ptext, te_ptmplt, and
te_pvalid strings, respectively. If you look at the first three long words in the first tedinfo structure
shown in rs_tedinfo[], you'll see that we've got the values 0L, 1L, and 2L. These don't look very much
like pointers, do they? That's because they're not! They are actually offsets into the rs_strings[] array,
telling us which pointers we need to place in the tedinfo structure.

This tedinfo is for our dialog's title field. We are told here that the te_ptext string for this field is
pointed to by element 0 of the rs_strings[] array, and the te_ptmplt and te_pvalid strings for this
field are pointed to by elements 1 and 2, respectively. When we initialize our desk accessory, it is up
to us to see that the right pointers get placed into the tedinfo.

The next six members of the tedinfo structure contain (in order) the font size, a reserved word, the
horizontal justification of the text, color information, another reserved word, and the you'll see the
value 0x21121L. This value contains information on the box's color and border thickness. It doesn't
hold a pointer to a tedinfo because a G_BOX contains no editable text.

But look at the second object in the tree. This is our dialog's title field, and if we look up the
G_BOXTEXT object type in our reference materials, we'll find that the ob_spec field of this type of
object does hold a pointer to a tedinfo structure. If you look at the ob_spec field for this object in our
listing, you'll see the value 0x0L which is obviously not a pointer. Again, this is an offset, telling us
that the tedinfo for our title field is element 0 of the rs_tedinfo[] array.

The next two objects in our tree, the time and date fields, also contain offsets in the ob_spec
member, telling us that the tedinfos for these objects are element 2 and 3 of the rs_tedinfo[] array.

The last two objects in our tree are the OK and CANCEL buttons. They are objects of the type
G_BUTTON, and if we look up these objects in our reference materials, we'll find that their ob_spec
fields should contain not a pointer to a tedinfo, but instead a pointer to the string that will be
displayed in the button. Looking at the ob_spec fields in the button objects, we see that we once
again have some offsets, 0x9L and 0xAL. These values tell us that the pointers to the button strings
are found in element 9 and 10 of the rs_strings[] array.

The last four members of our object structures contain the X coordinate, Y coordinate, width, and
height of the objects. It's important to note that these values are given as character coordinates
rather than pixel coordinates. This is because the resource construction program has no idea what
resolution we'll be running the program in. We must adjust these values so that the dialog box is
drawn properly for whatever resolution in which we happen to be.

Our code-resident resource tree is concluded with the array rs_trindex[]. This array will contain the
addresses of each of the separate trees that make up our resource tree. In our case, we have only
one tree, a dialog box, so this array contains space for only one entry. Had we had several trees -- for
instance, three dialog boxes -- this array would have had places for the addresses of each.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 224 / 321

If you look at the value stored in the rs_trindex array, you will see that, once again, we are dealing
with an offset, 0L. This tells us that the address of object 0 of rs_object[] should be placed in this
element of the array.

Writing a Desk Accessory

As I said before, writing a desk accessory is a fairly simple process. As we've done with our Time/Date
utility, we can actually write the program as a normal GEM application, and then, once we've got it
running, convert it to a desk accessory.

Listing 1 is just such a conversion. Most of the program is identical to Chapter 22's, and so, if you
typed in Chapter 22's listing, you can use most of the code directly in this program. The following
functions have not changed: chk_date(), set_date(), get_time(), get_date(), get_tedinfo_string(), and
open_vwork(). When you compile the new version, remember to have the DATE.H file from Chapter
22 on the same disk with your source code.

Let's take a look at the function do_acc(), since it is here that we set up our desk accessory, as well as
initialize our dialog box. The first thing we have to do to get our desk accessory up and running is to
get its name placed on the menu bar so that the user can select it. This is done with the call

menu_id = menu_register(gl_apid," Name ");

where the integer menu_id is the ID number of our desk accessory returned from the call to
menu_register() and the integer gl_apid is the application ID assigned by appl_init(). We don't have
to worry about retrieving the value of gl_apid ourselves; we just define it as an external variable,
much like the GEM global arrays.

Once we've got our accessory registered on the menu bar, we must initialize the dialog box. This
requires replacing the offsets in the various structures with the proper pointers and changing the
object coordinates and sizes from character form to pixel form.

First, we store the address of our resource tree into the rs_trindex[] array, which is done like this:

rs_trindex[0] = (long) rs_object;

Had we had two object trees in our resource, we would have had to fill in an address for
rs_trindex[1], too. Because we have six objects in our dialog box, the first object of a second tree (if it
existed) would be the seventh object in the rs_object[] array, and we would have stored its address
like this:

rs_trindex[1] = (long) &rs_object[6];

The addresses of additional trees are stored in the same way, each address being placed in the next
element of rs_trindex[] and each address being derived from the element of rs_objects[] that
contains the first object in the object tree.

Now we move down one step in the hierarchy from the tree to the objects in the tree. Five of our
objects require that the ob_spec fields be filled in with pointers. The first three -- the title, time, and
date fields -- require pointers to tedinfos. Using the offsets that the resource construction program
left for us, we initialize these fields using this method:

rs_object[1].ob_spec = (char *) &rs_tedinfo[0];

In English the above code says, "The ob_spec field of the second object in the array rs_object[] gets
the value of a pointer to character, and that pointer points to the first tedinfo structure in the array

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 225 / 321

rs_tedinfo[]." Yikes! I think I liked the C version better! Anyway, we initialize the other two tedinfo
pointers the same way, as you can see in Listing 1.

Next we have two objects -- the OK and CANCEL buttons -- that must have pointers to strings placed
in their ob_spec fields. The code that accomplishes that job (for one of the buttons) looks like this:

rs_object[4].ob_spec = rs_strings[9];

Once again in English, the above says, "The ob_spec field of the fifth object in the array rs_object[]
gets the string pointer stored in element 9 of the array rs_strings[]."

Now we have to take another step down in our hierarchy and initialize our tedinfo structures. We
have three of them that must have pointers to their te_ptext, te_ptmplt, and te_pvalid strings filled
in. We do that with code similar to what we used for the ob_spec pointers above, like this:

rs_tedinfo[0].te_ptext = rs_strings[0];
rs_tedinfo[0].te_ptmplt = rs_strings[1];
rs_tedinfo[0].te_pvalid = rs_strings[2];

The other tedinfos are handled the same way.

Now all we have left to do is convert the dialog's character coordinates to pixel coordinates. Luckily,
there's a function that does that dirty work for us. The call

rsrc_obfix(tree_addr, object);

where tree_addr is the address of the object tree and the integer object is the index of the object
within the tree, does all the conversions for us. In Listing 1, we've used a for loop to adjust all six
objects with a single statement.

Waiting Forever

As I said before, a desk accessory, once installed on the menu bar, waits to be called by the user.
When the user clicks on the desk accessory's entry on the menu bar, the desk accessory is notified by
a message from GEM. What we need to do is construct a while loop that'll loop "forever." In that
loop we'll check to see if we've received a GEM message.

Once we get a message (in this case, from a call to evnt_mesag()), we'll check to see if the message
type (stored in msg_buf[0]) is an AC_OPEN message. An AC_OPEN message is sent by GEM whenever
a desk accessory menu entry is clicked on by the user. When we receive this message, we then have
to compare the menu ID sent to us in msg_buf[4] with the menu ID we obtained with our call to
menu_register(). If they match, we go ahead and bring up our dialog box so that the user can edit the
date and time.

And that's about all there is to it. I should mention that there is also a AC_CLOSE message that is sent
to your desk accessory when the desk accessory is closed. This message is important if you're using
windows in the desk accessory because GEM automatically closes these windows when it returns to
the desktop. Without the AC_CLOSE message, you'd have no way of knowing when to reset any
window flags or other related data items you may need to update. Both the AC_OPEN and AC_CLOSE
messages are defined in the GEMDEFS.H file.

The Desk Accessory Link

One last note: Whenever you link a program with Megamax C, some start-up code (contained in the
INIT.O file) is automatically linked to your object file. Desk accessories, however, have to be
initialized differently when they are run, so require different start-up code. The desk accessory start-

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 226 / 321

up code is contained in the ACC.L file supplied with the Megamax compiler. (Other compilers will
have their own versions of the start-up module.) The source code for your desk accessory is compiled
in the same manner as any other program, but when you get to the link step, you must be sure to
select ACC.L as the first file in your link list. If you don't, your desk accessory will not run.

NOTE FOR LASER C USERS: The new version of Megamax C, Laser C, no longer needs the separate
ACC.L file. To produce an accessory with Laser C, you must compile and link your source code
separately. After your source code has compiled, go to the LINK dialog box and change the target
name, below the left file selector, to progname.ACC. The new Laser linker will automatically add the
special code necessary to produce a working desk accessory.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 227 / 321

Program Listing #1
/**/
/*C-manship, Listing 1*/
/* CHAPTER 23 */
/*Developed with Megamax C*/
/**/
#include <osbind.h>
#include <gemdefs.h>
#include <obdefs.h>
#include "date.h"

#define TRUE 1
#define FALSE0
#define MATCH0

/* GEM arrays */
int work_in[11],
 work_out[57],
 contrl[12],
 intin[128],
 ptsin[128],
 intout[128],
 ptsout[128];

extern int gl_apid; /* Global application ID. */

int handle,/* Application handle. */
 dum, /* Dummy storage.*/
 menu_id; /* Our accessory's ID. */
char *get_tedinfo_str ();

int msg_buf[8]; /* Message buffer. */

OBJECT *datedial_addr; /* Pointer to dialog box. */

/***
* Resource tree
***/

char *rs_strings[] = {
 "DATE AND TIME",
 "",
 "",
 "000000AM",
 "Time: __:__:__ __",
 "999999AA",
 "000000",
 "Date: __/__/__",
 "999999",
 "OK",
 "CANCEL"};

 TEDINFO rs_tedinfo[] = {
 0L, 1L, 2L, 3, 6, 2, 0x1180, 0x0, -1, 14,1,
 3L, 4L, 5L, 3, 6, 0, 0x1180, 0x0, -1, 9,18,
 6L, 7L, 8L, 3, 6, 0, 0x1180, 0x0, -1, 7,15};

 OBJECT rs_object[] = {

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 228 / 321

 -1, 1, 5, G_BOX, NONE, 0x30, 0x21121L, 0,0, 41,12,
 2, -1, -1, G_BOXTEXT, NONE, SHADOWED, 0x0L, 2,1, 37,1,
 3, -1, -1, G_FTEXT, EDITABLE, NORMAL, 0x1L, 12,3, 17,1,
 4, -1, -1, G_FTEXT, EDITABLE, NORMAL, 0x2L, 13,5, 14,1,
 5, -1, -1, G_BUTTON, 0x5, SHADOWED, 0x9L, 2,9, 17,1,
 0, -1, -1, G_BUTTON, 0x27, SHADOWED, 0xAL, 22,9, 17,1};

 long rs_trindex[] = {
 0L};

#define NUM_OBS 6

/**
* Main program.
**/
main ()
{
 appl_init (); /* Init application. */
 open_vwork ();/* Open virtual workstation. */
 do_acc ();/* Go do our thing.*/
}

/**
* do_acc ()
* Initialize and handle desk accessory.
**/
do_acc ()
{
 int x; /* Loop variable. */

 /* Place our accessory on the menu bar. */
 menu_id = menu_register (gl_apid, "Date/Time ");

 /* Initialize resource tree. */
 rs_trindex[0] = (long) rs_object;
 datedial_addr = (OBJECT *) rs_trindex[0];
 rs_object[1].ob_spec = (char *) &rs_tedinfo[0];
 rs_object[2].ob_spec = (char *) &rs_tedinfo[1];
 rs_object[3].ob_spec = (char *) &rs_tedinfo[2];
 rs_tedinfo[0].te_ptext = rs_strings[0];
 rs_tedinfo[0].te_ptmplt = rs_strings[1];
 rs_tedinfo[0].te_pvalid = rs_strings[2];
 rs_tedinfo[1].te_ptext = rs_strings[3];
 rs_tedinfo[1].te_ptmplt = rs_strings[4];
 rs_tedinfo[1].te_pvalid = rs_strings[5];
 rs_tedinfo[2].te_ptext = rs_strings[6];
 rs_tedinfo[2].te_ptmplt = rs_strings[7];
 rs_tedinfo[2].te_pvalid = rs_strings[8];
 rs_object[4].ob_spec = rs_strings[9];
 rs_object[5].ob_spec = rs_strings[10];

 /* Set all the objects' coordinates. */
 for (x=0; x<NUM_OBS; ++x)
 rsrc_obfix (datedial_addr, x);

 /* Wait forever for messages. */
 while (1) {
 evnt_mesag (msg_buf);

 switch (msg_buf[0]) {/* msg_buf[0] is message type. */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 229 / 321

 /* Open our accessory. */
 case AC_OPEN:
 if (msg_buf[4] == menu_id)
 do_date ();
 }
 }
}

/***
* do_date ()
* Loads the resource file and handles the dialog box.
***/
do_date ()
{
 int dial_x, /* Dialog's X coord.*/
 dial_y, /* Dialog's Y coord.*/
 dial_w, /* Dialog's width.*/
 dial_h, /* Dialog's height. */
 choice, /* Exit button clicked from dialog. */
 okay; /* Flag indicating if entered date valid. */

 char date_str[8],/* String to hold date. */
 time_str[10]; /* String to hold time. */

 char *string; /* Temp string pointer. */

 graf_mouse (ARROW, 0L);

 get_time (time_str);
 get_date (date_str);

 /* Copy system time and date into dialog box, */
 string = get_tedinfo_str (datedial_addr, TIMEFLD);
 strcpy (string, time_str);
 string = get_tedinfo_str (datedial_addr, DATEFLD);
 strcpy (string, date_str);

 /* Prepare dialog box for drawing, and init flag. */
 form_center(datedial_addr,&dial_x,&dial_y,&dial_w,&dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 okay = TRUE;

 /* This loop repeats until the user clicks the CANCEL */
 /* or until the user enters a valid date and clicks OK. */
 do {
 /* Draw dialog and allow user to manipulate it. */
 objc_draw(datedial_addr,0,8,dial_x,dial_y,dial_w,dial_h);
 choice = form_do (datedial_addr, TIMEFLD);

 /* Reset the state of the chosen button. */
 datedial_addr[choice].ob_state = SHADOWED;

 /* If OK was clicked, check entered date and set system */
 /* date if date entered is valid, */
 if (choice == OKBUTN) {
 okay = chk_date (datedial_addr);
 if (okay)

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 230 / 321

 set_date (datedial_addr);
 }
 }
 while (okay == FALSE && choice == OKBUTN);

 /* Get rid of the dialog box. */
 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
}

/***
* chk_date ()
* Examines the strings in dialog for a valid date
* and valid time.
***/
chk_date (dial_addr)
OBJECT *dial_addr; /* Address of dialog box. */
{
 int mnth, day, year, /* Date and time broken into integers.*/
 hour, min, sec,
 space, /* Flag for bad chars in time string. */
 okay,/* Flag indicating valid time & date. */
 x; /* Loop variable. */

 char m[3], d[3], y[3], /* Date & time as character arrays. */
 h[3], mn[3], s[3],
 ap[3];/* "AM" or "PM" */

 char *date_str, /* Pointer to string containing date. */
 time_str; / Pointer to string containing time. */

 /* Init date and time integers to error condition. */
 mnth = day = year = hour = min = sec = -1;

 /* Get address of string containing date. */
 date_str = get_tedinfo_str (dial_addr, DATEFLD);

 /* Convert date string to integer format. */
 if (strlen (date_str) == 6) {
 strncpy (m, date_str, 2);
 m[2] = 0;
 strncpy (d, &date_str[2], 2);
 d[2] = 0;
 strncpy (y, &date_str[4], 2);
 y[2] = 0;
 mnth = atoi (m);
 day = atoi (d);
 year = atoi (y);
 }

 /* Get address of string containing time. */
 time_str = get_tedinfo_str (dial_addr, TIMEFLD);

 /* Check for spaces in time string. */
 space = FALSE;
 for (x=0; x<6; ++x)
 if (time_str[x] == ' ')
 space = TRUE;

 /* Convert time string to integer format. */
 if ((strlen (time_str) == 8) && !space) {

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 231 / 321

 strncpy (h, time_str, 2);
 h[2] = 0;
 strncpy (mn, &time_str[2], 2);
 mn[2] = 0;
 strncpy (s, &time_str[4], 2);
 s[2] = 0;
 hour = atoi (h);
 min = atoi (mn);
 sec = atoi (s);
 strcpy (ap, &time_str[6]);
 }

 /* Examine time and date for validity. */
 if (mnth < 1 | mnth >12 | day < 1 | day > 31
 | year < 0 | year > 99 | hour < 0 | hour > 23 | min < 0
 | min > 59 | sec < 0 | sec > 59 |
 ((strcmp (ap,"AM")!=MATCH) && (strcmp (ap,"PM")!=MATCH))) {
 okay = FALSE;
 form_alert(1, "[1][Date or time not valid!][CONTINUE]"
);
 }
 else
 okay = TRUE;

 return (okay);
}

/***
* set_date ()
* Sets the system time and date to the values
* entered into the dialog box.
***/
set_date (dial_addr)
OBJECT *dial_addr; /* Address of dialog box. */
{
 char *string; /* Temporary string pointer. */
 char s[3];/* Temporary string storage. */
 int h,/* Work variable.*/
 time, /* Time in system format.*/
 date; /* Date in system format.*/

 /* Get address of string containing time. */
 string = get_tedinfo_str (dial_addr, TIMEFLD);

 /* Extract "hours" portion and convert to integer. */
 strncpy (s, string, 2);
 h = atoi (s);

 /* Adjust hour to the 24-hour clock format. */
 if ((strcmp (&string[6], "PM") == MATCH) && (h != 12))
 h += 12;
 if ((strcmp (&string[6], "AM") == MATCH) && (h == 12))
 h = 0;

 /* Shift bits into the proper position and place them */
 /* into the time integer. */
 h = h << 11;
 time = h;

 /* Get the "minutes" portion, convert to integer, */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 232 / 321

 /* shift bits and place them into the time integer. */
 strncpy (s, &string[2], 2);
 h = atoi (s);
 h = h << 5;
 time = time | h;

 /* Process the "seconds" portion of the time. */
 strncpy (s, &string[4], 2);
 h = atoi (s) / 2;
 time = time | h;

 /* Set the system clock to the new time. */
 Tsettime (time);

 /* Get the address of the string containing the date. */
 string = get_tedinfo_str (dial_addr, DATEFLD);

 /* Process the "month" portion. */
 strncpy (s, string, 2);
 h = atoi (s);
 h = h << 5;
 date = h;

 /* Process the "day" portion. */
 strncpy (s, &string[2], 2);
 h = atoi (s);
 date = date | h;

 /* Process the "year" portion. */
 strncpy (s, &string[4]);
 h = atoi (s) - 80;
 h = h << 9;
 date = date | h;

 /* Set the system to clock to the new date. */
 Tsetdate (date);
}

/***
* get_time ()
* Gets system time and converts it to string format.
***/
get_time (string)
char *string; /* Pointer to string in which to store time. */
{
 int time, /* Time in system format. */
 hour, min, sec; /* Time broken down into separate ints. */

 char s[3];/* "AM" or "PM" */

 /* Get system time & break down into individual components. */
 time = Tgettime ();
 sec = (time & 0x001f) * 2;
 min = (time >> 5) & 0x003f;
 hour = (time >> 11) & 0x001f;

 /* Convert system 24-hour format to regular 12-hour format. */
 if (hour > 11) {
 strcpy (s, "PM");
 if (hour > 12)

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 233 / 321

 hour -= 12;
 }
 else {
 strcpy (s, "AM");
 if (hour == 0)
 hour = 12;
 }

 /* Convert and add hours to time string. */
 if (hour < 10) {
 string[0] = '0';
 sprintf (&string[1], "%d", hour);
 }
 else
 sprintf (string, "%d", hour);

 /* Convert and add minutes to time string. */
 if (min < 10) {
 string[2] = '0';
 sprintf (&string[3], "%d", min);
 }
 else
 sprintf (&string[2], "%d", min);

 /* Convert and add seconds to time string. */
 if (sec < 10) {
 string[4] = '0';
 sprintf (&string[5], "%d", sec);
 }
 else
 sprintf (&string[4], "%d", sec);

 /* Add "AM" or "PM" to time string. */
 strcpy (&string[6], s);
}

/***
* get_date ()
* Gets system date and converts it to string format.
***/
get_date (string)
char *string; /* Pointer to string that will contain the date. */
{
 int date,/* Date in system format. */
 day, mnth, year; /* Date broken into components. */
 /* Get system date and convert to individual components. */
 date = Tgetdate ();
 day = date & 0x001f;
 mnth = (date >> 5) & 0x000f;
 year = ((date >> 9) & 0x007f) + 80;
 year = year % 100;

 /* Convert and add "months" portion to date string. */
 if (mnth < 10) {
 string[0] = '0';
 sprintf (&string[1], "%d", mnth);
 }
 else
 sprintf (string, "%d", mnth);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 234 / 321

 /* convert and add "days" portion to date string. */
 if (day < 10) {
 string[2] = '0';
 sprintf (&string[3], "%d", day);
 }
 else
 sprintf (&string[2], "%d", day);

 /* Convert and add "year" portion to date string. */
 sprintf (&string[4], "%d", year);
}

/***
* get_tedinfo_str ()
* Returns a pointer to an editable string in a
* dialog box.
***/
char *get_tedinfo_str (tree, object)
OBJECT *tree; /* Address of dialog box. */
int object; /* Object that contains the string. */
{
 TEDINFO *ob_tedinfo; /* Pointer to a tedinfo structure. */

 ob_tedinfo = (TEDINFO *) tree[object].ob_spec;
 return (ob_tedinfo->te_ptext);
}

/***
* open_vwork ()
* Opens a virtual workstation.
***/
open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open*/
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

Program Listing #2

#define DATEDIAL 0/* TREE */
#define TIMEFLD 2/* OBJECT in TREE #0 */
#define DATEFLD 3/* OBJECT in TREE #0 */
#define OKBUTN 4/* OBJECT in TREE #0 */
#define CANBUTN 5/* OBJECT in TREE #0 */
 •

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 235 / 321

CHAPTER 24 - THE GRAPHICS MANAGER LIBRARY

Certainly all of us have used GEM's various constructions such as windows and dialog boxes. When
we use these things we don't pay much attention to what is going on. We just take it for granted that
when we drag the lower-right corner of a window with the mouse pointer the window will get larger,
or that when we grab its title bar we'll be able to move it about the screen.

What you may not realize is that these routines that control windows and dialog boxes and the other
GEM constructions are actually "high-level" routines that call various other "low-level" routines on
the AES and VDI. We've touched on this subject before when we talked about the VDI and why those
graphics routines were called "primitives" and when we learned that it's not a good idea to call VDI
mouse functions if you're using AES functions that may also call the VDI mouse routines.

Specifically, what we'll be talking about are a few of the AES functions used by windows and dialog
boxes. We're going to be dropping down a level, as it were, from the sophisticated window and
dialog routines to some of the functions these routines depend upon in order to do their tricks.

The Sample Program

When you run this chapter's program, a large rectangle will be drawn on the screen. The program
will then wait for input via the mouse. The large rectangle is a border within which all the program's
activities will be contained.

Hold down the left mouse button and drag the mouse pointer down to the right. A box that expands
and contracts with the movement of the mouse pointer will be drawn on the screen. When you
release the mouse button, the final box will be filled in. In the lower right corner of the box is a small
button. By placing the mouse pointer over this button and holding down the left button, you'll be
able to change the size of the box by dragging on its corner. Note that, if you try to resize the box
beyond the boundary we've set up, the program will ignore your request.

If you place the mouse pointer inside the box and hold down the left button, the mouse pointer will
change into a hand that you can use to reposition the box anywhere on the screen, as long as the box
stays within the border we've drawn. (As a matter of fact, the program won't allow you to drag the
box outside of the border.)

To get out of the sample program and back to the Desktop, hold down the right mouse button.

Déjà Vu

I'm sure you recognize all of the effects we're using in our sample program. We've spent much time
on our STs moving and sizing boxes. These routines are the foundations upon which the more
advanced abilities of GEM are built. Fortunately, these routines are available to us as GEM
programmers, so that we can construct our own specialized, GEM-like routines.

All of the functions we're using to simulate GEM in this program are part of the AES Graphics
Manager library. We've used a couple of these functions, like graf_handle() and graf_mouse(), in the
past. We've also used most of the Graphics Manager's functions indirectly. For instance, when we
studied dialog boxes, we talked about a function called form_dial() that, among other things, allowed
us to have a expanding or shrinking box displayed on the screen. The form_dial() function performed
some of its tricks by calling the graf_growbox() and graf_shrinkbox() functions found in the AES
Graphics Manager. (Note that all the Graphics Manager functions start with the prefix graf.) If we
wish to draw an animated expanding box of our own, we use the call

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 236 / 321

graf_growbox(x1, y1, w1, h1, x2, y2, w2, h2);

where the first four arguments are the X coordinate, Y coordinate, width, and height of the starting
rectangle; and the second four arguments are the X coordinate, Y coordinate, width, and height of
the final rectangle. This function will return a zero upon failure or a positive integer if successful. Its
complementary function, the one that draws an animated shrinking box, is called in the same way:

graf_shrinkbox(x1, y1, w1, h1, x2, y2, w2, h2);

Our Program

In our sample program, we haven't used graf_growbox() or graf_shrinkbox(), but we have used many
of the other functions available in the Graphics Manager library.

Look at the function do_box(). Near the top you'll see a nested while loop. The first while is set up to
repeat until we receive acceptable coordinates for the box the user wants to draw. The inner while
loop forces the program to wait for a press of the left mouse button. We continually poll the mouse's
state until we detect that the button has been pressed. The function call we use to check the
mouse's state is:

graf_mkstate(&mouse_x, &mouse_y, &mouse_but, &key_state);

where &mouse_x, &mouse_y, &mouse_but, and &key_state are the addresses of the integers that
will receive the mouse's current X coordinate, the mouse's current Y coordinate, the mouse's current
button state, and the state of the keyboard's Shift, Control and Alternate keys. The integer
mouse_but will contain a 1 if the left button was pressed, a 2 if the right button was pressed and a 3
if both were pressed. The integer key_state will contain a 1 if the right Shift was pressed, a 2 if the
left Shift was pressed, a 4 if the Control key was pressed, and an 8 if the Alternate key was pressed.
For multiple key presses, we would just add the appropriate values together. (You remember how to
handle bit settings, right?)

When we detect that the left mouse button has been pressed, we get the mouse's coordinates and
use them as the coordinates for the upper-left corner of the box. The next step, then, is to allow the
user to drag the mouse to outline the box that he wants. We do this with the call

graf_rubberbox(box_x, box_y, min_w, min_h, &box_w, &box_h);

where box_x and box_y are the coordinates of the box's upper-left corner, min_w and min_h are the
box's minimum allowable size in pixels, and &box_w and &box_h are the addresses of integers where
the final selected width and height of the box will be stored.

After our call to graf_rubberbox(), we'll have all the information we need to draw the box the user
selected. But before we actually draw the box, we must check to make sure that the box will fit inside
our boundary. In the if statement that checks this condition, you'll notice that we're using the values
stored in work_out[0] and work_out[1]. The work_out[] array is one of our GEM global arrays, and its
elements were filled in when we initialized the application program. Element 0 of this array contains
the width of our device (in this case, the device is the screen, so it is measured in pixels), and
element 1 contains the height of our device.

Once we've drawn the box, we enter another nested while loop. The outer loop checks for a
program-exit condition, and the inner loop again polls the mouse. If the right mouse button is
pressed, we exit the program. If the left mouse button is pressed, we have to check the location of
the mouse, so that we know whether the user wants to move the box or size it.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 237 / 321

If the user is holding down the mouse button while on the box's sizing button, we need to call
graf_rubberbox() again to let the user choose the new size of the box. There are two complications.
The first is something we've already handled before, and that is that we can't allow the size of the
new box to exceed the boundary that we've set up.

The second problem arises when the user chooses to make the box smaller. In this case it isn't good
enough to just redraw the box at it's new size, because we'll be leaving on the screen parts of the old
box. To erase the leftovers, we first have to calculate their size and then redraw them in the
background color. Of course, we could simplify matters by erasing the entire old box before we draw
the new one, but that's an inelegant solution and one that the user would catch us using, since he'd
be able to see us erasing the old box. We want our programs to operate so smoothly that they seem
magical. The entire resizing process is handled in our function size_box().

If the user has pressed the left mouse button while within the box (but not on the box's sizing
button), we have to allow the user to move the box to a new location. Our function move_box()
illustrates how to do this.

We can get the new location of a box with the call

graf_dragbox(box_w, box_h, box_x, box_y,bound_x,bound_y,bound_w,
 bound_h, &end_x, &end_y ;

where the integers box_w and box_h are the box's width and height; box_x and box_y are the
addresses of integers where the box's new X and Y coordinates will be stored; the integers bound_x,
bound_y, bound_w, and bound_h are the coordinates, width, and height of the boundary within
which the box must remain; and &end_x and &end_y are the addresses of integers where the box's
new X and Y coordinates will be stored.

Once we get the coordinates of the new box, all we must do is erase the old box and draw the new
one.

Some Leftovers

There are a couple of functions in the Graphics Manager library that we haven't looked at yet. One of
them is a function that allows you to draw an animated box moving from one location to another.
The call looks like this:

graf_movebox(box_w, box_h, old_x, old_y, new_x, new_y);

Here, the integers box_w and box_h are the width and height of the box, the integers old_x and
old_y are the current X and Y coordinates of the box, and the integers new_x and new_y are the final
coordinates of the box. Note the spelling of the function call; it's different than the spelling in the
Megamax manual. If you try to call the function using the manual's spelling, your program will not
link properly because the linker won't be able to find the label. Anyway, this function is really of
limited use; I can't think of any place where I've seen it in action.

Finally, the two remaining functions, graf_slidebox() and graf_watchbox() are used with object trees.
The first is the function that allows sliders, such as those found in windows, to work; and the second
allows us to track the mouse in and out of a particular rectangle while the mouse button is held
down. These functions would be useful should we ever want to write our own custom dialog box
(form_do()) routines.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 238 / 321

Put on the Coffee

This completes our tour of the AES Graphics Manager library. You should now have an even clearer
idea of how some of GEM's routines work, and you should be able to construct many handy GEM-like
routines with the information you've learned.

Program Listing #1
/**/
/*C-manship, Listing 1*/
/* CHAPTER 24 */
/*Developed with Megamax C*/
/**/
#include <obdefs.h>
#include <gemdefs.h>

#define TRUE1
#define FALSE 0
#define SOLID 1
#define PATTERN 2
#define LEFT1
#define RIGHT 2

/* GEM arrays */
int work_in[11], work_out[57], contrl[12], intin[128],
 ptsin[128], intout[128], ptsout[128];

int handle,/* Application handle. */
 dum; /* Dummy storage.*/

/**
* Main program.
**/
main ()
{
 appl_init (); /* Init application. */
 open_vwork ();/* Open virtual workstation. */
 do_box ();/* Go do our thing.*/
 v_clsvwk (handle);/* Close virtual workstation.*/
 appl_exit (); /* Back to the desktop.*/
}

/**
* do_box ()
*
* Calls screen setup function and handles the mouse,
* calling the appropriate box functions based on the
* mouse's coordinates and button state.
**/
do_box ()
{
 int mouse_x,/* Mouse X coordinate. */
 mouse_y,/* Mouse Y coordinate. */
 mouse_but,/* Mouse button state. */
 box_x,/* Selected box X coord. */
 box_y,/* Selected box Y coord. */
 box_width,/* Selected width of box.*/
 box_height, /* Selected height of box. */
 exit, /* Program exit flag.*/

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 239 / 321

 coords_ok;/* Proper coordinates flag.*/

 setup_scrn ();
 coords_ok = FALSE;
 graf_mouse (ARROW, 0L);

 /* Wait for box coordinates within the boundary. */
 while (!coords_ok) {

 /* Poll for left button press. */
 mouse_but = 0;
 while (mouse_but != LEFT)
 graf_mkstate (&mouse_x, &mouse_y, &mouse_but, &dum);

 /* Get coordinates for the box. */
 box_x = mouse_x;
 box_y = mouse_y;
 graf_rubberbox(box_x,box_y,20,20,&box_width,&box_height);

 /* Allow only a box whose size fits within the */
 /* boundary to be drawn. */
 if (box_x > 20 && box_x + box_width < work_out[0]-21 &&
 box_y > 20 && box_y + box_height < work_out[1]-21) {
 draw_box (box_x, box_y, box_width, box_height);
 coords_ok = TRUE;
 }
 }
 exit = FALSE;
 while (!exit) {
 mouse_but = 0;

 /* Wait for press of left or right mouse button. */
 while (mouse_but != LEFT && mouse_but != RIGHT)
 graf_mkstate (&mouse_x, &mouse_y, &mouse_but, &dum);

 if (mouse_but == LEFT)

 /* If the mouse was on the sizing button, */
 /* allow the user to resize the box.*/
 if (chose_size (mouse_x, mouse_y, box_x, box_y,
 box_width, box_height))
 size_box (box_x, box_y, &box_width, &box_height);

 /* If the mouse was anywhere else in the */
 /* box, allow the user to move the box.*/
 else if (chose_move (mouse_x, mouse_y, box_x, box_y,
 box_width, box_height))
 move_box (&box_x, &box_y, box_width, box_height);

 if (mouse_but == RIGHT)
 exit = TRUE;
 }
}

/**
* draw_box ()
*
* Draws a shaded box with a button in the lower right
* corner.The input is the X and Y coordinates of
* the box's upper left corner and its width and height.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 240 / 321

**/
draw_box (x, y, w, h)
int x, y, w, h;
{
 int pxy[4];

 graf_mouse (M_OFF, 0L);

 /* Draw the main body of the box. */
 vsf_interior (handle, PATTERN);
 vsf_style (handle, 5);
 vsf_color (handle, BLACK);
 pxy[0] = x;
 pxy[1] = y;
 pxy[2] = x + w - 1;
 pxy[3] = y + h - 1;
 v_bar (handle, pxy);

 /* Draw the box's sizing button. */
 vsf_interior (handle, SOLID);
 pxy[0] = x + w - 10;
 pxy[1] = y + h - 10;
 v_bar (handle, pxy);

 graf_mouse (M_ON, 0L);
}

/**
* size_box ()
*
* Resizes a box.The input is the X and Y coordinates
* of the box and pointers to its width and height.The
* function returns the new width and height by way
* of the pointers, thus replacing the old values of
* the width and height.
**/
size_box (x, y, w, h)
int x, y, *w, *h;
{
 int old_w, old_h;
 int pxy[4];

 old_w = *w;
 old_h = *h;

 /* Get the new box size. */
 graf_rubberbox (x, y, 20, 20, w, h);

 /* Don't allow the new box to exceed the boundary. */
 if (x + *w > work_out[0]-20 | y + *h > work_out[1]-20) {
 *w = old_w;
 *h = old_h;
 }

 /* If the size is okay, draw the box. */
 else {
 draw_box (x, y, *w, *h);

 /* Erase the leftover portions (if */
 /* any) of the old box.*/

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 241 / 321

 graf_mouse (M_OFF, 0L);
 vsf_interior (handle, SOLID);
 vsf_color (handle, WHITE);
 if (*w < old_w) {
 pxy[0] = x + *w;
 pxy[1] = y;
 pxy[2] = x + old_w - 1;
 pxy[3] = y + old_h - 1;
 v_bar (handle, pxy);
 }
 if (*h < old_h) {
 pxy[0] = x;
 pxy[1] = y + *h;
 pxy[2] = x + old_w - 1;
 pxy[3] = y + old_h - 1;
 v_bar (handle, pxy);
 }
 graf_mouse (M_ON, 0L);
 }
}

/**
* move_box ()
*
* Repositions a box.The input is a pointer to the
* box's X coord., a pointer to the box's Y coord., and
* the box's width and height.The new X and Y
* coordinates are returned from the function by way of
* the pointers, thus replacing the old X and Y values.
**/
move_box (x, y, w, h)
int *x, *y, w, h;
{
 int old_x, old_y;
 int pxy[4];

 old_x = *x;
 old_y = *y;
 graf_mouse (FLAT_HAND, 0L);

 /* Get new location for the box. */
 graf_dragbox (w, h, *x, *y, 21, 21,
 work_out[0]-41, work_out[1]-41, x, y);

 /* Erase the old box. */
 graf_mouse (M_OFF, 0L);
 vsf_color (handle, WHITE);
 vsf_interior (handle, SOLID);
 pxy[0] = old_x;
 pxy[1] = old_y;
 pxy[2] = old_x + w - 1;
 pxy[3] = old_y + h - 1;
 v_bar (handle, pxy);

 /* Draw the new box. */
 draw_box (*x, *y, w, h);

 graf_mouse (M_ON, 0L);
 graf_mouse (ARROW, 0L);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 242 / 321

/**
* chose_size ()
*
* Returns a boolean value based on whether the mouse
* button was pressed while over the box's sizing
* button.The input is the X and Y coordinates of
* the mouse, the X and Y coordinates of the box, and
* the width and height of the box.
**/
chose_size (mx, my, bx, by, bw, bh)
int mx, my, bx, by, bw, bh;
{
 if (mx>bx+bw-10 && mx<bx+bw && my>by+bh-10 && my<by+bh)
 return (TRUE);
 else
 return (FALSE);
}

/**
* chose_move ()
*
* Returns a boolean value based on whether the mouse
* button was pressed while over an area of the box
* other than the sizing button.The input is the X
* and Y coordinates of the mouse, the X and Y
* coordinates of the box, and the width and height of
* the box.
**/
chose_move (mx, my, bx, by, bw, bh)
int mx, my, bx, by, bw, bh;
{
 if (mx>bx && mx<bx+bw && my>by && my<by+bh)
 return (TRUE);
 else
 return (FALSE);
}

/**
* setup_scrn ()
*
* Prepares the screen by clearing the workstation and
* drawing a border.
**/
setup_scrn ()
{
 int pxy[10];

 graf_mouse (M_OFF, 0L);

 /* Erase the screen. */
 v_clrwk (handle);

 /* Draw the border. */
 pxy[0] = 20;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 243 / 321

 pxy[1] = 20;
 pxy[2] = work_out[0] - 20;
 pxy[3] = 20;
 pxy[4] = work_out[0] - 20;
 pxy[5] = work_out[1] - 20;
 pxy[6] = 20;
 pxy[7] = work_out[1] - 20;
 pxy[8] = 20;
 pxy[9] = 20;
 v_pline (handle, 5, pxy);

 graf_mouse (M_ON, 0L);
}

/***
* open_vwork ()
* Opens a virtual workstation.
***/
open_vwork ()
{
 int i;

 /* Get graphics handle, initialize the GEM arrays and open*/
 /* a virtual workstation. */

 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 244 / 321

CHAPTER 25 - THE MYSTERY OF COMPILE AND LINK

A while ago, someone came up to me at a users' group meeting and told me that he was confused
about what actually goes on during a compilation and link, as well as about the different types of files
we must manipulate when programming in C -- specifically, .O and .H files. Luckily for you (he said,
tongue in cheek), I couldn't resist turning that question into a chapter for C-manship. So we're going
to take a short break from programming and dig into the innards of these wonderful programs we
call compilers.

Stating the Obvious

There is one thing that we all have to know before we can go any further with this topic. To some
what I'm about to say may be an obvious fact, to others it may come as a revelation. But whatever
group you may fall into, this fact is essential in understanding how your C compiler actually works.

Fact: Every computer understands only one language, machine language, and every program, no
matter what language it's written in, must sooner or later be reduced to machine language. Of
course, to completely understand the above fact, we must know exactly what machine language is. If
you were to get a listing of a machine-language program, what you would have would be a long list
of numbers. There would be no variable names, no labels of any kind, no strings of characters.
Nothing but numbers. Those numbers represent the instructions the machine understands and the
data it needs to perform those instructions. And if we wanted to get very literal about all this, the
numbers in our list would all be binary numbers -- that is, consisting of nothing but zeros and ones.
Usually, to make things easier for the programmer, "memory dumps" produce listings in hexadecimal
format.

How a program is converted to machine code varies with the language we're using. For example,
when we run an uncompiled BASIC program, each statement in the program is converted into
machine language as it's encountered, rather than the whole program being converted at once. This
on-the-fly conversion is why BASIC programs are so slow. BASIC is an example of an "interpreted"
language.

Assembly-language programs are as close to machine language as you can get. Each assembly-
language statement represents a single machine-language instruction. For this reason, many people
confuse the terms "assembly language" and "machine language," but they are really not the same.
Assembly language uses "mnemonics" (easy-to-remember names) for each of the machine-language
instructions to make it easier for programmers to remember them. An assembly-language program is
not interpreted; it is "assembled." During the assembly process, each of the mnemonics is converted
to its machine-language equivalent.

Finally, we get to "compiled" languages, of which C is one. When a program is compiled, all the
instructions in the source code are converted into machine language, so that we end up with a
runnable program, one that doesn't need to be interpreted. The difference between a language like
C and a language like assembly is that C source code does not have the direct one-to-one relationship
with machine language that assembly source code does. A single statement in C may be compiled
into several machine language instructions. Still, C programs run much faster than BASIC programs,
because the entire conversion is done before the program is run.

Compilation

What exactly goes on during a compilation depends on the compiler you're using. There are no set
rules, except that it's the compiler's responsibility to take the source code and turn it into object
code, the machine-language version of the program. To accomplish this, some compilers make
several "passes" over the source code, while others, such as Megamax C, make only one pass.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 245 / 321

The one-pass compiler is much faster than the others, but that speed comes with certain
disadvantages. For instance, a multi-pass compiler usually converts the source code into assembly
code, then assembles the assembly code into the object code. (The Alcyon compiler works this way.)
One of the advantages of this multi-step process is that the assembly code that is produced by the
compiler can be modified by the programmer before it is assembled and linked. This way, the
programmer can do some code optimizing on sections of the program that may not run as fast as
he'd like. In addition, the assembly-language listings produced by the compiler can be helpful in
locating hard-to-find bugs in the program (assuming, of course, that you are familiar with 68000
assembly language).

The Megamax compiler is a one-pass compiler. It takes our source code and converts it directly into a
machine-language module. Because no assembly-language file is created during the compilation, we
don't have the option of "tweeking" the program. However, to make up for this, Megamax allows us
to place assembly-language code directly into our source code, allowing us to speed up sections of
our programs that may need optimizing. In addition, we can use a disassembler to turn the object
module into assembly code.

Another important thing we need to know about the compiler is that it can substitute machine-
language instructions only for text within the source code that it recognizes as C keywords or C
operations. Generally, the process goes something like this: the compiler grabs a line of source code
and compares what it finds there to a list of instructions it's able to handle. If it finds a match, it
writes to the object file it's creating the machine-language code that represents the C instruction it
found. If it doesn't find a match, it sets aside the instruction and goes on to the next.

For example, let's say the compiler has just read in this line:

for (x=0; x<10; ++x)

This is a standard for/next loop, and the compiler knows exactly what to do with it. The keyword for
will be in its list of acceptable instructions and the values to use in the loop are found within the
source line itself. The only stumbling block is the variable x. If x has been defined properly, its address
will be found in a table of addresses the compiler has built. If x isn't found in the table, the compiler
will generate an error.

Now let's say the compiler reads in this line:

v_bar(handle, pxy);

The compiler can check for the variables handle and pxy to make sure they're in its table. If they're
found in the table, the compiler is satisfied. If they're not in the table, an error is generated. But what
about the label v_bar()? It's a function, not a keyword, so it won't be found in the compiler's list of
instructions. The compiler has no idea of what to do with v_bar(), so it just assumes that it'll run
across the label for this function somewhere else in the program. It leaves a space for its address and
moves on to the next line.

If v_bar() happened to be one of our own functions, the compiler would come across it sooner or
later and store its address in the space it reserved for that address. (This is called "back patching,"
and not all compilers do this. Sometimes patching in the address is left to the linker.) But, as you
know, v_bar() is a VDI function. The function itself will not be found in our source code. Does this
little problem upset the compiler? Nope. The compiler couldn't care less about the absence of a
function. It'll just assume that the function we're calling will be found in another module, and pass
the problem along to the linker.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 246 / 321

Linking

It's important to realize that the code produced by the compiler, even though it's in machine-
language form, is not executable. In that object module are many "references" that need to be
resolved, such as v_bar() from the above example. Essentially, what the compiler has passed on to
the linker is an object module containing all the machine code generated from our source code, but
missing much of the machine-language code it needs to become executable.

When the compiler came across our call to v_bar(), for instance, it didn't know where the code for
this mysterious function was -- so it left a blank for the linker to handle. When we link the program,
the linker will add the code needed to perform v_bar() and patch the address of that code into the
blank space left by the compiler.

What is the address of v_bar()? Well, we don't know. All (well, almost all) of the programs that run
on an ST must be "relocatable" -- that is, they must be able to run anywhere in your ST's memory.
This causes a problem for the linker when it comes to addresses, because the addresses of functions
and data will change depending on where the program is loaded in memory. I said the linker must
supply the addresses, right? How can the linker supply an address for a relocatable program that has
yet to be loaded in memory?

In a way, it can't. All the addresses generated during the compile and link process are actually offsets
from the beginning of the program. The beginning of the program is given the address of zero. When
you load an executable program into your ST's memory, the program loader replaces these offsets
with real addresses. It sounds tricky, but there's really nothing to it. All the loader has to do is add the
offsets already generated during the compile and link to the address the program is being loaded at.
This sum will be an absolute address. Simple, eh?

Although we don't know at link time the absolute address of v_bar() (or any other function), we do
know where the code for calling this function on a machine-language level can be found: it's in
Megamax's system library, SYSLIB. In fact, SYSLIB contains the code for calling all the GEM and TOS
functions listed in your Megamax manual. (Other compilers have a similar system library, but its
name may be different.)

Notice I said above that SYSLIB contains the code for calling all the functions. The machine-language
code that actually performs v_bar() and the other system functions are built in to your ST's operating
system; it's part of GEM. The code found in SYSLIB "binds" the code generated by the compiler to the
OS routines. This binding is necessary because the ST's operating system requires a lot of special
handling. For instance, a VDI call needs to have some arrays filled in before it can do its work. When
programming in C, these arrays are invisible to us. But if we were programming in assembly
language, we'd have to handle these arrays ourselves.

So the linker takes the code that was generated by the compiler and attempts to resolve all the
missing addresses. In its attempt to do this, the linker will search through any other files to which we
may be linking, as well as its own system files. When the linker finds the proper label in its table, it
adds the machine code for the function to our already existing object module and patches in the
address of the code. This continues, with the linker constantly adding code and resolving addresses,
until it gets to the end of the object code module, at which point, we have a complete program.

The File Types

Some people may be confused about all the different file types we encounter when putting together
a program in C. There are really only three we need to be concerned with: .O, .H files and libraries.

The .O files are the object files we've been talking about. They are in machine-code form, but are not
as yet executable. They need to be combined by the linker with the code that will make them
complete programs.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 247 / 321

When developing a program in C, it is advantageous to compile finished portions of the program into
separate .O modules. This technique greatly speeds up compile time as our program gets bigger and
bigger, since the code we've written previously doesn't need to be compiled every time; it just has to
be linked to our new code.

Let's write a simple program that will illustrate some of the things we've been talking about. First,
type in the following code under the filename TEST.C and compile it:

main ()
{

print_text ("This is a test.");
gemdos (0x1);

}

After compilation you should have the file TEST.O on your disk. This file contains the machine-code
equivalent of the C program shown above. The compiler has converted everything in the source code
except the call to print_text(). The compiler can't do anything about this function because it doesn't
know where or what it is. Did the compiler complain? Did you get an error? No. The compiler
assumed you know what you're doing and left the missing-function problem for the linker to solve.

Now try to link TEST.O. What happened? After searching through all its libraries in vain, the linker
told us that it didn't know anything about a function called print_text(). The linker passed the
problem back to us. We have to solve the problem by writing the code for print_text(). Type the
following under the filename PRINT.C and compile it:

print_text (string)
char *string;
{

printf ("%s\n", string);
}

You should now have on your disk the files TEST.O and PRINT.O. All we have to do to get an
executable program is to link these two files together. Do that now, and then run the resultant
program. Hurray! It works!

(Of course, the linker did more than just put together our two object modules; it also added other
necessary code, such as the printf() routines from the system libraries.)

Megamax's libraries (SYSLIB, DOUBLE.L, and ACC.L) are really the same thing as .O files. They each
contain the object code necessary to perform certain functions. We already talked about SYSLIB; you
know what it is. The file DOUBLE.L is a machine-language module that, when linked into your
program, replaces the regular floating point math routines with more accurate ones, allowing you to
get greater precision (while sacrificing a little on speed). The ACC.L file needs to be linked to your
program whenever you're writing a desk accessory, since desk accessories have to be initialized
differently than regular programs.

Finally, we have the .H files. There is really no mystery here. These "header" files are included with
your compiler as a convenience. Because there are hundreds and hundreds of standard names for
various GEM parameters, as well as various standard structures that are used by GEM programmers,
it would be silly to have to type all that stuff in every time we want to write a program. To save wear
and tear on our keyboards (as well as our patience), all the commonly used data structures and
names are provided for us. All we have to do is "include" them into our code.

We can do the same sort of thing when writing our own programs. To keep down the size of each
module of our program, we can take all the #defines and global data declarations normally found at
the top of your program and place them into a separate file. Traditionally, this type of file is given the

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 248 / 321

.H extension. Let's say your main source code file is called MYPROG.C. You would then name the
header file containing the data mentioned above into a file called MYPROG.H. Then, at the top of
your program, you would have the line #include MYPROG.H so that the compiler would know where
the code really belongs. Take a look at the .H files that came with your compiler, and you'll see that
they are really nothing more than a collection of #defines and data declarations.

Moving Along

For some of you, this excursion into the world of compilers and linkers was a rehash of information
you were already familiar with. If there was nothing here for you, I apologize. But I know that there
are many of you who have been taking the compilation process for granted, and many of you may
have run into problems that you couldn't understand because you didn't know what was going on
with your compiler. I hope this discussion cleared some of the clouds. If nothing else, I'm sure you
gained some appreciation of what marvelous feats of programming compilers and linkers are.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 249 / 321

CHAPTER 26 - SIMPLE ANIMATION TECHNIQUES

Performing animation on the ST is a little bit tougher than it is on the 8-bit Atari computers, if for no
other reason than the ST does not have player/missile graphics. The programmer is responsible for
every step of the animation, getting little help from the hardware itself. Even so, coming up with a
simple animation sequence is not particularly difficult -- as long as you are willing to do some
preliminary work and are competent in handling MFDB's (Memory Form Definition Blocks) and raster
operations.

In this chapter, we will study the creation of an animation sequence through each step of the
process. But we will not review previously covered material; therefore, if you are not comfortable
with MFDBs and the vro_cpyfm() function, I strongly advise that you review the chapter on raster
operations.

The Program

Once you have the program compiled and linked, go ahead and run it. (Color only.) The screen will go
blank, after which you should press the left mouse button. A space ship will appear on the right side
of the screen, and a photon missile will start moving toward it from the left. When the missile
collides with the ship, the ship will explode, and you'll once again be faced with a blank screen. Either
press the left button to see the animation again, or the right button to exit back to the desktop.

The First Step

Before we program an animation, we must, of course, have something to animate. In other words,
we must first take out a program like D.E.G.A.S. and draw the various figures that will make up the
animation sequence.

For example, if we wanted to have an exploding ship, we would start with the ship itself as frame
one. Then we would take that ship and add a yellow glow to its center; this would be frame two. For
frame three, we would expand the yellow glow. Frame four would show the ship completely
engulfed by the glow, and in the last frame we would have the ship disintegrating into pieces.

In our sample animation, we also have a photon missile moving across the screen and hitting the
alien ship, causing it to explode. The photon animation is made up of three frames.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 250 / 321

EXPLODING SHIP ANIMATION FRAMES

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5

PHOTON ANIMATION FRAMES

Frame 1 Frame 2 Frame 3

Once we have created all the figures we need for the animation, we must convert the graphics into
numerical data. We do this using a sprite editor, such as Raster Sprite Editor from Issue 16 of ST-Log.
These editors allow the user to "cut" a section of a picture and convert the cut section into the
proper form of data. All we must do then is place the data into our program.

If you look at the top of Listing 1, you will see the graphics data for our sample animation. The data
labeled alien[] is the alien ship. The data blocks labeled expl1[], expl2[], expl3[], and expl4[] are the
alien ship in its various stages of disintegration. Finally, the blocks of data labeled photon1[],
photon2[], and photon3[] are the figures for our photon animation sequence.

Programming the Animation

Now that we have all our figures converted to data, we must come up with a program that'll move
that data on and off the screen in such a way as to create the actual animation. In the case of the
photon, we must copy each figure to the screen in sequence, while at the same time moving the
photon toward the alien ship. The exploding alien ship will be a little easier to do, since we don't
have to move the ship itself.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 251 / 321

Let's take a look at the program listing. First turn your attention to the function main(). Here we
initialize the application and open a virtual workstation. Then we check the resolution to make sure
that the user is not trying to run the program in medium or high resolution. If we're in the wrong
resolution, we bring up an alert box that informs the user of his error, after which we close the
workstation and exit back to the desktop. If the screen resolution is okay, program execution goes to
the function do_animate(). In this function, all we really do is monitor the mouse buttons. If the left
button is pressed, we perform the animation, then come back to wait for another button press. If the
right button is pressed, we exit the program.

The Photon

When the left button is pressed, program execution jumps to the function photon(), where the actual
animation begins. In photon() we first store the address of each image of our photon animation into
the array of pointers, ph[]. We then turn off the mouse and draw the image of the alien ship on the
right side of the screen using our own function, draw_icon().

Next we initialize the X and Y coordinates of the photons, as well as the color stored in pen. The
while loop that follows this initialization will repeat until pen is changed to one of the colors that
make up the alien ship. Within the loop, we draw each stage of the photon animation, moving it
slightly to the right each time. To animate the photon, we first draw the initial figure in the
sequence, using draw_icon(). Then, in order to control the speed of the animation, we call the AES
function, evnt_timer() like this:

evnt_timer(low, high);

Here, low is the low word of the number of milliseconds to pause and high is the high word of the
number of milliseconds to pause. This function always returns a 1.

After the pause, we redraw the sprite in the same position. Because we are using a writing mode of
6, which Exclusive ORs the source and destination values, this second drawing of the sprite erases the
first from the screen, leaving the screen exactly as it was before we drew the sprite. The only
problem with this method of drawing a sprite over a background is that when the sprite is first
drawn, it will appear transparent; that is, any graphics behind it will show through. In this case,
because our display consists of nothing more than a black screen, we experience no problems when
we Exclusive OR a sprite with the background.

After erasing the first sprite, we add 4 to x, the sprite's X coordinate, so that the next photon sprite
will be drawn farther to the right, closer to the alien ship. Then we increment p, so the next time we
use p to index our array of pointers, ph[], we'll be pointing to the next image in the photon sequence.
Finally, we get the color of the screen at our current location and call evnt_timer() to pause 50
milliseconds before going on to the next frame of the animation.

To retrieve the color of the pixel at our current screen location, we use a call to a VDI function,
v_get_pixel():

v_get_pixel(handle, x, y, &pixel, &pen);

Here, handle is the virtual workstation handle, x and y are the X and Y coordinates of the pixel we
wish to examine, &pixel is the address of an integer that will be set to 1 if the pixel being examined is
set and set (unset?) to 0 if it's not, and &pen is the address of an integer that will contain the color
value of the pixel being examined.

If the color detected is one of the colors that make up our ship (in this case, we're looking for RED or
DRK_RED), we know that the missile has collided with the ship. We drop out of the loop, after which

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 252 / 321

program execution jumps to the function kill_alien(), where we will perform the exploding-ship
animation.

Kaboom!

Because we don't need to actually move the ship, the explosion sequence is much easier. All we must
do is draw the four frames of the animation one after the other, providing a short delay between
them and erasing each image before drawing the next. This time around, we're erasing the images by
drawing a black circle on top of them, rather than using the Exclusive OR method described above.

Once the main sequence is completed, we drop into the code that draws the "sparkles" on the
screen -- just to add a little pizazz. Here we're doing nothing more than using v_pmarker() to draw 40
crosses in random locations within the area that the ship occupied. Because we're drawing them so
fast, you would swear that there were many of them on the screen at the same time! When we're
through in kill_alien(), it's back to photon() to turn the mouse back on and then back one more step
to do_animate() to wait for the next mouse button click. A left click will repeat the animation, while a
right click will exit the program.

The End Again

As you can see, simple animation on the ST is not difficult. However, be aware that, unlike its 8-bit
little brother, the ST is not well designed for animations involving many objects at once. The lack of
player/missile graphics makes programming arcade-type action games a real chore. And there's
really no way to do it in C; you have to have the speed of assembly language. Still, the techniques
presented here can be effective and fun in simple applications. Experiment a bit, and see what you
come up with. You might surprise yourself.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 253 / 321

Program Listing #1
/***
*C-manship, Listing 1
*CHAPTER 26
*Developed with Laser C
***/
#include <stdio.h>
#include <osbind.h>

#define BLACK0
#define RED2
#define WHITE8
#define DRK_RED9
#define TRUE 1
#define FALSE0
#define NONE 0
#define LEFT 1
#define RIGHT2
#define LOW0
#define REPLACE1
#define DOT2
#define M_OFF256
#define M_ON 257

/* GEM arrays */
int work_in[11], work_out[57], contrl[12], intin[128],
 ptsin[128], intout[128], ptsout[128];

int desk_palette[16]; /* Desktop color palette. */

/* Our own color palette. */
int my_palette[16] = { 0x000,0x700,0x060,0x770,
 0x007,0x707,0x333,0x666,
 0x400,0x444,0x373,0x773,
 0x337,0x003,0x377,0x400 };

int handle,/* GEM graphics handle */
 dum; /* A dummy variable for storage of values */

/* Data for sprites. */
long alien[] = {
 0x00000000,0x00000000,0x10000000,0x00000800,
 0x00000000,0x00000000,0x20000000,0x00000400,
 0x00000000,0x00000000,0x60000000,0x00000600,
 0x00000000,0x00000000,0x78000000,0x00000600,
 0x00000000,0x00000000,0x00000000,0x00003C00,
 0x00000000,0x00000000,0x30000000,0x00000C00,
 0x00000000,0x00000000,0x30000000,0x00004E00,
 0x00000000,0x00000000,0x42000000,0x00002400,
 0x00020000,0x00000000,0x83400040,0x00404040,
 0x00030000,0x00000000,0x01C00040,0x00408040,
 0x00030000,0x00000000,0x00800000,0x00000040};
int alien_w = 32, alien_h = 10;

long expl1[] = {
 0x00000000,0x00000000,0x0C000000,0x00000000,
 0x00000000,0x00000000,0x1E000000,0x00000000,
 0x00000000,0x00000000,0x3F000C00,0x00000C00,
 0x00000000,0x00000000,0x3F000000,0x00000000,

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 254 / 321

 0x00000000,0x00000000,0x1E000C00,0x00000C00,
 0x00000000,0x00000000,0x1E000C00,0x00000C00,
 0x00000000,0x00000000,0x3F000C00,0x00000000,
 0x00000000,0x00000000,0x3F000C00,0x00000C00,
 0x00000000,0x00000000,0x61800000,0x00000000,
 0x00010000,0x00000000,0xC0E00000,0x00000000,
 0x00010000,0x00000000,0xC0E00000,0x00000000};
int expl_w = 32, expl_h= 10;

long expl2[] = {
 0x00000000,0x00000000,0x18000000,0x00000000,
 0x00000000,0x00000000,0x3C000000,0x00000000,
 0x00000000,0x00000000,0x7E001800,0x00001800,
 0x00000000,0x00000000,0x7E001800,0x00001800,
 0x00000000,0x00000000,0x3C003800,0x00003800,
 0x00000000,0x00000000,0x3C001800,0x00001800,
 0x00000000,0x00000000,0x7E001800,0x00001000,
 0x00000000,0x00000000,0x3C001800,0x00001800,
 0x00000000,0x00000000,0xFF003C00,0x00003C00,
 0x00030000,0x00000000,0x81C00000,0x00000000,
 0x00030000,0x00000000,0x81C00000,0x00000000};

long expl3[] = {
 0x003C0018,0x00000018,0x00000000,0x00000000,
 0x007E003C,0x0000003C,0x00000000,0x00000000,
 0x007E003C,0x0000003C,0x00000000,0x00000000,
 0x013D0019,0x00000019,0x00000000,0x00000000,
 0x07BD0799,0x00000799,0x00000000,0x00000000,
 0x03FF0199,0x00000181,0x80000000,0x00000000,
 0x01FF01FF,0x000001FF,0xC000C000,0x0000C000,
 0x00FF006D,0x0000006D,0x00000000,0x00000000,
 0x03B90038,0x00000038,0xC0000000,0x00000000,
 0x03AD002C,0x0000002C,0xC0000000,0x00000000,
 0x00260026,0x00000026,0x00000000,0x00000000};

long expl4[] = {
 0x01350004,0x00000000,0x00000000,0x00000000,
 0x02CA0282,0x00000082,0x00000000,0x00000000,
 0x01340010,0x00000000,0x80000000,0x00000000,
 0x04B500B1,0x00000031,0x00000000,0x00000000,
 0x0BAA0B00,0x00000A00,0x80008000,0x00000000,
 0x06190210,0x00000210,0x40000000,0x00000000,
 0x00FC00B0,0x00000000,0x80008000,0x00000000,
 0x04A604A0,0x000000A0,0x00000000,0x00000000,
 0x01490009,0x00000000,0x00000000,0x00000000,
 0x07330020,0x00000020,0x80000000,0x00000000,
 0x07030000,0x00000000,0x80000000,0x00000000};

long photon1[] = {
 0x00000000,0x00000000,0x00C00000,0x00000000,
 0x00000000,0x00000000,0x00C00000,0x00000000,
 0x00000000,0x00000000,0x00C00000,0x00000000,
 0x00000000,0x00000000,0x00C00000,0x00000000,
 0x00000000,0x00000000,0x00800000,0x00000340,
 0x00000000,0x00000000,0x00800000,0x00000760,
 0x00000000,0x00000000,0x01800000,0x00000E70,
 0x00000000,0x00000000,0x03C00080,0x00000C30,
 0x00000000,0x00000000,0xFFC00100,0x00000030,
 0x00000000,0x00000000,0x01F00100,0x00000E00,
 0x00000000,0x00000000,0x023C0000,0x000005C0,

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 255 / 321

 0x00000000,0x00000000,0x041F0000,0x000003C0,
 0x00000000,0x00000000,0x080F0000,0x00000000,
 0x00000000,0x00000000,0x00070000,0x00000000,
 0x00000000,0x00000000,0x00020000,0x00000000,
 0x00000000,0x00000000,0x00000000,0x00000000};
int photon_h = 15, photon_w = 32;

long photon2[] = {
 0x00000000,0x00000000,0x20000000,0x00000000,
 0x00000000,0x00000000,0x60000000,0x00000000,
 0x00000000,0x00000000,0x30000000,0x00000000,
 0x00000000,0x00000000,0x18040000,0x00000000,
 0x00000000,0x00000000,0x0C080000,0x000003C0,
 0x00000000,0x00000000,0x04100000,0x000003E0,
 0x00000000,0x00000000,0x03E00100,0x00000C10,
 0x00000000,0x00000000,0x03C00080,0x00000C30,
 0x00000000,0x00000000,0x03C00100,0x00000C30,
 0x00000000,0x00000000,0x01800000,0x00000E70,
 0x00000000,0x00000000,0x01000000,0x000006E0,
 0x00000000,0x00000000,0x01000000,0x000002C0,
 0x00000000,0x00000000,0x03000000,0x00000000,
 0x00000000,0x00000000,0x03000000,0x00000000,
 0x00000000,0x00000000,0x03000000,0x00000000,
 0x00000000,0x00000000,0x03000000,0x00000000};

long photon3[] = {
 0x00000000,0x00000000,0x60000000,0x00000000,
 0x00000000,0x00000000,0x30200000,0x00000000,
 0x00000000,0x00000000,0x18200000,0x000003C0,
 0x00000000,0x00000000,0x0C400000,0x000003A0,
 0x00000000,0x00000000,0x03800000,0x00000C70,
 0x00000000,0x00000000,0x03C00100,0x00000C30,
 0x00000000,0x00000000,0x03FF0040,0x00000C00,
 0x00000000,0x00000000,0x03800080,0x00000C70,
 0x00000000,0x00000000,0x06000000,0x000001E0,
 0x00000000,0x00000000,0x1C000000,0x000003C0,
 0x00000000,0x00000000,0x78000000,0x00000000,
 0x00000000,0x00000000,0xF0000000,0x00000000,
 0x00000000,0x00000000,0x60000000,0x00000000,
 0x00000000,0x00000000,0x00000000,0x00000000,
 0x00000000,0x00000000,0x00000000,0x00000000,
 0x00000000,0x00000000,0x00000000,0x00000000};

typedef struct fdbstr
{
 longfd_addr;
 int fd_w;
 int fd_h;
 int fd_wdwidth;
 int fd_stand;
 int fd_nplanes;
 int fd_r1;
 int fd_r2;
 int fd_r3;
} MFDB;

/**
* Main program.
**/
main()

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 256 / 321

{
 appl_init ();
 open_vwork ();
 if (Getrez () != LOW)
 form_alert (1, "[1][This demo must be run|in low \
 resolution][OK]");
 else {
 do_animate ();
 Setpalette (desk_palette);
 }
 v_clsvwk (handle);
 appl_exit ();
}

/***
* do_animate ()
*
* Main program loop. Reads the mouse buttons and goes to
* the appropriate functions based on the button presses.
***/
do_animate ()
{
 int repeat, button, x, y;

 set_colors ();
 repeat = TRUE;
 while (repeat) {
 button = 0;
 while (button == NONE)
 vq_mouse (handle, &button, &x, &y);
 if (button == LEFT)
 photon ();
 else if (button == RIGHT)
 repeat = FALSE;
 }
}

/***
* photon ()
*
* Performs the photon animation. The function checks for
* a "hit" by getting the color of the screen from the
* current photon position and comparing it to the alien
* ship's color.
***/
photon ()
{
 int x, y, pixel, pen, p;
 long *ph[3];

 p = 0;
 ph[0] = photon1;
 ph[1] = photon2;
 ph[2] = photon3;
 graf_mouse (M_OFF, 0L);
 draw_icon (alien, 7, 250, 100, alien_w, alien_h);
 x = 20;
 y = 100;
 pen = BLACK;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 257 / 321

 while (pen!=RED && pen!=DRK_RED) {
 draw_icon (ph[p], 6, x-6, y-6, photon_w, photon_h);
 evnt_timer (10, 0);
 draw_icon (ph[p], 6, x-6, y-6, photon_w, photon_h);
 x += 4;
 if ((p+=1) > 2)
 p = 0;
 v_get_pixel (handle, x+19, y+4, &pixel, &pen);
 evnt_timer (50, 0);
 }
 kill_alien ();
 graf_mouse (M_ON, 0L);
}

/***
* kill_alien ()
*
* Performs the exploding ship animation.
***/
kill_alien ()
{
 int x, y, rx, ry, i;
 int pxy[2];

 x = 250;
 y = 100;
 vsf_color (handle, BLACK);

 draw_icon (expl1, 7, x, y, expl_w, expl_h);
 evnt_timer (50, 0);
 v_circle (handle, x+20, y+7, 10);
 draw_icon (expl2, 7, x+1, y, expl_w, expl_h);
 evnt_timer (50, 0);
 v_circle (handle, x+20, y+7, 10);
 draw_icon (expl3, 7, x+7, y, expl_w, expl_h);
 evnt_timer (50, 0);
 v_circle (handle, x+20, y+7, 10);
 draw_icon (expl4, 7, x+7, y, expl_w, expl_h);
 evnt_timer (50, 0);
 v_circle (handle, x+20, y+7, 10);

 x += 13;
 y -= 4;
 vsm_type (handle, DOT);
 vsm_height (handle, 1);
 for (i=0; i<40; ++i) {
 rx = rnd (16);
 ry = rnd (16);
 pxy[0] = x + rx;
 pxy[1] = y + ry;
 vsm_color (handle, WHITE);
 v_pmarker (handle, 1, pxy);
 evnt_timer (10, 0);
 vsm_color (handle, BLACK);
 v_pmarker (handle, 1, pxy);
 }
}

/***

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 258 / 321

* draw_icon ()
*
* A general function for drawing icons. It may be used
* in other programs as long as the header file GEMDEFS.H
* has been included at the top of the program. The input
* to the function is the address of the icon's data, the
* desired drawing mode, the X and Y coords at which the
* icon should be drawn, and the width and height of the
* icon. For low resolution only.
***/
draw_icon (data, mode, dx, dy, width, height)
long data;
int mode, dx, dy, width, height;
{
 MFDB s_m, scr_m;
 int pxy[8];

 s_m.fd_addr = data;
 s_m.fd_w = width;
 s_m.fd_h = height;
 s_m.fd_wdwidth = width / 16;
 s_m.fd_stand = 0;
 s_m.fd_nplanes = 4;
 scr_m.fd_addr = 0;
 pxy[0] = 0;
 pxy[1] = 0;
 pxy[2] = width;
 pxy[3] = height;
 pxy[4] = dx;
 pxy[5] = dy;
 pxy[6] = dx + width;
 pxy[7] = dy + height;
 vro_cpyfm (handle, mode, pxy, &s_m, &scr_m);
}

/***
* set_colors ()
*
* This function stores the original desktop colors, and
* then installs the program's palette.
***/
set_colors ()
{
 int x;

 graf_mouse (M_OFF, 0L);
 for (x=0; x<16; desk_palette [x++] = Setcolor (x, -1));
 v_clrwk (handle);
 Setpalette (my_palette);
 graf_mouse (M_ON, 0L);
}

/***
* open_vwork ()
*
* This function opens a virtual work station.
***/
open_vwork ()
{

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 259 / 321

 int i;
 handle = graf_handle (&dum, &dum, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

/***
* rnd ()
*
* This function is used to get a random number from 0 to
* n-1. Its input is "n" and its output is the random number.
***/
rnd (n)
int n;
{
 int r;

 r = (int) Random ();
 r = abs (r) % n;
 return (r);
}
•

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 260 / 321

CHAPTER 27 - A COMPLETE GEM APPLICATION - PART 1

NOW COMES THE TIME when we apply everything we've learned to a full-length GEM program. In
the next few chapters, we're going to be digging deep into MicroCheck ST, a home finance system
written by your humble author, to see how a complete GEM application is put together. In order to
understand these discussions, you will need a good background in GEM programming. I won't be
reviewing topics extensively, but rather will be pointing out the ways in which the techniques we've
studied are put to use in this program.

Warning: The discussions that follow, in this chapter and the ones coming up, are not exactly what
might be called easy reading. Essentially, I'll be documenting a large section of the MicroCheck ST
source code in function-by-function fashion. My goal is to tell you as quickly as possible what each
function does. Put simply, the reading from here on is as dry as the Sahara at noon.

The Listings

Listing 1 is the header file -- created by the Resource Construction Set -- for MicroCheck ST. Listing 2
is the first portion of the source code. In order for these listings to run properly, you need to have the
file MICROCHK.RSC, which can be found, along with the complete MicroCheck ST source code, on the
optional disks for this book. Those of you who don't want to buy the disk version can use Listing 3
to produce the MICROCHK.RSC file. Simply type it into ST BASIC and run it.

The portions of MicroCheck ST included here in Listings 1 and 2 will compile and link with no
problems, even though they are only a small portion of the full program. Be forewarned, however,
that when you run the program created from these listings, the only way to get back to the Desktop
is to reboot your computer. The portion of MicroCheck ST that includes the "Quit" function is not
presented this chapter.

Getting Down To It

As I said above, Listing 1 is a file that was created by the Resource Construction Set. It contains
nothing more than a series of #defines that equate the object and tree ID numbers of our resource
with names that are easier to remember and that make for better-reading code. There's not much to
say about this listing, except that you'll see every name there used somewhere in the MicroCheck ST
source code (though not necessarily in the portion being presented this chapter).

Listing 2 is a small section of the MicroCheck ST source code. It is only about 1/8 of the full program,
which gives you some idea of how large a full-GEM application may be. Although GEM is a great boon
to the end user, whatever conveniences he gets are passed on to the programmer as extra work. A
large portion of a GEM program deals with handling GEM rather than getting down to the business of
the application itself. Setting up and handling dialog boxes, windows and menu bars takes many lines
of code.

At the very top of the listing we have some #includes, which tell the compiler to add these files into
our program at compilation time. We've discussed these files before. Note that the MICROCHK.H file
is also included here.

Below the #includes we define some constants of our own. As we saw with the MICROCHK.H file, any
time we can replace a number, which tends to be cryptic, with a name, we'll be making our
programming task easier and our resultant code more readable. Which makes more sense to you:
0x1e01 or CNTL_A?

Below that we have the usual GEM global arrays. Every GEM application has to provide these storage
areas.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 261 / 321

Next we declare some of our own variables. The array msg_buf[] will be used to store messages sent
to us by GEM. The array pwrs[] is used in a conversion function not shown in this chapter's listing.
There's also a long list of integers and character arrays. I won't spend a lot of time now explaining
what each one is. We'll talk about them as they appear in the listings. If you look through the list of
integers being declared, though, you'll see a lot of variable names you've run across before --
variables that are needed to handle GEM's many functions.

Take a look at the pointers of type OBJECT declared below the character strings. If you've been
keeping up with your studies, you'll know that these pointers will contain the addresses of each of
the trees that make up our full resource tree.

A little farther down, you'll see a structure named check. This structure has storage areas for each
piece of data we need for a checking account transaction: the check number, the payee, a memo
field, the date the check was written, the amount of the check, and a field to indicate if the check has
been cancelled (processed by the bank).

Of course, a checking program that'll hold enough data for only one check is useless. That's why our
next step in setting up our data is to create an array of these structures -- the arrays named checks[]
and srch_checks. The former will hold all the transactions for a particular month, and the latter will
hold all the transactions that match the search criterion when a search of the account is performed.
The pointer, *cur_chk_strc, will be used to keep track of which of the two check structures we're
currently using.

Finally, the last item declared before the program begins is the pointer *ob_tedinfo, which is a
pointer to a TEDINFO structure. Hopefully, you'll remember that a TEDINFO structure is used to hold
the information we need for an editable text field in a dialog box.

Function main()

Every program is made up of three main sections: initialization, the program proper, and the job-end
section (clean-up). Our function main() breaks these three sections into six easy-to-follow steps. The
functions appl_init() and open_vwork() initialize our GEM application (not the program, mind you,
just GEM). The function do_mcheck() is the controlling function for MicroCheck ST -- where main()
handles the three sections of setting up the GEM operating system, do_mcheck() does the same for
our actual program. Finally, the functions v_clsvwk(), Setcolor(), and appl_exit() perform the job-end
duties, closing down our workstation and returning the GEM desktop to the same condition it was
when we left it.

Function do_mcheck()

The function do_mcheck() begins by setting the ST's colors the way we want them and checking to
see if the user has run the program in the proper resolution. If the resolution is okay, we set the
mouse to an arrow and initialize some strings and variables. Then we get the system date with a call
to the function get_date().

The next step in our program initialization is to load the resource file and get the addresses of each
of the trees that make up the resource. First, we check to see that the file MICROCHK.RSC is on the
disk.(It must be in the same directory as the main program.) If it's not, we warn the user of the error
and return to the Desktop. If the resource file is available, we load it and get the addresses of each of
the trees. Remember that each of these trees makes up one of the GEM forms -- such as a dialog box
or menu bar -- that we will be using to get data to and from the user.

After we load the resource file, we bring up the menu bar with a call to menu_bar() and set the
entries in the menus to their active or inactive state with a call to set_menu_entries().

Now all we must do is set up our windows, and we're all set. MicroCheck ST actually uses two
windows, although only one of them is visible. The "invisible" window has no parts (sliders, arrows,

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 262 / 321

etc.) and covers the entire screen area. I use it to get redraw messages for portions of the screen that
are not covered by the visible window.

After we set up the windows, we send program execution to the function get_event(), which routes
the events our application gets from the user to the proper sections of the program.

Eventually, the user will indicate that he wishes to quit the program. When he does, the last portion
of do_mcheck() removes the menu bar, closes and deletes the two windows, and releases the
memory used by our resource tree.

Function get_event()

As you should already know, a GEM application program receives its instructions from the user by
way of "events." There are many types of events, handling not only GEM constructions such as
windows, menu bars, and dialog boxes, but also the mouse and the keyboard. MicroCheck ST is
interested in three main types of events: keyboard, mouse and GEM message events.

If you look at get_event() in Listing 2, you'll see that it takes only a small amount of source code to
retrieve and route the events. Basically, all we must do is get the event, figure out what type it is and
pass it on.

To get the events, we use the unwieldy and complicated evnt_multi(). The integer event will hold the
event number, which we'll test in three different if statements, each of which will route its event to
the proper function.

The three functions, handle_keys(), handle_messages(), and handle_button(), process keyboard,
message, and mouse-button events, respectively. Notice that, at the end of Listing 1, these functions
are represented by "stubs"; that is, functions that do nothing except provide a label for the linker.
Without these stubs, you would not be able to link the program successfully. (The actual functions
will be presented in Chapter 28.)

Function set_menu_entries()

The function set_menu_entries() in Listing 1 disables any entries in the menu bar to which we don't
want the user to have access. For example, until an account has been loaded, it's not possible to
perform a search on the checks in the account. Rather than giving the user an error message when
he clicks on the "Search" option, we make the option unavailable to him. The function
set_menu_entries() is only one of three functions in MicroCheck ST that enable and disable menu
options based on the program's current mode.

Functions calc_vslid() and calc_hslid()

The functions calc_vslid() and calc_hslid() set the sizes and positions of the window's vertical and
horizontal sliders. This can be a confusing process, but one that is essential to the proper handling of
windows. Assuming you understand how the sliders work, the only thing worth noting in these
functions is found in calc_hslid(), where the flag left is used to determine the position of the
horizontal slider. This method is used because this slider, due to my program design, can be in only
one of two positions -- all the way to the left or all the way to the right.

Function open_vwork()

Now we come to a familiar function, open_vwork(). Anyone who doesn't know that this function sets
up a virtual workstation, a necessity for a GEM application, should do some heavy reviewing.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 263 / 321

Function get_date()

Finally, get_date(), the last function covered in this chapter, is responsible for retrieving and
formatting the date from the ST's clock. In this function, we're setting up two date strings, date_but[]
and cur_date(). The former will be in the format mm/dd/yy and will be displayed in a date button at
the bottom of the screen. The latter will be in the format mmddyy and will be used as the default
date for the check-entry dialog box.

Final Notes

When you run this chapter's segment of MicroCheck ST, you'll find on the screen a half-working
menu bar and a window with a blank work area. In addition, the information buttons that are
normally displayed at the bottom of the screen will be missing. This is normal. This portion of the
program is not yet able to process GEM message events, which trigger the drawing of these screen
display elements.

In closing, I would strongly urge those of you who wish to follow this in-depth look at a GEM
application program to purchase C-manship's optional disks. The complete MicroCheck ST is included
on the disks. I believe you will better understand our discussions if you're familiar with the program. I
will, however, try to make these last few chapters as "free standing" as possible, so that those who
do not wish to purchase the disk can follow along.

Program Listing #1
#define NEWADIAL 0 /* TREE */
#define MENUBAR 1 /* TREE */
#define FILEDIAL 2 /* TREE */
#define DATEDIAL 3 /* TREE */
#define SRCHDIAL 4 /* TREE */
#define NEWOK 8 /* OBJECT in TREE #0 */
#define NEWCANCL 9 /* OBJECT in TREE #0 */
#define ABOUT 10 /* OBJECT in TREE #1 */
#define NEWACCNT 19 /* OBJECT in TREE #1 */
#define OPENMBR 20 /* OBJECT in TREE #1 */
#define CLOSEMBR 21 /* OBJECT in TREE #1 */
#define QUIT 23 /* OBJECT in TREE #1 */
#define ENTER 26 /* OBJECT in TREE #1 */
#define SEARCH 27 /* OBJECT in TREE #1 */
#define RECONCIL 28 /* OBJECT in TREE #1 */
#define PRNTWIND 32 /* OBJECT in TREE #1 */
#define PRNTREG 33 /* OBJECT in TREE #1 */
#define NEWYEAR 35 /* OBJECT in TREE #1 */
#define NEWDATE 36 /* OBJECT in TREE #1 */
#define DESK 3 /* OBJECT in TREE #1 */
#define FILEBAR 4 /* OBJECT in TREE #1 */
#define CHECKS 5 /* OBJECT in TREE #1 */
#define PRINT 6 /* OBJECT in TREE #1 */
#define UTILITY 7 /* OBJECT in TREE #1 */
#define FILENAME 3 /* OBJECT in TREE #2 */
#define FILEOK 1 /* OBJECT in TREE #2 */
#define FILECANC 2 /* OBJECT in TREE #2 */
#define NWDATE 2 /* OBJECT in TREE #3 */
#define DATEOK 3 /* OBJECT in TREE #3 */
#define DATECANC 4 /* OBJECT in TREE #3 */
#define SRCHOK 5 /* OBJECT in TREE #4 */
#define SRCHCNCL 4 /* OBJECT in TREE #4 */
#define NEWNAME 2 /* OBJECT in TREE #0 */
#define NEWADDR 3 /* OBJECT in TREE #0 */
#define NEWCITY 4 /* OBJECT in TREE #0 */
#define NEWSTATE 5 /* OBJECT in TREE #0 */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 264 / 321

#define NEWZIP 6 /* OBJECT in TREE #0 */
#define NEWBALNC 7 /* OBJECT in TREE #0 */
#define MNTHFROM 7 /* OBJECT in TREE #4 */
#define MNTHTO 8 /* OBJECT in TREE #4 */
#define NUMFROM 9 /* OBJECT in TREE #4 */
#define NUMTO 10 /* OBJECT in TREE #4 */
#define AMNTFROM 11 /* OBJECT in TREE #4 */
#define AMNTTO 12 /* OBJECT in TREE #4 */
#define PAYEFROM 13 /* OBJECT in TREE #4 */
#define MEMOFROM 14 /* OBJECT in TREE #4 */
#define CHKCAN 29 /* OBJECT in TREE #1 */
#define CANCDIAL 5 /* TREE */
#define CANCOK 3 /* OBJECT in TREE #5 */
#define CANCCANC 4 /* OBJECT in TREE #5 */
#define JAN 6 /* OBJECT in TREE #5 */
#define FEB 7 /* OBJECT in TREE #5 */
#define MAR 8 /* OBJECT in TREE #5 */
#define APR 9 /* OBJECT in TREE #5 */
#define MAY 10 /* OBJECT in TREE #5 */
#define JUN 11 /* OBJECT in TREE #5 */
#define JUL 12 /* OBJECT in TREE #5 */
#define AUG 13 /* OBJECT in TREE #5 */
#define SEP 14 /* OBJECT in TREE #5 */
#define OCT 15 /* OBJECT in TREE #5 */
#define NOV 16 /* OBJECT in TREE #5 */
#define DEC 17 /* OBJECT in TREE #5 */
#define RECNDIAL 6 /* TREE */
#define ENDBAL 2 /* OBJECT in TREE #6 */
#define ENDBOK 3 /* OBJECT in TREE #6 */
#define ENDBCANC 4 /* OBJECT in TREE #6 */
#define CANCSTRG 1 /* OBJECT in TREE #5 */
#define MZERO 18 /* OBJECT in TREE #5 */
#define CHEKDIAL 7 /* TREE */
#define CHKNAME 1 /* OBJECT in TREE #7 */
#define CHKSTREE 2 /* OBJECT in TREE #7 */
#define CHKCITY 3 /* OBJECT in TREE #7 */
#define DATE 5 /* OBJECT in TREE #7 */
#define NUMBER 4 /* OBJECT in TREE #7 */
#define PAYEE 6 /* OBJECT in TREE #7 */
#define MEMO 8 /* OBJECT in TREE #7 */
#define CHKDONE 10 /* OBJECT in TREE #7 */
#define CHKNEXT 9 /* OBJECT in TREE #7 */
#define AMOUNT 7 /* OBJECT in TREE #7 */
#define CHKCANCL 11 /* OBJECT in TREE #7 */
#define RPRTDIAL 8 /* TREE */
#define RECENDB 3 /* OBJECT in TREE #8 */
#define RECSUBT 8 /* OBJECT in TREE #8 */
#define RECCHKS 5 /* OBJECT in TREE #8 */
#define RECDEPS 10 /* OBJECT in TREE #8 */
#define RECBALSH 13 /* OBJECT in TREE #8 */
#define RECOUTCH 4 /* OBJECT in TREE #8 */
#define RECOUTDP 9 /* OBJECT in TREE #8 */
#define RECBALIS 15 /* OBJECT in TREE #8 */
#define RECDIF 18 /* OBJECT in TREE #8 */
#define RECOK 19 /* OBJECT in TREE #8 */
#define LKMNDIAL 9 /* TREE */
#define SCANMNTH 2 /* OBJECT in TREE #9 */
#define CHKAUTO 30 /* OBJECT in TREE #1 */
#define NEWMNTH 24 /* OBJECT in TREE #1 */
#define PAID 12 /* OBJECT in TREE #7 */
#define IMPORT 37 /* OBJECT in TREE #1 */

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 265 / 321

#define SRTODIAL 10 /* TREE */
#define DBCNT 3 /* OBJECT in TREE #10 */
#define DBTOT 5 /* OBJECT in TREE #10 */
#define CRCNT 7 /* OBJECT in TREE #10 */
#define CRTOT 9 /* OBJECT in TREE #10 */
#define SRTOOK 10 /* OBJECT in TREE #10 */

Program Listing #2

/**
* MICROCHECK ST
* by Clayton Walnum
*
* Copyright 1989 by ST-LOG
* Developed with Laser C
**/

#include <stdio.h>
#include <osbind.h>
#include <gemdefs.h>
#include <obdefs.h>
#include <fcntl.h>
#include "microchk.h"

#define WA_UPPAGE 0
#define WA_DNPAGE 1
#define WA_UPLINE 2
#define WA_DNLINE 3
#define WA_LFPAGE 4
#define WA_RTPAGE 5
#define BOLD 1
#define LIGHT 2
#define TRUE 1
#define FALSE 0
#define YES 1
#define NO 2
#define LEFT_BUTTON 0x0001
#define BUTTON_DOWN 0x0001
#define NUM_CLICKS 2
#define PARTS
NAME|INFO|UPARROW|DNARROW|VSLIDE|FULLER|CLOSER|HSLIDE
#define NUM_COLUMNS 93
#define MED 1
#define MATCH 0
#define REC_LENGTH 117
#define FROM_BEG 0
#define FROM_CUR_POS 1
#define FAILED (-1)
#define DFLT_DRV 0
#define VISIBLE 1
#define MEDIUM 1
#define HIGH 2
#define CHAR_AVAIL -1
#define CONSOLE 2
#define ESCAPE 27
#define CNTL_A 0x1e01
#define CNTL_B 0x3002
#define CNTL_C 0x2e03
#define CNTL_D 0x2004
#define CNTL_E 0x1205
#define CNTL_G 0x2207

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 266 / 321

#define CNTL_I 0x1709
#define CNTL_M 0x320d
#define CNTL_N 0x310e
#define CNTL_O 0x180f
#define CNTL_P 0x1910
#define CNTL_Q 0x1011
#define CNTL_R 0x1312
#define CNTL_S 0x1f13
#define CNTL_W 0x1117
#define CNTL_Y 0x1519

int work_in[11], work_out[57], contrl[12],
 intin[128], ptsin[128], intout[128], ptsout[128];

int msg_buf[8];

long pwrs[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
 10000000 };

int handle, dum, file, key,
 fullx, fully, fullw, fullh, wrkx, wrky, wrkw, wrkh,
 w_h1, w_h2, res, full, num_trans, charw, charh, curchknum,
 num_deps, num_chks, loaded, all_done, mouse_x, mouse_y,
 num_clicks, edit_top, left, start_mnth, end_mnth, mnth,
 srch_trans, start_num, end_num, cur_count, cur_top,
 search, saved, canceling, month, full_draw, oldcolr;

int zero = 0;

char filename[64], chkname[30], chkstreet[30], chkcity[50],
 date_but[10], bal_but[10], trans_but[4],
 check_but[4], dep_but[4], mnth_but[10], acct_name[64],
 monthfile[64], cur_chk_num[6], cur_date[7], future_use[40],
 cancmnth[5], chtot[20], dptot[20], chcnt[10], dpcnt[10];

char windname[64];
char noacct[] = "No account opened";

char canc[] = "CANCEL CHECKS";
char newm[] = " NEW MONTH ";

char *months[] = { "Month 0", "January", "February", "March",
 "April", "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

char spaces[] = " ";
char infotext[] = " Number Amount Payee \
 Memo Date";
char *string, *srch_payee, *srch_memo;
char rule[] = "--\
------------------------------";

long balance, start_amnt, end_amnt;
OBJECT *menu_addr, *check_addr, *newacct_addr, *newfile_addr,
 *newdate_addr, *srchdial_addr, *cancdial_addr,
*recndial_addr,
 *rprtdial_addr, *lkmndial_addr, *srtodial_addr;

FILE *acctfile, *mfile;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 267 / 321

char *get_tedinfo_str ();
FILE *opn_nw_auto ();
long str_to_long ();

struct check {
 char number[5];
 char payee[31];
 char memo[31];
 char date[9];
 long amount;
 char cancel[2];
};

struct check checks[500];
struct check srch_checks[1000];
struct check *cur_chk_strc;

TEDINFO *ob_tedinfo;

main ()
{
 appl_init (); /* Initialize application. */
 open_vwork (); /* Set up workstation. */
 do_mcheck(); /* Go do MicroCheck. */
 v_clsvwk (handle); /* Close virtual workstation. */
 Setcolor (2, oldcolr); /* Reset color register. */
 appl_exit (); /* Back to the desktop. */
}

do_mcheck()
{
 oldcolr = Setcolor (2, -1);
 Setcolor (2, 0x005);
 if ((res = Getrez ()) != HIGH && res != MEDIUM)
 form_alert(1,"[0][MicroCheck ST runs|only in high or \
medium |resolution.][OK]");
 else {
 graf_mouse (ARROW, &dum);
 strcpy (acct_name, "NONE");
 strcpy (cur_chk_num, "0000");
 balance = 0;
 month = -1;
 edit_top = cur_top = num_trans = num_chks = num_deps = 0;
 left = saved = TRUE;
 search = canceling = full_draw = FALSE;
 cur_chk_strc = checks;
 get_date ();

 if (!rsrc_load ("\MICROCHK.RSC"))
 form_alert (1, "[1][MICROCHK.RSC missing!][Okay]");
 else {
 rsrc_gaddr (R_TREE, MENUBAR, &menu_addr);
 rsrc_gaddr (R_TREE, CHEKDIAL, &check_addr);
 rsrc_gaddr (R_TREE, NEWADIAL, &newacct_addr);
 rsrc_gaddr (R_TREE, FILEDIAL, &newfile_addr);
 rsrc_gaddr (R_TREE, DATEDIAL, &newdate_addr);
 rsrc_gaddr (R_TREE, SRCHDIAL, &srchdial_addr);
 rsrc_gaddr (R_TREE, CANCDIAL, &cancdial_addr);
 rsrc_gaddr (R_TREE, RECNDIAL, &recndial_addr);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 268 / 321

 rsrc_gaddr (R_TREE, RPRTDIAL, &rprtdial_addr);
 rsrc_gaddr (R_TREE, LKMNDIAL, &lkmndial_addr);
 rsrc_gaddr (R_TREE, SRTODIAL, &srtodial_addr);
 menu_bar (menu_addr, TRUE);
 set_menu_entries ();
 wind_get(0,WF_WORKXYWH,&fullx, &fully, &fullw, &fullh);
 w_h1 = wind_create (0, fullx, fully, fullw, fullh);
 w_h2 = wind_create (PARTS, fullx, fully, fullw, fullh);
 wind_set (w_h2, WF_NAME, noacct, 0, 0);
 wind_set (w_h2, WF_INFO, infotext, 0, 0);
 wind_open (w_h1, fullx, fully, fullw, fullh);
 wind_open(w_h2,fullx,fully,fullw,316 - 162*(res==MED));
 calc_vslid (1);
 calc_hslid (NUM_COLUMNS);
 full = FALSE;
 loaded = FALSE;

 get_event ();

 menu_bar (menu_addr, FALSE);
 wind_close (w_h2);
 wind_delete (w_h2);
 wind_close (w_h1);
 wind_delete (w_h1);
 rsrc_free ();
 }
 }
}

get_event ()
{
 int h, event;

 all_done = FALSE;

 while (!all_done) {
 event = evnt_multi(MU_KEYBD|MU_MESAG|MU_BUTTON,NUM_CLICKS,
 LEFT_BUTTON, BUTTON_DOWN,
 0,0,0,0,0,0,0,0,0,0,msg_buf,0,0,
 &mouse_x,&mouse_y,&dum,&dum,&key,
 &num_clicks);

 if (event & MU_KEYBD)
 handle_keys ();

 if (event & MU_MESAG)
 handle_messages ();

 if (event & MU_BUTTON)
 handle_button ();
 }
}

set_menu_entries ()
{
 menu_ienable (menu_addr, CLOSEMBR, loaded);
 menu_ienable (menu_addr, OPENMBR, !loaded);
 menu_ienable (menu_addr, NEWACCNT, !loaded);
 menu_ienable (menu_addr, QUIT, TRUE);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 269 / 321

 menu_ienable (menu_addr, ENTER, loaded);
 menu_ienable (menu_addr, SEARCH, loaded);
 menu_ienable (menu_addr, CHKCAN, loaded);
 menu_ienable (menu_addr, NEWMNTH, loaded);
 menu_ienable (menu_addr, RECONCIL, loaded);
 menu_ienable (menu_addr, PRNTWIND, loaded);
 menu_ienable (menu_addr, PRNTREG, loaded);
 menu_ienable (menu_addr, NEWYEAR, !loaded);
 menu_ienable (menu_addr, CHKAUTO, loaded);
 menu_ienable (menu_addr, NEWDATE, TRUE);
 menu_ienable (menu_addr, IMPORT, !loaded);
}

calc_vslid (line_cnt)
int line_cnt;
{
 int lines_avail, vslid_siz, pos;

 if (line_cnt == 0) line_cnt = 1;
 wind_get (w_h2, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);
 lines_avail = wrkh / charh;

 vslid_siz = 1000 * lines_avail / line_cnt;
 wind_set (w_h2, WF_VSLSIZE, vslid_siz, 0, 0, 0);
 pos = (int) ((float)(cur_top)) /
 ((float)(line_cnt - lines_avail)) * 1000;
 wind_set (w_h2, WF_VSLIDE, pos, 0, 0, 0);
}

calc_hslid (col_cnt)
int col_cnt;
{
 int cols_avail, hslid_siz, pos, lft;

 if (left)
 lft = 0;
 else
 lft = 16;
 wind_get (w_h2, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);
 cols_avail = wrkw / charw;
 hslid_siz = (int)((1000L * (long)cols_avail)/(long)col_cnt);
 wind_set (w_h2, WF_HSLSIZE, hslid_siz, 0, 0, 0);
 pos = (int) ((float)(lft)) /
 ((float)(col_cnt - cols_avail)) * 1000;
 wind_set (w_h2, WF_HSLIDE, pos, 0, 0, 0);
}

open_vwork ()
{
 int i;

 handle = graf_handle (&charw, &charh, &dum, &dum);
 for (i=0; i<10; work_in[i++] = 1);
 work_in[10] = 2;
 v_opnvwk (work_in, &handle, work_out);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 270 / 321

get_date ()
{
 int date, day, mnth, year;
 char d[3], m[3], y[4];

 date = Tgetdate ();
 day = date & 0x001f;
 mnth = (date >> 5) & 0x000f;
 year = ((date >> 9) & 0x007f) + 80;
 year = year % 100;
 sprintf (d, "%d", day);
 sprintf (m, "%d", mnth);
 sprintf (y, "%d", year);
 if (mnth < 10) {
 date_but[0] = '0';
 cur_date[0] = '0';
 strcpy (&date_but[1], m);
 strcpy (&cur_date[1], m);
 }
 else {
 strcpy (date_but, m);
 strcpy (cur_date, m);
 }
 date_but[2] = '/';
 if (day < 10) {
 date_but[3] = '0';
 cur_date[2] = '0';
 strcpy (&date_but[4], d);
 strcpy (&cur_date[3], d);
 }
 else {
 strcpy (&date_but[3], d);
 strcpy (&cur_date[2], d);
 }
 date_but[5] = '/';
 if (year < 10) {
 date_but[6] = '0';
 cur_date[4] = '0';
 strcpy (&date_but[7], y);
 strcpy (&cur_date[5], y);
 }
 else {
 strcpy (&date_but[6], y);
 strcpy (&cur_date[4], y);
 }
}

handle_keys ()
{}

handle_messages ()
{}

handle_button ()
{}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 271 / 321

Program Listing #3

ST-Basic

100 OPEN"R",#1,"A:MICROCHK.RSC",16:FIELD#1,16 AS B$
110 A$="":FOR I=1 TO 16:READ V$:IF V$="*" THEN 140
120 A=VAL("&H"+V$):PRINT "*";:A$=A$+CHR$(A):NEXT
130 LSET B$=A$:R=R+1:PUT 1,R:GOTO 110
140 CLOSE 1:PRINT:PRINT "ALL DONE!"
1000 data 00,00,0C,42,09,32,09,32,09,32,06,64,00,24,09,32
1010 data 06,64,19,C2,00,90,00,0B,00,1C,00,00,00,00,00,00
1020 data 00,00,19,EE,20,20,20,20,4E,45,57,20,41,43,43,4F
1030 data 55,4E,54,20,20,20,20,00,00,00,20,20,20,20,20,20
1040 data 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20
1050 data 20,20,20,00,20,4E,61,6D,65,3A,20,5F,5F,5F,5F,5F
1060 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
1070 data 5F,5F,5F,5F,00,58,58,58,58,58,58,58,58,58,58,58
1080 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,00,20
1090 data 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20
1100 data 20,20,20,20,20,20,20,20,00,20,53,74,72,65,65,74
1110 data 3A,20,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
1120 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,00,58,58,58,58
1130 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58
1140 data 58,58,58,58,58,00,20,20,20,20,20,20,20,20,20,20
1150 data 20,20,20,20,20,00,20,43,69,74,79,3A,20,5F,5F,5F
1160 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,00,58,58,58
1170 data 58,58,58,58,58,58,58,58,58,58,58,58,00,20,20,00
1180 data 20,53,74,61,74,65,3A,20,5F,5F,00,41,41,00,20,20
1190 data 20,20,20,20,20,20,20,00,20,5A,69,70,3A,20,5F,5F
1200 data 5F,5F,5F,2D,5F,5F,5F,5F,00,39,39,39,39,39,39,39
1210 data 39,39,00,20,20,20,20,20,20,20,00,20,42,61,6C,61
1220 data 6E,63,65,3A,20,24,5F,5F,5F,5F,5F,2E,5F,5F,00,39
1230 data 39,39,39,39,39,39,00,4F,4B,00,43,41,4E,43,45,4C
1240 data 00,20,44,65,73,6B,20,00,20,46,69,6C,65,20,00,20
1250 data 43,68,65,63,6B,73,20,00,20,50,72,69,6E,74,00,20
1260 data 55,74,69,6C,69,74,69,65,73,00,20,20,41,62,6F,75
1270 data 74,20,4D,69,63,72,6F,43,68,65,63,6B,2E,2E,2E,00
1280 data 2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D
1290 data 2D,2D,2D,2D,2D,2D,2D,00,20,20,44,65,73,6B,20,41
1300 data 63,63,65,73,73,6F,72,79,20,31,20,20,00,20,20,44
1310 data 65,73,6B,20,41,63,63,65,73,73,6F,72,79,20,32,20
1320 data 20,00,20,20,44,65,73,6B,20,41,63,63,65,73,73,6F
1330 data 72,79,20,33,20,20,00,20,20,44,65,73,6B,20,41,63
1340 data 63,65,73,73,6F,72,79,20,34,20,20,00,20,20,44,65
1350 data 73,6B,20,41,63,63,65,73,73,6F,72,79,20,35,20,20
1360 data 00,20,20,44,65,73,6B,20,41,63,63,65,73,73,6F,72
1370 data 79,20,36,20,20,00,20,4E,20,4E,65,77,2E,2E,2E,00
1380 data 20,4F,20,4F,70,65,6E,2E,2E,2E,00,20,43,20,43,6C
1390 data 6F,73,65,2E,2E,2E,00,2D,2D,2D,2D,2D,2D,2D,2D,2D
1400 data 2D,2D,2D,2D,2D,2D,2D,00,20,51,20,51,75,69,74,00
1410 data 20,4D,20,4E,65,77,20,4D,6F,6E,74,68,2E,2E,2E,00
1420 data 20,45,20,45,6E,74,65,72,2E,2E,2E,00,20,53,20,53
1430 data 65,61,72,63,68,2E,2E,2E,00,20,52,20,52,65,63,6F
1440 data 6E,63,69,6C,65,2E,2E,2E,00,20,50,20,43,61,6E,63
1450 data 65,6C,2E,2E,2E,00,20,41,20,41,75,74,6F,2E,2E,2E
1460 data 00,20,57,20,57,69,6E,64,6F,77,20,20,00,20,47,20
1470 data 52,65,67,69,73,74,65,72,20,00,20,59,20,4E,65,77
1480 data 20,59,65,61,72,2E,2E,2E,00,20,44,20,44,61,74,65
1490 data 2E,2E,2E,00,20,49,20,49,6D,70,6F,72,74,2E,2E,2E
1500 data 00,4F,4B,00,43,41,4E,43,45,4C,00,40,20,20,20,20
1510 data 20,00,20,4E,61,6D,65,3A,20,5F,5F,5F,5F,5F,5F,20

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 272 / 321

1520 data 00,58,58,58,58,58,58,00,20,4E,45,57,20,46,49,4C
1530 data 45,20,00,00,00,4E,65,77,20,44,61,74,65,00,5F,5F
1540 data 5F,5F,5F,5F,00,5F,5F,2F,5F,5F,2F,5F,5F,00,39,39
1550 data 39,39,39,39,00,4F,4B,00,43,41,4E,43,45,4C,00,53
1560 data 45,41,52,43,48,20,50,41,52,41,4D,45,54,45,52,53
1570 data 00,4D,4F,4E,54,48,53,00,4E,55,4D,42,45,52,53,00
1580 data 43,41,4E,43,45,4C,00,4F,4B,00,41,4D,4F,55,4E,54
1590 data 53,00,20,20,00,20,46,52,4F,4D,3A,20,5F,5F,00,39
1600 data 39,00,20,20,00,20,54,6F,3A,20,5F,5F,00,39,39,00
1610 data 20,20,20,20,00,20,46,72,6F,6D,3A,20,5F,5F,5F,5F
1620 data 00,39,39,39,39,00,20,20,20,20,00,20,54,6F,3A,20
1630 data 5F,5F,5F,5F,00,39,39,39,39,00,20,20,20,20,20,20
1640 data 20,00,20,46,72,6F,6D,3A,20,24,5F,5F,5F,5F,5F,2E
1650 data 5F,5F,00,39,39,39,39,39,39,39,00,20,20,20,20,20
1660 data 20,20,00,20,54,6F,3A,20,24,5F,5F,5F,5F,5F,2E,5F
1670 data 5F,00,39,39,39,39,39,39,39,00,20,20,20,20,20,20
1680 data 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20
1690 data 20,20,20,20,20,20,20,20,00,20,50,61,79,65,65,3A
1700 data 20,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
1710 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,00
1720 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58
1730 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,00,20
1740 data 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20
1750 data 20,20,20,20,20,20,20,20,20,20,20,20,20,00,20,4D
1760 data 65,6D,6F,3A,20,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
1770 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
1780 data 5F,5F,5F,00,58,58,58,58,58,58,58,58,58,58,58,58
1790 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58
1800 data 58,58,00,43,41,4E,43,45,4C,20,43,48,45,43,4B,53
1810 data 00,53,65,6C,65,63,74,20,6D,6F,6E,74,68,20,74,6F
1820 data 20,77,6F,72,6B,20,6F,6E,3A,00,4F,4B,00,43,41,4E
1830 data 43,45,4C,00,4A,61,6E,75,61,72,79,00,46,65,62,72
1840 data 75,61,72,79,00,4D,61,72,63,68,00,41,70,72,69,6C
1850 data 00,4D,61,79,00,4A,75,6E,65,00,4A,75,6C,79,00,41
1860 data 75,67,75,73,74,00,53,65,70,74,65,6D,62,65,72,00
1870 data 4F,63,74,6F,62,65,72,00,4E,6F,76,65,6D,62,65,72
1880 data 00,44,65,63,65,6D,62,65,72,00,4D,6F,6E,74,68,20
1890 data 30,00,52,45,43,4F,4E,43,49,4C,45,20,41,43,43,4F
1900 data 55,4E,54,00,5F,5F,5F,5F,5F,5F,5F,00,45,6E,64,69
1910 data 6E,67,20,42,61,6C,61,6E,63,65,3A,20,24,5F,5F,5F
1920 data 5F,5F,2E,5F,5F,00,39,39,39,39,39,39,39,00,4F,4B
1930 data 00,43,41,4E,43,45,4C,00,4E,4E,4E,4E,4E,4E,4E,4E
1940 data 4E,4E,4E,4E,4E,4E,4E,4E,4E,4E,4E,4E,00,53,53,53
1950 data 53,53,53,53,53,53,53,53,53,53,53,53,53,53,53,53
1960 data 53,00,43,43,43,43,43,43,43,43,43,43,43,43,43,43
1970 data 43,43,43,43,43,43,00,5F,5F,5F,5F,00,23,5F,5F,5F
1980 data 5F,00,39,39,39,39,00,5F,5F,5F,5F,5F,5F,00,44,61
1990 data 74,65,3A,20,5F,5F,2F,5F,5F,2F,5F,5F,00,39,39,39
2000 data 39,39,39,00,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2010 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2020 data 5F,5F,00,50,61,79,65,65,3A,20,5F,5F,5F,5F,5F,5F
2030 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2040 data 5F,5F,5F,5F,5F,5F,5F,5F,00,58,58,58,58,58,58,58
2050 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58
2060 data 58,58,58,58,58,58,58,00,5F,5F,5F,5F,5F,5F,5F,00
2070 data 24,5F,5F,5F,5F,5F,2E,5F,5F,00,39,39,39,39,39,39
2080 data 39,00,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2090 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2100 data 00,4D,65,6D,6F,3A,20,5F,5F,5F,5F,5F,5F,5F,5F,5F
2110 data 5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F,5F
2120 data 5F,5F,5F,5F,5F,00,58,58,58,58,58,58,58,58,58,58

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 273 / 321

2130 data 58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58
2140 data 58,58,58,58,00,4E,45,58,54,00,44,4F,4E,45,00,43
2150 data 41,4E,43,45,4C,00,20,20,20,00,00,00,52,65,63,6F
2160 data 6E,63,69,6C,69,61,74,69,6F,6E,20,52,65,70,6F,72
2170 data 74,00,00,00,45,6E,64,69,6E,67,20,62,61,6C,61,6E
2180 data 63,65,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E
2190 data 2E,2E,2E,2E,2E,00,24,39,39,39,39,39,39,2E,39,39
2200 data 00,2D,20,4F,75,74,73,74,61,6E,64,69,6E,67,20,63
2210 data 68,65,63,6B,73,20,28,39,39,39,29,2E,2E,2E,2E,2E
2220 data 2E,2E,00,2E,2E,20,20,20,39,39,39,39,39,39,2E,39
2230 data 39,00,2D,2D,2D,2D,2D,2D,2D,2D,2D,2D,00,53,75,62
2240 data 74,6F,74,61,6C,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E
2250 data 2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,00,39
2260 data 39,39,39,39,39,2E,39,39,00,2B,20,4F,75,74,73,74
2270 data 61,6E,64,69,6E,67,20,64,65,70,6F,73,69,74,73,20
2280 data 28,39,39,39,29,2E,2E,2E,2E,2E,00,2E,2E,20,20,20
2290 data 39,39,39,39,39,39,2E,39,39,00,2D,2D,2D,2D,2D,2D
2300 data 2D,2D,2D,2D,00,59,6F,75,72,20,62,61,6C,61,6E,63
2310 data 65,20,73,68,6F,75,6C,64,20,62,65,2E,2E,2E,2E,2E
2320 data 2E,2E,2E,2E,2E,2E,00,39,39,39,39,39,39,2E,39,39
2330 data 00,59,6F,75,72,20,62,61,6C,61,6E,63,65,20,69,73
2340 data 2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E
2350 data 2E,2E,00,39,39,39,39,39,39,2E,39,39,00,2D,2D,2D
2360 data 2D,2D,2D,2D,2D,2D,2D,00,44,69,66,66,65,72,65,6E
2370 data 63,65,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E,2E
2380 data 2E,2E,2E,2E,2E,2E,2E,2E,2E,00,24,39,39,39,39,39
2390 data 39,2E,39,39,00,4F,4B,00,53,63,61,6E,6E,69,6E,67
2400 data 20,66,69,6C,65,73,2E,2E,2E,00,53,65,70,74,65,6D
2410 data 62,65,72,00,00,00,53,45,41,52,43,48,20,52,45,53
2420 data 55,4C,54,53,00,00,00,23,20,64,65,62,69,74,73,3A
2430 data 00,39,39,39,39,00,54,6F,74,61,6C,3A,20,24,00,39
2440 data 39,39,39,39,39,39,2E,39,39,00,23,20,63,72,65,64
2450 data 69,74,73,3A,00,39,39,39,39,00,54,6F,74,61,6C,3A
2460 data 20,24,00,39,39,39,39,39,39,39,2E,39,39,00,4F,4B
2470 data 00,00,00,00,00,24,00,00,00,38,00,00,00,39,00,03
2480 data 00,06,00,00,11,80,00,00,00,FF,00,14,00,01,00,00
2490 data 00,3A,00,00,00,54,00,00,00,75,00,03,00,06,00,00
2500 data 11,80,00,00,FF,FF,00,1A,00,21,00,00,00,8F,00,00
2510 data 00,A9,00,00,00,CC,00,03,00,06,00,00,11,80,00,00
2520 data FF,FF,00,1A,00,23,00,00,00,E6,00,00,00,F6,00,00
2530 data 01,0D,00,03,00,06,00,00,11,80,00,00,FF,FF,00,10
2540 data 00,17,00,00,01,1D,00,00,01,20,00,00,01,2B,00,03
2550 data 00,06,00,00,11,80,00,00,FF,FF,00,03,00,0B,00,00
2560 data 01,2E,00,00,01,38,00,00,01,49,00,03,00,06,00,00
2570 data 11,80,00,00,FF,FF,00,0A,00,11,00,00,01,53,00,00
2580 data 01,5B,00,00,01,6F,00,03,00,06,00,00,11,80,00,00
2590 data FF,FF,00,08,00,14,00,00,03,2B,00,00,03,32,00,00
2600 data 03,41,00,03,00,06,00,00,11,80,00,00,00,FF,00,07
2610 data 00,0F,00,00,03,48,00,00,03,53,00,00,03,54,00,03
2620 data 00,06,00,00,11,80,00,00,00,FF,00,0B,00,01,00,00
2630 data 03,5E,00,00,03,65,00,00,03,6E,00,03,00,06,00,00
2640 data 11,80,00,00,00,FF,00,07,00,09,00,00,03,B2,00,00
2650 data 03,B5,00,00,03,BF,00,03,00,06,00,00,11,80,00,00
2660 data FF,FF,00,03,00,0A,00,00,03,C2,00,00,03,C5,00,00
2670 data 03,CD,00,03,00,06,00,00,11,80,00,00,FF,FF,00,03
2680 data 00,08,00,00,03,D0,00,00,03,D5,00,00,03,E1,00,03
2690 data 00,06,00,00,11,80,00,00,FF,FF,00,05,00,0C,00,00
2700 data 03,E6,00,00,03,EB,00,00,03,F5,00,03,00,06,00,00
2710 data 11,80,00,00,FF,FF,00,05,00,0A,00,00,03,FA,00,00
2720 data 04,02,00,00,04,13,00,03,00,06,00,00,11,80,00,00
2730 data FF,FF,00,08,00,11,00,00,04,1B,00,00,04,23,00,00

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 274 / 321

2740 data 04,32,00,03,00,06,00,00,11,80,00,00,FF,FF,00,08
2750 data 00,0F,00,00,04,3A,00,00,04,59,00,00,04,80,00,03
2760 data 00,06,00,00,11,80,00,00,FF,FF,00,1F,00,27,00,00
2770 data 04,9F,00,00,04,BE,00,00,04,E4,00,03,00,06,00,00
2780 data 11,80,00,00,FF,FF,00,1F,00,26,00,00,05,A4,00,00
2790 data 05,AC,00,00,05,C6,00,03,00,06,00,00,11,80,00,00
2800 data FF,FF,00,08,00,1A,00,00,06,17,00,00,06,1C,00,00
2810 data 06,22,00,03,00,06,00,02,11,80,00,00,FF,FF,00,05
2820 data 00,06,00,00,06,27,00,00,06,2E,00,00,06,3D,00,03
2830 data 00,06,00,02,11,80,00,00,FF,FF,00,07,00,0F,00,00
2840 data 06,44,00,00,06,63,00,00,06,89,00,03,00,06,00,02
2850 data 11,80,00,00,FF,FF,00,1F,00,26,00,00,06,A8,00,00
2860 data 06,B0,00,00,06,BA,00,03,00,06,00,02,11,80,00,00
2870 data FF,FF,00,08,00,0A,00,00,06,C2,00,00,06,E1,00,00
2880 data 07,06,00,03,00,06,00,02,11,80,00,00,FF,FF,00,1F
2890 data 00,25,00,00,07,36,00,00,07,3A,00,00,07,3B,00,03
2900 data 00,06,00,02,11,80,00,00,FF,FF,00,04,00,01,00,00
2910 data 07,3C,00,00,07,52,00,00,07,53,00,03,00,06,00,02
2920 data 11,80,00,00,FF,FF,00,16,00,01,00,00,08,CA,00,00
2930 data 08,D4,00,00,08,D5,00,03,00,06,00,02,11,80,00,00
2940 data FF,FF,00,0A,00,01,00,00,08,D6,00,00,08,E5,00,00
2950 data 08,E6,00,03,00,06,00,02,11,80,00,00,FF,FF,00,0F
2960 data 00,01,FF,FF,00,01,00,09,00,14,00,00,00,30,00,02
2970 data 11,22,00,00,00,00,00,25,00,11,00,02,FF,FF,FF,FF
2980 data 00,16,00,00,00,20,00,00,09,32,00,09,00,01,00,13
2990 data 00,01,00,03,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
3000 data 09,4E,00,02,00,03,00,21,00,01,00,04,FF,FF,FF,FF
3010 data 00,1E,00,08,00,00,00,00,09,6A,00,01,00,05,00,23
3020 data 00,01,00,05,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
3030 data 09,86,00,07,00,07,00,17,00,01,00,06,FF,FF,FF,FF
3040 data 00,1E,00,08,00,00,00,00,09,A2,00,04,00,09,00,0B
3050 data 00,01,00,07,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
3060 data 09,BE,00,10,00,09,00,11,00,01,00,08,FF,FF,FF,FF
3070 data 00,1E,00,08,00,00,00,00,09,DA,00,08,00,0B,00,14
3080 data 00,01,00,09,FF,FF,FF,FF,00,1A,00,43,00,20,00,00
3090 data 01,77,00,04,00,0E,00,0D,00,01,00,00,FF,FF,FF,FF
3100 data 00,1A,00,61,00,20,00,00,01,7A,00,14,00,0E,00,0D
3110 data 00,01,FF,FF,00,01,00,08,00,19,00,00,00,00,00,00
3120 data 00,00,00,00,00,00,00,50,00,19,00,08,00,02,00,02
3130 data 00,14,00,00,00,00,00,00,11,00,00,00,00,00,00,50
3140 data 02,01,00,01,00,03,00,07,00,19,00,00,00,00,00,00
3150 data 00,00,00,02,00,00,00,28,03,01,00,04,FF,FF,FF,FF
3160 data 00,20,00,00,00,00,00,00,01,81,00,00,00,00,00,06
3170 data 03,01,00,05,FF,FF,FF,FF,00,20,00,00,00,00,00,00
3180 data 01,88,00,06,00,00,00,06,03,01,00,06,FF,FF,FF,FF
3190 data 00,20,00,00,00,00,00,00,01,8F,00,0C,00,00,00,08
3200 data 03,01,00,07,FF,FF,FF,FF,00,20,00,00,00,00,00,00
3210 data 01,98,00,14,00,00,00,09,03,01,00,02,FF,FF,FF,FF
3220 data 00,20,00,00,00,00,00,00,01,9F,00,1D,00,00,00,0B
3230 data 03,01,00,00,00,09,00,22,00,19,00,00,00,00,00,00
3240 data 00,00,00,00,03,01,00,50,00,13,00,12,00,0A,00,11
3250 data 00,14,00,00,00,00,00,FF,11,00,00,02,00,00,00,17
3260 data 00,08,00,0B,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3270 data 01,AA,00,00,00,00,00,17,00,01,00,0C,FF,FF,FF,FF
3280 data 00,1C,00,00,00,08,00,00,01,C0,00,00,00,01,00,17
3290 data 00,01,00,0D,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3300 data 01,D8,00,00,00,02,00,17,00,01,00,0E,FF,FF,FF,FF
3310 data 00,1C,00,00,00,00,00,00,01,ED,00,00,00,03,00,17
3320 data 00,01,00,0F,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3330 data 02,02,00,00,00,04,00,17,00,01,00,10,FF,FF,FF,FF
3340 data 00,1C,00,00,00,00,00,00,02,17,00,00,00,05,00,17

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 275 / 321

3350 data 00,01,00,11,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3360 data 02,2C,00,00,00,06,00,17,00,01,00,09,FF,FF,FF,FF
3370 data 00,1C,00,00,00,00,00,00,02,41,00,00,00,07,00,17
3380 data 00,01,00,19,00,13,00,18,00,14,00,00,00,00,00,FF
3390 data 11,00,00,08,00,00,00,10,00,06,00,14,FF,FF,FF,FF
3400 data 00,1C,00,00,00,00,00,00,02,56,00,00,00,00,00,10
3410 data 00,01,00,15,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3420 data 02,60,00,00,00,01,00,10,00,01,00,16,FF,FF,FF,FF
3430 data 00,1C,00,00,00,00,00,00,02,6B,00,00,00,02,00,10
3440 data 00,01,00,17,FF,FF,FF,FF,00,1C,00,00,00,08,00,00
3450 data 02,77,00,00,00,04,00,10,00,01,00,18,FF,FF,FF,FF
3460 data 00,1C,00,00,00,00,00,00,02,88,00,00,00,05,00,10
3470 data 00,01,00,12,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3480 data 02,90,00,00,00,03,00,10,00,01,00,1F,00,1A,00,1E
3490 data 00,14,00,00,00,00,00,FF,11,00,00,0E,00,00,00,10
3500 data 00,05,00,1B,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3510 data 02,A0,00,00,00,00,00,10,00,01,00,1C,FF,FF,FF,FF
3520 data 00,1C,00,00,00,00,00,00,02,AC,00,00,00,01,00,10
3530 data 00,01,00,1D,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3540 data 02,B9,00,00,00,03,00,10,00,01,00,1E,FF,FF,FF,FF
3550 data 00,1C,00,00,00,00,00,00,02,C9,00,00,00,02,00,10
3560 data 00,01,00,19,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3570 data 02,D6,00,00,00,04,00,10,00,01,00,22,00,20,00,21
3580 data 00,14,00,00,00,00,00,FF,11,00,00,16,00,00,00,0C
3590 data 00,02,00,21,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3600 data 02,E1,00,00,00,00,00,0C,00,01,00,1F,FF,FF,FF,FF
3610 data 00,1C,00,00,00,00,00,00,02,ED,00,00,00,01,00,0C
3620 data 00,01,00,08,00,23,00,25,00,14,00,00,00,00,00,FF
3630 data 11,00,00,1F,00,00,00,15,00,03,00,24,FF,FF,FF,FF
3640 data 00,1C,00,00,00,00,00,00,02,FA,00,00,00,01,00,15
3650 data 00,01,00,25,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3660 data 03,09,00,00,00,00,00,15,00,01,00,22,FF,FF,FF,FF
3670 data 00,1C,00,20,00,00,00,00,03,14,00,00,00,02,00,15
3680 data 00,01,FF,FF,00,01,00,04,00,14,00,00,00,10,00,02
3690 data 11,22,00,00,00,00,00,17,00,08,00,02,FF,FF,FF,FF
3700 data 00,1A,00,43,00,20,00,00,03,21,00,02,00,05,00,08
3710 data 00,01,00,03,FF,FF,FF,FF,00,1A,00,41,00,20,00,00
3720 data 03,24,00,0D,00,05,00,08,00,01,00,04,FF,FF,FF,FF
3730 data 00,1E,00,08,00,00,00,00,09,F6,00,04,00,03,00,0E
3740 data 00,01,00,00,FF,FF,FF,FF,00,16,00,20,00,20,00,00
3750 data 0A,12,00,06,00,01,00,0A,00,01,FF,FF,00,01,00,04
3760 data 00,14,00,00,00,30,00,02,11,12,00,00,00,00,00,17
3770 data 00,08,00,02,FF,FF,FF,FF,00,1A,00,00,00,20,00,00
3780 data 03,55,00,02,00,01,00,13,00,01,00,03,FF,FF,FF,FF
3790 data 00,1D,00,08,00,00,00,00,0A,2E,00,07,00,03,00,08
3800 data 00,01,00,04,FF,FF,FF,FF,00,1A,00,43,00,20,00,00
3810 data 03,75,00,02,00,05,00,08,00,01,00,00,FF,FF,FF,FF
3820 data 00,1A,00,61,00,20,00,00,03,78,00,0D,00,05,00,08
3830 data 00,01,FF,FF,00,01,00,0E,00,14,00,00,00,30,00,02
3840 data 11,22,00,00,00,00,00,3A,00,11,00,02,FF,FF,FF,FF
3850 data 00,1A,00,00,00,20,00,00,03,7F,00,06,00,01,00,2E
3860 data 00,01,00,03,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3870 data 03,91,00,06,00,03,00,07,00,01,00,04,FF,FF,FF,FF
3880 data 00,1C,00,00,00,00,00,00,03,98,00,1D,00,03,00,07
3890 data 00,01,00,05,FF,FF,FF,FF,00,1A,00,41,00,20,00,00
3900 data 03,A0,00,20,00,0E,00,14,00,01,00,06,FF,FF,FF,FF
3910 data 00,1A,00,43,00,20,00,00,03,A7,00,06,00,0E,00,14
3920 data 00,01,00,07,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
3930 data 03,AA,00,0C,00,06,00,07,00,01,00,08,FF,FF,FF,FF
3940 data 00,1E,00,08,00,00,00,00,0A,4A,00,06,00,04,00,0A
3950 data 00,01,00,09,FF,FF,FF,FF,00,1E,00,08,00,00,00,00

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 276 / 321

3960 data 0A,66,00,11,00,04,00,08,00,01,00,0A,FF,FF,FF,FF
3970 data 00,1E,00,08,00,00,00,00,0A,82,00,1D,00,04,00,0C
3980 data 00,01,00,0B,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
3990 data 0A,9E,00,2A,00,04,00,0A,00,01,00,0C,FF,FF,FF,FF
4000 data 00,1E,00,08,00,00,00,00,0A,BA,00,0C,00,07,00,11
4010 data 00,01,00,0D,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
4020 data 0A,D6,00,1E,00,07,00,0F,00,01,00,0E,FF,FF,FF,FF
4030 data 00,1E,00,08,00,00,00,00,0A,F2,00,09,00,09,00,27
4040 data 00,01,00,00,FF,FF,FF,FF,00,1E,00,28,00,00,00,00
4050 data 0B,0E,00,09,00,0B,00,26,00,01,FF,FF,00,01,00,12
4060 data 00,14,00,00,00,10,00,02,11,22,00,00,00,00,00,35
4070 data 00,11,00,02,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4080 data 05,03,00,14,00,01,00,0D,00,01,00,03,FF,FF,FF,FF
4090 data 00,1C,00,00,00,00,00,00,05,11,00,0F,00,03,00,18
4100 data 00,01,00,04,FF,FF,FF,FF,00,1A,00,43,00,20,00,00
4110 data 05,2A,00,05,00,0E,00,13,00,01,00,05,FF,FF,FF,FF
4120 data 00,1A,00,41,00,20,00,00,05,2D,00,1D,00,0E,00,13
4130 data 00,01,00,06,FF,FF,FF,FF,00,14,00,80,00,00,00,FF
4140 data 11,00,00,01,00,04,00,34,00,07,00,07,FF,FF,FF,FF
4150 data 00,1A,00,11,00,00,00,00,05,34,00,03,00,05,00,0B
4160 data 00,01,00,08,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4170 data 05,3C,00,0F,00,05,00,0B,00,01,00,09,FF,FF,FF,FF
4180 data 00,1A,00,11,00,00,00,00,05,45,00,1B,00,05,00,0B
4190 data 00,01,00,0A,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4200 data 05,4B,00,27,00,05,00,0B,00,01,00,0B,FF,FF,FF,FF
4210 data 00,1A,00,11,00,00,00,00,05,51,00,03,00,07,00,0B
4220 data 00,01,00,0C,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4230 data 05,55,00,0F,00,07,00,0B,00,01,00,0D,FF,FF,FF,FF
4240 data 00,1A,00,11,00,00,00,00,05,5A,00,1B,00,07,00,0B
4250 data 00,01,00,0E,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4260 data 05,5F,00,27,00,07,00,0B,00,01,00,0F,FF,FF,FF,FF
4270 data 00,1A,00,11,00,00,00,00,05,66,00,03,00,09,00,0B
4280 data 00,01,00,10,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4290 data 05,70,00,0F,00,09,00,0B,00,01,00,11,FF,FF,FF,FF
4300 data 00,1A,00,11,00,00,00,00,05,78,00,1B,00,09,00,0B
4310 data 00,01,00,12,FF,FF,FF,FF,00,1A,00,11,00,00,00,00
4320 data 05,81,00,27,00,09,00,0B,00,01,00,00,FF,FF,FF,FF
4330 data 00,1A,00,31,00,00,00,00,05,8A,00,15,00,0B,00,0B
4340 data 00,01,FF,FF,00,01,00,04,00,14,00,00,00,10,00,02
4350 data 11,22,00,00,00,00,00,1F,00,09,00,02,FF,FF,FF,FF
4360 data 00,1C,00,00,00,00,00,00,05,92,00,07,00,01,00,11
4370 data 00,01,00,03,FF,FF,FF,FF,00,1D,00,08,00,00,00,00
4380 data 0B,2A,00,03,00,03,00,19,00,01,00,04,FF,FF,FF,FF
4390 data 00,1A,00,43,00,20,00,00,05,CE,00,03,00,06,00,0B
4400 data 00,01,00,00,FF,FF,FF,FF,00,1A,00,61,00,20,00,00
4410 data 05,D1,00,11,00,06,00,0B,00,01,FF,FF,00,01,00,0C
4420 data 00,14,00,00,00,30,00,02,11,22,00,00,00,00,00,3A
4430 data 00,0E,00,02,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4440 data 05,D8,00,03,00,01,00,14,00,01,00,03,FF,FF,FF,FF
4450 data 00,1C,00,00,00,00,00,00,05,ED,00,03,00,02,00,14
4460 data 00,01,00,04,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4470 data 06,02,00,03,00,03,00,14,00,01,00,05,FF,FF,FF,FF
4480 data 00,1E,00,08,00,00,00,00,0B,46,00,2E,00,01,00,08
4490 data 00,01,00,06,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
4500 data 0B,62,00,25,00,03,00,11,00,01,00,07,FF,FF,FF,FF
4510 data 00,1E,00,08,00,00,00,00,0B,7E,00,03,00,06,00,27
4520 data 00,01,00,08,FF,FF,FF,FF,00,1E,00,08,00,00,00,00
4530 data 0B,9A,00,2B,00,06,00,0B,00,01,00,09,FF,FF,FF,FF
4540 data 00,1E,00,08,00,00,00,00,0B,B6,00,04,00,08,00,26
4550 data 00,01,00,0A,FF,FF,FF,FF,00,1A,00,43,00,20,00,00
4560 data 07,25,00,03,00,0B,00,10,00,01,00,0B,FF,FF,FF,FF

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 277 / 321

4570 data 00,1A,00,41,00,20,00,00,07,2A,00,15,00,0B,00,10
4580 data 00,01,00,0C,FF,FF,FF,FF,00,1A,00,41,00,20,00,00
4590 data 07,2F,00,27,00,0B,00,10,00,01,00,00,FF,FF,FF,FF
4600 data 00,16,00,20,00,00,00,00,0B,D2,00,2E,00,08,00,03
4610 data 00,01,FF,FF,00,01,00,13,00,14,00,00,00,30,00,02
4620 data 11,12,00,00,00,00,00,31,00,13,00,02,FF,FF,FF,FF
4630 data 00,16,00,00,00,20,00,00,0B,EE,00,0C,00,01,00,18
4640 data 00,01,00,03,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4650 data 07,54,00,02,00,04,00,25,00,01,00,04,FF,FF,FF,FF
4660 data 00,1C,00,00,00,00,00,00,07,76,00,25,00,04,00,0A
4670 data 00,01,00,05,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4680 data 07,81,00,02,00,05,00,21,00,01,00,06,FF,FF,FF,FF
4690 data 00,1C,00,00,00,00,00,00,07,A3,00,21,00,05,00,0E
4700 data 00,01,00,07,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4710 data 07,B2,00,25,00,06,00,0A,00,01,00,08,FF,FF,FF,FF
4720 data 00,1C,00,00,00,00,00,00,07,BD,00,02,00,07,00,21
4730 data 00,01,00,09,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4740 data 07,DF,00,26,00,07,00,0A,00,01,00,0A,FF,FF,FF,FF
4750 data 00,1C,00,00,00,00,00,00,07,E9,00,02,00,08,00,21
4760 data 00,01,00,0B,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4770 data 08,0B,00,21,00,08,00,0E,00,01,00,0C,FF,FF,FF,FF
4780 data 00,1C,00,00,00,00,00,00,08,1A,00,25,00,09,00,0A
4790 data 00,01,00,0D,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4800 data 08,25,00,02,00,0A,00,21,00,01,00,0E,FF,FF,FF,FF
4810 data 00,1C,00,00,00,00,00,00,08,47,00,26,00,0A,00,0A
4820 data 00,01,00,0F,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4830 data 08,51,00,02,00,0B,00,21,00,01,00,10,FF,FF,FF,FF
4840 data 00,1C,00,00,00,00,00,00,08,73,00,26,00,0B,00,0A
4850 data 00,01,00,11,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4860 data 08,7D,00,25,00,0C,00,0A,00,01,00,12,FF,FF,FF,FF
4870 data 00,1C,00,00,00,00,00,00,08,88,00,02,00,0D,00,21
4880 data 00,01,00,13,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
4890 data 08,AA,00,25,00,0D,00,0A,00,01,00,00,FF,FF,FF,FF
4900 data 00,1A,00,63,00,20,00,00,08,B5,00,14,00,10,00,08
4910 data 00,01,FF,FF,00,01,00,02,00,14,00,00,00,30,00,02
4920 data 11,22,00,00,00,00,00,19,00,06,00,02,FF,FF,FF,FF
4930 data 00,1C,00,00,00,00,00,00,08,B8,00,04,00,01,00,11
4940 data 00,01,00,00,FF,FF,FF,FF,00,16,00,20,00,00,00,00
4950 data 0C,0A,00,06,00,03,00,0C,00,01,FF,FF,00,01,00,0A
4960 data 00,14,00,00,00,30,00,02,11,22,00,00,00,00,00,28
4970 data 00,0B,00,02,FF,FF,FF,FF,00,16,00,00,00,20,00,00
4980 data 0C,26,00,06,00,01,00,1B,00,01,00,03,FF,FF,FF,FF
4990 data 00,1C,00,00,00,00,00,00,08,E7,00,02,00,04,00,09
5000 data 00,01,00,04,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
5010 data 08,F1,00,0C,00,04,00,06,00,01,00,05,FF,FF,FF,FF
5020 data 00,1C,00,00,00,00,00,00,08,F6,00,13,00,04,00,08
5030 data 00,01,00,06,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
5040 data 08,FF,00,1B,00,04,00,0A,00,01,00,07,FF,FF,FF,FF
5050 data 00,1C,00,00,00,00,00,00,09,0A,00,02,00,06,00,0A
5060 data 00,01,00,08,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
5070 data 09,15,00,0D,00,06,00,06,00,01,00,09,FF,FF,FF,FF
5080 data 00,1C,00,00,00,00,00,00,09,1A,00,13,00,06,00,08
5090 data 00,01,00,0A,FF,FF,FF,FF,00,1C,00,00,00,00,00,00
5100 data 09,23,00,1B,00,06,00,0A,00,01,00,00,FF,FF,FF,FF
5110 data 00,1A,00,27,00,20,00,00,09,2E,00,0F,00,08,00,08
5120 data 00,01,00,00,0C,42,00,00,0D,32,00,00,10,C2,00,00
5130 data 11,3A,00,00,11,B2,00,00,13,1A,00,00,14,E2,00,00
5140 data 15,5A,00,00,16,92,00,00,18,72,00,00,18,BA,00,00
5150 data *

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 278 / 321

Program Listing #4

ST-Check BUG Data

100 data 21,544,391,421,536,604,620,730,588,553,5008
1050 data 812,51,861,789,558,647,7,957,827,635,6144
1150 data 737,975,751,724,699,870,633,890,758,697,7734
1250 data 756,811,842,883,780,724,794,753,699,733,7775
1350 data 784,774,742,793,873,769,843,752,791,818,7939
1450 data 821,726,785,760,837,692,854,762,741,934,7912
1550 data 751,740,782,815,738,708,801,666,730,860,7591
1650 data 706,845,677,575,670,35,30,844,805,574,5761
1750 data 595,20,73,869,851,768,870,848,812,821,6527
1850 data 815,823,897,840,778,916,876,847,871,934,8597
1950 data 773,714,845,854,901,953,48,895,50,916,6949
2050 data 828,881,866,999,56,956,51,875,829,761,7102
2150 data 691,895,799,888,783,825,816,742,806,908,8153
2250 data 862,784,857,759,797,842,853,799,821,900,8274
2350 data 772,851,893,815,845,837,692,739,742,746,7932
2450 data 812,742,522,605,556,747,644,818,710,543,6699
2550 data 706,553,721,590,711,621,565,616,592,668,6343
2650 data 656,802,776,690,716,715,789,531,705,716,7096
2750 data 592,730,695,785,665,727,714,577,723,582,6790
2850 data 790,661,822,740,591,699,578,780,669,830,7160
2950 data 801,693,870,541,879,868,549,849,882,586,7518
3050 data 854,924,615,868,893,592,659,501,489,490,6885
3150 data 841,504,834,875,549,832,874,562,499,518,6888
3250 data 579,869,921,570,867,921,586,865,843,519,7540
3350 data 850,877,527,599,855,517,853,857,537,866,7338
3450 data 875,539,856,582,601,872,904,572,873,924,7598
3550 data 572,865,576,607,864,938,603,601,880,595,7101
3650 data 866,862,530,677,868,544,874,883,622,856,7582
3750 data 711,521,873,874,580,879,879,593,701,881,7492
3850 data 592,865,892,582,887,931,621,868,951,593,7782
3950 data 883,917,612,895,974,609,865,971,610,854,8190
4050 data 725,503,846,859,535,860,881,584,943,854,7590
4150 data 535,853,909,560,865,907,539,863,913,576,7520
4250 data 868,926,555,853,906,574,851,893,591,666,7683
4350 data 873,542,862,892,628,869,763,529,871,915,7744
4450 data 598,856,857,583,871,890,589,869,949,612,7674
4550 data 890,893,579,893,905,610,680,858,628,859,7795
4650 data 882,571,864,890,602,862,939,601,867,979,8057
4750 data 603,879,921,575,884,902,579,882,893,588,7706
4850 data 867,943,581,872,969,618,685,872,590,858,7855
4950 data 750,536,880,909,610,840,924,583,845,963,7840
5050 data 539,850,879,540,862,879,578,593,655,662,7037
5150 data 203,203

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 279 / 321

CHAPTER 28 - A COMPLETE GEM APPLICATION - PART 2

IN CHAPTER 27 WE LOOKED at the portion of the MicroCheck ST source code that declared all of the
global variables used in the program and initialized both GEM and the program itself. Essentially, you
could say that the first part of the source code did all the start-up housekeeping. With all the
housekeeping (or most of it) out of the way, we are ready to explore the program itself.

Recall that a GEM application is controlled by "events." Whenever the user attempts any form of
input, whether it be accessing the menu bar, typing a key, clicking the mouse or fiddling with one of a
window's controls, GEM sends our application a message that describes what the user wants to do.
It's up to us, as the programmers, to decide how to handle and interpret these messages. We can
even ignore them if we want to.

The source code we looked at in Chapter 27 included a function called get_event(), which used a call
to evnt_multi() to retrieve events from GEM and route them to the appropriate parts of the program.
In MicroCheck ST we are interested in only three types of events: keyboard events, mouse-button
events, or GEM messages. These three events are handled in MicroCheck ST by the functions
handle_keys(), handle_button(), and handle_messages(), respectively.

Last time, we represented these functions in our source code as "stubs," do-nothing functions that
simply fulfill the linker's need for a label. This allowed us to compile and link a small portion of the
program. Without the stubs, the linker would have complained about the missing functions and not
allowed us to get a running program. Now we'll be replacing the handle_messages() stub with the
real function, adding to MicroCheck ST the ability to handle GEM message events. At this point you
should load the portion of MicroCheck

ST we looked at in Chapter 27 and delete the handle_messages() stub. You should then add the code
shown in Listing 1. Once Listing 1 has been merged, you will be able to compile and link it. When you
run the resulting program, rather than ending up with a mostly empty screen as we did in the
previous program segment, the addition of the handle_messages() function and some of its
subordinate functions, allows the window to be filled in and the buttons at the bottom of the screen
to be drawn. We'll see why soon.

Unfortunately, we still haven't added a quit function to the program, so once who have run the
program, the only way to get back to the Desktop is to turn off your computer. Now, let's examine
the new functions.

Function handle_messages()

As we've discussed before, when GEM sends a message, it stores it in an array that we must provide.
In MicroCheck ST this array is msg_buf(). The array element msg_buf[0] will contain the type of
message we've received.

Now, look at the top of Listing 1, where you'll find the function handle_messages(). This function
simply takes the message type that was stored in msg_buf[0] and uses it in a switch statement to
route the message to the appropriate part of the program. The switch is followed by seven case
statements that handle menu messages, redraw messages, window-fulled messages, arrow
messages, vertical-slider messages, horizontal-slider messages, and window-closed messages,
respectively.

For now, we will deal only with redraw messages and window-fulled messages. The functions
do_redraw() and do_full() handle those. The other functions needed for handle_messages() --
do_menu(), do_arrow(), do_vslide(), do_hslide(), and do_wind_close() -- are represented in this
chapter's code segment by stubs.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 280 / 321

Notice that, in the call to do_redraw(), we are passing the address of msg_bug[4] cast into a pointer
to GRECT (a structure which is defined in the header file OBDEFS.H and which contains the
coordinates for a GEM rectangle). The array elements msg_buf[4] through msg_buf[7] contain the
coordinates for the work area of the window that needs to be redrawn.

Function do_redraw()

This function steps through the rectangle list, redrawing all portions of the windows that need to be
refreshed. This includes the "invisible" window I mentioned in Chapter 27. The information buttons
on the bottom of the screen are drawn as a result of a redraw message for this window.

The function do_redraw(), after locking the windows (to prevent corruption by such occurrences as a
menu bar dropping down), steps through the rectangle list for each window, calculating the
rectangles that need to be redrawn. The redraw itself is handled by the function draw_interior(),
which we'll get to in a moment. After the rectangle list is empty, we unlock the window and control
returns back to get_event(), where we wait for another event.

Function draw_interior()

This function handles the actual redraw operations. The structure clip, passed to this function from
do_redraw(), contains the coordinates of the rectangle to be redrawn. First we turn off the mouse
and set the drawing mode to "replace." Then, if the redraw message is for window #1, the invisible
window, we calculate the coordinates, based on the current resolution, of the portion of the window
to be redrawn, and redraw both that rectangle and the boxes on the bottom of the screen. (The only
rectangle that'll ever be redrawn in the invisible window is the section of the screen below the visible
window, the part of the screen that contains the buttons. If the visible window, the one that displays
the check data, is fully opened, we'll never get a redraw message for the invisible window since it is
completely covered.)

If the redraw message isn't for window #1, it has to be for window #2, the visible window. First we
check the status of the flag full_draw. If its value is FALSE, we are not going to be updating the entire
window, so we set a clipping rectangle to the portion of the window's work area we are going to
redraw. A call to draw_rec() redraws the window rectangle.

The check data for MicroCheck ST is stored in an array of structures called checks[]. The first check is
in element 0 of the array, the second in element 1, and so on. The position within the array at which
a check is located is its index.

We find out how many lines of check data will fit in the window (lines_avail) based on the flag full,
which indicates whether the window has been fully opened. Next we find out how many lines we
need to display (lines_shown), by subtracting from the total number of checks (cur_count) the index
of the check data shown at the top of the window (cur_top). (This doesn't have to be the first record
in the checks[] array; if the user has used the vertical scroll bar or down arrow, the index for the
check data at the top of the window could be almost anything, up to the maximum minus the
number of checks that'll fit in the window.)

If lines_avail is larger than lines_shown, we have more space in the window then we have checks to
fill it (when starting with cur_top), so we calculate a new cur_top in an attempt to show as many
checks as possible, without any blank space at the bottom. If cur_top ends up less than 0, we don't
have enough check data in the array to fill the window. In this case, we just set cur_top to the first
check in the array.

We then set the vertical and horizontal sliders, call updte_chk_wind() to print the check data that
should appear in the window, turn off the full_draw flag, turn off clipping (otherwise, we won't be
able to print anything to the screen unless its coordinates are within the clipping rectangle), and turn
the mouse back on.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 281 / 321

Function draw_rec()

This function does nothing more than draw a filled rectangle at the coordinates passed in the
structure rec. The interior style, fill style, and color of the rectangle are also passed to the function,
although in most cases when we're redrawing a window, we'll want a solid white rectangle. Passing
the extra information makes the function a little more flexible. Notice also that, as usual, whenever
we draw anything on the screen, we shut off the mouse. This is important if we want to keep our
screen clean.

Function set_clip()

Here we set the clipping rectangle, the portion of the screen in which we want to restrict our
drawing, to the coordinates passed in the structure rec. The integer flag is a Boolean variable that
tells the function whether we're turning the clipping on or off. (TRUE turns it on.)

Function updte_chk_wind()

This function simply prints the necessary check data to the newly updated window (with a call to
prnt_chk_wnd()). We get the coordinates of the window's work area and use those values to
calculate, based on the character size and the check data index, the position within the window in
which to print the data. We need to use the character size because high-resolution characters are a
different height (16 pixels) from medium-resolution characters (eight pixels). Remember that the
integer cur_top holds the index for the check data that should be displayed at the top of the window.

Function prnt_chk_wnd()

It's here that we actually print the check data to the screen. The index into the check array and the
row at which the data should be printed are passed to this function from updte_chk_wind(). This
function uses basic C text handling, so you should be able to understand it easily. Of special note,
however, is the structure cur_chk_strc and the use of the flag left.

Because MicroCheck ST uses two different structures for holding check data -- one for the regular
monthly file and one for data obtained with the search function -- we use the pointer cur_chk_strc to
point to the currently active structure. This simplifies handling the two structures, making it so we
don't need to know whether the program is in the edit or search mode.

The flag left indicates the position of the window's horizontal slider. If the slider is all the way to the
left (left is TRUE), we display all the check data except the date, which is in the right-hand, unseen
portion of the window. If the slider is to the right, we display the date, but not the check's cancel
indicator or number, which are now in the left-hand, unseen portion of the window.

Function format_date()

Because the date for a check is stored in the format mmddyy, it must be converted to the more
typical mm/dd/yy format before it is printed in the check window. The function format_date() takes
care of this chore for us. The pointer d1 is the address of a character array where the final formatted
date will be stored, and the pointer d2 is the address of the date in its unformatted form.

Function draw_buttons()

Across the bottom of the MicroCheck ST screen, there is a series of six boxes that contain various
information about the currently opened account. The function draw_buttons(), along with a lot of
help from its subordinate functions, prints the information in the boxes.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 282 / 321

Function set_buttons()

Most of the data to be displayed in the boxes is in integer or long-integer format, so we must first,
using sprintf(), convert it to strings. Note that the strings to be displayed in the boxes are stored in
character arrays whose names end with _but.

The raw data to be converted is stored in four global variables: The long integer balance is the
account's balance; and the integers num_trans, num_chks, and num_deps are the total number of
transactions, the number of checks, and the number of deposits in the currently opened month,
respectively.

Function button()

This function does the actual drawing of the boxes. The pointer str1 is the address of the box's label,
the pointer str2 is the address of the information to print, and x1 is the X coordinate of the box being
updated. The function first calculates the position in which the boxes should be drawn. It then, with a
little help from center_butstring(), draws the boxes.

Function center_butstring()

This function centers and prints the text in the boxes. A pointer to the text to be printed, along with
the X and Y coordinates for the box, is passed to the function from button().

Function do_full()

The check-display window in MicroCheck ST can be opened to only two sizes. The smallest size holds
16 checks and allows the user the view the information boxes on the bottom of the screen. The full-
size window can hold up to 20 checks, but covers the information boxes.

We keep track of the window's current size with the flag full. Whenever we get a window-fulled
message from GEM (this happens when the user clicks on the full box in the upper-right corner of the
window), we check full and set the window's size accordingly. We are actually concerned only with
the window's height, and because a high-resolution screen is twice the vertical resolution of a
medium-resolution screen, we use the integer variable res, which holds the current screen
resolution, to calculate the window's height.

Time For Another Break

In Chapter 29, we will examine still more of MicroCheck ST. (I bet you can hardly wait.)

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 283 / 321

Program Listing #1

handle_messages ()
{
 switch (msg_buf[0]) {

 case MN_SELECTED:
 do_menu ();
 break;

 case WM_REDRAW:
 do_redraw ((GRECT *) &msg_buf[4]);
 break;

 case WM_FULLED:
 do_full ();
 break;

 case WM_ARROWED:
 do_arrow ();
 break;

 case WM_VSLID:
 do_vslide ();
 break;
 case WM_HSLID:
 do_hslide ();
 break;

 case WM_CLOSED:
 do_wind_close ();
 break;
 }
}

do_redraw (rec1)
GRECT *rec1;
{
 GRECT rec2;

 wind_update (BEG_UPDATE);
 wind_get (msg_buf[3], WF_FIRSTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);

 while (rec2.g_w && rec2.g_h) {
 if (rc_intersect (rec1, &rec2))
 draw_interior (rec2);
 wind_get (msg_buf[3], WF_NEXTXYWH,
 &rec2.g_x, &rec2.g_y, &rec2.g_w, &rec2.g_h);
 }
 wind_update (END_UPDATE);
}

do_full ()
{
 if (!full)
 wind_set (w_h2, WF_CURRXYWH, fullx, fully, fullw, fullh);
 else
 wind_set (w_h2, WF_CURRXYWH,

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 284 / 321

 fullx, fully, fullw, 316 -162*(res==MED));
 calc_vslid (cur_count);
 full = !full;
}

do_menu ()
{}

do_arrow ()
{}

do_vslide ()
{}

do_hslide ()
{}

do_wind_close ()
{}

draw_interior (clip)
GRECT clip;
{
 GRECT r;
 int lines_avail, lines_shown;

 graf_mouse (M_OFF, 0L);
 vswr_mode (handle, MD_REPLACE);
 if (msg_buf[3] == w_h1) {
 if (res == HIGH) {
 r.g_x = 1;
 r.g_y = 337;
 r.g_w = 638;
 r.g_h = 63;
 }
 else {
 r.g_x = 1;
 r.g_y = 167;
 r.g_w = 638;
 r.g_h = 32;
 }
 draw_rec (r, 2, 4, GREEN);
 draw_buttons ();
 }
 else {
 if (!full_draw)
 set_clip (TRUE, clip);
 wind_get(w_h2,WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 draw_rec (r, 2, 8, WHITE);
 if (full)
 lines_avail = 20;
 else
 lines_avail = 15;
 lines_shown = cur_count - cur_top;
 if (lines_avail > lines_shown) {
 cur_top = cur_count - lines_avail;
 if (cur_top < 0)
 cur_top = 0;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 285 / 321

 }
 if (cur_count == 0)
 calc_vslid (1);
 else
 calc_vslid (cur_count);
 calc_hslid (NUM_COLUMNS);
 updte_chk_wind ();
 full_draw = FALSE;
 set_clip (FALSE, clip);
 }
 graf_mouse (M_ON, 0L);
}

draw_rec (rec, inter, fill, color)
GRECT rec;
int inter, fill, color;
{
 int pxy[4];

 graf_mouse (M_OFF, 0L);
 vsf_interior (handle, inter);
 vsf_style (handle, fill);
 vsf_color (handle, color);
 pxy[0] = rec.g_x;
 pxy[1] = rec.g_y;
 pxy[2] = rec.g_x + rec.g_w - 1;
 pxy[3] = rec.g_y + rec.g_h - 1;
 vr_recfl (handle, pxy);
 graf_mouse (M_ON, 0L);
}

set_clip (flag, rec)
int flag;
GRECT rec;
{
 int pxy[4];

 pxy[0] = rec.g_x;
 pxy[1] = rec.g_y;
 pxy[2] = rec.g_x + rec.g_w - 1;
 pxy[3] = rec.g_y + rec.g_h - 1;
 vs_clip (handle, flag, pxy);
}

updte_chk_wind ()
{
 int i, y;

 wind_get (w_h2, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);
 i = cur_top;
 y = 0;
 while ((i < cur_count) && (i < cur_top + wrkh / charh)) {
 prnt_chk_wnd (i, wrky + charh + y * charh);
 ++i;
 ++y;
 }
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 286 / 321

prnt_chk_wnd (index, row)
int index, row;
{
 char a[40], s[10];

 if (left) {
 v_gtext (handle, 6, row, cur_chk_strc[index].cancel);
 v_gtext (handle, 25, row, cur_chk_strc[index].number);
 sprintf (a, "$%5ld.%02ld",
 cur_chk_strc[index].amount/100,
 cur_chk_strc[index].amount%100);
 v_gtext (handle, 77, row, a);
 v_gtext (handle, 169, row, cur_chk_strc[index].payee);
 strcpy (a, cur_chk_strc[index].memo);
 a[24] = 0;
 v_gtext (handle, 424, row, a);
 }
 else {
 v_gtext (handle, 9, row, cur_chk_strc[index].payee);
 v_gtext (handle, 264, row, cur_chk_strc[index].memo);
 strcpy (s, cur_chk_strc[index].date);
 format_date (a, s);
 v_gtext (handle, 520, row, a);
 }
}

draw_buttons()
{
 set_buttons ();
 button ("BALANCE", bal_but, 35);
 button ("# TRANS", trans_but, 131);
 button ("# CHECKS", check_but, 227);
 button ("# DEP", dep_but, 323);
 button ("MONTH", mnth_but, 419);
 button ("DATE", date_but, 515);
}

set_buttons ()
{
 if (balance < 0 && balance > (-100))
 sprintf (bal_but, "$-%ld.%02ld", balance/100,
 labs(balance%100));
 else
 sprintf (bal_but, "$%ld.%02ld", balance/100,
 labs(balance%100));
 sprintf (trans_but, "%d", num_trans);
 sprintf (check_but, "%d", num_chks);
 sprintf (dep_but, "%d", num_deps);
 if (month == -1)
 strcpy (mnth_but, "NONE");
 else
 strcpy (mnth_but, months[month]);
}

button (str1, str2, x1)
char *str1, *str2;
int x1;
{

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 287 / 321

 int x2, y1, y2;
 int pxy[10];

 x2 = x1 + 88;
 y1 = 174 * res;
 y2 = 198 * res;
 vswr_mode (handle, MD_REPLACE);
 vsf_color (handle, WHITE);
 pxy[0] = x1;
 pxy[1] = y1;
 pxy[2] = x2;
 pxy[3] = y2;
 v_bar (handle, pxy);
 pxy[3] = y1;
 pxy[4] = x2;
 pxy[5] = y2;
 pxy[6] = x1;
 pxy[7] = y2;
 pxy[8] = x1;
 pxy[9] = y1;
 vsl_width (handle, 3);
 vsl_color (handle, BLACK);
 v_pline (handle, 5, pxy);
 center_butstring (str1, x1, 184);
 center_butstring (str2, x1, 194);
}

center_butstring (str, x1, y)
char *str;
int x1, y;
{
 int x, x2;

 x2 = x1 + 88;
 x = ((x2-x1)-(strlen(str)*8))/2+x1;
 v_gtext (handle, x1+5, y * res, " ");
 v_gtext (handle, x, y * res, str);
}

format_date (d1, d2)
char *d1, *d2;
{
 strcpy (d1, d2);
 d1[2] = '/';
 strcpy (&d1[3], &d2[2]);
 d1[5] = '/';
 strcpy (&d1[6], &d2[4]);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 288 / 321

CHAPTER 29 - A COMPLETE GEM APPLICATION - PART 3

In this chapter we'll continue examining the MicroCheck ST source code by adding the functions we
need to get the menu bar working. We'll also be looking at the code that controls the sliders and
arrows in our window.

Marching Onward

Listing 1, found at the end of this chapter, is the third portion of the MicroCheck ST source code.
Load the source code you've typed so far (from Chapters 27 and 28), delete the do_menu(),
do_wind_close(), do_arrow(), do_vslide(), do_hslide(), and handle_button() stubs (those do-nothing
functions that we added for the linker's sake), and add Listing 1. Leave in the handle_keys() stub.

When you run the program (after compiling it, of course), you'll notice two big changes: the Quit
option of the File menu now works (hallelujua!) and the horizontal scroll bar on the window works.

In fact, the entire menu bar is now working, but since we haven't added the code necessary to
perform the functions chosen from the menu (except Quit), most of the menu choices still do
nothing. Likewise, all the window controls are now in working order, but since the window is
displaying nothing, most of them seem to be non-functional.

Now let's examine the new functions.

Function do_menu()

Here we take the MU_MESAG (a menu message) passed from GEM and interpret it, sending program
execution to the appropriate function. As you may recall, the object number of the menu title can be
found in the third element of the message buffer, and the object number of the selected entry within
the menu can be found in the fourth element of the message buffer (in our case, msg_buf[3] and
msg_buf[4]).

To interpret the message, we use nested switch statements. The outer switch checks msg_buf[3] to
find out which of the menus was accessed. The inner switch statements (one for each of the menus)
uses msg_buf[4] to route the user's request to the right function.

If you look closely at do_menu(), you'll see that every menu and every selection within each menu is
represented here. Although the function is long, it is really quite simple. The only other thing of note
here is the call, at the end of the function, to menu_normal(), which deselects (turns off the
highlighting) the menu title chosen.

Function do_wind_close()

This function is called whenever the user clicks on the window's close box or selects the Close entry
of the File menu. Because MicroCheck ST has three modes -- edit, search and cancel --
do_wind_close() has three sections, each of which handles one of the modes.

Since we'll be modifying the window, the first thing we must do is call wind_update() to lock the
window from any other redraws. (At the end of the function, we unlock the window with the same
function.)

If the user is in the search or cancel mode, we need to return to the edit mode. The first two sections
of the if statement handle these situations. In both cases, the current mode is turned off (returning
the program to edit mode), the window name is changed to show that the user is back in the edit
mode, the window is redrawn, and the menu entries are set appropriately. (Some of them are not
available in every mode, so, according to the mode, some are enabled and some are disabled).

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 289 / 321

If we're already in the edit mode when the user selects Close, we need to close the account. First, we
bring up an alert box, asking the user if he's sure he wants to close the account.

If he is, we save the account to disk, blank the window, reset the menu entries (almost everything
will be disabled) and reset the window's title bar to show the user that no account is open.

Function handle_button()

Whenever the mouse button is clicked on MicroCheck ST's work area, this function is called. If the
mouse pointer was over the check window, then the user either wants to edit a check or wants to
mark it as cancelled.

If the program is not in the search or cancel modes, we call edit() to bring up the check dialog for the
check he has selected, otherwise we call canc_chk(), the function that places the program in the
cancel mode and allows the user to cancel transactions.

Function do_arrow()

Whenever the user clicks the mouse pointer on one of the window's arrows or slider tracks (not on
the slider itself), GEM sends us a WM_ARROWED message. This message comes in eight different
flavors (only six of which are of interest to MicroCheck ST). The actual type of arrow message is
contained in the fourth element of the message buffer. So in the case of MicroCheck ST, we call
do_arrow(), passing it the value of msg_buf[4].

The user may be asking to move up or down a line, up or down a page, right or left a line (or
character, actually), or right or left a page. Since MicroCheck ST allows the user to scroll the window
right or left only by a full page, we don't need to worry about the WA_LFLINE and WA_RTLINE
messages.

As with do_menu(), we use a switch statement to route the user's request to the appropriate
function.

Function do_uppage()

If the user clicked in the portion of the slider track above the slider, do_uppage() takes over. Here we
simply find out how many lines will fit in the window, subtract that value from the index number for
the check displayed at the top of the window to calculate a new cur_top, and redraw the window.

Function do_dnpage()

If the user clicked in the portion of the slider track below the slider, he wants to move down a page.
We call do_dnpage(), which works much like do_uppage() except that we add lines_available (the
number of lines that'll fit in the window) to cur_top rather than subtract it.

Function do_upline()

When the window's up arrow is clicked, do_upline() springs into action, moving the window up one
line. Moving up or down a single line is, if it's to be done elegantly, much more complex than moving
an entire page. When we move up or down a full page, we have no choice but to redraw the entire
window in the normal way, since none of the data we want to display is available anywhere on the
screen.

However, when we move up or down a single line, all the data we need, except one line, is on the
screen. If we want the scrolling action to be smooth, we can't just redraw the entire window in the
conventional way. Instead, we raster (block move) the portion of the window containing data we can
use up or down one line, then add the new data at the top or bottom, depending on which way we're

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 290 / 321

moving. These block moves of screen memory are fast and help create the illusion of the window
scrolling a line at a time.

So, in do_upline() we subtract 1 from cur_top (the index of the check shown at the top of the
window), raster a portion of the window, starting with the top line and extending down to the next
to the last line, down one position, then replace the top line with the new current top. Simple (well,
almost) and elegant.

Function do_dnline()

This function works almost exactly like do_upline(), except it moves the window down one line
instead of up.

Function do_vslide()

If the user chooses to use the vertical slider, do_vslide() will accommodate him. Handling the sliders
is much more complicated than handling the arrows or slider tracks because the user can place the
slider anywhere within the track. We need to calculate what portion of the data to display based on
the slider's new position.

The fourth element of the message buffer contains the new position of the slider. We use this value
first to see if the slider has actually moved to a new position. If the slider has been moved, we
calculate its position within our "document" (in MicroCheck ST's case, the list of checks), set cur_top
to the appropriate check index (the one that'll now appear at the top of the window) and redraw the
window, placing the slider in its new location.

Function do_hslide()

The horizontal slider works in much the same fashion as its vertical counterpart. The main difference
is that, in MicroCheck ST, we allow this slider to have only two positions: full right or full left. This
makes the job much easier, since we don't have to do a lot of fancy calculations. Instead, we use the
flag left to keep track of the horizontal slider's current position. When the user moves the slider, all
we have to do is toggle our flag and change the position of the slider, redrawing the window as we
do.

The only complication is that, since we are going to be displaying a different portion of the data, we
need to change the labels in the window information line. This is easy to do with a quick call to
wind_set().

Function do_quit()

When the user is ready to leave the program and return to the desktop, he'll select the Quit selection
of the File menu (at least, he will if we wants a safe exit). When he does, do_quit() will ask if he's sure
he wants to quit. If he is, his data will be saved and the flag all_done will be set to true. This flag will
then break us out of the get_event() loop and return the program to the end of do_mcheck() where
all our windows and GEM resources will be deleted from memory.

Putting It In Order

Now that, over the last few chapters, we've put together a large chunk of source code, you might
want to rearrange some of the functions so that the higher level functions are at the top of the
program and the lower level functions are at the bottom. This "top down" organization will make the
program easier to read and trace.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 291 / 321

Program Listing #1
do_menu ()
{
 int button;

 switch (msg_buf[3]) {

 case DESK:
 form_alert(1,"[0][MicroCheck ST |by Clayton Walnum \
| | Copyright 1989 |by Clayton Walnum][CONTINUE]");
 break;

 case FILEBAR:
 switch (msg_buf[4]) {

 case NEWACCNT:
 do_newacct ();
 break;

 case OPENMBR:
 button = get_acct ();
 if (button)
 open_acct (filename);
 break;

 case CLOSEMBR:
 do_wind_close ();
 break;

 case NEWMNTH:
 do_new_mnth ();
 break;

 case QUIT:
 do_quit ();
 break;
 }
 break;

 case CHECKS:
 switch (msg_buf[4]) {

 case ENTER:
 do_enter ();
 break;

 case SEARCH:
 do_search ();
 break;

 case CHKCAN:
 do_check_canc ();
 break;

 case RECONCIL:
 do_reconcil ();
 break;

 case CHKAUTO:
 do_auto ();
 break;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 292 / 321

 }
 break;

 case PRINT:
 switch (msg_buf[4]) {
 case PRNTWIND:
 print_wind ();
 break;

 case PRNTREG:
 print_reg ();
 break;
 }

 case UTILITY:
 switch (msg_buf[4]) {

 case NEWYEAR:
 do_new_year ();
 break;

 case NEWDATE:
 get_new_date ();
 break;

 case IMPORT:
 do_import ();
 break;

 }
 break;
 }
 menu_tnormal (menu_addr, msg_buf[3], TRUE);
}

do_wind_close ()
{
 int button;
 GRECT r;

 wind_get (w_h2, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 wind_update (BEG_UPDATE);
 if (search) {
 search = FALSE;
 cur_top = edit_top;
 cur_count = num_trans;
 cur_chk_strc = checks;
 srch_trans = 0;
 set_menu_entries ();
 strcpy (windname, acct_name);
 strcpy (&windname[strlen(windname)], ": Edit mode");
 wind_set (w_h2, WF_NAME, windname, 0, 0);
 draw_interior (r);
 }
 else if (canceling) {
 if (!saved)
 save_month (monthfile);
 canceling = FALSE;
 strcpy (windname, acct_name);
 strcpy (&windname[strlen(windname)], ": Edit mode");

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 293 / 321

 wind_set (w_h2, WF_NAME, windname, 0, 0);
 draw_interior (r);
 set_menu_entries ();
 }
 else if (loaded) {
 button = form_alert (1, "[2][Do you want to close|this \
account?][YES|NO]");
 if (button == YES) {
 do_save ();
 draw_rec (r, 2, 8, WHITE);
 set_menu_entries ();
 wind_set (w_h2, WF_NAME, noacct, 0, 0);
 }
 }
 wind_update (END_UPDATE);
}

handle_button ()
{
 wind_get (w_h2, WF_WORKXYWH, &wrkx, &wrky, &wrkw, &wrkh);
 if (mouse_y > wrky && mouse_y < wrky + cur_count * charh + 4
 && mouse_y < wrky + wrkh && mouse_x > wrkx
 && mouse_x < wrkx+wrkw && num_clicks == 1)
 if (!search && !canceling)
 edit ();
 else if (canceling)
 canc_chk ();
}

do_arrow ()
{
 switch (msg_buf[4]) {

 case WA_UPPAGE:
 do_uppage ();
 break;

 case WA_DNPAGE:
 do_dnpage ();
 break;

 case WA_UPLINE:
 do_upline ();
 break;

 case WA_DNLINE:
 do_dnline ();
 break;

 case WA_LFPAGE:
 case WA_RTPAGE:
 do_hslide ();
 break;

 }
}

do_vslide ()

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 294 / 321

{
 GRECT r;
 int lines_avail;

 wind_get (w_h2, WF_VSLIDE, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 if (r.g_x != msg_buf[4]) {
 wind_update (BEG_UPDATE);
 wind_get (w_h2, WF_WORKXYWH,&r.g_x,&r.g_y,&r.g_w,&r.g_h);
 lines_avail = r.g_h / charh;
 cur_top = (long)msg_buf[4]*
 ((long)cur_count-(long)lines_avail)/1000L;
 wind_set (w_h2, WF_VSLIDE, msg_buf[4], 0, 0, 0);
 draw_interior (r);
 wind_update (END_UPDATE);
 }
}

do_hslide ()
{
 GRECT r;

 wind_get (w_h2, WF_HSLIDE, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 if (r.g_x != msg_buf[4]) {
 wind_update (BEG_UPDATE);
 wind_get (w_h2, WF_WORKXYWH,&r.g_x,&r.g_y,&r.g_w,&r.g_h);
 left = !left;
 if (left) {
 wind_set (w_h2, WF_INFO, infotext, 0, 0);
 wind_set (w_h2, WF_HSLIDE, 0, 0, 0, 0);
 }
 else {
 wind_set (w_h2, WF_INFO, &infotext[20], 0, 0);
 wind_set (w_h2, WF_HSLIDE, 166, 0, 0, 0);
 }
 draw_interior (r);
 wind_update (END_UPDATE);
 }
}

do_uppage ()
{
 GRECT r;
 int lines_avail;

 wind_update (BEG_UPDATE);
 wind_get (w_h2, WF_WORKXYWH,&r.g_x,&r.g_y,&r.g_w,&r.g_h);
 lines_avail = r.g_h / charh;
 cur_top -= lines_avail;
 if (cur_top < 0)
 cur_top = 0;
 wind_update (END_UPDATE);
 draw_interior (r);
}

do_dnpage ()
{
 GRECT r;
 int lines_avail;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 295 / 321

 wind_update (BEG_UPDATE);
 wind_get (w_h2, WF_WORKXYWH,&r.g_x,&r.g_y,&r.g_w,&r.g_h);
 lines_avail = r.g_h / charh;
 cur_top += lines_avail;
 if (cur_top > cur_count - lines_avail)
 cur_top = cur_count - lines_avail;
 draw_interior (r);
 wind_update (END_UPDATE);
}

do_upline ()
{
 MFDB s, d;
 GRECT r;
 int pxy[8];

 if (cur_top != 0) {
 wind_update (BEG_UPDATE);
 cur_top -= 1;
 wind_get (w_h2, WF_WORKXYWH,&r.g_x,&r.g_y,&r.g_w,&r.g_h);
 set_clip (TRUE, r);
 graf_mouse (M_OFF, 0L);
 s.fd_addr = 0L;
 d.fd_addr = 0L;
 pxy[0] = r.g_x;
 pxy[1] = r.g_y + 2;
 pxy[2] = r.g_x + r.g_w;
 pxy[3] = r.g_y + r.g_h - charh - 2;
 pxy[4] = r.g_x;
 pxy[5] = r.g_y + charh + 2;
 pxy[6] = r.g_x + r.g_w;
 pxy[7] = r.g_y + r.g_h - 2;
 vro_cpyfm (handle, S_ONLY, pxy, &s, &d);
 prnt_chk_wnd (cur_top, r.g_y + charh);
 set_clip (FALSE, r);
 calc_vslid (cur_count);
 wind_update (END_UPDATE);
 graf_mouse (M_ON, 0L);
 }
}

do_dnline ()
{
 MFDB s, d;
 GRECT r;
 int pxy[8];
 int lines_avail, index;
 wind_get (w_h2, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h
);
 lines_avail = r.g_h / charh;
 if ((cur_top + lines_avail) < cur_count) {
 wind_update (BEG_UPDATE);
 cur_top += 1;
 index = cur_top + lines_avail - 1;
 set_clip (TRUE, r);
 graf_mouse (M_OFF, 0L);
 s.fd_addr = 0L;
 d.fd_addr = 0L;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 296 / 321

 pxy[0] = r.g_x;
 pxy[1] = r.g_y + charh + 3 - 1*(res==MED);
 pxy[2] = r.g_x + r.g_w;
 pxy[3] = r.g_y + r.g_h - 1;
 pxy[4] = r.g_x;
 pxy[5] = r.g_y + 3 -1*(res==MED);
 pxy[6] = r.g_x + r.g_w;
 pxy[7] = r.g_y + r.g_h - charh - 1;
 vro_cpyfm (handle, S_ONLY, pxy, &s, &d);
 prnt_chk_wnd (index, r.g_y + lines_avail * charh);
 set_clip (FALSE, r);
 calc_vslid (cur_count);
 wind_update (END_UPDATE);
 graf_mouse (M_ON, 0L);
 }
}

do_quit ()
{
 int button;

 button = form_alert(1,"[2][Are you sure you|want to
quit?][YES|NO]");
 if (button == YES) {
 search = FALSE;
 all_done = TRUE;
 if (!saved)
 do_save ();
 }
}

save_month()
{}

do_new_year()
{}

do_new_mnth()
{}

do_newacct()
{}

get_acct()
{}

open_acct()
{}

get_new_date()
{}

do_save()
{}

do_import()
{}

do_reconcil()
{}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 297 / 321

canc_chk()
{}

do_check_canc()
{}

print_reg()
{}

do_search()
{}

print_wind()
{}

do_auto()
{}

do_enter()
{}

edit()
{}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 298 / 321

CHAPTER 30 - A COMPLETE GEM APPLICATION - PART 4

Believe it or not, there are many people who prefer to do things the old-fashioned way, people who
despise such newfangled contraptions as menu bars and other mouse-driven devices that make
them lift their chubby fingers from the keyboard. You and I, of course, are great fans of GEM, but
whenever we design a program, we have to remember that not everyone shares our good taste. Put
simply, programs should have keyboard alternatives whenever possible, especially for selecting
functions from a menu bar.

Needless to say, MicroCheck ST provides keyboard selection for every function in the menu bar. The
user who considers the ST's mouse a furless rodent unworthy of his touch may type a Control-key
combination to select any function he desires. In this chapter, we'll be looking at the portion of
MicroCheck ST's source code that handles the Control-key selections. We'll also look at the routines
that allow the user to begin a new account.

Compiling

Listing 1 is this chapter's portion of the MicroCheck ST source code. Add it to the combined source
code from the previous installments, then delete the handle_keys() and do_newacct() stubs from the
resulting file.

After compiling the program, you'll find that you can now select functions from the menu bar by
pressing a Control-key combination. For example, pressing Control-Q will exit the program.

Pressing Control-N, on the other hand, will activate the "New" selection of the File menu. A dialog
box will appear, asking for your name, address, and account balance, after which a second dialog box
will ask for the filename you wish to use for the account. This filename can be up to six characters
long. When you've typed in the filename, MicroCheck ST will save the information you typed in the
new-account dialog box to a file with an .MCK extension and will create all the monthly data files for
your new account.

Now let's take a closer look at how all this works.

Function handle_keys()

If you look at the selections in the menu bar, you'll see that each has a single letter next to it. This is
the key to press along with Control in order to select that function from the keyboard. But just having
the letters on the menu isn't enough, of course. We have to retrieve the key presses from the
keyboard (which we do by watching for MU_KEYBD events with evnt_multi()), and when we get a
Control-key combination, we have to route it to the appropriate portion of the program.

This is handled by the function handle_keys(), which does much the same work as do_menu(), except
that we're using Control-key values in the switch statements rather than a menu message. Another
major difference is that we're using the loaded, search, and canceling flags to determine which menu
functions are active. We didn't have to do this in do_menu() because inactive menu selections are
grayed-out and are not selectable by the user. Notice that in handle_keys(), we are highlighting the
appropriate menu title with menu_tnormal(), just as we did in do_menu(). This tells the user which
menu he is working with.

All of the values for the Control-key combinations in handle_keys() are defined at the top of the
program.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 299 / 321

Function do_newacct()

Whenever the "New" selection of the File menu is selected or a Control-N is typed, the function
do_newacct() is called. This function brings up the dialog box for entering the information needed to
start a new MicroCheck ST account.

First, we call clear_newacct() to make sure any information that was previously entered into the
dialog is erased. Next, we call up the dialog box in the usual way and activate it with a call to
form_do().

The variable choice will contain the number of the object used to exit the dialog. If this object was
the OK button (NEWOK), we call the function check_newacct() to make sure all the information in
the dialog was filled in. If the dialog has empty fields (okay is FALSE), we redraw the dialog (the dialog
is still on the screen, but the buttons haven't been redrawn to their deselected state) and loop back
to form_do() in order to let the user try again.

If the user clicked the OK button and the dialog was properly filled in, we call newacct_file(), which
will get a filename from the user for the new account and call the functions that will write the new-
account information out to the disk.

If the user clicked the cancel button (NEWCANCL), we clear the dialog and close it, then go back to
wait for another event.

Function check_newacct()

This function simply checks to see that none of the fields in the dialog have been left empty. We use
the flag okay to communicate this information back to the calling function.

First, we set okay to TRUE. Then we use a for loop to cycle through the editable text objects in the
dialog, checking that none are empty. (An empty field will begin with a "@." Note that, should you
ever use this method in any of your own programs, the objects you're checking must have been
created sequentially, all at the same time. Otherwise, you can't use a for loop to check the objects.) If
an empty field is found, okay is set to FALSE and an alert box warns the user that he must complete
the form.

Function newacct_file()

Most of this function is dedicated to getting a filename from the user and combining it with the right
path specification.

First, we get the address of the string in the filename dialog box and clear it with a null. (With dialog
boxes, you can clear a string with the "@" or by the usual null character.) Next, we zero out the string
filename and call up the dialog box. If the user exits the dialog with the OK button (FILEOK), we call
check_file() to be certain a filename has been entered. If it hasn't, we loop back to let the user try
again.

If the user entered the filename properly, we retrieve it from the dialog, copy it into acct_name[] (a
string that will be used in the window's title bar), then add the complete pathname and the .MCK
extension. We then open the file in binary-write mode, and a call to write_new_info() writes all the
account information to the file, as well as creates the monthly data files.

A call to open_acct() actually opens the account so the user can enter checks if he wishes. (Note that
open_acct() is represented only by a stub at this point; so when you run this portion of the program,
although you can create a new account, the account cannot actually be opened.)

If the user exited the dialog by clicking on the CANCEL button (FILECANC), we exit the dialog without
starting a new account.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 300 / 321

Function clear_newacct()

This function simply steps through each of the editable text fields in the new-account dialog box,
clearing them of whatever information they may already contain.

Function get_tedinfo_str()

In order to handle dialog boxes with editable text fields, it's necessary you know how to handle
TEDINFO structures. This function simplifies the process of getting the address of a string in an
editable text field. Simply pass it the address of the tree and the number of the object, and it'll return
the address of the string.

Function check_file()

In order to open a file for a new account, we must, of course, have a legal filename. The validation
string for the dialog's editable text field will make sure the user enters only legal filename characters,
but it's up to us to be certain that the field is filled in. This function simply checks the object
FILENAME to be sure it's not empty. If it is empty, we scold the user with an alert box.

Function no_decimal()

In MicroCheck ST, we have to deal with numbers in two ways. The user, since he is entering amounts
as dollars and cents, needs to use decimal numbers; that is, he needs to enter his values with dollars
on the left of a decimal point and cents on the right. Unfortunately, this means using floating point
numbers, which are infamously inaccurate due to the rounding operations performed when
calculating with these numbers.

In order to avoid rounding errors, MicroCheck ST calculates not with both dollars and cents, but only
with cents. For MicroCheck ST, $100 isn't 100.00, but rather 10,000. So every time the user enters a
value, we need, as the first step to making the conversion from dollars to cents, to combine both the
dollar and cent portions of the number.

The function no_decimal() accomplishes that task using conventional string-handling techniques. The
string to be converted will have one of three formats: dollars and no cents, dollars and cents, or
cents and no dollars. The strings as retrieved from the dialog will take one of the forms shown in the
first column of the chart below (none of the strings contains trailing spaces):
String Actual value After no_decimal()
99 $99.00 9900
99 99 99.99 9999
9999999 99999.99 9999999
 9 .90 90
 99 .99 99

 The strings, when they are retrieved from a dialog box, contain no decimal points; instead, dollars
and cents are separated by spaces. If the entire field is full, there are no spaces at all. Without spaces
delimitating the two numbers, you have to know the field length in order to separate the dollars and
cents; in this case, dollars can be up to five digits and cents, of course, can be up to two.

The chart on the previous page shows the string obtained from the dialog, the value it represents,
and the value no_decimal() will return, respectively. Note that the value returned is the number of
cents, but it's still in string, not numeric, form.

Function str_to_long()

Once we have the number of cents in string form, we need to convert it to long-integer form. The
function str_to_long() handles this by multiplying each digit in the string times its corresponding

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 301 / 321

value in the pwrs[] array. Each product is added to num until the end of the string is reached. The
long integer num will contain the final result.

Function write_new_info()

In order to begin a new account, MicroCheck ST must write out the information retrieved from the
new-account dialog to the .MCK file, as well as create each of the 13 monthly data files. These files
will be named file0.DAT through file12.DAT, where "file" is the filename that was entered into the
filename dialog box.

This task is accomplished by write_new_info(). First, we write out the user's name and address to the
file we opened back in newacct_file() (acctfile). Then we retrieve the account balance, convert it to
long integer and write it out to the same file.

The last step is to create the 13 monthly data files. (Yes, I know there are only 12 months. The extra
file, the one numbered "0," is storage for uncanceled checks from the previous year, necessary
whenever the "new year" function is used.)

We use a for loop to repeat the file-creation process 13 times. The loop variable, x, is used as the file
number and is tacked onto the end of the filename the user typed into the filename dialog box. The
complete pathname is tacked onto the filename, as is the extension ".DAT." When the filename is
complete, we open the file (in binary mode) and write out a zero, after which the file is closed. (The
first word [two bytes] of the monthly files is the number of transactions in the file; since a new file
has no transactions, we start off with a zero.)

Conclusion

That's it for another chapter. If anything I've described in this or the last few chapters doesn't make
sense to you, you should review the topic in question. If you want to write full-GEM applications, you
need to know all this stuff!

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 302 / 321

Program Listing #1
handle_keys ()
{
 int button;

 if (loaded && !search && !canceling)
 switch (key) {

 case CNTL_A:
 menu_tnormal (menu_addr, CHECKS, FALSE);
 do_auto ();
 menu_tnormal (menu_addr, CHECKS, TRUE);
 break;

 case CNTL_E:
 menu_tnormal (menu_addr, CHECKS, FALSE);
 do_enter ();
 menu_tnormal (menu_addr, CHECKS, TRUE);
 break;

 case CNTL_M:
 menu_tnormal (menu_addr, FILEBAR, FALSE);
 do_new_mnth ();
 menu_tnormal (menu_addr, FILEBAR, TRUE);
 break;

 case CNTL_P:
 menu_tnormal (menu_addr, CHECKS, FALSE);
 do_check_canc ();
 menu_tnormal (menu_addr, CHECKS, TRUE);
 break;

 case CNTL_R:
 menu_tnormal (menu_addr, CHECKS, FALSE);
 do_reconcil ();
 menu_tnormal (menu_addr, CHECKS, TRUE);
 break;
 }

 if (!loaded)
 switch (key) {

 case CNTL_N:
 menu_tnormal (menu_addr, FILEBAR, FALSE);
 do_newacct ();
 menu_tnormal (menu_addr, FILEBAR, TRUE);
 break;

 case CNTL_O:
 menu_tnormal (menu_addr, FILEBAR, FALSE);
 button = get_acct ();
 if (button)
 open_acct (filename);
 menu_tnormal (menu_addr, FILEBAR, TRUE);
 break;

 case CNTL_Y:
 menu_tnormal (menu_addr, UTILITY, FALSE);
 do_new_year ();
 menu_tnormal (menu_addr, UTILITY, TRUE);
 break;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 303 / 321

 case CNTL_I:
 menu_tnormal (menu_addr, UTILITY, FALSE);
 do_import ();
 menu_tnormal (menu_addr, UTILITY, TRUE);
 break;
 }

 switch (key) {

 case CNTL_Q:
 menu_tnormal (menu_addr, FILEBAR, FALSE);
 do_quit ();
 menu_tnormal (menu_addr, FILEBAR, TRUE);
 break;

 case CNTL_S:
 if (loaded && !canceling) {
 menu_tnormal (menu_addr, CHECKS, FALSE);
 do_search ();
 menu_tnormal (menu_addr, CHECKS, TRUE);
 }
 break;

 case CNTL_C:
 if (loaded) {
 menu_tnormal (menu_addr, FILEBAR, FALSE);
 do_wind_close ();
 menu_tnormal (menu_addr, FILEBAR, TRUE);
 }
 break;

 case CNTL_D:
 menu_tnormal (menu_addr, UTILITY, FALSE);
 get_new_date ();
 menu_tnormal (menu_addr, UTILITY, TRUE);
 break;

 case CNTL_W:
 if (loaded) {
 menu_tnormal (menu_addr, PRINT, FALSE);
 print_wind ();
 menu_tnormal (menu_addr, PRINT, TRUE);
 }
 break;

 case CNTL_G:
 if (loaded) {
 menu_tnormal (menu_addr, PRINT, FALSE);
 print_reg ();
 menu_tnormal (menu_addr, PRINT, TRUE);
 }
 break;

 }
}

do_newacct ()
{
 int choice, okay;
 int dial_x, dial_y, dial_w, dial_h;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 304 / 321

 clear_newacct ();
 form_center(newacct_addr,&dial_x, &dial_y, &dial_w, &dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 objc_draw(newacct_addr,0,8,dial_x,dial_y,dial_w,dial_h);

 do {
 choice = form_do (newacct_addr, NEWNAME);
 newacct_addr[choice].ob_state = SHADOWED;

 switch (choice) {

 case NEWOK:
 okay = check_newacct ();
 if (!okay)
 objc_draw (newacct_addr, 0, 8,
 dial_x, dial_y, dial_w, dial_h);
 else
 newacct_file ();
 break;

 case NEWCANCL:
 clear_newacct ();
 }
 }
 while (okay == FALSE && choice != NEWCANCL);

 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
}

check_newacct ()
{
 int x, okay;

 okay = TRUE;
 for (x=NEWNAME; x<=NEWBALNC; ++x) {
 string = get_tedinfo_str (newacct_addr, x);
 if (string[0] == '@')
 okay = FALSE;
 }
 if (!okay)
 form_alert(1,"[1][You must complete|the form to start|\
a new account!][OK]");
 return (okay);
}

newacct_file ()
{
 int choice, okay, x;
 int dial_x, dial_y, dial_w, dial_h;

 string = get_tedinfo_str (newfile_addr, FILENAME);
 string[0] = 0;
 for (x=0; x<64; filename[x++]=0);
 newfile_addr[NEWOK].ob_state = SHADOWED;
 form_center(newfile_addr,&dial_x,&dial_y,&dial_w,&dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 objc_draw(newfile_addr,0,8,dial_x,dial_y,dial_w,dial_h);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 305 / 321

 do {
 choice = form_do (newfile_addr, FILENAME);
 newfile_addr[choice].ob_state = SHADOWED;

 switch (choice) {

 case FILEOK:
 okay = check_file ();
 if (!okay)
 objc_draw (newfile_addr, 0, 8,
 dial_x, dial_y, dial_w, dial_h);
 else {
 string = get_tedinfo_str(newfile_addr,FILENAME);
 strcpy (acct_name, string);
 filename[0] = Dgetdrv () + 'a';
 filename[1] = ':';
 Dgetpath (&filename[2], DFLT_DRV);
 filename[strlen(filename)] = '\\';
 strcpy (&filename[strlen(filename)], string);
 strcpy (&filename[strlen(filename)], ".MCK");
 acctfile = fopen (filename, "bw");
 if (acctfile != 0) {
 write_new_info ();
 open_acct (filename);
 }
 }
 break;

 case FILECANC:
 string = get_tedinfo_str (newfile_addr, FILENAME);
 string[0] = 0;
 }
 }
 while (!okay && choice != FILECANC);

 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
}

clear_newacct ()
{
 int x;

 for (x=NEWNAME; x<=NEWBALNC; ++x) {
 string = get_tedinfo_str (newacct_addr, x);
 string[0] = '@';
 }
 newacct_addr[NEWCANCL].ob_state = SHADOWED;
}

char *get_tedinfo_str (tree, object)
OBJECT *tree;
int object;
{
 TEDINFO *ob_tedinfo;

 ob_tedinfo = (TEDINFO *) tree[object].ob_spec;
 return (ob_tedinfo->te_ptext);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 306 / 321

check_file ()
{
 int okay;

 okay = TRUE;
 string = get_tedinfo_str (newfile_addr, FILENAME);
 if (strlen (string) == 0) {
 form_alert(1,"[1][Invalid filename!][OK]");
 okay = FALSE;
 }
 return (okay);
}

no_decimal (s)
char *s;
{
 int x, i, d, len;
 char s2[20], s3[20];

 strcpy (s2, s);
 len = strlen (s2);
 i = 0;
 d = FALSE;
 for (x=0; x<len; ++x)
 if (d && s2[x] != ' ')
 ++i;
 else
 if (s2[x] == ' ')
 d = TRUE;

 if (i == 0 && len < 6)
 strcpy (&s2[len], "00");
 else
 if (i == 1 || len == 6)
 strcpy (&s2[len], "0");

 i = 0;
 for (x=0; x<strlen(s2); ++x)
 if (s2[x] != ' ' & s2[x] != '.')
 s3[i++] = s2[x];
 s3[i] = 0;
 strcpy (s, s3);
}
long str_to_long (s)
char *s;
{
 int x, len, factor;
 long num;

 num = 0;
 len = strlen (s);
 factor = len - 1;
 for (x=0; x<len; ++x)
 num += (long) (s[x] - '0') * pwrs[factor--];
 return (num);
}

write_new_info ()
{
 int len, x;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 307 / 321

 char s[10], tmpfile[64];
 FILE *f;

 string = get_tedinfo_str (newacct_addr, NEWNAME);
 fwrite (string, 1, 26, acctfile);
 string = get_tedinfo_str (newacct_addr, NEWADDR);
 fwrite (string, 1, 26, acctfile);
 string = get_tedinfo_str (newacct_addr, NEWCITY);
 fwrite (string, 1, 26, acctfile);
 string = get_tedinfo_str (newacct_addr, NEWSTATE);
 fwrite (string, 1, 3, acctfile);
 string = get_tedinfo_str (newacct_addr, NEWZIP);
 fwrite (string, 1, 10, acctfile);
 string = get_tedinfo_str (newacct_addr, NEWBALNC);
 no_decimal (string);
 balance = str_to_long (string);
 fwrite (&balance, 1, 4, acctfile);
 if (fclose (acctfile) != 0)
 form_alert (1, "[1][File close error!][OKAY]");
 for (x=0; x<13; ++x) {
 sprintf (s, "%d", x);
 strcpy (&s[strlen(s)], ".dat");
 ob_tedinfo = (TEDINFO *) newfile_addr[FILENAME].ob_spec;
 tmpfile[0] = Dgetdrv () + 'a';
 strcpy (&tmpfile[1], ":");
 Dgetpath (&tmpfile[strlen(tmpfile)], DFLT_DRV);
 strcpy (&tmpfile[strlen(tmpfile)], "\\");
 strcpy (&tmpfile[strlen(tmpfile)], ob_tedinfo->te_ptext);
 strcpy (&tmpfile[strlen(tmpfile)], s);
 if ((f = fopen (tmpfile, "bw")) == NULL)
 form_alert (1, "[1][Error creating file!][OK]");
 else
 fwrite (&zero, 2, 1, f);
 if (fclose (f) != 0)
 form_alert (1, "[1][File close error!][OK]");
 }
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 308 / 321

CHAPTER 31 - A COMPLETE GEM APPLICATION - PART 5

In chapter 30 we added the code needed to create a new MicroCheck ST account. Unfortunately,
once the account was created, we still weren't able to open it. Now we'll add the program segment
that'll not only handle that task, but also will enable us to modify the date shown in the date
information box at the bottom of the MicroCheck ST screen.

Listing 1 is the new source code. Merge it with the combined source code from the previous four
chapters and delete the open_acct(), do_new_mnth(), save_month(), and get_new_date() stubs from
the previous portion.

Now compile the program and run it. Start a new account. After that procedure is complete, a dialog
box will appear, asking for the month you want to work on. Select the month. The account will be
opened, and the information boxes on the screen will be updated for that account.

Now choose the New Date option of the Utilities drop-down menu. Another dialog will appear. Type
in a new date. When you select the dialog's OK button, the date you have typed will appear in the
date information box at the bottom of the screen. Let's look at the new functions.

Function open_acct()

This function is called whenever the user wants to open an account or has just finished creating a
new one. It gets as input a pointer to the filename of the account the user wants to open. At the
beginning of the function, it attempts to open the .MCK file for the account. If it fails, an alert box
warns the user and no further processing is done.

If the fopen() call is successful, we read in the information that's stored in the file. The file format is
shown below. All of the information is in character format, except the account balance, which is a
long integer:

Bytes Data Stored

1-26 Name

27-52 Street Address

53-68 City

69-78 Not Currently Used

79-81 State

92-95 Account Balance (long int)

As the data is read in, it's formatted the way it will appear in the check-entry dialog box. After
reading all the data, we close the file and plug the pointers to the name and address strings into the
ob_spec for each of the appropriate fields in the check-entry dialog box:

check_addr[CHKNAME].ob_spec=chkname;
check_addr[CHKSTREET].ob_spec=chkstreet;
check_addr[CHKCITY].ob_spec=chkcity;

In the above, check_addr is the address of the check-entry dialog box; CHKNAME, CHKSTREET and
CHKCITY are the names of string objects inside the dialog box; and ob_spec is the pointer to the
string to be displayed for that object.

After setting the dialog-box strings, we call do_new_mnth(), which gets the month selection from the
user and calls the functions necessary to actually open the files. If the account gets opened okay, the
flag loaded will be TRUE, and we'll call set_menu_entries() in order to enable and disable the
appropriate entries in the drop-down menu.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 309 / 321

Function do_new_mnth()

Here we first set the title string of the month-selection dialog box to "NEW MONTH" by placing a
pointer to the string (newm) into the object's ob_spec field:

cancdial_addr[CANCSTRG].ob_spec=newm;

Here, cancdial_addr is the address of the month-selection dialog box and CANCSTRG is a string object
within the dialog box.

The integer value choice, the button on which the user clicked to exit the month-selection dialog box,
is returned from a call to get_month(), the function that handles the dialog itself. If the user exited
with the OK button, we save the current month's data if it needs to be (saved equals FALSE) and call
open_new_month() to open the files.

Function save_month()

In this function we first take the filename of the file to save (the pointer to which is passed into the
function as file) and change the extension to "BAK." We then delete any backup file that may already
exist for that month and rename the old data file as the new backup file. We then open a new file
with the filename pointed to by file (warning the user with an alert box if we get an error), after
which we write that month's data out to the file.

The first two bytes written are the number of transactions in the file (in integer form). Then, using a
for loop, we call save_check() for each check record in the check structure, writing the data to disk,
after which we close the file.

Now all we have to do is save the new account balance. Our call to fseek() moves the file pointer in
91 bytes from the beginning of the file, which is where the balance is stored. We save the balance
and close the file.

Function open_new_month()

The first task here is to discover which month the user selected from the month-selection dialog box.
We do that by using a for loop to scan through each of the button objects in the dialog, to see which
one is selected. (Note that this technique will work only if the button objects were created in
numerical order when the dialog was first designed.) Based on which button was selected, we set the
integer mnth equal to a number from 0 to 12. The value 0 represents the "Month 0" file, with the
values 1 through 12 representing January through December, respectively. All that's left now is a call
to open_month() to read in and process the data for the new month selected.

Function open_month()

Since we're now opening a new file, we set the flag saved to TRUE. This flag will remain TRUE until
we modify the data somehow. Next we initialize some variables, then construct the filename for the
month we'll be opening.

After opening the file, if we find that the transaction count is 0 (by reading the first two bytes from
the file), we ask the user if he'd like to start a new month. We have to do this because if the user has
transactions entered into his .AUT file (automatic transactions), they will be added to this month's
file automatically when it's opened. This gives the user a chance to change his mind before the
transactions are entered.

If the user chooses to open the file, we call load_auto() to load any automatic transactions. If the
user chooses not to open the file, we set everything back the way it was and exit the function.

Assuming we've opened the file, the flag do_it will be TRUE, so we clear the window, set the loaded
flag to TRUE, set up some strings for the display, and store the current month into month. Using a
while loop, we read in all the checks from the file, keeping a count on the number of deposits and

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 310 / 321

the number of checks as we do. Finally, we initialize some strings and variables, copy the account
name and the string ": Edit Mode" into the window's title bar, close the file, and vamoose.

Summing It Up

The remaining functions presented in this chapter, though they play important roles in the workings
of MicroCheck ST, need little discussion. Most of the programming theory used in them has already
been covered, so I'll give you only a quick run down on what they do:

load_auto() Loads any automatic transactions that may be in the user's .AUT
file.

save_check() Saves the data for a check to disk.

read_check() Reads the data for a check from the disk.

clear_window() Blanks out the program's window with a white rectangle.

get_month() Brings up the month-selection dialog box and retrieves the
user's choice.

get_new_date() Allows the user to change the program's displayed date via a
dialog box.

chk_date() Verifies that the date dialog box in get_new_date() was filled in
corrected by the user.

updte_buttons() Places new data in the information boxes on the bottom of the
screen.

And Now, the Big Finish

At this point, you should understand how a large-scale program like MicroCheck ST works. The
remaining source code (and there's a lot of it!) can provide little new material for our discussions.
The mechanics of putting together a GEM application have been covered well. What remains is fairly
straight C code that you should be able to figure out for yourself.

The entire MicroCheck ST program, including complete source code, compiled program, and full
documentation, can be found on this book's disk version, in the MICROCHK folder. And remember:
MicroCheck ST is not only an excellent vehicle for a GEM programming tutorial; it's also a handy
program to use. You'll never have to balance your checkbook by hand again! How often can you get a
commercial-quality program and a 400-page book for a measly $30?

I hate long goodbyes, so I'll make this quick.

I hope that our many C experiments have taught you what you need to know to design and program
your own full-GEM application programs. I've said it before, and I'll say it again: the only way to learn
programming is to program. Practice what you've learned. The more time you spend with C, the
more of a friend it will become.

See ya.

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 311 / 321

Program Listing #1
open_acct (file)
char *file;
{
 int x, len;
 char zip[10], buf[25];

 if ((acctfile = fopen (file, "br")) == 0)
 form_alert (1, "[1][Can't open the file][CONTINUE]");
 else {
 fread (chkname, 1, 26, acctfile);
 fread (chkstreet, 1, 26, acctfile);
 fread (chkcity, 1, 16, acctfile);
 fread (buf, 1, 10, acctfile);
 strcpy (&chkcity[strlen(chkcity)], ", ");
 fread (&chkcity[strlen(chkcity)], 1, 3, acctfile);
 strcpy (&chkcity[strlen(chkcity)], " ");
 fread (zip, 1, 10, acctfile);
 len = strlen (chkcity);
 if (strlen (zip) > 5) {
 strncpy (&chkcity[len], zip, 5);
 chkcity[len+5] = 0;
 strcpy (&chkcity[strlen(chkcity)], "-");
 strcpy (&chkcity[strlen(chkcity)], &zip[5]);
 }
 else
 strcpy (&chkcity[strlen(chkcity)], zip);
 fread (&balance, 4, 1, acctfile);
 if (fclose (acctfile) != 0)
 form_alert (1, "[1][File close error!][OKAY]");
 check_addr[CHKNAME].ob_spec = chkname;
 check_addr[CHKSTREE].ob_spec = chkstreet;
 check_addr[CHKCITY].ob_spec = chkcity;
 do_new_mnth ();
 if (loaded)
 set_menu_entries ();
 else
 balance = 0;
 }
}

do_new_mnth ()
{
 int choice;

 cancdial_addr[CANCSTRG].ob_spec = newm;
 choice = get_month ();
 if (choice == CANCOK) {
 if (!saved)
 save_month (monthfile);
 open_new_month ();
 }
}

save_month (file)
char *file;
{
 char newmfile[64];
 int x;

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 312 / 321

 strcpy (newmfile, file);
 strcpy (&newmfile[strlen(newmfile)-3], "BAK");
 Fdelete (newmfile);
 if (Frename (0, file, newmfile) == FAILED)
 form_alert (1, "[1][Error creating .BAK file!][OK]");
 if ((mfile = fopen (file, "bw")) == 0) {
 form_alert (1, "[1][Disk Error!|Cannot save \
file.][CONTINUE]");
 Frename (0, newmfile, file);
 }
 else {
 fwrite (&num_trans, 2, 1, mfile);
 for (x=0; x<num_trans; ++x)
 save_check (x, mfile);
 if (fclose (mfile) != 0)
 form_alert (1, "[1][File close error!][OKAY]");
 else
 saved = TRUE;
 if ((mfile = fopen (filename, "br+")) == NULL)
 form_alert (1, "[1][Error opening .MCK file!|\
Cannot update balance.][OK]");
 else {
 fseek (mfile, 91L, FROM_BEG);
 fwrite (&balance, 4, 1, mfile);
 if (fclose (mfile) != 0)
 form_alert (1, "[1][File close error!][OK]");
 }
 }
}

open_new_month ()
{
 int mnth, x;

 for (x=JAN; x<=MZERO; ++x)
 if (cancdial_addr[x].ob_state == SELECTED)
 if (x == MZERO)
 mnth = 0;
 else
 mnth = x-JAN+1;
 sprintf (cancmnth, "%d", mnth);
 open_month (acct_name, cancmnth);
}

open_month (file, mnth)
char *file, *mnth;
{
 int x, len, button, do_it, trans_cnt, old_dep_cnt,
old_chk_cnt;
 char a[20], new_mfile[64];

 saved = TRUE;
 old_dep_cnt = num_deps;
 old_chk_cnt = num_chks;
 num_chks = num_deps = 0;
 strcpy (new_mfile, filename);
 strcpy (&new_mfile[strlen(new_mfile)-4], mnth);
 strcpy (&new_mfile[strlen(new_mfile)], ".DAT");

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 313 / 321

 if ((mfile = fopen (new_mfile, "br")) == 0)
 form_alert (1, "[1][Can't open the file][CONTINUE]");
 else {
 do_it = TRUE;
 fread (&trans_cnt, 2, 1, mfile);
 if (trans_cnt == 0) {
 button = form_alert (1, "[2][The data file for|this \
month is empty.|Do you want to start|a new month?][YES|NO]");
 if (button == YES) {
 num_trans = load_auto ();
 }
 else {
 do_it = FALSE;
 num_chks = old_chk_cnt;
 num_deps = old_dep_cnt;
 }
 }
 else
 num_trans = trans_cnt;
 if (do_it) {
 clear_window ();
 loaded = TRUE;
 if (balance < 0 && balance > (-100))
 sprintf (bal_but, "$-%ld.%02ld",
 balance/100,labs(balance%100));
 else
 sprintf (bal_but, "$%ld.%02ld",
 balance/100,labs(balance%100));
 strcpy (monthfile, new_mfile);
 strcpy (acct_name, file);
 month = atoi (mnth);
 x = 0;
 while (x < trans_cnt) {
 read_check (x, mfile);
 if (strcmp (checks[x].number, "9999") == MATCH)
 num_deps += 1;
 else
 num_chks += 1;
 ++x;
 }
 if (x > 0) {
 strcpy (cur_chk_num, checks[x-1].number);
 curchknum = atoi (cur_chk_num);
 if (strcmp (cur_chk_num, "9999") != MATCH) {
 curchknum += 1;
 sprintf (a, "%d", curchknum);
 len = strlen (a);
 strcpy (&cur_chk_num[4-len], a);
 }
 }
 cur_top = edit_top = 0;
 cur_count = num_trans;
 cur_chk_strc = checks;
 strcpy (windname, acct_name);
 strcpy (&windname[strlen(windname)], ": Edit mode");
 wind_set (w_h2, WF_NAME, windname, 0, 0);
 full_draw = TRUE;
 if (fclose (mfile) != 0)
 form_alert (1, "[1][File close error!][OKAY]");
 }
 }

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 314 / 321

}

load_auto ()
{
 char autoname[64];
 FILE *autofile;
 int x, count;

 count = 0;
 strcpy (autoname, filename);
 strcpy (&autoname[strlen(autoname)-4], ".AUT");
 if ((autofile = fopen (autoname, "br")) != NULL) {
 fread (&count, 2, 1, autofile);
 x = 0;
 while (x < count) {
 read_check (x, autofile);
 if (strcmp (checks[x].number, "9999") == MATCH) {
 num_deps += 1;
 balance += checks[x].amount;
 }
 else {
 num_chks += 1;
 balance -= checks[x].amount;
 }
 ++x;
 }
 saved = FALSE;
 if (fclose (autofile) == FAILED)
 form_alert (1, "[1][Error closing AUTO file!]\
[CONTINUE]");
 }
 return (count);
}

save_check (i, f)
int i;
FILE *f;
{
 fwrite (checks[i].number, 1, 4, f);
 fwrite (checks[i].payee, 1, 30, f);
 fwrite (checks[i].memo, 1, 30, f);
 fwrite (checks[i].date, 1, 8, f);
 fwrite (&checks[i].amount, 4, 1, f);
 fwrite (checks[i].cancel, 1, 1, f);
 fwrite ("THIS SPACE FOR POSSIBLE FUTURE EXPANSION",1,40,f);
}

read_check (i, f)
int i;
FILE f;
{
 fread (checks[i].number, 1, 4, f);
 fread (checks[i].payee, 1, 30, f);
 fread (checks[i].memo, 1, 30, f);
 fread (checks[i].date, 1, 8, f);
 fread (&checks[i].amount, 4, 1, f);
 fread (checks[i].cancel, 1, 1, f);
 fread (future_use, 1, 40, f);

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 315 / 321

}

clear_window ()
{
 GRECT r;

 wind_get (w_h2, WF_WORKXYWH, &r.g_x, &r.g_y, &r.g_w, &r.g_h);
 draw_rec (r, 2, 8, WHITE);
}

get_month ()
{
 int choice;
 int dial_x, dial_y, dial_w, dial_h;

 clear_cancdial ();
 form_center(cancdial_addr,&dial_x,&dial_y,&dial_w,&dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 objc_draw(cancdial_addr,0,8,dial_x,dial_y,dial_w,dial_h);

 choice = form_do (cancdial_addr, 0);
 cancdial_addr[choice].ob_state = SHADOWED;

 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 return (choice);
}

clear_cancdial ()
{
 int x;

 for (x=JAN; x<=MZERO; cancdial_addr[x++].ob_state = NORMAL);
 if (month != -1)
 if (month == 0)
 cancdial_addr[MZERO].ob_state = SELECTED;
 else
 cancdial_addr[month+JAN-1].ob_state = SELECTED;
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 316 / 321

get_new_date ()
{
 int choice, okay;
 int dial_x, dial_y, dial_w, dial_h;

 string = get_tedinfo_str (newdate_addr, NWDATE);
 string[0] = 0;
 form_center(newdate_addr,&dial_x,&dial_y,&dial_w,&dial_h);
 form_dial(FMD_START,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
 objc_draw(newdate_addr,0,8,dial_x,dial_y,dial_w,dial_h);

 okay = FALSE;

 do {
 choice = form_do (newdate_addr, NWDATE);
 newdate_addr[choice].ob_state = SHADOWED;
 switch (choice) {

 case DATEOK:
 okay = chk_date ();
 if (!okay)
 objc_draw (newdate_addr, 0, 8,
 dial_x, dial_y, dial_w, dial_h);
 else {
 strcpy (cur_date, string);
 format_date (date_but, cur_date);
 updte_buttons ();
 }
 break;

 case DATECANC:
 string = get_tedinfo_str (newdate_addr, NWDATE);
 string[0] = '@';
 }
 }
 while (okay == FALSE && choice != DATECANC);

 form_dial(FMD_FINISH,0,0,10,10,dial_x,dial_y,dial_w,dial_h);
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 317 / 321

chk_date ()
{
 int mnth, day, year, okay;
 char m[3], d[3], y[3];

 string = get_tedinfo_str (newdate_addr, NWDATE);
 if (strlen (string) == 6) {
 strncpy (m, string, 2);
 m[2] = 0;
 strncpy (d, &string[2], 2);
 d[2] = 0;
 strncpy (y, &string[4], 2);
 mnth = atoi (m);
 day = atoi (d);
 year = atoi (y);
 if (mnth < 0 | mnth >12 | day < 1 | day > 31
 | year < 0 | year > 99) {
 okay = FALSE;
 }
 else
 okay = TRUE;
 }
 else
 okay = FALSE;
 if (!okay) {
 form_alert (1, "[1][Not a valid date!][CONTINUE]");
 string[0] = 0;
 }
 return (okay);
}

updte_buttons ()
{
 if (!full) {
 set_buttons ();
 center_butstring (bal_but, 35, 194);
 center_butstring (trans_but, 131, 194);
 center_butstring (check_but, 227, 194);
 center_butstring (dep_but, 323, 194);
 center_butstring (mnth_but, 419, 194);
 center_butstring (date_but, 515, 194);
 }
}

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 318 / 321

APPENDIX A - ST-CHECK
typing in a basic program listing can be a frustrating and time-consuming task. Just one mistyped
character will frequently render a program completely unusable. So to ensure that your program will
run correctly, the entire listing must be checked character by character against the original. This can
take many hours. To make matters worse, you can't trust your own eyes. Do you know how easy it is
to overlook an O where a 0 is supposed to be?

Typing checkers like ST-Check take over the arduous task of proofreading your program files. Using
this program can cut down your debugging time by a huge factor. When the checker's output
matches that published with the listing, you can be sure your typing is accurate.

Introspection

When you run ST-Check against itself, you will get one of several results. The program may just give
up and crash. In that case, go through the listing character by character until you find your typing
error.

A second possibility is that the program will run okay, but will create all bad checksum data. This may
indicate an error between lines 80 and 420.Find the typo and correct it.

The last possibility is that the checksum data will have only a few bad values. In this case, use the
normal method detailed below to locate your errors.

Warning: Until you get your checksum data for ST-Check to match the data following the listing, you
can't trust it to proofread other programs.

Using ST-Check

When you finish typing an ST BASIC program listing from a chapter, save a copy to your disk, and
then run ST-Check. The program will first ask for a filename. Type in the name for the program you
wished checked (the one you just saved to disk), and press Return. You'll then be asked for a "bug"
name. Enter a filename for the checksum file (this can be any name not already on the disk), followed
by Return.

ST-Check will now proofread the program. When the checking process is complete, you'll have a file
on your disk (saved under your bug name) which contains the checksum data for the program
checked.

Check the last value of each line. If it matches the value in the published checksum data, go on to the
next. If it doesn't match, you've got a typo.

To find the error, look at the line number of the data statement in which the bad value occurred. This
number is equivalent to the first program line the data evaluates. Let's call this "Line X." Count the
entries in the data line until you get to the bad value. We'll call this count "Y." Now look at the
program you typed in. Starting with and including Line X, count down Y lines. The line you end up on
will be the one containing the typo.

Correct the error, and then rerun ST-Check. When you get all the checksum data to match that
published at the end of the chapter, your new program is ready to run.

Passing the Buck

Okay, friends. Here's where the truth comes to the fore. I can take only minimal credit for ST-Check,
as it's virtually a direct translation from D:CHECK2 (A.N.A.L.O.G. Issue #16) by Istvan Mohos and Tom
Hudson. All accolades should be directed to those two fine gentlemen. I'm sure they'll divvy it up
fairly, and perhaps pass a small share on to me. Thanks, guys!

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 319 / 321

You may now type in the ST BASIC program listings presented in this book, secure in the knowledge
that the searching eye of ST-Check is primed and ready.

Program Listing #1
10 'ST CHECK typing validator by Clayton Walnum
20 'based on a program by Istvan Mohos and Tom Hudson
30 if peek(systab)=1 then cl=17 else cl=32
40 fullw 2:clearw 2:gotoxy cl,0:? "ST CHECK":ex=0:sp=0:x=0
50 input "Enter filename: ",f$:input "Enter BUG name: ",f1$
60 on error goto 590:open "O",#1,f1$:open "I",#2,f$:close #2
70 open "I",#2,f$:on x goto 140,220
80 color 2:?:? "Counting lines":linecount=0:color 1
90 on error goto 570
100 line input#2,i$:linecount=linecount+1
110 ? ".";:goto 100
120 close #2:q=int(linecount/10):dim c(linecount),r(q)
130 x=1:goto 70
140 range=0:lyne=0:color 2:?:?:? "Filling array":color 1
150 ? ".";:count=0
160 line input#2,i$:count=count+1
170 lyne=val(i$):r(range)=lyne:range=range+1
180 on error goto 580
190 line input#2,i$:count=count+1:if count=10 then 150
200 goto 190
210 close #2:x=2:goto 70
220 color 2:?:?:? "Calculating checksums":color 1
240 for i=1 to linecount:checksum=0:line input #2,i$:l=len(i$)
245 if mid$(i$,l,1)=" " then l=l-1:goto 245
250 for z=1 to l:number=asc(mid$(i$,z,1))
260 if number=asc(" ") and ex=0 and sp=1 then goto 320
270 if number<>asc(" ") then sp=0 else sp=1
280 if number<>34 then 300
290 if ex=1 then ex=0 else ex=1
300 if ex=0 and number>=asc("a") and number<=asc("z") then number=number-32
310 product=x*number:checksum=checksum+product:x=x+1:if x=4 then x=1
320 next z:? ".";
330 checksum=checksum-1000*int(checksum/1000):c(i)=checksum:x=2:next i
340 close #2:lyne=r(0):item=0
350 color 2:?:?:? "Creating BUG file":color 1
360 count=10:total=0:if linecount<10 then count=linecount
370 i$=str$(lyne):i$=i$+" data "
380 for i=1 to count:datum=c(10*item+i)
390 i$=i$+str$(datum):i$=i$+",":total=total+datum:next i
400 i$=i$+str$(total):print #1,i$:? ".";
410 item=item+1:linecount=linecount-10:if linecount<1 then 430
420 lyne=r(item):goto 360
430 close #1:clearw 2:?:gotoxy 0,1
440 ? "To check BUG data against the checksum data found in the magazine,"
450 ? "return to the GEM desktop and double click your BUG file. You may"
460 ? "then SHOW the data on your screen or PRINT the data to your printer.":?
470 ? "The line number of each data statement coincides with the first line"
480 ? "of the user program the data statement evaluates. Numbers within"
490 ? "each data statement represent consecutive lines of the user program."
500 ? "The last number is the total.":?
510 ? "Check the last number of each statement against the version in the"
520 ? "magazine. Only when there's a discrepancy need you check each number"
530 ? "in the data statement.":?
540 ? "Take note of the lines containing typos, then make corrections. When"
550 ? "all corrections have been made, rerun this program to double check."
560 ? "Press <RETURN>":input i$:close #1:close #2:end
570 if err=62 then resume 120
580 if err=62 then resume 210
590 if err=53 then ? chr$(7);"FILE NOT FOUND!":close:resume 50
600 ? "ERROR #";err;" at LINE ";erl:end

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 320 / 321

Program Listing #2

ST-Check Checksum Data

10 data 447,129,203,518,661,160,942,482,640,556,4738
110 data 25,905,797,52,79,349,852,644,9,482,4114
210 data 883,479,834,822,42,498,255,165,826,410,5214
310 data 337,1,166,578,136,801,898,937,271,769,4894
410 data 363,99,155,889,243,764,168,192,906,156,3935
510 data 757,251,146,509,146,916,539,541,733,845,5383

 C-MANSHIP COMPLETE – by CLAYTON WALNUT

Port: HYPertext by Lonny Pursell & PDF by DrCoolZic (jlg) – V1.0 Oct. 2010 Page 321 / 321

Taylor Ridge Book Order Form

To order products from Taylor Ridge Books, remove or copy this page, complete the order form and
mail to:

 Taylor Ridge Books
 P.O. Box 78
 Manchester, CT 06045
 (203) 643-9673

Item Qty. Price Ea. Total

C-manship Book Only $19.95

C-manship Disk Only 10.00

C-manship Book & Disk 29.95

Beyond the Nintendo Masters 9.95

 $2.00 Fourth Class
 3.50 UPS SUBTOTAL
 4.00 First Class SALES TAX
 6.00 C.O.D. CT residents add 8% tax

Add $1.50 for each additional book. SHIPPING CHARGE
A C-manship disk pack when ordered with a
book requires no additional S&H, but a disk
pack without the book is $1.50 S&H ea. TOTAL AMOUNT

 PLEASE PRINT

Name:

Address:

	ACKNOWLEDGMENTS
	DOCUMENTATION PORTING CREDIT
	TABLE OF CONTENT
	INTRODUCTION
	Some History
	C-Manship, the Book
	Some Important Details
	What about the Disks?
	Let's Boogie

	CHAPTER 1 - SOME BASICS
	Why C?
	C, Wherefore Art Thou?
	Underway At Last
	A Simple Program
	Where's the Beef?

	CHAPTER 2 - A LOOK AT STRINGS
	A Look at the Program
	Some Fancy Stuff
	Type Conversions
	Odds and Ends

	CHAPTER 3 - LOOPING AND IF STATEMENTS
	Onward
	The Golden Moment
	Back to the Program
	Another Break in the Proceedings
	Back To It
	Take a Breath
	Program Listing #1

	CHAPTER 4- FLOW OF CONTROL AND FUNCTIONS
	The Game's Afoot (Without Toes)
	Digging Deeper
	Breathing Time
	Program Listing #1

	CHAPTER 5 - STORAGE CLASSES AND ARRAYS
	Game Time Again
	Some Classy Information
	Hip, Hip Array!
	Another Dimension
	Whambles For Sale
	Program Listing #1
	Program Listing #2
	Program Listing #3

	CHAPTER 6 - FILE HANDLING AND CUSTOM INPUT ROUTINES
	The Innards
	Doing it Our Way
	A Bit of Construction
	Disk Files
	Starting Our File
	Writing Our File
	Simple, but Cute
	Program Listing #1
	Program Listing #2
	Program Listing #3

	CHAPTER 7 - POINTERS AND MACROS
	A Point of Declaration
	Putting Them to Work
	Incrementing and Decrementing
	The Proof
	A Glimpse of Macros
	Program Listing #1
	Program Listing #2

	CHAPTER 8 - STRUCTURES AND MORE ON POINTERS
	Filling It In
	Getting It Out
	Layers Upon Layers
	More Layers!
	An Important Point
	Pointing to a Member
	Functions and Structures
	The Listing
	Program Listing #1

	CHAPTER 9 - MORE LOOPING STRUCTURES AND FILE I/O
	Unfinished Business
	A Quick Look at GEM
	And a Peek at VDI
	Moving Along
	The VDI Cursor Stuff
	Printer Output
	Odds and Ends
	A New Loop
	Break, Continue, and Goto

	CHAPTER 10 - THE FIRST LOOK AT GEM AND THE VDI
	A Review of GEM
	Presenting the VDI
	The VDI functions
	The Sample Program
	Let's Get Virtual
	Polylines
	Rounded Rectangles
	Filled Rounded Rectangles
	Circles
	Polymarkers
	Filled Rectangles
	Ellipses
	Arcs
	Pie Slices
	Fill Patterns
	Use Those Tools!
	Program Listing #1

	CHAPTER 11 - VDI TEXT FUNCTIONS
	Who's a Dummy?
	Converting Between Resolutions
	Of Mice and C
	Menus and Varmints with Buttons
	Text Effects
	Text Height
	Text Rotation
	Mouse Prestidigitation
	Break Time
	Program Listing #1

	CHAPTER 12 - ALERT BOXES AND CUSTOM MOUSE FORMS
	Getting to Work
	A Small Matter of Incompatibility
	Alert Boxes
	They Don't Fit!
	Custom Mice
	Coding It
	Mission Accomplished
	Program Listing #1

	CHAPTER 13 - THE FILE SELECTOR AND RASTER OPERATIONS
	Picking a File
	Calling Up a File Selector
	File Selector Housekeeping
	Raster Operations
	Filling in the Blanks
	The Next Listing
	The Raster Details
	Off Again
	Program Listing #1
	Program Listing #2

	CHAPTER 14 - OBJECT TREES AND DIALOG BOXES
	The Definitions
	RCP: A Mini Tutorial
	Crankin' with the RCP
	So How About Some Details?
	Editable Text
	Your First Dialog Box
	Taking It Apart
	The Mysterious TEDINFO
	As the Fear Sets In
	Breathing Time
	Program Listing #1

	CHAPTER 15 - MORE ON DIALOG BOXES
	The Workings
	And Speaking of the Program...
	Finding the Data
	Dealing with TEDINFO
	Releasing Resource Memory
	Knowing Who Your Friends Are
	Closing Up Shop
	Program Listing #1
	Program Listing #2

	CHAPTER 16 - MENU BARS
	Another RCP Tutorial
	Steppin' Through the Menu Bar
	The Program
	Menu Bars in Your Program
	A Nifty Message System
	Enough of this Event Junk
	Another Lesson Learned
	Program Listing #1

	CHAPTER 17 - WINDOWS - PART 1 - DRAWING
	What Are Windows Really?
	The Window Demo
	Drawing a Window
	Handling a Window
	Window Moved
	Full Size or Previous Size?
	Closed For Business
	More to Come
	Program Listing #1

	CHAPTER 18 - WINDOWS - PART 2 - SIZING
	The Demo Program
	Any Size You Like
	Redraw Messages
	Lock the Window
	The Rectangle List
	The Clipping Rectangle
	Emptying the Rectangle List
	Something of Interest
	The Agenda
	Program Listing #1

	CHAPTER 19 - WINDOWS - PART 3 - THE RECTANGLE LIST
	Rectangles Revealed
	Out of the Fog
	Sidelines
	Another Day, Another Dollar
	Program Listing #1

	CHAPTER 20 - WINDOWS - PART 4 - SLIDERS AND ARROWS
	Getting a Directory
	Slipping and Sliding
	Me and My Arrow
	Paging All Sliders
	Anywhere You Like
	An Important Note
	Program Listing #1

	CHAPTER 21 - D.E.G.A.S. PICTURE VIEWER
	Hey! That Space is Reserved!
	Putting It Back Where We Found It
	Mission Complete
	Program Listing #1

	CHAPTER 22 - THE INTERNAL CLOCK/CALENDAR
	Computer Dating
	A Bit About Bits
	But What About the Date?
	Some Timely Information
	Setting the Time and Date
	All Ashore Who's Going Ashore
	Program Listing #1
	Program Listing #2
	Program Listing #3
	Program Listing #4

	CHAPTER 23 - Desk Accessories with Built-In Resource Trees
	Our Resource Tree
	Writing a Desk Accessory
	Waiting Forever
	The Desk Accessory Link
	Program Listing #1
	Program Listing #2

	CHAPTER 24 - THE GRAPHICS MANAGER LIBRARY
	The Sample Program
	Déjà Vu
	Our Program
	Some Leftovers
	Put on the Coffee
	Program Listing #1

	CHAPTER 25 - THE MYSTERY OF COMPILE AND LINK
	Stating the Obvious
	Compilation
	Linking
	The File Types
	Moving Along

	CHAPTER 26 - SIMPLE ANIMATION TECHNIQUES
	The Program
	The First Step
	Programming the Animation
	The Photon
	Kaboom!
	Program Listing #1

	CHAPTER 27 - A COMPLETE GEM APPLICATION - PART 1
	The Listings
	Getting Down To It
	Function main()
	Function do_mcheck()
	Function get_event()
	Function set_menu_entries()
	Functions calc_vslid() and calc_hslid()
	Function open_vwork()
	Function get_date()
	Final Notes
	Program Listing #1
	Program Listing #2
	Program Listing #3
	Program Listing #4

	CHAPTER 28 - A COMPLETE GEM APPLICATION - PART 2
	Function handle_messages()
	Function do_redraw()
	Function draw_interior()
	Function draw_rec()
	Function set_clip()
	Function updte_chk_wind()
	Function prnt_chk_wnd()
	Function format_date()
	Function draw_buttons()
	Function set_buttons()
	Function button()
	Function center_butstring()
	Function do_full()
	Time For Another Break

	CHAPTER 29 - A COMPLETE GEM APPLICATION - PART 3
	Marching Onward
	Function do_menu()
	Function do_wind_close()
	Function handle_button()
	Function do_arrow()
	Function do_uppage()
	Function do_dnpage()
	Function do_upline()
	Function do_dnline()
	Function do_vslide()
	Function do_hslide()
	Function do_quit()
	Putting It In Order

	CHAPTER 30 - A COMPLETE GEM APPLICATION - PART 4
	Compiling
	Function handle_keys()
	Function do_newacct()
	Function check_newacct()
	Function newacct_file()
	Function clear_newacct()
	Function get_tedinfo_str()
	Function check_file()
	Function no_decimal()
	Function str_to_long()
	Function write_new_info()
	Conclusion
	Program Listing #1

	CHAPTER 31 - A COMPLETE GEM APPLICATION - PART 5
	Function open_acct()
	Function do_new_mnth()
	Function save_month()
	Function open_new_month()
	Function open_month()
	Summing It Up
	And Now, the Big Finish
	Program Listing #1

	Introspection
	Using ST-Check
	Passing the Buck
	Program Listing #1

	Taylor Ridge Book Order Form

