

PEEKS&POKES
Stefan Dittrich

A Data Becker Book from

Abacus **********

HBffiffl

First Edition, October 1986
Printed in U.S.A.
Copyright © 1985 Data Becker GmbH

Merowingerstr.30
4000 Dusseldorf, West Germany

Copyright © 1986 Abacus Software, Inc.
P.O. Box 7219
Grand Rapids, MI 49510

This book is copyrighted.No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photcopying, recording or otherwise without the prior written
permission of Abacus Software or Data Becker, GmbH.

ATARI, 520ST, 1040 ST, ST, TOS, ST BASIC and ST LOGO are
trademarks or registered trademarks of Atari Corp.

GEM, GEM Draw and GEM Write are trademarks or registered trademarks
of Digital Research Inc.

ISBN 0-916439-56-9

Preface

The Atari ST offers new dimensions for the personal computer owner. It
has great flexibility and ease of use at a very attractive price. Thanks to
the user-friendly GEM operating system and mouse, the ST can be easily
learned and used by the novice.

The purpose of this book is to give the ST user a closer look at many of
the functions of his computer. We'd like to think of this as a "travel
guide" through the fascinating world of the ST. On this trip you'll see
some remarkable sights and many helpful signposts to help you find the
right direction. The program examples will reveal many of the
capabilities of the computer. And you'll be able to implement your own
applications.

As you may gather from the title, we'll use the BASIC commands PEEK
and POKE to investigate and influence the operation of the ST. Using
these two commands and our knowledge of several internal tables
containing important system parameters, we'll be able to manipulate the
ST's operating system.

In addition, we'll take a look at the ST's communications capabilities.
We'll discuss exchanging data with other computers, using a modem and
connecting peripherals such as disk drives and printers.

Before we begin, there's one short note: Early ST computers were
delivered with the operating system (TOS) contained on a diskette which
was first loaded into the computer. Later ST's were delivered with the
operating system contained on read only memory (ROM) chips
Depending on whether your computer has TOS on diskette or ROM the
addresses in some of these programs will differ.

These programs are written assuming that you're using an ST with TOS
mROM. The table in Appendix B can be used to find the corresponding
addresses for the different versions of TOS.

Enough of an introduction. Let's start working with the ST. We present to
you a collection of "quick hitters" for our favorite computer.

Thanks to my friends and associates for their cooperation, which gave
this book an enhanced scope and added useful tips for you.

Stefan Dittrich

Hilden, West Germany
November 1985

n

CONTENTS

Preface

1 A Look Inside The ST
1.1. Internal Configuration
1.2 Interfaces
1.2.1 The Parallel Interface
1.2.2. The Serial Interface
1.2.3 Disk Drive Connections
1.2.4 The MIDI-Interface
1.2.5 The ROM Expansion port
1.2.6 The Mouse/Joystick Connection
1.2.7 The Monitor Connector
1.3 The Intelligent Keyboard
1.3.1 Command Overview
1.3.2 Reading the Joystick
1.3.3 Mouse as Cursor Control
1.3.4 Time and Date Functions
1.3.5 Reading Keys
1.4 The Mouse
1.4.1 The Mouse as a Paintbrush

2 Memory Structures
2.1 Internal Memory
2.1.1 Address Assignment of the ST
2.1.2 The Addresses of the I/O Chips
2.1.3 Error Vectors
2.1.4 Pointers
2.1.5 Stacks
2.2 Disk storage
2.2.1 Program Files
2.2.2 Data Files
2.2.3 Graphic Data Files

3 Computer Mathematics
3.1 Number System Conversion
3.2 Bit Evaluation
3.3 Logical Operators

m

1

3

6

6

8

10

12

12

13

14

15

15

16

17

17

19

20

20

23

25

26

27

28

29

32

34

35

36

37

39

44

45

46

4 The Operating System 49
4.1 The Tramiel Operating System 52
4.1.1 The BIOS 52
4.1.2 System Variables 53
4.1.3 Talking to the TOS 56
4.2 GEM 59
4.2.1 GEM Programming from BASIC 59
4.2.2 Getting Input from the Mouse 61
4.2.3 Changing the Mouse Form 62
4.2.4 Changing the Font 66
4.2.5 Graphic Text 67

5 The Desktop 71
5.1 Customizing the Desktop 73
5.2 Setting the RS-232 Interface 76

6 Programming Languages 79
6.1 DRLOGO 82
6.2 ST BASIC 84
6.3 The C Language 85
6.4 68000 Machine Language 88
6.4.1 Combining Machine Language and BASIC 98

7 BASIC Programming 103
7.1 Graphics 107
7.1.1 Circles, Ellipses and Squares 107
7.1.2 Text on the graphics screen 111
7.1.4 Shading surfaces 116
7.1.5 Creating your own shading patterns 117
7.1.6 Setting markers in the display 119
7.1.7 Testing points on the screen 121
7.1.8 Mixing colors 121
7.2 Music and sound 123
7.3 Window and Menu programming 130
7.4 Text processing 137
7.4.1 Templates 138
7.5 Mouse/Joystick Control 140
7.6 Input/Output 142
7.6.1 Printer Control 142
7.6.2 Using Disks 144
7.6.3 Telecommunication 148
7.7 Character Editors 151

IV

7.8 The Keyboard Buffer

Appendix A Glossary

Appendix B Important PEEKs and POKEs

Index

158

161

170

171

Chapter 1

A Look Inside the ST

Abacus Software Atari ST Peeks and Pokes

A Look Inside The ST

A new computer is always inviting. It tempts you to sit down at the
keyboard and start programming away. But by doing this, you may
overlook the special features of the computer and treat it just like any
other.

Treating the ST like any other computer would be a big mistake. Few
other personal computers offer so many special features that will help
even experienced programmers. This is not because of the powerful GEM
user interface, which makes the ST user-friendly and easy to operate. It's
also because the ST's hardware is so advanced that it can be used for
nearly every personal programming application. For an overview, we
have to look under the cover of the ST to view its individual components.
Let's take a glimpse at the internal operations of this remarkable
computer.

1.1. Internal Configuration

The outside of the ST doesn't indicate what is hidden inside. You might
think, "That's really a nice-looking computer, but a little computer like
that can't do much!"

The small housing of the ST (compared, for example, with the IBM
PC®) hides an incredible amount of the latest technology. This
technology gives the ST many new capabilities. Let's take a look at some
of these new capabilities.

First there is the central processing unit, or CPU, which is the "brain" of
the computer. This processor is the MC 68000 from Motorola. It is the
largest component on the main circuit board. This processor has
incredible specifications:

• 16 32-bit data and address registers
• 16 megabyte addressing capability

56 commands
14 addressing modes

Atari ST Peeks and Pokes A Look Inside The ST

The computer works internally with 32-bit words—in other words, with
values up to 2 32 - 4,294,967,296. It has 16 data lines (this is the reason
it's described as a 16 bit processor). These large numbers mean the
computer can process a lot of data in a short time. This processor operates
at 8 megahertz. This means it can execute up to eight million instructions
per second. However, this is a theoretical value, since many instructions
require several cycles. Nevertheless, the ST's speed is tremendous, as you
can see during graphic presentations on the ST .

The "workers" in the ST are the additional chips that support the
processor. There is an additional intelligent chip in the ST keyboard. It is
called the HD 6301VI and has an important job: it monitors all keyboard,
mouse and joystick functions. Furthermore, this contains a clock which
counts in seconds. For more information on the 6301 and the keyboard
see Section 1.3, "The Intelligent Keyboard."

There are a few more special chips which make the ST the remarkable
computer it is. The integrated circuits used were developed specifically
for the Atari 520ST. The GLUE coordinates all the interactions of these

ICs. Another chip is the MMU, or Memory Management Unit. This unit
administers the working storage of 512K. The MMU is capable of
handling up to 4 megabytes. The newest version of the ST, the 1040 ST,
has 1 megabyte of working memory.

Next is the shifter chip. It controls the picture on the monitor. It also
interprets the video memory in both monochrome and color modes, and
sends the corresponding video signal to the monitor. The monitor
connection of the Atari is located on the shifter. Video signals are
available at the monochrome port, or RGB-signals at the red, green and
blue ports. Information on the type of monitor attached is sent to the
computer through the monochrome-detect port, which is set at either +5
volts for monochrome or 0 volts for RGB.

Another important chip is the DMA controller (DMA stands for Direct
Memory Access). It accesses the ST's working memory directly and is
used to transfer data to and from the disk drives or hard disk. The high
speed of these data transmissions would overwhelm the CPU, so the
DMA controller performs data transfer instead.

Control of the disk drive is the responsibility of the floppy-disk
controller. This device starts the drive motor, moves the read/write head,
obtains data from the diskette, and prepares the data for the ST. The

Abacus Software Atari ST Peeks and Pokes

controller is capable of controlling either single- or double-sided disk
drives. Also, the controller can handle either 3.5" or 5.25" disk formats.
Programming the WD 1772 is very simple. It is supported very well by
the operating system, so you won't have to worry about it

Another very important IC is the MultiFunction Peripheral chip, the MFP
68901. Its specialty is input/output. It controls the printer port and the
serial interface, and is internally responsible for timer functions.

Next we should mention the ACIAs (Asynchronous Communication
Interface Adapters), which process serial data communications. One of
the ACIAs handles the keyboard communications, while the other is
responsible for the MIDI interface which operates at 31,250 baud. The
MIDI interface can be used as a network connection.

The sound chip of the ST is a YM 2149. This IC is produced by the well
known organ/synthesizer manufacturer Yamaha, and has three
independent tone generators and a frequency generator. The envelopes,
volume, filters and pitch are all programmable. The frequency range
reaches from the lowest bass to almost ultrasonic frequencies well above
human hearing levels.

All of these chips are programmable by the user. You can program the
sound chip with the BASIC commands SOUND and WAVE. Each IC has
an area of memory reserved for its exclusive use in which it stores its
variables and parameters. Information exchange takes place in this
reserved memory. We'll go into more detail on this later in Section 2.1.

Atari ST Peeks and Pokes A Look Inside The ST

1.2 Interfaces

The value of a computer in part, is determined by its ability to
communicate with the "outside world." This communication is handled
through its interfaces.

Data transfer from a sender to a receiver is accomplished in one of two
ways:

• Parallel

or

• Serial

1.2.1 The Parallel Interface

Parallel data transfer means that the entire byte is sent to the receiver at
once. The advantage of this method is the high speed of transmission. The
disadvantage is that it requires eight "wires", one for each data bit.

A typical example of a parallel interface is the Centronics port. Usually it
is used to connect to a printer, since it can only transmit data in one
direction, i.e. from the computer to the printer. The Centronics port is
located on the back of the ST and is labeled by a printer pictogram.

The physical connection between this plug and the printer (Epson, for
example) is through a cable with at least 11 wires, as follows:

Computer Pin Wire Printer Pin

1 Strobe > 1
2 Data 0 > 2
3 Data 1 > 3
4-9 Data 2-7 > 4-9
11 Busy < 11
18 Ground 19

Abacus Software Atari ST Peeks and Pokes

As you can see, the busy signal line is connected to the computer. This
return line is called the handshake line and is required to ensure the
reliability of the data transmission.

If the computer wants to send a character to the printer, it places the
ASCII value of the character (0-255) in binary at the data port and
informs the printer through the LO signal at the strobe that it can accept
this data. The printer accepts this data into its memory. If it is capable of
accepting additional data, the printer informs the computer by keeping the
Busy Line LO. If the printer cannot accept additional data, it sets the
Busy Line HI. When the printer is ready to accept more data it turns the
Busy Line back to LO.

If the printer is not connected or is not online, the computer receives no
response on the busy line. It waits for a while until it finally gives up and,
in certain cases, produces an error message. This timeout on the Atari ST
is rather long—it takes 30 seconds. The reason is that the ST doesn't use
the Centronics ACK (Acknowledge) signal line, which would permit the
computer to immediately recognize if the printer is ready. Since the
printer could be tied up at that moment, sufficient time must be provided
for the printer to complete its current activity.

The ST offers a special feature in this interface which is not commonly
found on other computers. It can read from the parallel port. The
application possibilities of this are enormous. This makes it possible to
connect digital circuitry and to evaluate the signals provided.
Interrogation of these signals from the printer port occurs through the
BASIC command INP(O) which outputs the available data byte.
Through this procedure the ST can accept data which is really intended
for a printer. For this operation only the Centronics port of a computer
must be connected with the parallel plug of an Atari where the
connections 1 and 11 are crossed at the connection. After doing this the
following small BASIC program can be run on the ST:

10 rem*** Printer -- Simulation 1.2.1***

20 x = inp(0) : rem Data input
30 print chr$(x); : rem output char.
40 goto 20 : rem Infinite Loop

All printer output from the other computer will now be output to the
output window of the ST. We can transfer data between computers
without RS-232 ports using this method.

Atari ST Peeks and Pokes A Look Inside The ST

In addition, the ST can also be used to control machines. A good example
are the robotic kits offered by Fischer-Technik for computers. Small
robot arms or simple plotters can be built from these sets, which can then
be controlled by the ST. To run such an application, the computer must
be able to accept and evaluate data from this peripheral and then provide
control for the device. These sets have a serious purpose, since computer-
controlled machines in industry operate on the same principles. The ST is
theoretically capable of controlling a machine tool.

1.2.2. The Serial Interface

The serial interface transfers data, bit by bit. Therefore only one line is
required—but, ironically, serial data transmission is more complicated
than parallel transmission.

The serial interface of the ST is the 25 pin connector, labelled with a
telephone symbol, found on the back of the computer. This is a standard
RS-232, interface that can either send or retrieve data. Pin 2 of the
connector outputs data (TD = Transmitted Data). The HI/LO signals are
sent as + or -12 volts.

Here is the pin description for the RS-232 interface:

1 CHASSIS GROUND (shield)
This is seldom used

2 TD

Transmit data

3 RD

Receive data

4 RTS

Ready to send comes from I/O port A bit 3 of the sound chip and
is always high when the computer is ready to receive a byte. On
the Atari, this signal is first placed low after receiving a byte and
is kept low until the byte has been processed.

Abacus Software Atari ST Peeks and Pokes

CTS
Clear to send of a connected device is read at interrupt input 12 of
the MFP. At the present time this signal is handled improperly by
the operating system. Therefore it is possible to connect only
devices which "rattle" the line after every received byte (like the
520ST with RTS). The signal goes to input 12 of the MFP, but
unfortunately is tested only for the signal edge. You will not have
any luck connecting a printer because they usually hold the CTS
signal high as long as the buffer is not full. There is no signal high
as long as the buffer is not full. There is no signal edge after each
byte, which means that only the first byte of a text is transmitted,
and then nothing.

GND
Signal ground.

DCD

Carrier signal detected. This line, which goes to interrupt input II
of the MFP, is normally serviced by a modem, which tells the
computer that connection has been made with the other party.

20 DTR
Device ready. This line signals to a device that the computer is
turned on and the interface will be serviced as required. It comes
from I/O port A bit 4 of the sound chip.

22 RI
Ring indicator is a rather important interrupt on 16of the MFP and
is used by a modem to tell the computer that another party wishes
connection, that is, someone called.

The designation Modem indicates that this plug is intended for
connection of a telephone modem. A modem provides the connection
between the computer and the phone line by converting the HI or LO
signal into two separate tones. If you want to transmit data to a person
who has a computer with a telephone modem, you simply call him. When
both of you have activated your modems, the data transmission can begin.

To signal the receiver that a data word is starting, a startbit is transmitted
at the of each word. The signal goes to HI at first; next the data is
transmitted, concluded with a LO signal as a stopbit. The speed at which

Atari ST Peeks and Pokes A Look Inside The ST

the data is transmitted is called baud rate. This number (for acoustic
modems 300) indicates the number of data bits transmittedper second.

If you don't know anyone who owns a modem, you can contact a bulletin
board service (BBS). These online information exchanges are offered by
many private and public agencies, and even individuals. The phone
numbers are available in trade papers, magazines, and by word-of-mouth.

1.2.3 Disk Drive Connections

The large round port on the back of the ST identified by a floppy disk
drive picture represents the connection for one or two disk drives. It is
controlled by the WD 1770 disk controller, which converts the operating
system commands into electronic signals that the disk drive can respond
to. If, for example, you want to see the directory of a diskette, GEMDOS
asks the controller to provide the data from the corresponding sector of
the selected diskette. The controller has to perform these steps :

1. Select the desired unit (1 or 2)

2. Start the disk drive motor

3. Position the read/write head on the track containing the
sector

4. Wait for the 'index pulse' signal that is generated once
during each revolution and tells the controller the current
diskette position.

5. After reaching the appropriate sector, reads and converts
the analog signals from the read/write head into digital
signals.

6. Transmit the signals to the ST memory.

For double-sided drives it must also specify which side of the disk to
store the data on. This signal comes from the sound chip(!). The standard
floppy unit, SF 354 drive, which writes 500K in unformatted condition,

10

Abacus Software Atari ST Peeks and Pokes

writes only on one side. Double-sided units are fully supported and can
be connected directly, however. The pin assignment is as follows:

21R Nam? Significance

1(30) Read Data Carries the signal from the read/write head
2(32) Side 0 Select Selects which side of diskette to use

3(3) GND Ground (0V)
4(8) Index Pulse One signal per revolution
5(10) Drive 0 Select Selects drive 0
6(12) Drive 1 Select Selects drive 1

7(33) GND Ground

8(16) Motor on Turns motor on

9(18) Direction In Determines direction of read/write head

10 (20) Step Moves one step in or out
11 (22) Write Data During write data signals from the

computer
12 (24) Write Gate Signal permits writing data
13 (26) Track 0 Announces that outermost track has been

reached

h 1(28) Write Protect Signals that the diskette is write protected

The signals are standardized and correspond to the bits of the Shugart
connections. It is therefore easy to connect other disk drives.

Caution: a wrong connection can destroy the controller! The equivalent
pin numbers of the Shugart connector are in parentheses in the above
table.

Before a diskette is used for the first time it must be formatted. Choosing
the desktop menu 'Format' and the prompt OK will give you a choice of
formatting your disk as either single- or double-sided. With a single-side
unit you should never select 'Double-Sided', but you can format both
single- and double-sided disks with a double-sided disk drive. During
formatting, the tracks on the diskette are erased and individual sectors are
determined. Be careful: all data which had been on the diskette is erased!

11

Atari ST Peeks and Pokes A Look Inside The ST

1.2.4 The MIDI-Interface

On the back of the ST are two 5 pin DIN (Deutsch Industry Norm) ports.
They are identified as MIDI-In and MTDI-Out and support electronic
musical instruments such as synthesizers.

How does this work?

MIDI stands for Musical Instrument Digital Interface and this interface
has been built into many music synthesizers. If the ST is connected with
one or more synthesizers (up to 16), the ST becomes a musician that is
capable of recording melodies being played or controlling the
instruments. The information exchange is serial, following the same
principle as the modem port, but the transmission speed is a rapid 31,250
bits per second.

Since several instruments can be attached to the MIDI interface, it's
necessary to be able to differentiate between the units. This is done with
the select line, just as in the selection of disk drives. The receivers are all
attached in parallel to the same wire. The computer first sends a signal
which is recognized by only one unit, then sends out the desired
command to that device.

This fast interface is predestined for use in applications of a different
kind. Other computers can be connected to the ST through the MIDI lines
to construct a network of up to 17 computers. Each one of these
computers must have its own MIDI interface and an identification
number. Communications can be performed in BASIC if high speed is
not important. Output can be performed with the OUT 3, X command
and input with the command X=INP (3). The 'X' is the value of the
data to be transmitted.

1.2.5 The ROM Expansion port

On the left side of the computer is another less obvious connector port. It
carries no designation, but accommodates a 40 pin cartridge. Such a
cartridge can be equipped with ROM memory up to a maximum of 128K.
Possible applications are enhancing the operating system, utility

12

Abacus Software Atari ST Peeks and Pokes

programs that can catch a system crash before it happens, or simple
games. The large number of connections required in this port is due to the
fact that it must address 128K of memory using a total of 17 bits, and also
that transferring the data requires a total of 16 additional bits.

This plug is apparently missing a read/write line which permits data
output. You cannot write data into the address area of the connector! If
you do not have something important stored in memory at this time you
can try it. The connection lies between the addresses $FA000 to $FC000
(1024000 - 1032192). If, for example, with TOS loaded from diskette
you enter POKE 1030000,0 the system will crash and you will find
yourself in the desktop. You will have to press the reset button to restart.

The expansion plug is intended only for use with ROM expansion
cartridges, similar to those used with the old Atari 400/600/800
computers (Those cartridges do not work with the ST). The first data on
the cartridges contains identification numbers which tell the ST what type
of programs are provided on the cartridge. If the first long word at
address $FA0000 is equal to $FA52255F, it is a diagnostic program. If it
is $ABCDEF42, an application program is contained on the cartridge. All
other combinations are ignored. If a diagnostic program is contained, the
processor starts with a system reset almost instantly at address $FA0004.
Application programs must store various information at this address
including starting address, length and name of the program.

1.2.6 The Mouse/Joystick Connection

The two plugs on the right side of the ST are for joysticks. Plug 0 can
also be connected to the mouse. The main difference between joystick
and mouse lies in the joystick having a signal pin for every one of the
four directions on which it can place a LO signal (0V). The mouse, on the
other hand, provides further direction impulses to the system, since it can
be moved at various speeds.

Joystick and mouse connections are quite similar. Joysticks can be
attached to either port, but the mouse can be operated only on plug 0.
Since the mouse has two buttons, this connection has one additional
input.

13

Atari ST Peeks and Pokes A Look Inside The ST

The mouse/joystick plugs are only for input. The keyboard processor
does not have a command to change the direction of data transfer. It is
possible but impractical, to replace the processor with a unit whose
operating system would recognize additional commands. Output signals
are easily routed through the parallel port (printer), while this plug is also
well suited for input signals. Digital technology often uses the signal
voltages OV (LO) and +5V (HI); these correspond to the TTL level (TTL
= Transistor-Transistor-Logic). To read a key from the computer, it only
has to be connected to ground (Pin 8) and one of the pins 1-4.

1.2.7 The Monitor Connector

A monitor lets you see what the computer is doing. The Atari ST provides
a connector for a monitor. The ST has a connector for using either the
SMI24 monochrome monitor or the SCI224 color monitor.

The newer 520 ST also has a connector for attaching a television set.
Below is the pin layout of the monitor connector:

14

Abacus Software Atari ST Peeks and Pokes

1.3 The Intelligent Keyboard

The micro-processor built into the keyboard has many tasks to perform. It
takes a load off the main 68000 processor by a constant surveillance of
the mouse and keyboard. With its own memory, the keyboard processor
is capable of monitoring the status of the mouse, keyboard and joystick
and making this information available to the 68000 at any time on
demand. The main processor does this by sending a serial command and
parameters to the keyboard processor, which returns the desired
information. This happens at a speed of 7,812.5 bits per second. The
keyboard processor is programmed so that it can perform the commands
following:

1.3.1 Command Overview

Command

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Reaction

Set flag when mouse key is pressed
Immediate report on relative mouse
position
Immediate report on absolute mouse
position
Report mouse movement as cursor
key activation
Delay report of mouse movement
Set scale for mouse position
Read absolute mouse position
Set internal coordinate system
Y coordinate jump is below
Y source is above

Resume transmission of data (after #19)
Turn off mouse

Stop data transmission
Immediately report all joystick movement
Turn off function 20 as well as the mouse
Transmit joystick position
Sense joystick continuously
Continuously sense joystick key position

15

Atari ST Peeks and Pokes A Look Inside The ST

25 Continuously sense joystick movement as
cursor key activation (joystick 0)

26 Turn off joystick
27 Set time of day
28 Report clock time
32 Load keyboard storage
33 Read Keyboard storage
34 Start a program in keyboard processor

Furthermore, it understands various inquiries about the current conditions
of the status.

Let's look at a few examples of the applications of the keyboard
commands. The problem in programming lies with the different number
and significance of the parameters which must be passed for individual
functions. Furthermore, it is not always easy to obtain the results of the
functions. Let's consider an example for this. Function 22 causes the
keyboard processor to report the current condition of joystick 1. The
result is stored in memory location 3592 with TOS in ROM (see
Appendix B for TOS in RAM.) A program for this would appear as
follows:

1.3.2 Reading the Joystick

10 rem ***Joystick 1 - Sensing 1.3.2 ***
20 out 4,22 : rem Function call
25 defseg = 1 : rem peek one byte
30 js = peek(3592)and 255 : rem result
40 print js : rem Print value
50 goto 20 : rem Reread joystick

Using the BASIC command OUT 4, n the keyboard senses the condition
of joystick 1 and reports it to the central processor. The operating system
stores this information in location 3592, where it can be read with the
PEEK (35 92) function. This value represents the joystick position in
binary. Bits 0 and 1 indicate the vertical motion of the joystick. Bit 2 and
3 are for the horizontal direction. As you can see, the function does not
require a parameter. This is illustrated with the next sample program.

16

Abacus Software Atari ST Peeks and Pokes

1.3.3 Mouse as Cursor Control

10 rem **Mouse Movement

20 out 4,10
30 out 4,10
40 out 4,15
50 rem out 4,8: rem tur

as Cursor Keys 1.3.3 **
rem Send command

rem X-Delay
rem Y-Delay

i mouse pointer on

To see the results of this program: Enter this program, run it and then
enter the Editor and move the mouse.

Here we're telling the keyboard to output the movement of the mouse as
if the cursor keys were being used. This is useful in BASIC program
editing, since this program allows you to rapidly move the cursor across
the screen. The delay values in lines 30 and 40 signify the horizontal or
vertical movement of the mouse for each cursor step. You should not use
large values if you have only a moderately large desk. To see the mouse
again as a pointer, enter the command OUT 4,8. As illustrated, the
values given are entered as OUT commands. You must be very careful to
maintain the correct parameter number, because an incorrect parameter
can stop the data transmission between keyboard and the computer.

1.3.4 Time and Date Functions

Now we come to an example in which parameters are both input and
output. We are talking about the clock, which is controlled in the
keyboard. This has many interesting applications.

10 rem *** Read Time 1.3.4 ***

20 out 4,28 : rem Check Time
30 for i = 3584 to 3589: rem Time/Date Buffer
40 x = peek(i) and 255 : rem Read double number
50 a$=a$ + str$(int(x/16)): rem First number
60 a$=a$ + right$(str$(x and 15),1)
70 a$=a$ + ":"
80 next i

90 print "Date :"; Left$(a$,12)
100 print "Time :"; right$(a$,12)

17

Atari ST Peeks and Pokes A Look Inside The ST

110 end

130 rem *** Set Time/Date ***

140 out 4,27 rem Set Time command
150 print "Please input Date/Time

(YYMMDDHHMMSS)"

160 input a$: rem Input
170 for i - 1 to 6 : rem BCD Calculation

180 d =0

190 d =d + asc(mid$(a$,i*2,l))-48
200 d =d + (asc(mid$(a$/i*2-l,l))-48)*16
210 out 4,d : rem Set Parameter

220 next i

230 a$="" :goto 10 :rem Output new Time

Actually these are two separate programs. Program 1 displays the actual
date and time. The format is year, month, day, hour, minute, second. The
use of the format in the text variable a$ is completely up to you.
Furthermore, the function can be made into a subroutine by changing the
END statement in line 110 to RETURN. The most complicated part of the
program is the change of the BCD form (Binary Coded Decimal) into
individual numbers. In this coding method, each date number only uses 4
bits of a data byte. For example, the value of the BCD number 31 is $31,
which corresponds to a decimal 49 (See also chapter 2.1).

The same number occurs in the conversion of single numbers. In Line
130 the routine begins to set the date. After calling the 'Set Time'
command (function 27), the time is entered. For example, 053010192015
stands for the date October 30,1985 at 19:20 and 15 seconds. The 8 is
automatically added for the year. This value is automatically converted to
BCD numbers and passed to the keyboard. The statement goto 10 in
line 230 serves to determine if the function was correctly executed, and
can be omitted.

18

Abacus Software Atari ST Peeks and Pokes

1.3.5 Reading Keys

We should also discuss an important part of the keyboard, namely the
keys themselves. The keyboard is constantly read by the built-in
processor. If a key is pressed, the value of this key is stored in its own
memory. The memory is limited to 128 bytes. It also contains much other
information, but this is sufficient. The main processor, i.e. the operating
system, obtains the actual data in a cyclical manner. The keys activated
are then storedin the main memory and read out when required.

If you want to read a key with a BASIC program, there are several
methods to use. You can wait for a keypress with the statement
X= INPUT $ (1) to store the result in X. This function provides the ASCII
code of the normal alphanumeric keys. The information obtained with the
statement X=INP(2) is much more comprehensive. The X value
obtained in this manner contains the actual key code from the key that
was pressed. Included are the function keys which have the values 187-
196. If you want towait for a function key to be pressed, you can use the
following program:

90 rem*** Fkey .bas 1.3.5 ***
100 print "Please press a Function Key!"
110 x = inp(2) : rem Sense Key
120 if x < 187 or x > 196 then 110:rem Wrong Key
130 ft = x - 186 : rem F-Number
140 rem on ft goto f1, f2, f3, f4,f5, f6, f7,f8,f9,

flO

150 print "You pressed function key F";ft

If you remove the REM from line 140, this program will branch to the
selected program section after you press a function key. You can give
these sections almost any name you want instead ofFl - FlO. This type
of programming is used for menu control.

19

Atari ST Peeks and Pokes A Look Inside The ST

1.4 The Mouse

The mouse with its two buttons is a fast and convenient input device.
Every movement of the mouse is registered onscreen in X and Y steps
with a resolution of four steps per millimeter. How does this work?

A look into the inner housing of the mouse gives some answers. If you
remove the ball by sliding the cover away on the bottom of the mouse,
you see three small metal rollers. The large roller serves to stabilize the
ball. The others transmit the corresponding rolling motions through a
perforated disk which has two light sensors.

The processor chip in the keyboard, the HDV 6301 VI, evaluates the four
impulse sequences. Assuming you move the mouse forward in the Y
direction, the processor obtains two opposing impulse sequences at the Y
input. At first, the processor waits for both direction signals to be set HI,
and recognizes the direction the mousehas been movedby the drop of the
first of the two signals to LO level. The same procedure is applied to to
movement in the X direction, so that the actual direction of the mouse
movement can be recognized.

The processor in the keyboard transmits the direction of the mouse
movement, keypresses, joystick position, time and date at the request of
the operating system. The transmission occurs at 7,800 bits per second
(baud). Fortunately, you don't have to concern yourself with the data
transmission, since the mouse position is detected by several
programming languages. The DR LOGO delivered with the computer
offers the MOUSE command which returns a typical LOGO list.

1.4.1 The Mouse as a Paintbrush

A sampleLOGO programfor drawing on the display (graphic window):

TO DRAW

IF (ITEM 4 MOUSE) [SETPOS MOUSE]
DRAW

END

20

Abacus Software Atari ST Peeks and Pokes

This program is entered with the LOGO editor and called later in the
command level with DRAW.

This is a recursive program—-that is, the program can call itself. This is
accomplished by the command DRAW at the end of the procedure. The
second line shows the syntax required for the LOGO command MOUSE.
This can be regarded simply as a variable with values listed one behind
the other. The sequence of the individual entries in this list is [x y Bl
B2 B3], where x and y are the current coordinates of the mouse pointer.
Bl and B2 signify the status of the two keys on the mouse-Bl for left
and B2 for right. They are TRUE when the corresponding key is pressed.
B3 indicates if the mouse indicator is located in the graphic window of
LOGO (TRUE when yes). In the above sample program the fourth entry
(ITEM 4 MOUSE) shows the use of the right cursor key. With this

instruction a line is drawn to the mouse indicator when the right mouse
key is pressed.

When you run the program, you will find that nothing happens if you
move the mouse while pressing a key. This also occurs in BASIC
programs. The reason for this is that GEM must draw the mouse pointer
continuously while the mouse is moving. This keeps the computer from
doing anything else. This side effect can be useful if you want to stop a
program temporarily, and roll the mouse around while you read the
output values.

Not every program is as simple as those in LOGO. For example, BASIC
does not offer a command for reading the mouse. You have to perform
some programming gymnastics with the VDI in GEM (see section 4.2:
GEM).

One tip for owners of an older model Atari or a similar home computer:
the plug on the mouse can be inserted into any joystick port. Through a
very fast machine language program, the mouse can beconnected to your
old machine and used for input. The reading of the mouse inputs must
occur about 1,000 times per second, since the conditions change with a
movement of 1/4 millimeter!

21

Chapter 2

Abacus Software Atari ST Peeksand Pokes

Memory Structures

AH data input such as programs must be stored in some manner, whether
in RAM/ROM or on magnetic mass storage devices such floppy disks.
The different capabilities of these storage devices are discussed in this
chapter.

2.1 Internal Memory

There are two different types of internal storage:

• The read/write memory (RAM = random access memory)

• The permanent memory (ROM = read only memory)

The Atari 520ST has a RAM of 512K, which is exactly 524,288 bytes.
The Atari 1040ST contains double that amount, namely 1024K. These
electronic circuits retain their contents only when supplied with current.
If power fails during a work period, the entire contents of the internal
memory are lost. To guard against this unpleasant accident, you must
store items by occasionally writing them to a disk.

RAM and ROM contain all data and programs that the computer needs to
function. In the current version of the Atari ST, the operating system of
the computer is in ROM, so it doesn't take up any RAM. However, the
screen memory uses 32K. In addition, memory is used for tables and
constants for the operating system. Additional RAM is used if a
programming language such as LOGO, which is about 11OK long, is also
loaded.

This read/write memory can be changed at will. The data mentioned
above, which the operating system requires to store system parameters,
can be manipulated at any time. This is a great challenge for all
programmers who wish to step beyond the bounds of normal
programming to fully utilize the capabilities of the system. The BASIC
commands PEEK and POKE let you accomplish this. Before trying
anything though, you should know what is available in the various
memory locations.

25

Atari ST Peeks and Pokes Memory Structures

Caution: Manipulation of unknown memory addresses can have
unexpected effects which become noticeable only later!

Let's examine the contents of the Atari ST in more detail now.

From the variable memory locations, we now come to the fixed memory
locations—the ROM (Read Only Memory). These are permanently
programmed ROM chips whose contents remains intact, even without
power. In the new version of the ST, the operating system TOS is
installed in ROM so that it is available immediately after power-on. In the
earlier computers of the first series, the ROM contained only a program
which loaded TOS from the disk. The only advantage of the disk based
TOS is the capability of altering the operating system.

Let's examine the entire memory area of the ST. Since the computer has
an address bus of 24 bits, it can directly address 224 or 16megabytes. This
enormous addressable area is not completely occupied with memory
chips. The following table shows the memory assignment of the
computer.

2.1.1 Address Assignment of the ST

Range Type

00 0000
00 0004

ROM
ROM

00 0008 RAM

07 FFFF RAM

OF tttt RAM

IF FFFF RAM

3FFFFF RAM

40 0000
F9FFFF

Unused

Purpose

Reset: supervisor stack pointer
Reset: init vector

RAM start

RAM-top with 512K

RAM - top with 1 megabyte (520ST+)

RAM - top with 2 megabytes

RAM - top with 4 megabytes (maximum)

Unused area

26

Abacus Software Atari ST Peeks and Pokes

FA 0000

FB bbVb
ROM ROM addition (128K)

FC 0000 ROM ROM operating system (192K)

FE bbbV ROM
FF0000
FF7FFF

Unused Unoccupied area

FF8000
FF8800

I/O I/O area (2K)

FFA000
FFBFFF

I/O I/O area (2K)

FFC000
FFFFFF

Ac urn, />o«

Unused Unoccupied area

operating system permits extension up to 4 megabytes. The operating
system itself is stored (later) in ROM, which starts at location FC 0000.
Higher up are the areas for I/O (Input/Output) chips (see Section 1.1).
The addresses in which parameter transfers take place with special IC's
are in this mempry area. Access by the user is immediately stopped by a
program interrupt. The BUS-ERROR leads to the output of the much-
dreaded cherry bombs on the screen and to the return of the GEM
desktop. This I/O area is arranged as follows.

2.1.2 The Addresses of the I/O Chips

from FF 8000 • memory configuration
from FF 8200 • register for the video chip
from FF 8600 • DMA/disk-controller
from FF 8800 • register for the sound-chips
from FF FA00 • timer and interrupt chip
from FF FC00 • keyboard and MIDI-chips

One more important area must be mentioned: the first kilobyte of
memory beginning at address 000000. Here important system parameters
are stored and normally the user is not permitted to manipulate this area

27

Atari ST Peeks and Pokes Memory Structures

(or you see cherry bombs!). These parameters are called vectors, i.e., in
these memory locations are the jump addresses the computer branches to
when program interruptions occur. These interruptions are called
exceptions and are causedfor various reasons. For example, the computer
gains access to protected areas of memory (I/O or also other
vector/tables) by using these exception vectors. The table is organized as
follows.

2.1.3 Error Vectors

mber Address

$000
$004

2 $008

3 $00C
4 $010

5 $014

6 $018

7 $01C

8 $020

9 $024

10 $028

11 $02C
$030-$038
$03C
$040-$05F
$060
$064-$083
$080-$0BF
$0C0-$0FF
$100-$3FF
$100
$104
$108
$10C
$110
$114
$118

Used By

Reset: initial SSP
Reset: initial PC
Bus error

Address error
Illegal command
Division by zero
CHK command
TRAPV command
Privilege violation
Trace
Axxx - command emulation
Fxxx - command emulation
Reserved
Uninitialized interrupt
Reserved
Unjustified interrupt
Level 1-7 interrupt
TRAP command
Reserved
Interrupt table
Parallel port internal
RS-232 carrier detect
RS-232 clear to send
Unused
Unused
200 Hz system clock
Keyboard/MIDI interrupt

28

Abacus Software Atari ST Peeks and Pokes

$11C Unused
$120 HSync
$124 RS-232 transmission error
$128 RS-232 transmit buffer empty
$12C RS-232 receive-error
$ 130 RS-232 receive buffer full

Not every vector is used, but many are used quite often. The number of
the vector corresponds to the number of cherry bombs that are displayed.
After a system crash, you can guess the cause simply by counting them.
When such a crash occurs, the operating system tries to recover as best as
possible. Often it does not succeed, and you must push the reset button.
To resume operations, the computer requires the information about the
conditions before the crash. This information was saved by the operating
system in the following locations:

$0380 =$12345678, if data is valid
$0384 from here on are stored the D0-D7 registers
$03A4 from here on are stored the A0-A6 address

registers
$03C0 the old supervisor-stack-pointer A7
$03C4 Number of failures that occurred
$03C8 Here is the old user-stack-pointer A7
$03CC and 16 words from old supervisor-stack pointer

The type of declaration of the vectors and data types may be unfamiliar to
you, since it concerns procedures in the machine language area. For an
explanation of the procedures in machine language and how to use them,
refer to the Abacus book Atari ST Machine Language. But first, what are
these vectors? We shall examine them closer.

2.1.4 Pointers

Using pointers, also called vectors, is a very important technique in
writing computer software. A pointer is a memory location at which an
address has been stored.

An example is the pointer located at $44E. The address of the video
display memory (video RAM) is stored in this pointer. By referring to

29

Atari ST Peeks and Pokes Memory Structures

this pointer, the BIOS and the GEM can determine the location of video
RAM. Thus a program can address, through a pointer, the memory areas
whose location may differ for various models of the ST.

Here's another example. To access the video RAM, we need only read
the value of this pointer and use it as an address.

10 rem *Set display point with POKE 2.1.4*
20 defdbl a: p=1102: rem 1102 = $44E
25 a=peek(p)
30 z =20 : rem Display line
40 s =5 : rem Display column
50 bz =peek(10556) : rem Byte per line
60 for i = 0 to 10 :rem Start of loop

Lines 20 and 25 show one of the "tricks" in using pointers from BASIC.
You may recall that an integer variable normally yields 16 bits of
precision. Since the memory addressing range of the ST far exceeds the
64K of a 16-bit value, we must use a 32-bit integer.

The operating system does not have to go through this process, since the
processor can work directly with long words. The composition of the
desired display address takes place in lines 50 and 60. A character is
really a matrix consisting of 16 x 8 points. You can write a character on
the screen as follows, but let us first change the above program slightly:

70 read x$: rem Read sample line
80 x=0 : for j = 1 to 10: rem Evaluation
90 x= x-(mid$ (x$,j,l)="*") * 2M10-J)
100 next j
110 poke a + s + (z+i)*bz,x: rem Read line
115 print x
120 next i

130 end

135 rem Sample Data

149 data "

150 data " **

160 data " ****
170 data " ****** '

180 data " ** ** ** '
190 data »**********'

200 data "** **** **'

30

Abacus Software Atari ST Peeks and Pokes

210 data "** ** **"

220 data " ** **

230 data " ******

240 data " **

Now we have bypassed the operating system and drawn a smile on the
screen. But what happens if the value of the vector is changed? Let us try
to 'bend' the pointer a little by inputting the following:

poke 1104,peek(1104)+1600 <Return>

The display jumps down and can be checked using any window. The
operating system is misled by the false pointer address and assumes the
wrong memory area for the video display! Let's put everything back to
avoid other unpleasant effects.

poke 1104,peek (1104)-1600 <Return>

This statement line restores the screen to its original state. However, there
are many pointers that cannot be 'bent' as easily as the video display
pointer. These vectors represent jump addresses (pointing to machine
language routines) to which the system will branch. An important use of
these jump addresses are the interrupt vectors. Interrupts are program
interruptions that occur in order to allow the processor to perform needed
internal tasks.

If a pointer is directed to an address that does not contain a machine
language program, the ST crashes with the standard cherry bomb
farewell. Since these interrupts usually occur many times a second, the
crash is almost immediate. For this reason, leave these memory locations
alone!

Let us select a harmless pointer as an example. This pointer is delivered
by BASIC on demand and provides the position of a variable in storage.
This is the VARPTR () function. This address can be used to manipulate
text.

10 rem *** VARPTR()-Demonstration 2.1.4***
20 a$ = "Tricks":rem Text variable defined
30 a = varptr(a$) :rem Determine location
40 print a$: rem Before
50 poke a,80 : print a$:rem and after !

31

Atari ST Peeks and Pokes Memory Structures

"Tricks" is changed to "Picks" which occurs without direct manipulation
of the variable A$. Through the use of vectors, the application
possibilities of PEEK and POKE commands are considerably extended.

Here is another small program which permits you to POKE around in
memory. After you input the memory address (0 stops the program) it
displays the current contents of this word and asks fora new value. If you
want to leave it unchanged, press <Return> and the next address will be
investigated.

10 rem *** PEEK and POKE

20 input "Address",-a
30 if a=0 then end

40 print peek(a); " =>
50 input x$
60 if Len(x$) = 0 then 20
70 poke a,val(x$) : goto

This program should be saved to disk, since you'll probably use it often
to POKE around.

- Application 2.1.4***
I rem input
; rem stop on 0
; rem old value

: rem new value

: rem no change

20 : rem loop

2.1.5 Stacks

A stack is a special areaof memory used to temporarily store data.

The 68000 processor in the ST has two types of stacks: one is reserved
for the operating system and the other for the user's application programs.

A stack in a computer works like the familiar spring-loaded plates in a
cafeteria. When you place a clean plate onto the plate dispenser, any
other plates are pushed down compressing the spring. When you want a
plate, you remove the top plate and the remaining plates are popped up by
the spring.

32

Abacus Software

Plate added
to stack

Atari ST Peeks and Pokes

Plate taken
from stack

The stack works on a LEFO basis. This acronym stands for last-in-first-
out. The last plate stored is the first plate retrieved. In the ST, the last data
stored on the stack is the first data retrieved from it.

One of the many uses of a stack is to temporarily store addresses. For
example, when the ST encounters a BASIC GO SUB statement it stores the
address of this statement on the stack. Later, when it encounters the
corresponding RETURN statement it retrieves this address from the stack
and continues with the statement following the original GOSUB.

Stacks thus allow us to temporarily store small amounts of data not
needed at the moment. For larger amounts of data you may consider other
storage alternatives, for example floppy disks.

33

Atari ST Peeks and Pokes Memory Structures

2.2 Disk storage

Floppy disk storage is the most common method of storing large amounts
of data. The ST uses a 3.5 inch diskette. These are more expensive than
the more common 5.25 inch diskettes, but are more durable and easier to
handle. With either size, the storage technology is basically the same.

If you slide the metal safety cover on the 3.5 inch diskette, you'll see a
dark brown 3.5 inch diameter "disc." It has a magnetic coating similar to
that on audio cassettes. This "disc" turns inside the housing at a constant
speed, where the disk drive's read/write head can transfer electrical
impulses.

There are two varieties of floppy drives:

The SF354 is a single-sided drive with one read/write head that reads and
records data on the bottom side of the diskette.

The SF314 is a double-sided drive with two read/write heads that read
and record data on both the top and bottom sides of the diskette.

The surface of a diskette is electronically divided into tracks and sectors,
illustrated in the following figure:

Sector:

512 bytes per sector

Track: 9 sectors per track

34

Abacus Software Atari ST Peeks and Pokes

A track is like a "groove" in a phonograph record. While the diskette is
spinning, the read/write head can remain stationary to access any
information within that track. To access information in a different track,
you'd have to move the read/write head to a different position.

A sector is a "slice" of a single track. Each sector represents a chunk of
data that is transferred to/from the computer by the read/write head at one
time.

A SF354 single sided drive has 80 tracks. Each track is made up of 9
sectors. Each sector stores 512 bytes of data. The resulting storage
capacity is 80*9*512 = 368640 bytes.

A SF314 double sided disk drive has 160 tracks. Tracks 1 to 80 are on the

bottom side of the diskette while tracks 81 to 160 are on the top side of
the diskette. Again, each track is made up of 9 sectors and each sector
stores 512 bytes. This makes the storage capacity 160*9*512 = 737,280
bytes.

In general, there are three major types of files: program files, data files
and picture files.

2.2.1 Program Files

By itself, the ST can't do very much useful work or entertaining. We can
change the entire complexion and personality of the ST with different
programs.

Programs may be stored on cartridge or on diskette. Since most programs
are available only on diskette, we'll ignore the cartridge variety.

From the last section we know that a diskette is organized in tracks and
sectors. Finding a place to store programs or data on the diskette is not so
easy. This is one of the functions of the operating system.

The operating system has built in functions for managing space on the
diskette. When you load a program, the operating system uses these disk
management routines to locate and activate the program from diskette.

35

Atari ST Peeks and Pokes Memory Structures

When you save a program, these routines find space to transfer the
program from the computer's memory to the diskette.

All of these activities take place transparently to the user.

2.2.2 Data Files

A second type of file is the data file.

You can store relatively large amounts of data on a diskette. This data is
then easily exchanged by physically using the diskette on other ST
computers.

The following is a short example that creates a data file on a diskette,
allows you to write data to the data file and then rereads and redisplays
the data file contents on the screen.

5 input "Enter a filename";f$: rem data, TEST.TXT

2.2.1

10 input "(1) Input / (2) Output / (3) End";a
20 on a goto 50,100

30 end

40 rem *** Text Input ***

50 print "Input : ('x'= termination)"

60 open "O", #1, f$, 128 : rem O for output

70 input a$

80 print#l,a$: if a$="x" then close #1 :goto 10

90 goto 70

95 rem *** Text Output ***

10 0 print "Output :"

110 open"I", #1, f$, 128 : rem I for Input

120 input#l,a$: if a$="x" then close #1 :goto 10
130 print a$: goto 120

This program illustrates the OPEN, INPUT#and PRINT* commands.
The direction of the data (to or from the disk) is specified by the OPEN
command. With the PRINT# instruction you can transfer any desired text
or numerical data from numerical variables and load them again using
INPUT*.

36

Abacus Software Atari ST Peeks and Pokes

2.2.3 Graphic Data Files

You can also store graphic "images" to diskette.

By using the BLOAD and BSAVE commands, you can load and save
ranges of the ST's memory directly from/to the diskette.

For example, you can save the contents of video memory to a diskette,
thereby saving it as a "snapshot."

Here's an example of how it's done.

10 gosub 100
15 fullw 2: clearw 2

20 gosub 200
30 end

100 rem *** Display.BAS 2.2.2***
110 defdbl a : a=1102

120 b=peek(a)
130 bsave "picture.dat", b, 32000
140 return

200 rem *** Load Picture ***

210 defdbl a : a=1102

220 b=peek(a)
230 bload "picture.dat" ,b
240 return

The two parts of the program are called as subroutines with GOSUB 10 0
or 200. The selected file name "PICTURE.DAT" can be changed.
However, the file name can be at most 8 characters long and contain a
three position extension (here . DAT) where the period does not count.
Characters beyond this are ignored. Furthermore, you must be sure that
the first character in the name is alphabetic (A - Z).

37

Chapter 3

Abacus Software Atari ST Peeks and Pokes

Computer Mathematics

Sometimes when you work with computers, especially in machine
language or when using PEEK and POKE, you have to use a different
number system. To make sure that we all are familiar, here's some
background material on number systems. You can skip this section if
you're already familiar with conversions.

Addresses in the material presented so far are expressed in hexadecimal
or base sixteen. Normally a hexadecimal number is prefixed by a $ or
suffixed with the letter H.

In our decimal number system each digit position represents a values
from 0 to 9. But in the hexadecimal number system each digit position
represents a value from 0 to 15. So we have to have a way to represent
the values from 10 to 15 in a single digit position., Therefore we use the
letters A through F to represent these values. The table below shows the
corresponding values in each number system.

Decimal Value

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

Hexadecimal Value

0

1

2

3

4

5

6

7

8

9
A

B

C

D

E

F

Binary Value

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

mi

By using the hexadecimal number system, large values can be
represented more succinctly than in the decimal system. For example the
value 16,515,072 decimal corresponds to $FC0000 in hexadecimal.

41

Atari ST Peeks and Pokes Computer Mathematics

Another advantage is that the hexadecimal number system corresponds
more closely to the division of words in computer memory. A single byte
can assume a value between 0 and 255, or 256 different conditions. Using
the hexadecimal system, each of the 256 values can be described with just
two digits. For example, the value 255 is represented as $FF.

To more clearly see the "bit configuration" of the byte, we often divide
the hexadecimal number into two nibbles. Thus the first hexadecimal
digit is the first nibble and the second hexadecimal digit is the second
nibble, as below:

hexadecimal hvfp
number ujic

$2C ^ sameas • 0010 1100

2 C 0010 1100

first second composed of
nibble nibble two nibbles

As you might guess, the nibble is actually a half-byte whose binary value
is equivalent to the hexadecimal digit. For some purposes, it is easier to
visualize the value of a byte as two nibbles.

The 68000 processor uses neither the decimal nor the hexadecimal
number systems. Since it is an electronic device it distinguishes between
two different conditions or states, for example 0 volts or +5 volts.

On paper we represent these conditions using zeros and ones. This
number system is called binary.

The decimal number 100 is represented in binary form as 01100100. Each
digit position represents a power of two. The rightmost binary digit (bit)
position has a value 20=1, the next 21=2, the 22=4 etc.

42

Abacus Software Atari ST Peeks and Pokes

bit position 7 6 5 4 3 2 1 0

power of 2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

2

decimal value 128 64 32 16 8 4 2 1

The binary value 01100100 thus corresponds to the decimal value 100 as
follows:

0*27 + 1*26 +1*25 +0*24 +0*23 + 1*22 + 0*2* + 0*2°
= 0 +64 +32 +0 +0 +4 +0 +0
= 100

Representing numbers in the binary system takes time and a lot of writing
space.

43

Atari ST Peeks and Pokes Computer Mathematics

3.1 Number System Conversion

Conversions between the different number systems is rather cumbersome.
But wait! These kind of calculations are what a computer is made for!
Let's write a program in BASIC that can do it. The program hsted below
is just what we need. We had to perform a few tricks, since the ST
BASIC loses some accuracy. Furthermore, it is restricted by the HEX$
function, which can only be used with a direct numerical value—for
example, PRINT HEX$ (100) —or with an integer value like PRINT
HEX$ (X%). It can output hexadecimal numbers only up to $FFFF.

10 defdbl e,d : rem CONVERT.BAS 3.1

2 0 defint n

21 clearw 2: print "Select one: "

22 print"l) Decimal to hex 3)Decimal to Binary"
23 print"2) Hex to decimal 4)Binary to decimal"
24 print : input a

25 on a goto 30,110,170,210

2 6 goto 21

30 z$="0123456789ABCDEF"

40 input "Decimal number ";d: rem Decimal to Hex
50 for i = 5 to 0 step -1 :e = 16Ai
60 n=.l+d/e:d=d-n*e

70 print mid$(z$,n+l,1);

8 0 next i :? :? h$:end

110 z$= "0123456789ABCDEF"

120 input "Hex Number ";h$: rem Hex to Decimal
130 d=0 : for i = 1 to len(h$)

140 e = 16A (len(h$)-i)

150 d=d + e * (instr(1,z$,mid$(h$,i,1))-l)

160 next i : print int(d) : end
170 input "Decimal number ";d:rem Decimal to Binary

180 print d;" => "; : for i - 15 to 0 step -1
190 if (d and 2Ai) then ? "1"; else print "0"

200 next i : print : end

210 input "Binary Number ";b$:rem Binary to Decimal
22 0 print b$;"="; : d = 0

230 for i = 1 to len(b$) : e = len(b$)-i

240 d= d - (mid$(b$,i,l) = "1") * 2Ae

250 next i : print int(d) : end

44

Abacus Software Atari ST Peeks and Pokes

3.2 Bit Evaluation

Binary representation is important to manipulate the values in memory.
Often certain functions are dependent on one bit—for example, the
joystick position. The number that is returned from reading the joystick
represents the condition of the four switches that are activated by the
stick movement. Bits 0 and 1 represent the vertical movement of the
joystick. Bits 2 and 3 are for the horizontal direction. The following small
program demonstrates this:

10 rem ***Joystick - Evaluation 3.2***
20 out 4,22 : rem Instruction to Keyboard
30 defseg = 1
40 js = peek (3591) : rem Get Result
50 print js, : rem Output Total
60 Y = Y + (js and 2)/2 - (js and 1)
70 X = X + (js and 8)/8 - (js and 4)/4
80 print x,y : rem Output Coordinates
90 goto 20 : rem Infinite Loop

This program reads the joystick and changes the position given by X and
Y in relation to its position. The corresponding bits are tested with the
AND command. These AND relations are closely related to the BASIC
function OR, NOT and XOR. The comparisons are made in binary by
comparing the two values bit for bit. The results of the logical
comparisons are discussed in the next section.

Joystick Switches

45

Atari ST Peeks and Pokes Computer Mathematics

3.3 Logical Operators

There are four main logical operators: AND, OR, XOR, and NOT. These
logical operators serve to manipulate and test bit combinations.

Table: Logical Operators

AND

0 AND 0=0

0 AND 1=0

1 and 0 = 0 The bit in the result is set only when
l and 1 = 1 both bits tested are 1.

OR

XOR

NOT

0 OR 0 = 0

0 or l = l The bit in the result is set always when
1 or 0 = l one of the tested bits is 1.
l OR l = l

o XOR 0=0

0 xor 1 = 1 The bit in the result is always a 1 when
1 xor 0 = 1 when the tested bits are different.
1 XOR 1=0

NOT 0=1

NOT 1=0

The sample program of the joystick evaluation tested the value of JS
with the AND condition. If this value is equal to 3 and if bit 1 should be
tested, the operation JS AND 1 proceeds in the following manner:

JS = 3, corresponds to binary 0011
Testbyte = 1, binary 0001

Result 3 AND 1: 0001

The result never equals 0 when the tested bit is a 1. Using this method we
can test the joystick with four such comparisons.

46

Abacus Software Atari ST Peeks and Pokes

Another application of the logical operators is the direct manipulation of
a bit. If there is a data byte in which a certain bit should be changed to 0,
the AND instruction can be used.

Example:

Data byte is 00110011 to change bit 4
AND 11101111 this results in

Bit changed 00100011

This process is called masking. The 11101111 word represents the mask.
A similar method is used to set a bit to 1. The OR instruction is used here:

Example:

Data byte is 00110011 set bit 5 to 1
so we OR 00001000

Bit changed 00111011

The XOR instruction is an interesting function. It permits bits to be set to
0 or 1. If the same operation is performed several times the bit alternately
changes from 1 to 0.

Example:

Data byte is 00110011 bit 0 is changed
XOR 00000001

results in 00110010 and again
XOR 00000001 again results in

00110011 the original value!

The NOT operation is similar to the XOR command. NOT inverts all bits in
a data byte. This produces a value that corresponds to the decimal 255
minus the original byte.

47

Atari ST Peeks and Pokes Computer Mathematics

Example:

Data Byte is 00110011 = 51
NOT 00110011 results in

11001100 - 204 + 51 = 255

In addition, there are two special operators which are supported by ST
BASIC—shift left and shift right. You can shift a data word left or right.
The effect is to double the value of the word, or to cut it in half. An
example:

Data byte 00110011 = 51

left shifted 01100110 = 102, also 51*2

right shifted 00011001 = 25, also 51/2 (integer)

The shifted bit position is filled with zeros after the operation. In short
this means that n shifts to the left correspond to a multiplication of 2n and
n shifts to the right means a division by 2n.

When using BCD (Binary Coded Decimal), each byte of memory is
divided into two nibbles. But these nibbles may only take on values from
0 to 9. The 68000 processor operates on these values as decimal values,
not hexadecimal. Thus a 16 bit word can represent numbers from 0 to
9999.

The advantage of BCD lies in the simple representation and processing of
decimal numbers. The conversion of a BCD coded decimal number is as
simple as extracting the hexadecimal value from a normal binary number.
You can convert each nibble and obtain the coded value directly. An
example of the BCD coding is found in the time program in the chapter
on the intelligent keyboard. The real time and date are stored in memory
in BCD.

This is in contrast to the hexadecimal number system where values from
0 to 65,535 may be represented in 16 bits.

48

Chapter 4

r

Operating Systems

\

v)

Abacus Software Atari ST Peeks and Pokes

The Operating System

A computer is really a remarkably "dumb" machine. Unless it is told what
to do, it can't perform any useful work.

The operating system is a set of instructions (or a program) which tells
the computer what to do. In earlier computers the operating systems were
command oriented—you typed in a command and the computer
responded.

The ST, on the other hand, has a different type of operating system. It is
icon oriented—you point the mouse at a pictorial representation and the
computer responds.

The ST's operating system is made up of several parts. We'll talk about
them now.

Desk File View Options
*l D:\ |k
182393B but?s use

TADDR H |£
TEST BflK p
TEST c p
TEST ihp m
TEST 0

TEST PRG
TEST TTP ::::::-:i

TEST TXT
TEST1 C

TOSDEFS H
UDIBIND

VDIBIND H
WAIT PRG
MILDR BAS

J]
|«| •• Bj

•3? -:.:.:.:..
imiMMHUf m•tamai ussssam caoSasa tz&xsn

fl:\

Z35793 butes used n \
S PRINTERS
N TUTORIAL
C FKV
CONV TTP
NL1B PRG
OUTPUT PRG
SPLIT TTP
STANDARD PRT
TEXTPRO PRG

51

Atari ST Peeks and Pokes The Operating System

4.1 The Tramiel Operating System

The ST's operating system was named after the "Father" of this
remarkable computer—Jack Tramiel. TOS maintains the diskette and
peripheral controls established with its predecessor operating system
CP/M, but TOS can do considerably more and at a faster speed. TOS has
borrowed some functions and behavior from CP/M, but additional
capabilities have been built in as well. For example, the ST has a
hierarchical directory structure which is not found in the earlier CP/M.
This makes it possible for an ST user to build subdirectories (folders).

In the newest STs, the TOS is built into the ROMs on the motherboard
and is activated automatically when the computer is turned on.

Earlier versions loaded TOS from disk into the memory area beginning at
$500 up through $32000. In addition, TOS contains GEM, the graphics
user interface (Graphics Environment Manager) and the resource
parameters to create the menu and alarm windows.

When TOS is activated, the BIOS starts into action and places the ST into
a startup condition. It searches the diskette for programs with the . ACC
suffix designators. If any are found, these accessories are loaded into
memory and are then available for use when accessed form the DESK
menu.

4.1.1 The BIOS

One important part of the TOS is its Basic Input/Output System (BIOS).
The BIOS is the interface between the physical hardware and the
software. It performs rudimentary and frequently used operations using
the input and output devices. A programmer does not have to concern
himself with the details of accessing a peripheral. Instead he requests the
services of the BIOS.

The BIOS in the ST is enhanced compared to its predecessors. It can
handle operations to the MIDI interface, for example. There are more
than 50 "services" or commands which are built into the BIOS and
XBIOS (extended BIOS). These services are available to the BASIC

52

Abacus Software Atari ST Peeks and Pokes

programmer by PEEKing and POKEing. Several examples are presented
in later chapters.

4.1.2 System Variables

At startup, the BIOS initializes another area of memory—the table of
system variables. This table contains many pointers or vectors which
point to interrupt routines—machine language programs which are called
to handle program interruptions. If these vectors are inadvertently
changed, the system will probably crash.

The table is located beginning at $400 through $4FF (1024 - 1279
decimal) and contains the following:

$400 Event timer of GEM. Handles periodic
tasks for GEM

$404 Critical error handler

$408 GEM vector for ending a program

$40C Space for 5 additional GEM vectors which
are not used at this time.

$420 Contains a flag which indicates a
successful cold start

$424 Memory configuration (= 4 with 512K,
5 with 1 Mbyte)

$426 Again a flag which causes a cold start
on Reset

$42A Pointer to the cold start routine

$42E Pointer to the end of RAM ($80000 with
512K and $F0000 with 1 Mbyte)

$432 Pointer to start ofworking memory

53

Atari ST Peeks and Pokes The Operating System

$436 Pointer to end of working memory

$43A Another flag indicating a successful cold
start

$43E DMA flag must be <>0!

$440 Floppy speed set (3)

$442 System-Timer in milliseconds (20 for
50 Hz)

$444 Floppy comparisonflag. When <>0, the
every write is tested with a read.
If 0, then no test (writes faster)

$446 Unit number from which the system was
J loaded

$448 PAL/NTSC Hag
<>0: PAL(European systems)
=0: NTSC (American systems)

$448 Display resolution set

$44C Actual display resolution (0-2)

$44E Pointer to display start

$452 VBI Flag. Should be a 1 (VBI = Vertical
Blank Interrupt

$454 VBI routine number (8)

$456 Pointer to VBI pointer table

$45A Pointer to new color table (when new)

$45E Pointer to new screen memory (when new)

$462 VBI counter

54

Abacus Software Atari ST Peeks and Pokes

$46A Completed VBI counters

$46E Pointer to routine at monitor change
(cold start)

$472-$481 Harddiskparameter (0 when notpresent)

$482 When <>0, COMMAND. PRG was loaded

$484 Keyboard status (bit 0: bell on/off;
bit 1: key repeat on/off;
bit 2: key click on/off

$48E Working memory limit (do not change!)

$4A2 Pointer to BIOS register memory

$4A6 Number of disk drives connected

$4AE Pointer to condition ofcomputer memory

$4BE Pointer to data sector intermediate memory

$4B8 Pointer to the directory buffer

$4BC 200 Hz counter

$4C4 Is 3 when floppies are connected

$4C6 Pointer to IK disk buffer

$4EE Hardcopy flag (when 0 then print display)

$4F2 Pointer tostart ofoperating system

$4F6 Pointer tographic or text segment

$4FA Pointer toendof operating system

$4FE Pointer to AES (Application Environment
Services) text segment

55

Atari ST Peeks and Pokes The Operating System

4.1.3 Talking to the TOS

Most of us are familiar with only the GEM desktop. Its characteristics are
its familiar icon-oriented screen and drop-down menus.

In addition, youcan talk directly to TOS. Programs that bypass GEM and
talk directly to TOS have the extension .TOS.

One way to talk to TOS without writing a program is to use the VT52
emulator found in the DESK submenu. Here the keys have a different
"meaning." A cursor key function is a sequence of key presses—the first
being the <ESC> key:

<Esc> A Cursor up

<Esc> B Cursor down

<Esc> C Cursor right

<Esc> D Cursor left

<Esc> E Clear display and cursor to upper left

<Esc> H Cursor to left upper corner

<Esc> I Cursor up, scroll if required

<Esc> J Clear display starting at cursor

<Esc> K Clear line starting at cursor

<Esc> L Add line

<Esc> M Delete line

<Esc> Y (y-32)(x-32) Bring cursor into X/Y position

<Esc> b ColorSelect color of writing (0-16 with color)

<Esc> c ColorSelect color of background (0-16)

56

Abacus Software Atari ST Peeks and Pokes

<Esc> d Delete display up to cursor

<Esc> e Display cursor

<Esc> f Delete cursor

<Esc> j Store cursor position

<Esc> k Set cursor to stored position

<Esc> 1 Delete line

<Esc> o Delete line up to cursor position

<Esc> p Start reverse video

<Esc> q Stop reverse video

<Esc> v Wraparound on

<Esc> w Wraparound off (cursor stops at right margin)

These key sequences can also be used from a BASIC program. It is
possible to erase the output window border and use the entire screen for
the program. But be careful! An erased menu line remains erased even
though it may still function. Therefore you have to redraw it after
returning to the BASIC level.

The following short program demonstrates talking to TOS:

10 rem *** TOS Level Demo 4.1.3***
20 x = inp(2): rem Get Key
30 if x = 187 then end : rem Fl causes

termination

40 out 2,x : rem Output to TOS Display
50 goto 20 : rem Infinite Loop

This trick can be used in a BASIC program to get two cursors which are
independent of each other. To control the TOS cursor from the BASIC
program, use this program:

57

Atari ST Peeks and Pokes The Operating System

10 rem ***Output to TOS Cursor 4.1.3***
20 esc$=chr$ (27) : rem Define Escape
30 aus$ = esc$+"e"+esc$+"H"+esc$+"B"+

esc$+"p":rem home, cursor down, reverse
40 aus$ = aus$+"Hello!" : rem Text
50 for i=l to Len(aus$): rem Output Loop
60 out 2,asc(mid$(aus$,i,1)):rem Pass

Character

70 next i : rem until done

The use of the AUS$ variables can also be done differently. The output
loop passes the entire text, including the control character, to TOS. All
control characters shown above may be used.

58

Abacus Software Atari ST Peeks and Pokes

4.2 GEM

GEM is the Graphics Environment Manager. It was developed by Digital
Research as a friendly user interface. It resembles the interface of the
Apple Macintosh® which first demonstrated this type of graphic
oriented interface. Here the usual method ofentering commands through
the keyboard is replaced by using icons and menus. The advantage lies in
ease of comprehension of the computer commands—most of the
functions are self explanatory.

It is interesting to use the capabilities of the GEM in your own programs.
GEM has all the functions required to create graphics and to use menus.
But before using it, you should understand how it works and how it is
structured.

GEM actually consists of two parts: the VDI (Virtual Device Interface)
and the AES (Application Environment System). Although they have
different tasks, their services are accessed similarly.

The VDI is responsible for drawing graphics. It is made of the GDOS
which performs device independent graphic functions, and the GIOS
which performs the device specific graphic functions. By implementing
the GEM in this way, it's possible to quickly add a special "driver" to the
GIOS for a new graphic peripheral.

The AES manages the user interface. It is responsible for handling drop
down menus, icons, windows, etc. The AES frequently call upon the VDI
to draw its graphic displays.

4.2.1 GEM Programming from BASIC

Both the VDI and AES were designed for easy use from the C language
and machine language. The VDI and AES routines are contained in a
library. To use the routines, you mustpass parameters to them.

The C and machine language programmer can easily access the routines.
But the BASIC programmer has a little more work to do to use the
features of GEM. Luckily ST BASIC has two built-in commands to

59

Atari ST Peeks and Pokes The Operating System

access the VDI and AES. These commands are GEMSYS and VDI SYS.
The GEMSYS command talks only to the AES, while the VDI SYS
command accesses the VDI.

For passing parameters to or from the VDI andAES, ST BASIC reserves
several variables: INTIN, INTOUT, PTSIN, PTSOUT and CONTRL.

By displaying the values of these variables, you can determine the
starting memory addresses of the various parameter arrays, e.g. PRINT
INTIN. A reference to the variable name in a PEEK or POKE statement
references its address. This is a convenient way to access the elements of
the array.

Each array element is 16 bits (or 2-bytes) wide. You can display the
contents of the third element of the INTIN array with the following:

PRINT PEEK(INTIN + 6)

Since each element is 2-bytes wide, the third element is found by
multiplying the element number by two.

INTIN•

+ 2

+6

+2*n

i

first element

second element

third element

nth element

The array named INTIN is for passing input parameters to GEM. The
output parameters from GEM to the program are passed in the array
named INTOUT. The arrays PTSIN and PTSOUT are used to pass
coordinates for graphic functions. And the CONTRL array is used to
specify the desired function.

Here's a breakdown of the CONTRL array:

60

Abacus Software Atari ST Peeksand Pokes

CONTRL (0) Function code

CONTRL (1) Number of entries in the PTSIN array

CONTRL (2) Number of entries in PTSOUT array

CONTRL (3) Number of entries in the INTIN array

CONTRL (4) Number of entries in the INTOUT array

CONTRL (5) Function ID for subroutines

CONTRL (6) Unit number (handle)

CONTRL (7-n) Function dependent values

The second, fourth, and sixth to the nth elements are the output
parameters which are returned by the routine. The others must be
specified for every function call. The entry for CONTRL (6) is a number
which GEM requires for the device identifier or unit to be accessed. Since
the screen is active and represents the actual unit, this ED is not
transmitted. All functions are performed on the screen.

4.2.2 Getting Input from the Mouse

Let's break away from concepts and get down to practice. This short
program determines the mouse's screen position and the state of its
button. The VDI has a function exactly for this purpose:

10 rem *** Get Mouse Position 4.2.2***

20 poke contrl,124 : rem Function Code
30 poke contrl,+2,0 : rem Number of Parameters
70 vdisys 0 : rem and Execution
80 x = peek(ptsout) : rem X Position
90 y = peek(ptsout+2): rem Y Position
100 key = peek(intout): rem Key activated
110 print x,y,key
120 goto 20

61

Atari ST Peeks and Pokes The Operating System

For all calls to the GEM, you must specify a function code in element
CONTRL (0). The number of parameters passed is specified in
CONTRL (1). In this example there are no parameters so we POKE a
value of zero. Next the call to VDI is performed. The value following
VDI SYS is a dummy argument.

TheVDI always returns the output values in INTOUT or PTSOUT. In rare
cases you may obtain values in the CONTRL array, but the two OUT fields
are more important. In the previous example, the X and Y position of the
mouse pointer in PTSOUT (0) and PTSOUT (1) are returned. The value
in INTOUT (0) is zero when the mouse key has not been pressed. This
information can be used in the program. Lines 110 and 120 are only for
demonstration and may be omitted.

Now let's change the mouse pointer to a different shape. Perhaps you
want to push a little man across the screen? You can do this through the
VDI. For this application the following program passes a lot of
parameters. Enter the following program.

4.2.3 Changing the Mouse Form

10 rem *** Set Mouse form 4.2.3 ***
20 poke contrl,lll : rem Function Code
30 poke contrl+6,37 : rem Number of Parameters
40 poke intin,3 : rem Action Point X
50 poke intin+2,0 : rem Action Point Y
60 poke intin+6,0 : rem Color value of Mask
70 poke intin+8,1 : rem Data color value
80 for i=0 to 15 : read x$: rem Mask/Cursor
82 x=0 : for j=l to 16 : rem Change
84 x= x-(mid$(x$, j,D<>" ")*2A(16-j)

86 next j
90 poke intin+10+i*2,x : rem Set Mask
92 x=0 : for j=l to 16 : rem Conversion
94 x= x-(mid$(x$,j,l)="*") *2A(16-j)

96 next j
98 poke intin+42+i*2,x : rem Set Cursor

10 0 next i

110 vdisys 0 : rem and execution

62

Abacus Software Atari ST Peeks and Pokes

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

end

rem +++ Masks and cursor data +++

data "

data " .. .***.

data ".**..*****.

data ".**..****.

__

.*******_

***** **

data "

data "

data "

data "

data "

data "

data "

data "

data "

data "

data "

data "

** . **

**

-;< *

**

**

**

**

t*

**

This program probably needs some explanation. In line 20, the function
code is specified as before. Next the number of parameters are specified.
This function, whose name is vsc_read, reads 37 words from the
INTIN array. INTIN (0) and INTIN (1) contain the X and Y
coordinates of the action points of the mouse pointer. This point, for
example, activates the drop-down menus. The action point in the above
example was set at coordinates 0,3 in other words the right hand. The
following two values in INTIN (3) andINTlN(4) contain the the
color values of the cursor. You might wonder why two values are needed
for this. The reason is simple. Assume the cursor is black and is dragged
onto a black surface. It becomes invisible and therefore useless for exact
positioning. Now the mask makes its appearance. This mask lies almost
below the cursor and is slightly larger than the cursor. Its color value in
the above example in normal desktop operation is 0, which means it
appears white. The effect is that on a black surface you cannot see the
entire cursor, only its outline. This outline is the white mask.

Starting in line 80, the program passes the data for the cursor and mouse
form. Here again the binary-decimal conversion is used which was
presented in section 2.1. For this application, the conversion routine was
changed. For the computation of cursor data, which provides the binary
pattern, the * is recognized as 1. The mask on the other hand is
represented by periods since it is larger than the cursor itself. Here a

63

Atari ST Peeks and Pokes The Operating System

space is assumed to be a logical 0 andeverything else between lines 82 to
90 represents a 1. Through this trick both of the tables for cursor and for
the mask are saved.

The conversion program in lines 80 to 100 creates, from a combined
table, a single table andpasses it directly to the INTIN field. Thedatafor
the mouse form in INTIN (5-20) and the cursor data table in
INTIN (21-3 6) are passed to the function. If you select any of the
FILE functions of the Main Menu, GEM changes the mouse form to a
"busy bee" and then back to the original arrow.

To use this in a program, it's not necessary to pass the binary form of the
data table. We recommend that after you design the final mouse pointer
form, you write the two data tables as decimal numbers. The program
would look as follows from line 80 onward.

80 for i=0 to 31 : rem Start Loop

90 read x : rem Read value
100 poke intin+10+i*2,x : rem and set
110 next i

120 vdisys 0 : rem and execution
130 end : rem finished, maybe RETURN

140 rem Mask Data

150 data 384, 2016, 8184, 32766,65535, 62415, 62415
160 data 62415, 960, 960, 960, 960, 960, 960, 0, 0
17 0 rem Cursor Data

180 data 0,384, 2016,18184, 29070, 24966, 384, 384
190 data 384, 384, 384, 384, 384, 0, 0, 0,

This example draws a vertical arrow instead of the little man from the
previous program. The action point is now located at coordinates 8,0. If
you prefer the little man form better, you can determine the values for the
DATA statements from Section 2.1 by using the binary-decimal
conversion program.

A final note about the sample program. There are practically no limits to
the cursor form. Be careful to stay within the 16 x 16 pixel format or you
may end up creating an unmanageable form.

There is also another way to change the mouse form. There are 8 pre
defined mouse forms built into GEM. For example, the "busy bee" is one
of these. You can select this or one of the other seven with a call to the

64

Abacus Software Atari ST Peeks and Pokes

AES as in the next program. We'll talk more about this shortly when we
describe menu and window programming.

10 rem***Set Mouse form 4.2.3***

11 defdbl b,d : b=gb
12 cn=peek(b)
14 ii=peek(b+8)
20 d=peek(b+16) : rem Create Pointer
50 poke en,78 : rem Command
60 poke cn+2,1
70 poke cn+4,1
80 poke cn+6,1
90 poke cn+8,0
100 poke ii,4 : rem Choose Form
110 poke d,257 : rem Plug in Form
120 gemsys 78 : rem execute

The value set in line 100 represents the form. You can use any of these in
place of the 4:

0 Arrow

1 Cursor
2 Bee

3 Hand with Index Finger
4 Flat Hand
5 Thin crosshair
6 Thick crosshair
7 Crosshair as frame

When you select a FILE function, the arrow form or busy bee form is
reselected.

65

Atari ST Peeks and Pokes The Operating System

4.2.4 Changing the Font

GEM has the capability to represent text in various ways. In addition to
the normal font, you can add the underlined characters, bold printing,
outlined characters and shaded characters which are familiar to you from
the BASIC editor. To use these variations, we have to call on the VDI
again. A program to change the appearance of the font appears as
follows:

10 rem ***Change Font 4.2.4***
20 poke contrl ,106 : rem Function Code
30 poke contrl+2,0 : rem Parameter Number
40 poke contrl+6,1
50 poke intin ,1+2 : rem Font
60 vdisys 0 :rem and execute
7 0 print "What kind of Text !" : rem Test Text
80 poke contrl ,106 : rem Loop
90 poke contrl+2,0
100 poke contrl+6,1
110 poke intin ,0 : rem Normal font
120 vdisys 0 : rem used again

In this program the font is changed to bold and shaded style. After
displaying a sample line, it reverts to the normal font to avoid potential
problems with subsequent BASIC commands. Lines 10 to 40 are similar
to the previous example. The difference lies in line 50 where the desired
font is specified. This method makes font selection easy. The text modes
can be selected by combining the bits which represent the desired graphic
characteristics. These are represented as follows:

Bit Value Font

Fat

Shaded

Italics
Underlined

Outlined

To use a shaded, italics font with underlining, then line 50 should have
the value 2 + 4 + 8, or 14. Up to 32 styles can be selected by using

0 1

1 2

2 4

3 8

4 16

66

Abacus Software Atari ST Peeks and Pokes

various combinations. Some of the styles such as the outlined, cursive
font (16 + 4 = 20) are illegible, unless you have a lot of imagination.

4.2.5 Graphic Text

We still haven't exhausted the capabilities of the VDI. We can directly
format text output and display it at any location on the screen. Thus we
can display text outside the output window of BASIC and even within the
menu lines. Here's how to do it:

10 rem *** Graphic Text - VDISYS Demo 4.25***

15 text$ = "Sample Text"

20 poke contrl,11 : rem Function Code

30 poke contrl+2,3 : rem Parameter Number

32 poke contrl+6,len(text$)+2

34 poke contrl+10,10 : rem Function Recognition

40 poke intin+2,1

50 poke ptsin ,50

60 poke ptsin+2,60

70 poke ptsin+4,150

80 for i=l to len(text$)

90 poke intin+2+i*2,asc(mid$(text$,i,1)) : rem Set
10 0 next i

110 vdisys 0 : rem execute

This program displays the text from the variable TEXT$ on the screen at
coordinates 50,50 and stretches the text to the point where it reaches the
width of 40 characters. The 3 which is passed to the control array in line
30, gives the number of parameters to be passed in PTSIN. The first two
are the coordinates of the first character of text, where 0,0 indicates left
on top. The X-Text length is the total width which the text shall occupy.
The text is stretched by adding space between the characters. To write the
text unexpanded to the location X, the expansion mode can be switched
off by POKEing a value of zero in line 40.

The program also performs some text processing. The VDI must know
how many characters to display. This number comes from line 32 through
the parameter which it should read from the INTIN array. The function
LEN(TEXT$) outputs the length of the text in this variable. The +2

67

rem Word Expansion

rem X Coordinate

rem Y Coordinate

rem X-Text length

rem ASCII Code

Atari ST Peeks and Pokes The Operating System

stands for INTIN (0) and INTIN (1). The text is written character by
character into the INTIN field.

To store a character in memory, you must write its ASCII value. ASCII
stands for "American Standard Code for Information Interchange" and is
a standard code used in most computers and printers. The function
ASC ("A") provides in a BASIC program the ASCII value of A, which
is 65. Every character has its own value, so that in our example any
desired text can be set into the variable TEXT$. The character to be
converted is selected from the string using the MID$ function.

However, we want to postpone text processing until later (section 7.4)
Let's continue our discussion of the VDI. The interesting VDI commands
are explained in the sample program in chapter 6.1. For a complete
overview of the VDI and AES commands, whose applications are mostly
limited to C and machine language programming, see the Atari ST GEM
Programmer s Reference from Abacus Software.

An interesting blockof memory in which some parameters of BASIC are
stored for use by GEM, is directly accessible through SYS TAB system
constants. SYSTAB is a pointer which points to this parameter block.
Through PEEK and POKE, some interesting effects can be achieved.
Some of the parameters that can be reached are only suitable for reading
since changing them could easily lead to a system crash. The following
are the addresses and their significance:

SYSTAB Graphic Resolution (l=high, 2=medium, 4=low)
SYSTAB+2 Editor action, font (see below)
SYSTAB+4 Edit window AES Access code
SYSTAB+ 6 List-Window AES Access code
SYSTAB+ 8 OUTPUT window AES Access code
SYSTAB+10 COMMAND window AES Access code
SYSTAB+2 Editor action, font (see below)
SYSTAB+12 EDIT Flag (0=Closed, l=Open)
SYSTAB+14 LIST Flag (0=Closed, l=Open)
SYSTAB+16 OUTPUT Rag (0=Closed, l=Open)
SYSTAB+18 COMMAND Flag (0=Closed, l=Open)
SYS TAB+2 0 Pointer to Graphic Buffer
SYS TAB+24 GEM-FLAG (0=normal, 1=out)

The graphic resolution is 1 with a monochrome monitor and 2 or 4 with
color. A PEEK (SYSTAB) allows you to determine resolution. This is

68

Abacus Software Atari ST Peeks and Pokes

sometimes necessary in graphics programs since you will have to adjust
the maximum X/Y coordinates.

The editor action and font specify the way the currently edited line is
displayed. Normally, it is displayed in a lightly shaded font style. With
POKE SYS TAB+2,14 you can change this to a Roman font.

The AES access codes of the individual windows of the BASIC
workbench are the numbers which the AES has assigned to the windows.
Using this number with an AES call you can change the desired window
(for example enlarge, move, or make smaller).

The flags of the window conditions contain information on the condition
of each window. You can look here to determine if a window exists. Be
careful in changing the flag values. A LIST command can crash the
system if the LIST flag is cleared.

At memory locations SYSTAB+20 to SYSTAB+23 is a 32 bit long word,
the memory address of the graphic buffer. This buffer allows you to alter
the OUTPUT window during size changes. The address of this memory
area can be determined by accessing the long word which starts at
SYSTAB+20.

And now to the GEM flag. If you set it to 1 with POKE SYSTAB+2 4,1,
GEM is turned off. You won't notice anything immediately, but changes
are no longer possible. No input is accepted from the keyboard either.
The GEM flag can only be used within a program, but it must be reset to
zero at the end of the program. The advantage of setting the flag in the
first place lies in the time which GEM normally requires to perform
windowing and to manage menus. These activities are suspended when
GEM is turned off and the computer can devote more time to the
processing of BASIC programs. The program runs faster, which during
long computations can be advantageous. Disk access is permitted since it
is handled by BIOS. Don't forget to turn GEM on again!

69

Chapter 5

The Desktop

Abacus Software Atari ST Peeks and Pokes

The Desktop

5.1 Customizing the Desktop

Many users want to customize their ST's to satisfy their own preferences
and work habits. Let's see how you can customize the ST for yourself.

Most of the icons that appear on the desktop are difficult to change using
the accessories. For example, the disk drive icons can only contain capital
letters if you try to name them with the Install Disk Drive
option from the Options menu.

There is another way to change these icons, however. We must change
the DESKTOP. INF file. This file contains all the information the ST
needs to create the desktop. The ST uses this file each time you boot the
computer.

Caution: You should only experiment on a back-up diskette because it is
very easy to destroy this file. If you are using a hard disk drive you
should disconnect it before experimenting with the desktop. You can load
DESKTOP . INF into any text processor with an ASCII mode. Just be sure
to set all the margins to 0. The file should look similar to this:

#a000000

tbOOHOO

#c7770 0070 00700 070 05520 050555222077055707505770550 411230 6

#d

#E 9B 03

#W 00 00 0C 01 ID 16 08 A:*.*@

#W 00 00 28 01 IF 17 00 @

#W 00 00 0E 09 2A 0B 00 @

#W 00 00 OF 0A 2A 0B 00 @

#M 00 02 00 FF A FLOPPY DISK0 @

#M 00 03 00 FF B FLOPPY DISKS @

#T 00 07 02 FF TRASH CAN@ @

#F FF 04 @ *.*@

#D FF 01 @ *.*@

#G 03 FF *.PRG@ @

#F 03 04 *.TOS@ @

#P 03 04 *.TTP@ @

73

Atari ST Peeks and Pokes Customizing the Desktop

Line #a is for the RS232 configuration. The digits in this number are
related to the settings of the RS232 configuration menu. The first digit is
DUPLEX. It can be set to 0 for Full or 1 for Half duplex. The second
digit is for the baud rate. It can be set to 0 for 9600 baud, 1 for 4800, 2 for
1200 or 3 for 300 baud. Digit number 3 is for the Parity. Set it to 0 for
None, 1 for odd or 2 for Even parity. The fourth digit is for Bits/char
where a 0 represents 8 bits/char, 1 is for 7, and so on down to 5
bits/character. Digit 5 is for the XON/XOFF and RTS/CTS settings see
the diagram below. Digit 6 is for the Strip bit, set it to 0 to turn the strip
bit on or set it to 1 to turn it off.

XON RTS digit 5

0
* 1

* 2

* * 3

Line #b controls the printer configuration. The digits correspond directly
to the Install Printer accessory menu. For example, the 4th digit
corresponds to the Quality settings on the Install Printer menu. You can
put only Is and 0s in these digits. A 0 represents the choices in the first
column on the menu such as DOT, B/W, 1280, etc. A 1 represents the
second column.

Line #c contains the color palette values. These can also be set with the
control panel. Each color is set by a group of 3 digits that correspond to
the Red, Green and Blue values.

Line #d is not used at this time.

Line #E is concerned with how folders are viewed, i.e. as text or icons
and how the files are sorted. This is easier to change with the VIEW
menu. If you do wish to set these using the DESKTOP . INF file here is a
table with all the settings:

74

Abacus Software Atari ST Peeks and Pokes

Show as Sort bv Set 1st value to

Icons Name IB

Icons Date 3B
Icons Size 5B
Icons Type 7B

Text Name 9B
Text Date BB

Text Size DB
Text Type FB

The #W lines control the windows. The first two values (in this case 00
00) are for the horizontal and vertical sliders. The zeros mean they are
inactive. The next two values (0C 01) indicate the X and Y values of the
window in units of characters. The two values following that (ID 16)
contain the width and height of the window in character units. The
information following this concerns the path for the disk directory. It's
not wise to change this path information.

The #M lines control the disk icons. The first two values (00 02) are the
position at which the icon will appear. The next value determines the
shape of the icon.

00 file drawer
01 document
02 trash can
03 program
04 folder

The FF value doesn't seem to do anything. The floppy disk labels that
follow can be changed using both upper- and lowercase letters.

The #T line is for the trash can. Its parameters are the same as those for
the disk icons.

The #F line contains information for displaying folders in directories.

The rest of the lines are similar to the #F line except #D is for documents,
#G for GEM files and #P for TOS Takes Parameters files.

75

Atari ST Peeks and Pokes Customizing the Desktop

After you make your changes save the file under the name
DESKTOP . INF in ASCII format.

To use your customized desktop: first shut off your ST, put the disk
containing the new DESKTOP. INF file in drive A and switch the
computer on. Your new desktop will appear on the screen.

5.1 Setting the RS-232 Interface

You can only have 6 accessories on the desktop at a time. You may want
to remove some of the accessories to make room for others or just to free
up some memory. To remove an accessory, rename it with the extension
.AC1. To re-install it as an accessory, rename it with the extension
.ACC. When you reboot the system the computer will load all the files
with the .ACC extension. Remember that you are only allowed 6
accessories at time.

If you remove the SET RS232 CONFIG. accessory though, you won't
be able to set the transmission rate anymore. Fortunately there is a way to
get around this inconvenience.

This rate can be set to operate at speeds from 50 to 19,200 baud. One way
to set the transmission rate of this port is by writing a short machine
language program.

Instead, we'll write a BASIC program which creates a short machine
language program called SETBAUD.PRG to set the baud rate. You can
execute SETBAUD. PRG as usual from the desktop.

As it stands, the program sets the transmission rate to 50 baud. To change
the speed, change the value at the end of line 120 from 15 to one of the
code numbers below:

10 rem *** Configure Baud Rate 5.1***
20 for i=l to 72 step 2 : rem 36 Words
30 read a

40 poke i+1999,a
5 0 next i

rem Read

rem into memory
rem hold

60 bsave "SETBAUD.PRG",2000,72:rem store

76

Abacus Software Atari ST Peeks and Pokes

70

80

100

110

120

130

140

end

rem -

data

data

data

data

data

— Program Data

24602,0,44,0,0,0,0,0,0,0,0,0,0,0
16188,-1,16188,-1,16188,-1
16188,-1,16188,-1,16188,15
16188,15,20046,-8196,0,14
16999,16188,76,20033

Code Number

0

1

2

3
4

5

6
7

8

9

10

11

12

13

14

15

Baud Rate

19,200
9,600
4,800
3,600
2,400
2,000
1,800
1,200

600
300

200
150
134

110

75

50

All other settings of the interface, such as the transmission protocol or the
parity, remain in the condition set.

You can change the transmission protocol in addition, by replacing the
second -1 in line 120 with one of the following values:

Value

-1

0

1

2

3

Significance

Set value remains
No Handshake
XON/XOFF
RTS/CTS
Both, but does not make sense

77

Chapter 6

t >

Programming Languages

Abacus Software Atari ST Peeks and Pokes

Programming Languages

A single programming language must have an enormous scope to serve
all the features of a computer of the caliber of the ST. For this reason the
best was barely good enough for the Atari. There are a wide variety of
languages available to the ST owner. Some of these languages should be
examined closely to determine their advantages and disadvantages. Let's
begin with the LOGO and BASIC interpreters, which are well suited for
simple programs, andfurthermore areeasy to use.

Desk File VieM Options

0 bytes used in 3 items.
ft:\

D • • • • • •
MODULfl_2.DIR PnSCAL.DIR

81

Atari ST Peeks and Pokes Programming Languages

6.1 DRXOGO

The name of this programming language is often written as in this title,
but this doesn't mean that it is a language for doctors. DR LOGO, as it
should really be written, is an abbreviation for Digital Research LOGO,
which we will call ST LOGO. This language, which also runs on other
computers, is often considered a children's language. In reality, DR
LOGO is a complete and capable language.

LOGO has some similarity to FORTH, which has a reputation of being an
extensible programming language. The reason for this is that you can
define new commands. This is also possible in LOGO. Let's look at an
example.

However, its not easy to output data from a LOGO program to a printer.
LOGO only has the commands COPYON, or COPYOFF, which control all
the output to the printer. If you want to have the command LPRINT,
which works like the one in BASIC, you can define it as follows:

TO LPRINT :LINE

COPYON PR :LINE COPYOFF

END

These statements, calledprocedure, are called by its name. The procedure
LPRINT [a] is now available from the LOGO language. Text is output
to the printer with LPRINT [Text].

This example also points out a principle of LOGO programming. For
simplicity in programming, we write procedures. These procedures are
used by higher level procedures, and so forth, until the program has been
finally reduced to a single command. This hierarchical structure has the
advantage that you can program with a good overview, but requires that
you follow a certain discipline for program structure. A program without
a good structure will become nearly illegible.

Another principle of the LOGO philosophy is the list orientation of the
language. Most of the data is managed as lists and list processing is
heavily supported. Lists can consist of any number of numeric values or
strings which can be sorted, mixed, checked or changed with a single
command. Because of this ability, LOGO is suitable for text processing
or spreadsheets.

82

Abacus Software Atari ST Peeks and Pokes

LOGO has another specialty—graphics. It is also known as turtle-
graphics since the cursor used for design in some LOGO versions has the
shape of a turtle. The ST turtle is represented as a triangle which can be
put into motion with commands such as LEFT, RIGHT, FORWARD or
BACKWARD. If you tell it to, it will leave a trail as it moves, making it
easy to produce designs. An example:

TO BROOCH

FD 100 RT 111 FD 4 0
TURN

BROOCH

END

TO TURN

FD 66 RT 66 FD 66
END

This example will paint a brooch on the display with the command
BROOCH. Since the procedure BROOCH will call itself constantly, it will
run until stopped, or until the power is turned off.

An exhausting description of the DR LOGO programming language
would exceed the boundaries of this book. Those interested can consult a
number of good books which introduce this language, such as Atari ST
LOGO User's Guide from Abacus Software. Instead let's quickly look at
how LOGO can be used to fool the operating system.

The PEEK and POKE functions exist here too, but they are called
.EXAMINE and .DEPOSIT.

For example, .EXAMINE 1102 provides the address of the video
display memory. This command works exactly like its BASIC
counterpart PEEK.

.DEPOSIT 12 62 starts the printout of the display. You can use this
command just as you would the POKE command in BASIC.

83

Atari ST Peeks and Pokes Programming Languages

6.2 ST BASIC

Among computer hobbyists, BASIC is probably the most popular
language. This is because the language is easy to learn and is not very
critical concerning programmingstyle. A BASIC program can be written
quickly and errors can be found fast using the trial-and-error principle,
since you can correct errors occurring during execution immediately.
This is not as easy with other languages such as C or machine language.

The ST BASIC interpreter stores the program lines as text. These text
lines are interpreted line by tine. Other BASIC interpreters work
somewhat differently. With them a BASIC command is stored as an
encoded number, called a token. This method simplifies the command
interpretation and improves the speed of the program. But ST BASIC is
relatively fast even without the preliminary translation to tokens.

A BASIC program can be loaded directly from diskette by a text editor
and changed. Since a BASIC program is stored as text, it can be loaded
and edited with most word processors. But since ST BASIC has a built in
editor, using a word processor is usually unnecessary. The BASIC editor
also performs a syntax check of each program line as it is entered.

BASIC is not a problem oriented language. While COBOL is designed
for business and FORTRAN for scientific problems, BASIC is general
and can be used for all applications. It does not offer special commands
such as sorting or indexing, but can perform these functions with
subroutines. Therefore, almost every problem can be solved with a
BASIC program. Aproblem which is very difficult to do in BASIC is the
handling of real time processes. For time critical assignments, machine
language is much better suited. You can, however, combine these two
languages, which we'll look at Section 6.4.1.

This book is also written for the BASIC programmer who wants to fully
experiment with the fabulous possibilities of the ST. BASIC commands
such as PEEK, POKE or CALL permit accessing of the operating
system facilities. For this reason the book was not called "EXAMINES
and DEPOSITS" as PEEK and POKE are called in LOGO, since only
BASIC permits almostcomplete access to the ST.

84

Abacus Software Atari ST Peeks and Pokes

6.3 The C Language

The C programming language is a high level language whose strange
name is derived from the fact that its developers named the earlier
versions of the language by alphabetic characters. First came A, then B,
and finally C. It is now a widely used language on many computer
systems.

Although it's considered a high level language, there are some elements
of the language which make it very close to machine language. This is
especially apparent since input and output functions are not part of the
standard language definition. This is because these functions are very
system specific, i.e. dependent upon the computer being used. To perform
input and output, each C compiler contains a library of input and output
functions which are then linked to the user's program.

One advantage of the C language is that it is a transportable language. C
programs written for one computer are often easily adapted for use on a
different computer.

The ST is a good example of such a computer. GEM for theST is written
in the C language. The same version of GEM is available to run on
IBM/PC compatible computers, thus demonstrating C's transportability.

Another example of this transportability is the powerful operating system
UNIX, which is mainly used in large computer systems. It too is written
inC and is available on many different computers. You can see that the C
language is quite powerful!

C is derived from the family of the ALGOL language. From this language
family both FORTRAN and PASCAL originated. These languages are
characterized by their high popularity and structured approach to
programming. You can define procedures whose use is similar to a new
command. The procedure PRINTF is one of these. It belongs to the
standard input/output routines which are made available by the above
mentioned library. This procedure outputs, similar to the PRINT
command in BASIC, a text or numeric value. The text or values to be
outputare passed to the function with formatting directions for the output.
Here's a sample call to this function:

PRINTF("5.2f %6.1f\n",A,B)

85

Atari ST Peeks and Pokes Programming Languages

Ascomplicated as this expression appears, it is simple to understand. The
arguments which begin with % determine the format of the output.
%5 . 2f means that the value of the variable A should be represented as a
floating point number with at least 5 characters width and 2 positions
after the decimal point. The f stands for floating point.

Let's return to the normal language definition of C. It contains only
simple control structures such as decisions, loops and subprograms.
Variables must be defined at the beginning of a program to specify the
data type. A simple and unstructured programming style like BASIC'S is
not permissible here. This programming style also makes error detection
easier.

The structure of a C program is as follows:

First the program variables are defined. Then individual functions are
written. To follow the execution of a C program, first find the routine
with the name main (). This is the real program which contains a series
of function calls. Since the names of the functions usually indicate their
purpose, the general structure of the program can beeasily determined.

Small programs often consist only of the main routine. Let's look at a
small C program.

/* Change of Radius to Circumference */
main()

{ int from, to, step;

float radius, circumference;

from =1; /* Beginning Radius */
to = 10; /* End Radius */

step =1 /* Increment */
radius = from;

while (radius <= to)

{

Circumference = 2*radius * 3.141592;

printf("%2.OOf %7.3f\n",radius,circumference);
radius = radius + step;

}

The first line represents a comment. A comment is enclosed within the
characters /* and */ and is ignored by the compiler. After that our

86

Abacus Software Atari ST Peeksand Pokes

program starts with the MAIN() routine. The empty parentheses indicate
that this function does notrequire a parameter.

Next follow the definitions of the variables. The following data types are
permissible:

int Integers
float Floatingpoint
char A single character
short A small, whole number value
long A large, whole number value
double A floating point value with double precision

The program assigns initial values to the variables. After that we start the
loop to calculate the 10 circumference values. This loop is defined by
WHILE (condition) and continues as long as the condition is met. A
WEND, as required in BASIC for the completion of a WHILE loop, does
not exist in C. The program portion which is enclosed by the braces
following the statement is repeated by this command.

The program portion calculates the circumference of a circle from the
radius and outputs both values in formatted form. Then the radius is
increased by one and the loop repeated if it has not exceeded the end
value of 10. If the radius is larger than 10 the program is terminated.

As you can see, a C program is not very hard to follow if you have
already learned another structured programming language. In C, all
statements are terminated with a semicolon, as in PASCAL. The
keywords IF, ELSE, WHILE, or FOR are all familiar. The
somewhat cumbersome programming becomes fairly readable through
structuring and the amount of work required is rewarded with the high
computation speed of the completed program.

For the ST there is a another reason to use C. Accessing GEM is made
easier since the parameters are well defined for the C programmer. The
ST development package from Atari contains a giant library of GEM
functions and systems parameters which make all of GEMDOS
accessible to the C programmer.

87

Atari ST Peeks and Pokes Programming Languages

6.4 68000 Machine Language

In the world of programming languages, machine language occupies a
special position. This language is at the same time the most primitive and
most powerful for programming a computer. This seeming contradiction
is easy to explain.

Every computer contains a central processing unit or CPU. This "brain"
of the computer is the building block that really does all the work which
is assigned to the computer. If you program in the higher level languages
such as BASIC or LOGO, the input is translated into the language the
processor can understand. This language is machine language. The
advantage it has in comparison with other languages is that it can control
all the functions of the computer. This is why we are often forced to use
machine language.

We discovered one of these limitations in the section where we
configured the serial interface. Even the general command POKE was not
sufficient, and we had to write a machine language program. This is only
the tip of the iceberg.

Another advantage of machine language programming is the speed that
we can achieve. You only have to look at the speed with which the screen
is erased. A program in BASIC would appear as follows:

5 rem*** basic.bas 6.4***

10 defdbl a,b : b = 1102
20 a = peek(b)
30 for i = a to a + 32768
40 poke i,0
50 next i

Those who can estimate the speed of a BASIC program can see
immediately that even a fast BASIC, such as the ST's, can take a few
seconds to run this program. You can watch as the display is erased line
by line. Erasing the screen with a machine language routine on the other
hand, will proceed faster than you can watch.

You would think that the operating system would support such
procedures to relieve you of such time problems. But what about

88

Abacus Software Atari ST Peeks and Pokes

applications such as word processing where a sort routine should not
require a forced coffee break?

You will find that you cannot ignore machine language if you want to
make fullest use the system. Especially since the 68000 processor used in
the ST also offers a powerful operating systemsuch as GEMDOS.

Let's first examine the processor and its language. There are no variables
or such easy commands as PRINT 16A3. The programmer has a few
instructions at his disposal, but they concern themselves only with bits,
bytes, words, long words and registers. If you want to store a value, it has
to be stored in the working storage location and you have to remember
the exact location.

Don't be scared off, it's not as complicated as it sounds. Let's consider an
example. Assume that two data words are located in locations $1000 and
$1002 and they must be added. The result will be stored in location
$1004. A machine language program would appear as follows:

MOVE.W $100 0,DO
ADD.W DO,$1002
MOVE.W DO,1004

That's it! The MOVE instruction moves data in the computer. The
extension .W indicates that it concerns a word, that is 16 bits. This could
have been . Bfor a byte or . L for a longword. The first instruction of our
program takes the word from storage location $1000 and puts it into DO.
This DO is a data register, a 32 bit storage location in the computer. The
68000 has 8ofthese registers, designated DO to D7. Data which are being
worked on can be stored in these registers. Registers have additional
advantages in comparison with working storage, which won't discuss at
this time.

The data register DO now contains the value of the storage location
$1000. This value is added to the content of $1002 with the ADD.W
instruction. Here too we append . Wfor the actual data length, a word.
The result of the addition is now in DO, from where it will have to be
transferred to the desired storage location. For this we'll again use the
MOVE . Winstruction. The MOVE instruction always transfers the value of
the first referenced storage location (orregister) to the second. A common
method of writing this is as follows:

89

Atari ST Peeks and Pokes Programming Languages

MOVE.datatype from, to

Datatype means the letters .B, .W, or .L. From and to indicate
from where and to where the data are to be transferred. For this type of
addressing, the 68000 offers a large selection. The following table
contains the addressing modes:

Addressing Mode

Register direct:
- Data register direct
- Address register direct
- Status register direct
- Program counter direct

Data immediate:
- immediate long
- immediate short
- immediate quick

Absolute:
- absolute short
- absolute long

Address Register indirect:
- simple
- with displacement
- with displacement and Index
- with Predecrement
- with Postincrement

Program Counter relative:
- with displacement
- with displacement and Index
- Branch command

Example

CLR DO
MOVEA A1,A6
MOVE D0,SR
MOVE DO, CCR

MOVE#$20000,
MOVE #$20,DO
MOVEQ #9,DO

DO

NOT

NOT

$2000
$18000

CLR (A0)
CLR 80(A0)
MOVE 8(A0,D0)
CLR -(A7)
CLR (A7)+

$400

MOVE 4(PC),A0
MOVE 8(PC,A0),D0
BRA Label

As you can see from the table, addressing modes can be differentiated in
5 categories. The first three are easy tounderstand:

90

Abacus Software Atari ST Peeks and Pokes

Register direct: here a register is the direct source or destination whose
content is movedor changed. The possible registers are the data registers
DO to D7, the address registers AO - A7, the Status Register (SR) and the
Condition Code Register (CCR). Use caution with A7, since this register
is also the Stack Pointer (SP).

Data immediate: the data is part of the instruction. This addressing mode
is only suitable for a data source. This addressing mode is similar to the
POKE command, since MOVE #10,10 00 is just like POKE 1000,10.
It writes a fixed value (10) into a memory location.

Absolute: the directly provided address is addressed and its content used.
With PEEK and POKE only absolute addresses can be addressed. There
are other methods of selecting a certain memory location. These
addressing methods are sometimes rather complex, butvery effective.

Now let us consider two other methods of addressing.

Indirect Addressing: Here the register used is not addressed directly, but
its content is interpreted as an address. With this method simple pointers
can be processed by loading the value of the pointer into a register and
addressing indirectly. An example:

MOVE.L 1102,A0 * Screen address in A0

MOVE. W #1, (A0) * and display "." on screen

This small machine language program can be done in BASIC only with a
lot of overhead. It would appear as follows:

5 rem*** basic2 6.4***

10 defdbl a,b : rem Long Words defined
20 b = 1102 : rem b as Address for Pointer
30 a = peek(b): rem Determine display addr
40 poke a,1 : rem and display

This short example shows the advantage of indirect addressing. You can
specify a displacement or offset which is added to the address contained
in the register to produce a different effective address.

91

Atari ST Peeks and Pokes Programming Languages

In the statement:

MOVE.W #1, N(A0)

the offset n is added to the contents of address register AO. The
immediate value 1 is then stored at this effective address.

Since the address of the start of the video display memory is already
contained in address register AO, we can display a point on the second
line using an offset of 80 as follows:

MOVE.W #1, 80(AO)

The offset is limited to ±32767.

There is also a variation of indirect addressing using either
postincrementing of predecrementing. Using these modes, the specified
register is either incremented after (post) or decremented before (pre) the
operation. Using these variations, it is easy to work with stacks.

If a word is to be stored on the stack you could use the following
instruction:

MOVE.W #0000,-(SP)

The stack pointer is decremented by two after the value OOOOH is pushed
onto the stack. Similarly you can retrieve the word form the stack with
this instruction:

MOVE.W (SP)+,D0

The data is moved from the top of the stack into data register DO and the
stack pointer is incremented by two. The stack is now ready to accept
more data.

Relative addressing: The last addressing mode depends on the contents of
the program counter. The program counter contains the address of the
machine language instruction which is currently being executed.

One variety of relative addressing is the branch instruction. A branch
instruction alters the path of program execution either conditionally or

92

Abacus Software Atari ST Peeks and Pokes

unconditionally. The conditional branches are usually based on the
outcome of a previous instruction. For example:

CMP.W #10,DO

BLT SMALLER

Here a branch to the program section xSMALLER' is made if the content
of the register DO is less than 10. BLT means specifically 'Branch if Less
than' which is self explanatory. The following table contains all branch
instruction variations:

Mnemonic Condition

BEQ

BNE

BPL

BMI

BGT

BLT

BGE

BLE

BHI

BLS

BCS

BCC

BVS

BVC

BRA

BSR

equal
not equal
plus
minus
greater than
less than

greater or equal
less or equal
higher
lower or same
Carry set
Carry Clear
Overflow
no overflow
branch always
branch to subroutine

Branch if..

Z=l

Z = 0
N = 0

N=l
Z+(N&V)
N&V= 1

N&V = 0
Z+(N&V)
c + z = o
C + Z=l

C=l

c = o
V=l

v = o

0

The + sign indicates logical OR, &stands for logical AND (See section 3).
The characters in the right column ofthe table indicate the flag bits of the
condition code register (CCR) that may besetby each operation. Each of
these bits has its own significance and is influenced by the different
instructions.

Some of these instructions alter the flow execution within the program.
The JSR instruction (Jump to SubRoutine) is similar to the BASIC
GOSUB command. When a JSR instruction is performed the path of
execution is temporarily altered until an RTS instruction (ReTurn from

93

Atari ST Peeks and Pokes Programming Languages

Subroutine) is encountered. Likewise, the JMP instruction is analogous to
the BASIC GOTO command.

The TRAP instruction is another instruction which alters the processing
sequence. TRAP#1 calls the GEMDOS, TRAP* 13 calls the BIOS and
TRAP#14 calls the XBIOS. These instructions are usually used to access
the built-in operating system routines.

Here is a list of program control instructions for the 68000.

Mnemonic Significance

Bcc

BRA

BSR

CHK

DBcc

JMP

JSR

NOP

RESET

RTE

RTR

RTS

Sec

STOP

TRAP

TRAPV

Branch if condition code true
Branch always
Branch to a subroutine
Check register against limits
Test condition, decrement and branch
Jump to address
Jump to subroutine
No operation
Reset peripherals
Return from an exception
Return and restore register
Return from a subroutine
Set a byte according to condition code
Stop with condition code loaded
Software trap always
Trap on overflow

In the short sample program in which two numbers were added, an
arithmetic operation was performed: addition. Besides addition, the
68000 can also perform subtraction, multiplication and division. These
operations are often missing from the instruction sets of the earlier
processors.

Here is an overview of the arithmetic operations:

94

Abacus Software Atari ST Peeks and Pokes

Mnemonic Significance

ADD Binary addition
ADDA Add binary to address register
ADD I Add immediate
ADDQ Add immediate quick
ADDX Add binary with extended
CLR Clear
CMP Compare
CMPA Compare address register
CMP I Compare immediate
CMPM Compare in memory
DIVS Divide with sign
DIVU Divide without sign
EXT Extend sign
MULS Multiply with sign
MULU Multiply without sign
NEG Negate
NEGX Negate with extend
SUB Subtract binary
SUBA Subtract binary address register
SUBI Subtract immediate
SUBQ Subtract immediate quick
SUBX Subtract binary with extend
TST Test byte

In addition, the 68000 can also process BCD numbers. For this it has the
following instructions:

Mnemonic

ABCD

NBCD

SBCD

Significance

Add BCD numbers with extend
Negate BCD number
Subtract BCD numbers with extend

Next the logical operations which we're familiar with from BASIC:

95

Atari ST Peeks and Pokes Programming Languages

Mnemonic Significance

AND Logical AND
AND I Logical AND with immediate value
EOR Exclusive OR
EORI Exclusive OR with immediate value
NOT Logical NOT
OR Logical OR
ORi Logical OR with immediate value
TAS Test byte and set always bit7

Single bits can bemanipulated directly using the following instructions:

Mnemonic Significance

BCHG Test bit and change
BCLR Test bit and clear
Bs E T Test bit and set
BTST Test bit

The processor canalso shift and rotate the bits in an operand.

Mnemonic Significance

ASL Arithmetic shift left (*2)
ASR Arithmetic shift right (/2)
LSL Logical shift left
LSR Logical shift right
rol Rotate left
ROR Rotate right
roxl Rotation left with extended bit
ROXR Rotation right with extended bit

And now we come to the instructions which move data in the computer:

96

Abacus Software Atari ST Peeks and Poke

Mnemonic Significance

EXG Exchange registers
LEA Load an effective addr to addr

register
LINK Link local base pointer
MOVE Move source data to destination
MOVE from SR Transfer the content of the SR

MOVE to CCR Move flags to CCR
MOVE USP Move user stack pointer
MOVEA Move to address register
MOVEM Move multiple register
MOVEP Move to or from peripheral register
MOVEQ Move immediate quick
PEA Push effective on stack
SWAP Swap register halves
UNLK Unlink local area

These then, are the instructions of the 68000. In combination with the
various addressing modes, these instructions can be used to make
programs as efficient as possible.

Now we want to examine the program that we used to convert the display
scan rate form 60 Hertz to 50 Hertz. The machine code version of the
program is as follows:

CLR.L -(SP)

MOVE.W #$20,- (SP)
TRAP #1

ADDQ.L #6,A7
MOVE.B #2,$FF82 0A
MOVE.L DO,-(A7)
MOVE.W #$20,- (SP)
TRAP #1

ADDQ.L #6,SP
CLR.W -(SP)
TRAP #1

* Set Supervisor State
* Adjust Stack
* Set PAL Frequency
* alter SSP

* Set User-State

* Adjust Stack

* Back to Desktop

The first TRAP changes the system to the supervisor state. We need to do
this since access to the I/O area is privileged and would generate a bus-
error in the user mode (and two cherry bombs...). After adjusting the
stack pointer, we can change to the 50 Hertz frequency. TRAP #1 calls

97

Atari ST Peeks and Pokes Programming Languages

GEMDOS again and passes the original value of the supervisor stack
pointer which puts the computer system back into user state. The state is
adjusted again and control is returned to the desktop.

The BASIC equivalent of the machine language programs which follow
contains some additional values which precede the application program.
These values are not part of the program, but are required by GEMDOS
to recognize the length and kind of program. If we call a machine
languageprogram from BASIC with CALL, these values are not required.
Using TRAP #1 with the function number 0 is sloppy programming,
since GEMDOS does not return to the BASIC program, but to the
desktop. Such a program is generally ended with the RTS instruction,
which returns control to BASIC.

6.4.1 Combining Machine Language and BASIC

The advantages of machine language are so great that it would be very
interesting to combine it with the easier to write BASIC programming
language. There are a few commands in BASIC for this and we already
know about PEEK and POKE. To be able to access a machine language
program command from BASIC, you can use the CALL command. This
command allows you to pass parameters to the machine language
program.

Let's first consider the CALL command. To do this we'll examine a
program to set the baud rate ofthe serial interface directly from a BASIC
program. In the earlier section on setting the baud rate, we wrote asimilar
program which you could access only from the desktop. Here's another
version:

10 rem *** Configure Baud Rate 6.4.1***
12 a$=space$(40) : rem Reserve Memory
14 b=varptr(a$): rem Determine Address
20 for i=0 to 36 step 2: rem in a Loop
30 read a : rem read data in
40 poke b+i,a : rem and store
50 next i
60 input "Baud rate-code (0 - 15)";x: rem

enter code

98

Abacus Software Atari ST Peeks and Pokes

70 poke b+22,x : rem store
80 call b : rem and call

90 end : rem that's it!

100 rem -- Machine Program --
110 data 16188,-1,16188,-1,16188,-1
120 data 16188,-1,16188,-1,16188,15
130 data 16188,15,20046,-8196,0,14
140 data 20085

As you can see, the machine language program is considerably shorter
than the preceding program. This is because the program paramater table
must precede every application program so that the GEMDOS can
determine the beginning and ending address of the program. Furthermore,
the program must end with a special GEMDOS call where control is
returned again to the desktop or the calling program.

When using the CALL command, no preset parameters are required. A
simple RTS instruction in the machine language program (RTS
corresponds to the BASIC command RETURN) is sufficient to return
control to the BASIC program that issued the CALL.

The machine language program is read from DATA statements and
POKEd into memory. One characteristic of the sample program is that
this memory area is movable. For this reason the text variable A$, whose
location is determined by the BASIC interpreter becomes the storage area
for the machine language program. This is a great advantage. In this
manner several machine language programs can be integrated into a
BASIC program without having to worry about their memory locations.
Using a fixed memory area can create problems if GEMDOS or GEM
also use this area and destroy the machine language program. CALLing
such a program in a fixed location usually leads to a crash.

The machine language program is POKEd into the area reserved for the
variable A$ after the FOR-NEXT loop. Next the computer asks you to
enter a code for the baud rate. Any code may be entered, but the 16
possible baud rates are normally sufficient to cover all needs for speed in
data transmission. You simply enter the code number for the desired baud
rate, ranging from 0 (19,200 baud) to 15 (50 baud). The table is found in
section 5.1 of this book.

The value entered is now passed to the machine language program by
POKEing into the corresponding location. Next the machine language

99

Atari ST Peeks and Pokes Programming Languages

program is accessed with CALL B, where B is the address of the variable
and therefore the programs. The program calls the extended BIOS with a
TRAP instruction and passes the parameters to set the RS-232 port. This
machine language program looks as follows:

* Setting Baud Rates *

MOVE.W #-l,-(SP) * Synchron - Character

MOVE.W #-l,-(SP) * Transmit Status Register
MOVE.W #-l,-(SP) * Receiver Status Register
MOVE.W #-l,-(SP) * USART Control Register
MOVE.W #-l,-(SP) * XON/XOFF and RTS/CTS
MOVE.W #15,-(SP) * Baud rate (BSPL, 50 Baud)
MOVE.W #15,-(SP) * Command

TRAP #14 * XBIOS - Call

ADD.L #14,SP * Correct Stack
RTS * Return to BASIC

The 15 in line 6 which determines the baud rate, is the number which is
changed with the POKE command. By adding another POKE command to
the BASIC program you can change the transmission protocol
(XON/XOFF and RTS/CTS). Do this with POKE B+l 8, n to set a new
protocol. The -1 parameter means that the original setting is to be
retained.

This example illustrates the CALL command as a call for a machine
language program. The repeated use of CALL B assumes that the A$
variable still contains the program and the B its address. Now we can
change the addresses of these variables with the BASIC program
changes. It would be wise to determine the condition of the variable B
before every call.

You can also pass parameters to a machine language program by
enclosing them within parentheses. For example, CALL A (1,2, 3).
When you do this, BASIC puts these parameters onto the user stack with
your machine language program.

The following example passes three parameters to a machine language
routine. The machine language routine simply moves the parameters to an
unused area of memory starting at $2000 (8192 decimal). This machine
languageroutine simply illustrates the passing of values from BASIC.

100

Abacus Software Atari ST Peeks and Pokes

BASIC portion:

10

20

30

40

90

100

130

140

150

155

160

170

180

190

rem *** Calltest

a$=space$(100)
a=varptr(a$) : rem
bload "calltest.prg",
rem End of first part
call a (1,2,3) :
n=peek(8192) : rem
(2000 hex)

print n;"Arguments :"

6.4 1 * -k Vc

rem Make space
Determine address

a:rem load program

rem test call

Determine number

defdbl j
d=l

for j=8208
print d;":
Parameter

d=d+l

next j

Machine language portion:

: rem

: rem

to 8204+n*

";peek(j) :

: rem

: rem

6.4.1

Set Longword
Initiate counter

4 step 4
rem Output

Increment Counter

continue

calltest.prg
MOVE W 4(A7),$2000 *

MOVE ,L 14(A7),$2010 *

MOVE .L 18(A7),$2014 *

MOVE .L 22(A7),$2018 V;

MOVE ,L 26(A7),$201C *

MOVE .L 30(A7),$2020 *

RTS

* Save # of param.
First Parameter

Second Parameter

Third Parameter

Fourth Parameter

Fifth Parameter

You'll have to assemble the short machine language routine before
running it. If you don't have an assembler we've included a short loader
to create "calltest.prg."

The BASIC portion first BLOADs the machine language portion and then
immediately CALLs it and passes three parameters. To verify that the
machine language program works correctly, lines 130-190 PEEK the area
of memory to which the parameters were moved.

Here is a BASIC loader to create the calltest.prg on diskette:

101

Atari ST Peeks and Pokes Programming Languages

1000 open"R",1,"calltest.prg",16

1010 field#l,16 as bin$

1020 a$=""; for i = 1 to 16:read d$: if d$="*" then 1050

1030 a = val("&H"+d$): s=s+a:a$=a$+chr$(a):next

1040 lset bin$=a$:rec=rec+l:put l,rec:goto 1020
1050 data 60,1A, 00, 00,00,60,00,00,00,00,00,00,00,04,00,00
1060 data 00,00,00,00,00,00,00,00,00,00,00,00,33,CO,00,00

1070 data 20,00,23,EF,00,0E,00,00,20,10,23,EF,00,12,00,00
1080 data 20,14,23,EF,00,16,00,00,20,18,23,EF,00,1A,00,00

1090 data 20,1C,23,EF,00,IE,00,00,20,20,4E,75,23,DF,00,00

1100 data 00,60,4E,4E,2F,39,00,00,00,60,4E,75,23,DF,00,00
1110 data 00,60,4E,4D,2F,39,00,00,00,60,4E,75,23,DF,00,00
1120 data 00, 60,4E,41,2F,39,00,00,00,60,4E,75,00,00,00,32
1130 data 08,08,08,08,08,00,00,00,00,00,00,00,00,00,00,00

1140 data *

1150 close 1: if s <> 5243 then print "ERROR IN DATA!":end

1160 prinf'OK"

102

Chapter 7

t

BASIC Programming

Abacus Software Atari ST Peeks and Pokes

BASIC Programming

BASIC is familiar to most of us because it is easy to learn and can be
used for so many applications. With most of the BASIC commands you
can write programs and make changes to them without fear of crashing
the computer.

But when it comes to the PEEK and POKE commands, you may not be as
secure. These commands involve access to memory at the machine
language level. An erroneous POKE may crash the computer. Before
experimenting with PEEK and POKE make sure that you have SAVEd any
programs in memory in case the program crashes.

Load the BASIC interpreter and let's begin to program.

The programs presented here contain many PEEK and POKE commands,
just as you might suspect from this book's title. If you've worked with
BASIC before, you'll have no trouble using these two commands. PEEK
examines a memory location and POKE modifies a memory location.

There is one point that you should be aware of when using ST BASIC.
The 68000 processor in the ST is capable of accessing memory in
increments of bytes, words or longwords. The PEEK and POKE
commands of ST BASIC are also capable of accessing bytes, words or
longwords at a time. Therefore you must specify the size increment to be
used with PEEK or POKE.

Let's assume that you want to set the byte at memory location 8000 to
zero. By default, ST BASIC is set to access a word (two bytes) of
memory at a time. If we POKE 8 0 0 0, 0 not only is the memory at 8000
set to zero, but also the memory at 8001.

To solve this problem, you can use the following technique:

DEF SEG = 1

X = PEEK(A)

The DEF SEG statement tells BASIC that the offset for any access to
memory is one byte. An offset is equivalent to adding 1 to any address.
Therefore this sequence of commands DEF SEG = n: PEEK (A) reads
the address A+n. Also, all accesses to the address A are in byte

105

Atari ST Peeks and Pokes BASIC Programming

increments. Keep in mind that all subsequent accesses to memory use the
offset n, therefore you must reset the offset to zero when you're finished
by using DEF SEG = 0.

Another problem appears when we want to modify a pointer in storage.
Recall that a pointer is always a longword of 4 bytes. We could use two
POKE commands to change such a pointer completely. This method has
two problems. The number which is to be stored in the pointer must be
divided into the higher and the lower word which requires additional
work. Furthermore, the pointer's value may change during access of the
two POKE commands. This can have an unfortunate effect if the pointer
is used in an interrupt routine which may occur at a point when one POKE
has been completed and not the other. At that point the pointer is in an
undefined condition and may lead to a system crash when used by an
interrupt routine.

To overcome this problem you can use the DEFDBL statement. For
example, the pair of statements DEFDBL A: POKE A, X tells BASIC to
access the memory specified by variable A as a longword, or 4-bytes.

To explicitly specify that memory is to be accessed as a word, use the
statement DEFSNG B. Now all accesses to the memory specified by
variable B are as words, or 2-bytes.

The technique of controlling the access width of PEEK and POKE
commands makes programming very flexible. But you must remember to
respecify the width explicitly. We frequently made the error of not
respecifying the defaults and our programs crashed on subsequent tests.
The RUN command does not reset the access widths.

If you want to experiment with PEEK and POKE in the following
programs, pay attention to the exact definition of the access width. A
completely defined program cannot function if it processes bytes instead
of words. To be absolutely sure, write the command DEF SEG = 0 into
the first line of a program which uses PEEK and POKE.

106

Abacus Software Atari ST Peeks and Pokes

7.1 Graphics

The ST is well equipped for graphic processing with its high resolution
display and the GEM operating system. GEM supports nearly everything
a programmer may want to use for graphics. You can draw lines, paint
circles and ellipses, squares with square or round corners, and fill in
various forms with shading using simple procedures. Let's start now by
drawing a shaded circle.

Perhaps you have drawn circles on other computers using the sine and
cosine functions. With ST BASIC we don't have to do this. The
command PCIRCLE X,Y,R does this quickly. The command has a
limitation. It can only draw a circle in the OUTPUT window of the BASIC
display.

If we use GEM for the graphics functions, we don't run up against this
limitation. With GEM we can draw anything anywhere on the screen. We
also have additional capabilities beyond BASIC.

7.1.1 Circles, Ellipses and Squares

To draw a circle on the screen we have to use a VDISYS call which we
used in an earlier chapter. The circle is drawn and filled in with the
following program:

10 rem *** Draw shaded Circle 7.1.1***

20 color 1,1,1,1,1 : rem shading color
30 poke contrl,11 : rem Draw circle
40 poke contrl+2,3: rem Parameter number
50 poke contrl+6,0
60 poke contrl+10,4 rem Functions - ID
70 poke ptsin,100:rem X-center coordinates
80 poke ptsin+2,100 : rem Y-coordinates
90 poke ptsin+4,0 : rem Dummy
100 poke ptsin+6,0 : rem Dummy
110 poke ptsin+8,50 : rem Radius
120 poke ptsin+10,0 : rem Dummy
130 vdisys 0 : rem and normalize execution

107

Atari ST Peeks and Pokes BASIC Programming

The function 11 which is passed in line 30 to the CONTRL (0) field can
do more than just draw a circle. With this one function 10 different
graphics can be drawn. The information concerning what pictures are to
be drawn, is contained in the function ID which is passed in
CONTRL (5) . The assignment of ID numbers to the drawings is as
follows:

ID Drawing

1 Shaded Rectangle
2 Section of Circle
3 Shaded Circle Section
4 Shaded Circle

5 Ellipse
6 Section of Ellipse
7 Shaded Section of Ellipse
8 Square with rounded corners
9 Shaded Square with rounded corners
10 Justified text

The first of these functions, the shaded rectangle, is suitable for the
creating bar graphs. Bars of any width and shading can be drawn. Such a
rectangle can be created with the following program:

10 rem *** Shaded Square 7.1.1***

20 color 1,2,2,9,2

30 poke contrl,11

40 poke contrl+2,2

50 poke contrl+6,0

60 poke contrl+10,1

70 poke ptsin,5 0

80 poke ptsin+2,50

90 poke ptsin+4,100

100 poke ptsin+6,200

rem shading attribute

rem Shade square

rem Parameter number

rem Functions - ID

rem X-first Coordinate

rem Y-first Coordinate

rem X-second Coordinate

rem Z-second Coordinate

110 vdisys 0 : rem and normalize execution

The first coordinates are the upper left corner of the square and the
second is the lower right corner. The significance of the shading attributes
are explained later.

The next function, a section of a circle, corresponds to the BASIC
command CIRCLE X, Y,R,A,E and draws an unshaded section of a

108

Abacus Software Atari ST Peeks and Pokes

circle on the display. To do this the beginning and ending angle of the
circle are specified. These angles are given in 1/10 degrees where the
zero degrees lies to the right of the midpoint. A quarter circle in the first
quadrant, right of the midpoint, lies therefore between 0 and 900 (90
degrees). The same is true of the CIRCLE command. An example:

10 rem *** Circle Sect

20 color 1,0,2,1,1

30 poke contrl,11

40 poke contrl+2,4

50 poke contrl+6,2

60 poke contrl+10,2

70 poke ptsin,150

80 poke ptsin+2,50

90 poke ptsin+4,0

100 poke ptsin+6,0

110 poke ptsin+8,0

120 poke ptsin+10,0

130 poke ptsin+12,30

140 poke intin,0

150 poke intin+2,900

160 vdisys 0

ion 7.1.1***

rem Line attributes

rem Draw Circle Section

rem Parameter number

rem Function - ID

rem X-center point

rem Y-center point

: rem Dummy

: rem Dummy

rem Radius

rem Beginning Angle

rem End Angle

rem and normalize execution

The same program can also draw a shaded circle section. To do this you
must insert function ID 3 and the desired shading attributes in line 20. To
draw a complete circle don't use 0 to 360 degrees with function 3, just
use function 4. It has already been presented in our first example.

Now to the ellipses. For this, functions 5,6 and 7 may be used. Let's take
function 6 as an example. This draws an ellipse section whose ends are
connected with the midpoint.

10 rem *** Ellipse - Section 7.1.1***
20 color 1,0,1,1,1 : rem Line attribute
30 poke contrl,11:rem Draw Ellipse section
40 poke contrl+2,2
50 poke contrl+6,2
60 poke contrl+10,6
70 poke ptsin,200
80 poke ptsin+2,100
90 poke ptsin+4,100
100 poke ptsin+6,50

109

rem Parameter number

rem Funct ions - ID

rem X-Mid Coordinate

rem Y-Mid Coordinate

rem X-Radius

rem Y Radius

Atari ST Peeks and Pokes BASIC Programming

110 poke intin,3200 : rem Start Angle
120 poke intin+2,1200 : rem Final Angle
130 vdisys 0 : rem and normalize execution

For function 7 only the function ID and shading attributes change. These
can be set with the COLOR command. Function 5 on the other hand

requires no starting or ending angle since it draws a complete ellipse.
Lines 110 and 120 are scratched and not replaced. In Line 50 a 0 is
inserted and the function ID is replaced with the 5.

Next comes a form which is difficult to do from a BASIC program—a
rectangle with rounded corners. For this we have ID numbers 8 and 9
whose use is nearly identical. The difference between the two is that the
number 9 is shaded and number 8 is not. Only the ID must be changed
and the shading/line attributes of the COLOR command.

10 rem *** Rounded Rectangle 7.1.1***

15 clearw 2: fullw 2

rem Shading attributes

rem Draw Rectangle

rem Parameter number

rem Functions - ID

rem X-Start Coordinate

rem Y-Start Coordinate

rem X-Target Coordinate

rem Y-Target Coordinate

rem and normalize execution

We have only looked at the only the basic graphic functions which GEM
easily accomplishes. But good control of graphics also includes text. The
VDI is well suited for this since it controls text formatting. This is our
next topic.

20 color 1,2,2,3,4

30 poke contrl,11

40 poke contrl+2,4

50 poke contrl+6,0

60 poke contrl+10,9

70 poke ptsin,50

80 poke ptsin+2,50

90 poke ptsin+4,190

100 poke ptsin+6,190

110 vdisys 0 : r

110

Abacus Software Atari ST Peeks and Pokes

7.1.2 Text on the graphics screen

The last of the 10 calls of the VDI lets you put text formatted in many
ways on the screen—at any location. This function takes several
parameters. For one, there is the display position at which the text begins.
These coordinates point to the upper left hand corner of the first character
in the text. Furthermore, the desired total length of the text must be
specified. If this is longer than the text, it will be adjusted by adding
spaces.

Finally, the text itself is passed. It must be passed one character at a time
to the INTIN array which makes the technique a little more difficult than
the graphics programs above. Here is a sample:

10 rem *** Graphic Text - VDISYS- Demo 7.1.2***

15 clearw 2:fullw 2: rem clear the screen

20 text$ = "Sample text"

30 poke contrl,11 : rem Command code

40 poke contrl+2,3 : rem Parameter number

50 poke contrl+6,Len(text$)+2

60 poke contrl+10,10 : rem Functions - ID

70 poke intin,0 : rem Word stretching (0=out)

80 poke intin+2,0 : rem Character stretching

90 poke ptsin ,50 : rem X Coordinate

100 poke ptsin+2,100 : rem Y Coordinate

110 poke ptsin+4,50 : rem X-Text length

120 for i=l to len(text$) : rem ASCII characters

130 poke intin+2+j*2,asc(mid$(text$,i,1)) : rem set
140 next i

150 vdisys 0 : rem and normalize execution

Since we're already on the subject of text, we should examine the
capabilities offered by GEM. In Section 4.2.4 we described how you
could select a typical font of the ST. Sometimes you may want to select
characters or numbers in various sizes and directions. This is where GEM
helps. Let's examine a program that places giant characters on the screen:

10 rem *** Change Character Size 7.1.2***
20 poke contrl,12 : rem Command code
30 poke contrl+2,1: rem Parameter number
40 poke contrl+6,0

111

Atari ST Peeks and Pokes BASIC Programming

50 poke ptsin,0 : rem Dummy
60 poke ptsin+2,30: rem Character height
70 vdisys 0 : rem and execution
80 text$= "Fantastic text !"

90 poke contrl,8 : rem Text
100 poke contrl+2,2
110 poke contrl+6,len(text$)
120 poke ptsin,100 : rem X Coordinate
130 poke contrl+2,100 : rem Y Coordinate
140 for i=l to len(text$)
150 poke intin+2*i-2,asc(mid$(text$,i,1))
160 next i

170 vdisys 0 : rem write text
180 poke contrl,12 : poke contrl+2,1
190 poke contrl+6,0 : poke ptsin+2,6 :

rem ptsin+2,13 for mono
200 vdisys 0 : rem and normalize

Here are two new VDI commands, 8 and 12. VDI command 12 sets the
height of the characters. This height is specified in PTSIN (1) and is the
only parameter of the function. The 0 in the PTSIN (0) is not used but
we set it for safety's sake.

The next section calls function 8 which writes text at the specified X/Y
coordinates on the screen. Here a simple PRINT command is possible
which writes only to the BASIC output window.

Finally, the standardsize is restored. This must be done since the display
editor does not know what to do with the enormous amount of text so that
subsequent data to the OUTPUT window would otherwise produce only
garbage.

Some interesting effects can be produced using this function. But what
can we do if we need to label a vertical line? The VDI can also help do
this. With function 13, the base line on which the text is written can be
rotated in 90 degree steps. Zero (0) is the default setting. The angle is
specified in l/10th of a degree units. An angleof 900 permits rotating the
text vertically to the left. 1800 turns it upside down and 2700 prints it
vertically to the right. Unfortunately the monitor of the ST does not
support any angle in between. These are reserved for other devices such
as a plotter.

112

Abacus Software Atari ST Peeksand Pokes

It can be done as follows:

10 rem *** Change Character Direction 7.1.2***
15 clearw 2: fullw 2

20 poke contrl,13 : rem Command code
30 poke contrl+2,0 : rem Parameter number
40 poke contrl+6,1

50 poke intin,900 : rem 90 degrees
60 poke ptsin2,30

70 vdisys 0 : rem and execute
80 text$= "Vertical text !"

90 poke contrl,8 : rem Text
100 poke contrl+2,2

110 poke contrl+6,len(text$)
120 poke ptsin,100

130 poke ptsin+2,160

140 for i=l to len(text$) : rem Transmit
text

150 poke intin+2*i-2,asc(mid$(text$,i,l))
160 next i

170 vdisys 0 : rem write text
180 poke contrl,13 : poke contrl+2,0
190 poke contrl+6,1 : poke intin,0
200 vdisys 0 : rem and normalize

Here the text output function 8 was used. The normal PRINT command
is not sufficient. It overwrites the rotated characters which is not really
useful. As in the previous example, the standard defaults are reset before
we end the program.

So much for text output. Circles and text do not constitute graphics. Lines
must also be drawn, preferably invarious thicknesses. You may also need
to draw pointers and arrows in technical drawings. But they're no
problem for the VDI.

113

Atari ST Peeks and Pokes BASIC Programming

7.1.3 Lines and arrows

Drawing a line in the output window can be done using the LINEF
command, where the starting and ending coordinates of the line are
specified. The corresponding VDI function is number 6, named Polyline.
Polyline is the name for several connected lines. Several coordinate
points can be passed to the function. It simply connects them with lines.
Simple drawings such as frames can be drawn with one call. Here is a
sample program:

10

20

30

40

50

60

70

80

90

100

110

120

130

140

rem *** Multiple Lines
clearw 2:fullw 2

poke contrl,6
poke contrl+2,4
poke contrl+6,0
poke ptsin,50
poke ptsin+2,50
poke ptsin+4,150
poke ptsin+6,100
poke ptsin+8,160
poke ptsin+10,180
poke ptsin+12,50
poke ptsin+14,50

7.1.3 k k k

vdisys 0

rem Polyline Code
rem Number of Points

rem and

: rem X 1

: rem Y 1

: rem X 2

: rem Y 2

: rem X 3

: rem Y 3

: rem X 4

: rem Y 4

normalLize execution

This program draws a triangle on the screen. It was necessary to give the
starting and ending point twice. The number ofthe coordinates are passed
in CONTRL (1). There is a closely related function which not only draws
a polygon, but also shades it. You can use it by first using a COLOR
command to determine the shading attributes and using command code 9
instead of 6.

Let's continue with Polyline. It would be nice if we could draw lines as
dots or dashes. Let's make this clear to the VDI. With function 15 you
can select 7 different line types. This style is transmitted in INTIN (0),
and means the following:

114

Abacus Software Atari ST Peeks and Pokes

Style Line

solid

interrupted

dashed

line point

long dashed

line point point

self defined

Style 7 can be user defined. The definition consists of a 16 bit word and
its bit pattern determines the line. The solid line is defined as
1111111111111111 = $FFFF = 65535. This number is passed to function
13 and determines the form of every line which is designated afterwards
with style 7. Here is a program which defines the two lines and draws
them:

10 rem *** Set Line

20 clearw 2

30 poke contrl,15

40 poke contrl+2,0
50 poke contrl+6,1

60 poke intin,7
70 vdisys 0

80 poke contrl,113

90 poke contrl+2,0
100 poke contrl+6,1

110 poke intin,65365
12 0 vdisys 0

200 linef 0,20,200,20

Style 7.1.3***

rem Clear OUTPUT window

rem Select Line style

rem Number of Parameters

rem Line Style User

rem and execution

rem define line

rem Parameter number

rem Line pattern

rem and execution

rem Trial line

The lines can also be drawn in variable thicknesses. Note that thicker
lines can only be represented in style 1. If another style is selected, it is
ignored. The thickness of the line can be set between 1 and 15 by calling
function 16. An example:

115

Atari ST Peeks and Pokes BASIC Programming

10 rem *** Set Line Width 7.1.3***
20 clearw 2 : rem Clear OUTPUT window
30 poke contrl,16 : rem Select Line width
40 poke contrl+2,2 : rem Number of

Parameters

50 poke contrl+6,0
60 poke ptsin,15 : rem Line Width^
70 vdisys 0 : rem and normalize execution
100 linef 0,30,250,100 : rem Trial line

The shape of the line endings of these lines can also bedefined. There are
three selections possible:

0 normal angle
1 arrow

2 rounded

They are set with function 108, separately for the beginning and ending
of the line. To draw an arrow from the position Xl/Yl to position X2/Y2
and to round off its beginning, our program wouldlook like this:

10 rem *** Draw Arrow 7.1.3***
20 poke contrl,108 : rem Define end
30 poke contrl+2,0
40 poke contrl+6,2
50 poke intin,2 : rem Beginning rounded
60 poke intin+2,1 : rem End arrow shaped
70 vdisys 0 : rem and normalize execution

Then we draw the line as in the previous example. The rounding off of
the line endis only noticeable with thick lines. Arrows canbe drawn with
any line width.

7.1.4 Shading surfaces

If you draw a form you might want to shade it. In BASIC the command
for this would be FILL X, Y. The shading begins at the position given,
and shades everything within an uninterrupted outline. The

116

Abacus Software Atari ST Peeks and Pokes

shading and the color is set initially with the COLOR command. This
command expects 5 parameters. The following table explains the
parameters:

Parameter of COLOR A,B,C,D,E

A Color of text

B Background color of FILL command
C Line color of drawings
D Pattern index
E Shading style

Pattern index and shading style specify the appearance of the shading.
The shading style is the method in which the shading is performed:

Style Shading

0 Area will not be shaded
1 Area will be completely shaded
2 Shaded with dots
3 Shaded with lines
4 Shading with self defined pattern

The pattern index is only important with style 2 and 3 and indicates
which dot or line pattern will actually be used.

7.1.5 Creating your own shading patterns

Shading style 4 is very interesting. This allows you to define your own
shading pattern. You can define a logo or aspecial character for a pattern.
Any pattern which can be designed within a 16x16 pixel area may be
defined. The program is written so that you can insert your own pattern.
Let's design a pattern based on the little man from an earlier example.

117

Atari ST Peeks and Pokes BASIC Programming

10 rem *** Define Shading Pattern 7.1.5***
20 poke contrl,112 : rem Command code
30 poke contrl+6,16: rem Number of

parameters
80 for i=0 to 15 : read x$: rem Shading

pattern
82 x=0 : for j=l to 16 : rem change
84 x= x-(mid$(x$,j,l)<>" ") * 2A(16-j)
86 next j
90 poke intin +i*2,x : rem set pattern
100 next i
110 vdisys 0 : rem and normalize execution
112 color 1,1,1,1,4 : rem select pattern
114 pcircle 80,80,70: rem and demonstration
120 end

130 rem +++Sample Data +++

14 0 data "

150 data " ***
kk k k k "

k k k k k "

kk k »

160 data

170 data

180 data "

190 data "
20 0 data " ***** **
210 data " ***** *

220 data " ***** **

230 data " *****

240 data " ** **

250 data " ** **

260 data " ** **

270 data " ** **
280 data " **** ****

2 90 data "

To draw this or any other user-defined pattern on the screen, call the VDI
using function 103. This is the same function that is used by the FILL
command of BASIC. The method is the same as in FILL concerning the
attribute setting and the method of shading procedure. A VDI call for
shading looks like this:

118

Abacus Software Atari ST Peeks and Pokes

10 rem *** Shading Demo 7.1.5***
15 color 1,1,1,3,2 : rem Shading Attribute
20 poke contrl ,103 : rem Shading command
30 poke contrl+2,2 : rem Parameter Count
40 poke contrl+6,1
50 poke intin ,1 : rem Shading color
60 poke ptsin ,100 : rem X Coordinate
70 poke ptsin+2 ,200 : rem Y Coordinate
80 vdisys 0 : rem and normalize execution
90 pcircle 80,80,70

Incidentally, you can add dots or lines to the menu bar of GEM if you
wish.

7.1.6 Setting markers in the display

In some programs you may want to draw markers or special symbols on
the screen, perhaps to indicate a certain position. You can do this by
drawing small circles using a CIRCLE command or you can use the
following VDI function to draw one of several built in markers. The
various types are:

Type Form

1 Period
2 Plus sign
3 Asterisk
4 Square
5 Cross
6 Diamond

Any other value will produce an asterisk. Except for the period, the
symbols can be enlarged—to provide any size you desire. For example,
you can frame a character within a square.

The selection of type, size, shading color, and symbol are done
individually. This makes for more work, but their flexibility makes it
worth the effort. Many programs use these markers to indicate menu
choices in dialog boxes.

119

Atari ST Peeks and Pokes BASIC Programming

Let's examine a program where all the selections are made and several
markers are set:

10 rem *** Poly Marker 7.1.6***
15 clearw 2:fullw 2
20 poke contrl,18 : rem Shading code
30 poke contrl+2,0 : rem Parameters
40 poke contrl+6,1
50 poke intin,6 : rem Type diamond
60 vdisys 0 : rem and normalize execution
70 poke contrl,19 : rem Size
80 poke contrl+2,1
90 poke contrl+6,0
100 poke ptsin,0 : rem Dummy
110 poke ptsin+2,30 : rem Marker size
120 vdisys 0
130 poke contrl,20 : rem Set Color
140 poke contrl+2,0
150 poke contrl+4,1
160 poke intin,2 : rem Color number
170 vdisys 0 : rem set
180 poke contrl,7 : rem Polymarker
190 poke contrl+2,2 : rem Point number
200 poke contrl+6,0
210 poke ptsin,50 : rem X 1
220 poke ptsin+2,50 : rem Y 1
230 poke ptsin+4,150 : rem X 2
240 poke ptsin+6,100 : rem Y 2
250 vdisys 0 : rem and draw

Function 7, set marker, simultaneously draws all symbols whose
coordinates were passed to the function. These coordinates Xn/Yn can be
anywhere on the screen. However, all subsequent calls to this function
use the original attributes again.

120

Abacus Software Atari ST Peeksand Pokes

7.1.7 Testing points on the screen

VDI function 105 can determine the color of a point on the screen. If the
color is the same as the color of the background, this condition is
reported. This information is passed back in array elements
INTOUT (0) and INTOUT (1). With this information you can determine
if an object collided with another in a game, for example. You could also
use this information to copy a portion of a picture. A program for
examining a point on the screen is as follows:

10 rem *** Sense Point on Screen 7.1.7***
20 poke contrl,105 : rem Command Code
30 poke contrl+2,2: rem Parameter Count
40 poke ptsin,x : rem X Coordinate
50 poke ptsin+2,y : rem Y Coordinate
70 vdisys 0 : rem and test
80 set = peek(intout): rem 1 = set/0 = not
90 colour = peek (intout+2) : rem 0/1 with

monochrome

7.1.8 Mixing colors

You can set 16 different colors with the control panel, which can be
displayed simultaneously on the color monitor. These colors are later
specified by selecting a number from 0 to 15 with the COLOR command.
Sometimes you may want to change the color in a program being
executed. This can't be done by selecting colors on the control panel.
BASIC doesn't have the capability to manipulate the individual color
registers, so this must be done through the VDI.

VDI function 14 permits the exact selection of a color register. This is
done by mixing 3 additive color portions where the intensity of the basic
color is selected individually. The gradation ranges from 0 to 1,000.

The three intensity values are passed to the function simultaneously by
calling the VDI. Items already drawn in the selected color immediately
take on the new color since even with tricks, the ST can't produce more
than 16 colors!

121

Atari ST Peeks and Pokes BASIC Programming

Here is a sample program to set the color number 2 to a brown tone. This
program only works on a color monitor:

10 rem *** Set Color 7.1.8 ***
20 poke contrl,14 : rem Function Number
30 poke contrl+2,0
40 poke contrl+6,4
50 poke intin,2 : rem Color Number
60 poke intin+2,600 : rem Red portion
70 poke intin+4,400 : rem Green portion
80 poke intin+6,200 : rem Blue Portion
90 vdisys 0 : rem and normalize execution

To set the exact color you want with these red, green and blue portions,
you have to experiment. This can be fun since you can discover the great
color capabilities of the ST.

122

Abacus Software Atari ST Peeks and Pokes

7.2 Music and sound

The ST has three built-in tone generators whose sounds can be mixed. In
addition, every tone channel can be used as noise generator. It also has a
sine wave generator, which lets you create some very interesting sound
effects.

You can set tone variations with a combination of SOUND and WAVE
commands. These commands offer a wide range of possibilities for
representing realistic sounds.

The simplest way to create a tone is to push a key. The click generated by
this is a tone generated by the sound chip. This explains why you can
interrupt a tone by pushing a key. The operating system contains routines
to create the clicking sound. Because of this some of the tone variations
are reserved for the operating system.

The keyboard click and the bell which sounds during certain error
messages are generated by an interrupt routine. Each l/60th of a second
(l/50th on PAL systems), the interrupt routine is called to determine the
value of a two-byte pointer into a special table. If the value of the first
byte of the pointer is zero, the data contained in this table is used to
program the sound chip. If the value of the first byte of that pointer is
$FF, normal processing takes place.

To use one of the preset tones from the operating system we set the
pointer located at $E44 to the location of the sound data for the click:

10 dedfdbl a

20 a - 3652

30 poke a,36612

To produce a bell tone, we set the pointer to a different set of sound data:

30 poke a, 36642

We can also produce a sound of our own by pointing to our own sound
data. Before doing this, let's look at the sound chip a little closer.

The values from the sound data table are passed to the sound chip
registers in the I/O area of memory.

123

Atari ST Peeks and Pokes BASIC Programming

In early versions of GEM, this I/O area was protected, so that only
privileged programs were allowed to access these ranges. To "bypass"
the protection we can write the following machine language routine
which temporarily puts the user's programinto supervisor mode:

Source File: BYPASS . S

1 * Bypass privileged access *

2

3 000000 B07C0002 CMP.W #2,4(A7) * 2 arguments ?

4

5

6

000004 661C BNE EXIT * no => Exit

000006 42A7 CLR.L -(SP)

7 000008 3F3C0020 MOVE.W #$2 0,-(SP)

8 oooooc 4E41 TRAP #1 * Supervisor 1

9 00000E 5C8F ADD.L #6,SP * Stack rep.

10

11 000010 226F000E MOVE.L 14(SP),Al * Get address

12 000014 32AF0012 MOVE.W 2 0 (SP), (Al) * and set

13

14 000018 2F00 MOVE.L D0,-(SP)

15 00001A 3F3C0020 MOVE.W #$2 0,-(SP)

16 00001E 4E41 TRAP #1 * User State

17 000020 5C8F ADD.L #6,SP * Stack rep.

18

19 000022 4E75 EXIT: RTS * and back !

To use this routine from BASIC, we write a simple loader which puts the
machine code into the memory reserved for a BASIC variable called A$.

10 rem *** Privi!
20 a$=space$(36)
30 b=varptr(a$)
35 b=b+(b mod 2)
40 for i=0 to 34

50 read a

60 poke b+i,a
8 0 next i

eged Access 6.4.1***
: rem reserve space

: rem determine address
: rem set even address

step 2

: rem

: rem

read

and

. data

write

124

Abacus Software Atari ST Peeks and Pokes

90 rem Machine Program - Data
100 data -20356,2,26140,17063,16188
110 data 32,20033,23695,8815,14,12975
120 data 20,12032,16188,32,20033,23695,

20085

200 call b(16746496,8*256): rem register
210 call b(16746498,12*256): rem value
220 end

The FOR/NEXT loop in Unes 40-80 POKE the machine code into variable
A$. Then the CALL statement in line 200 performs the equivalent of a
POKE but bypasses the protection normally afforded the I/O register
memory area.

The routine first checks to make sure that two parameters are being
passed from BASIC. If not, control is returned back to BASIC.

If two parameters are passed from BASIC, the TRAP instruction sets the
program to supervisory mode and the two arguments may be used as
privileged POKE equivalents. Finally a second TRAP instruction resets
the mode back to unprivileged access.

Now we can program the sound chip by replacing statements 200-220
with the following statements:

199 rem*** noise and music 7.2***
200 read r,w : rem Register and Value
205 if r=-l then end : rem Test for end
210 call b (16746496,r*256) : rem Select

register

215 call b (16746498,w*256) : rem write
value

220 goto 200 : rem continue...
24 9 rem Switch on A and B
250 data 7,252
259 rem Channel A Loudness
260 data 8,12

269 rem Channel A on Sine wave,Frequency
270 data 9,16,3,2
279 rem Frequency of Sine wave
280 data 13,10
300 data -l,0:rem END

125

Atari ST Peeks and Pokes BASIC Programming

This program creates a tone from two frequencies where one is varied
through a sine wave. The data pair starting in line 250 is a register
number of the sound chip and the value which is to be written to this
register. We can now vary the register values to hear the effect of
different combinations. The register and the corresponding content have
different uses which we'll look at now.

Register Number Significance

0 and 1 Duration of period of channel A.
A total of 12 bits in this word
are used.

2 and 3 Same, only for channel B.
4 and 5 Same, only for channel C.
6 Duration of period for noise generator

with the lower 5 bits used.
7 Configuration register. Every bit has

its own assignment:
Bit 0: channel A 0=on, l=off
Bit 1: channel B 0=on, l=off
Bit 2: channel C 0=on, l=off
Bit 3 channel A with noise
0=yes, l=no
Bit 4 channel B with noise
0=yes, l=no
Bit 5 channel C with noise
0=yes, l=no
Bit 6: Port A data direction
0 = in, 1 = out
Bit 7: Port B data direction
0 = in, 1 = out

8 Volume of channel A. The lower 4
Bits are valid. If bit 4 is set, the
Sine wave is turned on and the lower
4 bits are ignored.

9 Same as above, but for channel B.
10 Same as above, but for channel C
11 and 12 Duration of period of sine wave (LO,HI).

All 16 bits are used.
13 Sine wave curve (Bits 0 to 3).
14 Port A data register
15 Port B data register

126

Abacus Software Atari ST Peeks and Pokes

The two ports, A and B are programmable data registers which also have
some assignments that are really are not related to tone generation. Port B
is directly connected to and controls the parallel port of the printer, while
port A controls the selection of the disk drive, the data request of the
serial interface and the GPO (General Purpose Output) connection of the
monitor connector. Changing the contents of these registers is therefore
not recommended. Let's stick with the tone generation.

By experimenting enough, you will find a combination of values that
suits your musical tastes. If we create a table for the registers and the
desired content, and store them in memory, change the pointer of the
interrupt routine to access the data in our table. The tone or a series of
tones can be played while the BASIC program continues to execute. You
can play background music or, as in arcade games, create the noise of a
shot or hit while the game continues.

This technique of generating sound is not limited to tone generation.
While the music is being played, you can generate pauses which are
related only to the tone generation and not the BASIC program.
Furthermore, rising or falling values can be programmed so that you can
create a siren sound with little effort. Let's consider a sample program
which produces a typical falling noise:

10 rem ** Create Tone Sequence 7.2**
20 def seg=0
30 defdbl b : b=3652 : rem Set long word
40 a$=space$ (100) : rem Create space
50 a=varptr(a$) : rem Determine

address

60 def seg=l
70 for i=0 to 100

80 read x : rem Pass values
90 poke a+i-l,x
100 if x=255 then 120
110 next i

120 poke a+i,0 : rem Conclusion zero
130 def seg=0
140 poke b,a : rem and start tone!

127

Atari ST Peeks and Pokes BASIC Programming

150 rem - Tone Data -

160 data 0,1,1,0,2,0,3, 0

170 data 4, 0,5, 0, 6, 0,7, 254

180 data 8,16,9,0,10,0, 11, 0

190 data 12,35,13,10

195 data 128,50

200 data 129,0,1,250

205 data 200,30

210 data 0,0,1,2,2,0,3, 0

220 data 4,0,5,0,6,0,7, 246

230 data 8,16,9,0,10,0, 11, 0

240 data 12,62,13,9

250 data 255

The first block of data in lines 160 to 190 creates a tone whose volume is
modulated with a triangular curve. This is accomplished by setting the
volume on channel A in register 8 to 16, which creates the dependence on
the sine wave. The sine wave itself is set in registers 11,12, and 13 which
can be seen in the table of the sound register chip.

Now to lines 195 and 200. Here two special commands are issued for the
sound interrupt. These special commands are used instead of registers and
are always set larger than 127. The special command 128 causes the
following value to be stored (nothing else). The 12 9 starts the following
sequence:

The number after the 12 9 is interpreted as a register for the following
data. This register is first selected, then the value stored previously with
the 12 8 command is stored in it. In our example, the period duration of
channel A and its frequency is set. A tone starts which varies in loudness
according to the sine wave.

The constant following the register value is constantly added to this
register. This leads to the constant decrease of the pitch, since an
increasing value causes a decreasing frequency.

The last number is the final value which the register can contain. In our
example this means the lowest tone which channel A canreach.

If the timing of the example above is set properly, the tone is at the
lowest frequency when the sine wave has reached its maximum. If you
imagine a falling body, it must strike the ground at this point. To make

128

Abacus Software Atari ST Peeks and Pokes

things more interesting, a small pause is introduced before this occurs.
The third special command causes this pause. This must be some value
above 129. The number following sets the duration of the pause. During
this time period nothing is changed in the condition prevailing in the
sound chip register and therefore the tone remains the same. A delay can
be set with this command and the WAVE command before a tone sounds.

With this trick of tone generation through interrupt routines you can
create quite a few noises to use in a game. However, you should be aware
that pressing a key will alter the pointer again and turn off the tone. This
is also true of noises which were set with SOUND and WAVE. These two
commands will be examined next.

The SOUND command can accept 4 or 5 parameters. These values have
the following meaning with the command SOUND A, B, C, D, E:

A Channel number (0-2)
B Loudness (0-15)
C Musical note of the tone (1-12)
D Octave of tone (1-8)
E Tone duration (0-255 in 1/50 seconds)

can be omitted

The frequency setting is also divided into octaves and notes which makes
the translation of a musical piece to BASIC, according to notes, very
easy.

The WAVE command also requires 4 to 5 parameters. Here WAVE
A, B, C, D, E means the following:

A Configure. Here the register 7 of the sound chip
is set. However, only the lower 6 bits
are used.

B Sine wave switch on/off
C Set sine wave, register 13
D Period duration of the sine wave
E Delay of the tone (can be omitted)

With these BASIC commands you can try to create the same falling noise
in the above program. It is amazing how many different noises can be
coaxed from the ST!

129

Atari ST Peeks and Pokes BASIC Programming

7.3 Window and Menu programming

What distinguishes the ST from most other computers is its user-
friendliness, since you work with menus and can configure a desk to suit
your own preferences. You can alsouse this technique in your programs.

The simplest method to build a menu is to display several selections with
code numbers and to write them to the screen. The user is then requested
to enter the number of his choice. The program then runs the subroutine
which was selected. The whole thing appears as follows:

5 rem*** datainpt.bas 7
10 print "1) Input Data"
20 print "2) Print Data"
30 print "3) End"
40 input "Please select
60 on W goto 100,200,80
70 goto 40
80 end

100 rem ** Data Input **

110

200 rem ** Print Data **

210

";W

This type ofmenu operation is used in many programs. However, the ST
offers the capability to make this more convenient.

TheST has 10function keys. You canuse these function keys in a similar
way in your programs, but they are easier to handle than the above
method.

You can eliminate the need to press the <Return> key by adding:

50 w=inp(2)-186

Since the Fl key produces a value of 187, we can sit variable wto 1 by
subtracting 186. We then use this value with the ON. . .GOTO command
to branch to the right section. This is the first step in simplifying the
menu. This technique is also used in many programs.

130

Abacus Software Atari ST Peeks and Pokes

But let's go to the next step towards a better menu. GEM offers several
features for easy menu operation. We have already used the VDISYS
command for programming with GEM. The VDI helps us very little here,
since it is only responsible for graphics. We shall now examine the
mysterious GEMSYS command.

GEMSYS activates GEM in the ST, just like VDISYS. The difference lies
in the fact that VDISYS only calls VDI, while GEMSYS is responsible for
the AES. The AES is responsible for the windows and menu processing
in the ST. It permits the user input with the mouse, for example.

Just like the VDISYS command, GEMSYS requires parameters to know
what it must do. These parameters are passed to the AES in arrays which
have the namesCONTRL, INTIN, INTOUT, ADDRIN, ADDROUT.
You might think that you know the first three! Wrong! There is a big
problem. These CONTRL, INTIN and INTOUT arrays are not the same
ones that we used with the VDI! These data fields are also located in
different areas of the memory.

The question is how to access these addresses. The systems variables of
BASIC for CONTRL and the others can't be used and ADDRIN or
ADDROUT are completely unknown to BASIC. What it does understand
and what we haven't discussed up to now, is the system variable GB. This
is a pointer just like the others. It points not to a data field, but a table
where other pointers are stored. And these are the pointers we need.

These are 32 bit pointers whose sequence is as follows according to their
use:

PEEK(GB) CONTRL

PEEK(GB+4) GLOBAL

PEEK(GB+8) INTIN
PEEK(GB+12) INTOUT

PEEK(GB+16) ADDRIN

PEEK(GB+2 0) ADDROUT

These pointers are used for parameter passing to AES, i.e. the GEMSYS
command. The GLOBAL array plays a subordinate role. It contains
information on the status of the GEM-AES commands currently in
execution. Here are the meanings of the entries in the GLOBAL field:

131

Atari ST Peeks and Pokes BASIC Programming

GLOBAL

GLOBAL+2

GLOBAL+4

GLOBAL+10

GEM-Version Number
Maximum number of simultaneously
active programs
Number of actual programs
Pointer to a tree structure

We can usually ignore this field. The other arrays are more important.
The CONTRL field has the same partitioning as the VDI. CONTRL (0)
contains the function number, CONTRL (1) and CONTRL (2) the
number of INTIN and INTOUT entries and CONTRL (3) and
CONTRL (4) the number of entries in ADDRIN and ADDROUT fields in
long words.

Let's begin using the GEMSYS commands with a simple call. The
following example is the function FORM_ERROR which displays a TOS
error message in a small window in the middle of the display. The error
number is passed through INTIN (0) .

-DEMO 7.3***10 REM kkk TOS-ERRO

20 DEFDBL B : B=GB

30 CN -PEEK(B) :

40 II =PEEK(B+8) :

50 POKE CN,53 :

60 POKE CN+2,1

70 POKE CN+4,1

80 POKE CN+6,0

90 POKE CN+8,0

100 POKE 11,22

120 GEMSYS 53

REM POINTER TO CONTRL

REM POINTER TO INTIN

REM FUNCTION NUMBER

: REM ERROR CODE

: REM AND RUN

Let's look at this example more closely. First of all, you will note that we
don't work directly with GB, instead we access it through variable B. The
reason for this is that the pointers CN and 11 are longwords (4 bytes
long). A PEEK (GB) only produces the HI word of the pointer CONTRL
which is useless. Since the variable B is defined as double precision, the
PEEK (B) results in a long word.

Next you might ask why CONTRL and INTIN were not used as variable
names which would make the program easier to read. Unfortunately,
these two names are reserved for the system variables so they may not be
used for other variables.

132

Abacus Software Atari ST Peeks and Pokes

Another difference from the VDI programming is evident here. The
GEMSYS command is written directly with the function number, the value
following GEMSYS is no dummy but the function number itself.

Showing a TOS-ERROR message is not very useful for a BASIC
program. It would be more interesting to show some other text and
perhaps to create some menus. This is also possible by using the AES
function FORM_ALERT, which is provided for error messages but could
be used for other applications. Two parameters are passed to the function.
The first of these is a pointer to the text, which represents the
information, the address of the (3 maximum) selection points and the
number of the symbols to be displayed near the message.

The text can simply be stored in a text variable and the we can pass the
address of the variable to the AES. Furthermore, another parameter is
passed which determines which of the selection choices can be selected
with the <Return> key. It will be darkly framed similar to the OK choice
in many dialog boxes.

In the early versions of BASIC there is another problem. The value of the
selection is returned in INTOUT (0). Before the value can be read with
PEEK (10) it is changed again by another call from BASIC. Up to now
we have not been successful in obtaining the correct value. The only
solution is to pass a 0 in INTIN (0). By doing this no selection can be
chosen with the <Return> key. The selection can be made only with the
mouse;its position can be determined after the return from AES. The Y
coordinate of the mouse pointer can be ignored since the selection points
are usually adjacent to one another.

The function call with the text necessary is shown in the following
program:

10 rem *** Alert - Demo 7.3 ***

11 defdbl b,d : b=gb
12 cn=peek(b) : rem Define pointer
14 ii=peek(b+8)
20 io=peek(b+12)
25 d =peek(b+16)
30 a$ = "[1] [You have the choice:]"
31 a$=a$+" [Key l|Key 2|Key 3]"
40 a = peek(varptr (a$)+2)
50 poke en,52 : rem Function code

133

Atari ST Peeks and Pokes BASIC Programming

60 poke cn+2,1
70 poke cn+4,1
80 poke cn+6,1
90 poke cn+8,0
100 poke ii,0 : rem No 'Return' selection
110 poke d,a : rem Text address
120 gemsys 52 : rem Execution
125 t=peek(io) : rem Actual key number

The [1] stands for the symbol which appear near the text of the
message. You have a choice between a STOP sign, a question mark, or an
exclamation point. The second bracket contains the text of the message.
Line feeds are made with the vertical line. The length of the text should
be selected in such a manner that the window with the selection choices is
proportioned properly. These choices are defined in the contents of the
third bracket in the text. You can have a maximum of 3 choices with a
maximum of 20 characters in length. The separation of the individual
entries is again marked by the vertical line.

We have already found several ways to determine the position of the
mouse. Since we are discussing the AES, we'll use a GEMSYS command.

This function returns more than the position of the mouse pointer. You
also obtain the condition of the two mouse buttons and the <Shift>,
<Control> and <Alternate> keys. The call requires no parameters.

10 rem *** Mouse Status 7.3 ***

11 defdbl b : b=gb
12 cn=peek(b)
25 io=peek(b+12)
50 poke en,79 : rem Function code
60 poke cn+2,0
70 poke cn+4,5
80 poke cn+6,0
90 poke cn+8,0
100 gemsys 79 : rem call of AES
110 for i=2 to 8 step 2
120 x (i)=peek(io+i) : next i
130 print "Position ";x(2);" , ";x(4)
140 print "Mouse Key ";x(6)
150 print "Key ";x(8)

134

Abacus Software Atari ST Peeks and Pokes

We store the values in variable array X, since a PRINT command, for
example, would directly output the position of the mouse. This would call
the AES and change the parameter table. It is interesting to note that after
the call of function 52 the INTOUT field is destroyed with this same
function 79. Determining the mouse position can be performed without
any other GEMSYS commands.

The AES functions presented above used the output window on the
screen. In addition, BASIC offers four windows whose position and size
may be changed using the mouse pointer. To change one of these
windows from inside a program, another AES call is required. It concerns
thefunction 105 which has the name WIND^SET. With this function you
can move the window and change the outside edge of the window. For
example, it can prevent that window from being closed with the mouse.

Here a sample program to set the position and size of a LIST window.
By inserting another number in line 40, one of the other windows can be
changed.

10 rem *** Set Window 7.3 ***

20 defdbl b : b=gb
30 ii=peek(b+8)
40 h=2 : rem LIST window

45 openw h-1 : rem open window
50 poke ii,h : rem select
60 poke ii+2,5 : rem Mode
70 poke ii+4,20 : rem X coordinate
80 poke ii+6,20 : rem Y coordinate
90 poke ii+8,350 : rem Width of window
100 poke ii+10,100 : rem Height
110 gemsys 105 : rem and set

The coordinates give the position of the upper left corner of the window.
The mode 5 is passed in line 60 sets the function to be executed by AES.
The following modes are permitted:

135

Atari ST Peeks and Pokes BASIC Programming

Mode 1:

Mode 2

Mode 3

Mode 5

Mode 8 and 9

Mode 10

Mode 15 and 16

in ii+4 a number is expected whose bit
combination defines the window frame area. The
bits signify the following:

Bit 0: Title line of the window
Bit 1: Delete field
Bit 2: Opening field
Bit 3: Movement field
Bit 4: Information line

Bit 5: Size change field
Bit 6: Arrow up
Bit 7: Arrow down
Bit 8: Vertical mover

Bit 9: Arrow left

Bit 10: Arrow right
Bit 11: Horizontal mover

The name of the window is changed.
The address of the new name is
expected in ii+4 to ii+7 as longwords.
The text must be concluded with a zero.

The information line of the window

is changed. The conditions the same
as in mode 2.

The window is set. This mode will be

used in our example.

The relative position of the horizontal
or vertical shifter is set.

The actual window is selected.

The relative size of the horizontal
or vertical shifter is set.

With these functions any window adjusted. BASIC program are made
more flexible this way.

136

Abacus Software Atari ST Peeks and Pokes

7.4 Text processing

Text plays an important role in computer applications. A computer can do
more than simply calculate. It can also manage, change, store, and print
text. But text, in our case string variables, can be used for other purposes.
You can store other data such as machine language programs in text
variables. We have used this method before.

To store a text variable in a storage area, you can work with the variable
pointer VARPTR () and POKE. VARPTR (A$) points to a table in which
some information about the variable A$ is stored. The third and fourth
bytes are the storage address of the variable itself. It can be found with
the command A=VARPTR (A$). To load a file from diskette into the
string variable, which is also called a string, you can use the following
program:

10 rem *** Store File in String 7.4 ***

15 a$=spaces$(200) : rem Reserve Spaces

17 a=varptr(a$) : rem Determine Address

20 input "Filename ";fn$: rem Input File Name

30 bload fn$,a : rem and read in

40 print :o=(peek(a) and 255) : rem Calculate

offset

50 e=o+peek(a+4) : rem calculate end

60 for i=0+2 to e step 2

70 print i ,peek(a+i) : rem Display content

80 next i

With this program small files on disk (less than 200 bytes) can be read
into A$. Lines 40 to 80 are not required, but they are meaningful in
connection with an applications program (* .PRG). If one is loaded, the
beginning and the end of the actual program are calculated, and the
values output as decimal words. You can use this program to convert the
small machine language programs created with the assembler into DATA
lines. To do this you only need to type in the value output in DATA lines,
and to read it with the READ-POKE loop into the string again.

You can use this technique to store a larger text field to a diskette. It can
also be done with OPEN and PRINT#, but that takes considerably longer
than BLOAD or BSAVE.

137

Atari ST Peeks and Pokes BASIC Programming

Now we don't want to forget the real reason for text variables and their
usage. One of them is to store inputs, and if necessary to sort them. A sort
program of this type is very simple with the ST BASIC since it has a
SWAP command. Here is an example using the bubble sort algorithm:

10 rem *** Sorting of Text 7.4 ***
20 dim w$ (10)
30 for x=l to 10

40 print x;". Word :";input w$ (x)
50 next x

60 print "Sorting in progress"
70 for i=l to 10

80 for j=i to 10
90 if w$ (j)<w$ (i) then swap w$(i),w$(j)
100 next j
110 next i

120 for x=l to 10: print w$(x) :next x

First, you are asked to enter ten words. These are stored in the text field
W$ (). Next, they are sorted by comparing the words during a loop and if
necessary, their order is exchanged with the SWAP command.

The text in the above program can be names, addresses or telephone
numbers which are stored in a file. This sort routine can also be used for
larger text fields, such as multi-dimensional string arrays. The desktop
can sort the table of contents for a disk according to various criteria, such
as name, type or length. A BASIC program could sort the addresses and
output them according to name, address or phone number. The input for
the data would appear nicer if they were arranged with a template.

7.4.1 Templates

Templates are used in most common database programs. A template is
shown on the screen in which space has been left for entries. The user can
enter the data only in the space made available. The completed screen
will look just like the template, which is then printed. A template is also
referred to as a screen mask.

138

Abacus Software Atari ST Peeks and Pokes

10 rem *** Template 7.4.1 ***

15 res = peek(systab)
20 dim t$ (100, 6) ,x(7) ,y(7) : rem Define fields

30 fullw 2 : clearw 2 : rem Prepare window
40 for i=l to 7

50 read x(i),y(i),a$: rem Read mask

60 gotoxy x(i)*res , y(i)/res : rem Set cursor

70 print a$;left$(" ",11- len(a$));" :"

80 next i

90 data 10,1,"** Input Address **"

100 data 1,5,"Last Name"

110 data 16,5, "First Name"

120 data 1,10, "City"

130 data 1,12,"Street"

140 data 1,15,"Telephone"

150 data 2,18,"Remarks"

160 n=l : rem First entry

165 gotoxy 1,1 :print n;")" :rem Write number

170 for i=l to 6

180 gotoxy x(i+1)*res+6*res,y(i+1)/res:rem cursor

190 input t$(n,i) : rem Input

195 if t$(n,i)="#" then i=10 : rem Termination

200 next i

210 if i<10 then n=n+l : goto 165

22 0 n=n-l : rem Correct number

In this program a template is constructed and displayed on the screen, in
the output window. After that the input is made. If a # is entered
somewhere, input is terminated. In the following lines the input is
processed, where T$ (n, 1) contains the nth. last name and T$ (n, 2)
contains the nth. first name etc. The variable N contains the number of
entries which were made.

Line 15 checks the screen resolution, which is used in lines 180 and 60 so
the program will run on either a mono or color system.

Now the sort routine can be employed. If you want to sort the phone
numbers, only T$ (n, 5) must be sorted.

139

Atari ST Peeks and Pokes BASIC Programming

7.5 Mouse/Joystick Control

The keyboard is generally used to control a program. For some
applications it can be a burden to use the keyboard for a single input. This
is the case with a game if it is played with a joystick. For a question such
as if another game is to be played, it would be nice if input could also be
done with the joystick. Such control is not difficult to program. A yes/no
question can be answered with the right/left movement of the joystick or
the pushing of the right or left mouse buttons. Of course, it is more
complicated if several choices exist. For this situation we can display a
menu where we can make choices with the mouse or the joystick. Here is
an example of such a selection technique:

10 rem ** Selection with Joystick 7.5 **

15 def seg=l : rem PEEK/POKE Byte
20 clearw 2 :gotoxy 0,1:rem Prepare window

30 print " 1.":print " 2.":print " 3."
31 rem Display Menu

40 y=peek(3592) : rem Vertical joystick
45 poke 3592,0 : rem Reset

50 w=w-(y=l)+(y>l)-(w>3)+(w<l) : rem New position
60 gotoxy 0,w : print "=>" : rem Show choice
70 for i=l to 100 : next i : rem Pause

80 gotoxy 0,w : print " " : rem Erase pointer
90 if (peek(3581)and 3)=0 then 40

In this program a pointer is pushed up and down between three selection
choices and acknowledged with the fire button. The variable Wcontains
the number of the selected menu choice. Of course any number of choices
can be displayed if they can fit on the screen. Here is the version for the
mouse:

140

Atari ST Peeks and Pokes

rem ** Selection with Mouse **

res = peek(systab)

clearw 2 -.gotoxy 0,1: rem Prepare window

print " 1.":print " 2.":print " 3."

rem Display Menu

y=peek(9954) : rem Mouse position

w=l-(y>70/res)-(y>90/res): rem Determine choice
gotoxy 0,w : print "=>" : rem Show choice

for i=l to 100 : next i : rem Pause

gotoxy 0,w : print " " : rem Erase pointer

if (peek(3581)and 3)=0 then 40

This program calculates the selected position for the arrow from the
vertical position of the mouse pointer which is acknowledged with one of
the two mouse buttons.

A selection arrow does not need to be shown since the mouse pointer is
sufficient. The mouse pointer is more secure since small inconsistencies
could produce false results.

The position of the mouse pointer can also be evaluated in two
dimensions. The horizontal position of the mouse is, under normal
conditions, available in storage location 9952, and the vertical in location
9954. These two storage words can be manipulated with POKE and set
the mouse pointer to any desired position on the display. To bring the
mouse pointer to the upper left corner of the display you only have to
type POKE 9 952, 0 and POKE 9954,0. This is handy when you have
a design to do with the mouse and you want to define a starting position.

In line 15 the resolution is checked and is used in line 50 to allow the
program to run on both the mono and color monitor.

Abacus Software

10

15

20

30]

31

40

50

60

70

80

90

141

Atari ST Peeks and Pokes BASIC Programming

7.6 Input/Output

Up to now we have relied mainly on storing data in the computer and
displaying it on the screen. We shall now make the ST perform with
external peripherals. For this a disk drive and printer are used.

The normal input and output to these devices has already been discussed,
although the complete capabilities of the peripherals have not been
exhausted. Disks are divided into sectors and access to individual sectors
is not possible. The printer also has functions which we want to master.
Finally, we want to discuss the operation and programming of a modem.

We already know the connections of the individual interfaces. We can
now look at the programming of the individual peripheral units which are
connected and perhaps create other connections.

7.6.1 Printer Control

The LPRINT or LLIST commands can be used to print out data and
programs. In addition to these we have the capability to output with the
OUT 0, x command with which any character can be output. This is not
limited to the output of visible characters, but control characters can also
be sent to the printer. The command OUT 0, x really corresponds to the
command LPRINT CHR$ (x) but is simpler to write and is faster.

Problems arise when different printers are connected to the ST. There is
no printer standard concerning the control codes that enable a printer to
print text and graphics. If you press the <Alternate>/<Help> keys the
computerwill send some control characters to the printer that disable the
line feeds and set it into graphic mode. The problem which can occur is
the incompatibility of some printers. This means that some printers have
other control characters for various functions. The printer set-up which
was prepared by the desktop is no help here. The operating system loaded
from the disk, takes the required printer control characters from a table
which is located in memory at $16D5E. This table can be manipulated to
permit use of another printer with the ST. The sequence of the entries in
the table are as follows:

142

Abacus Software Atari ST Peeks and Pokes

$16D5E <Esc> "X" 6
$16D63 <Esc> "X" 5
$16D68 <Esc> "X" 3 for Atari Color-Matrix Printers
$16D6D <Esc> "X" 6
$16D5E <Esc> "L" B/W Matrix Printer: 960 Dots/Line
$16D71 <Esc> "Y" Color Printer: 960 Dots/Line
$16D75 <Esc> "3" 1 1/216 Inch Line Spacing
$16D7A <Esc> "3" 1 See above
$16D7F <Eso"l" 7/72 Inch Line Spacing
$16D83 <Esc> "2" 1/6 Inch Line Spacing

For example, <Esc> L sets the Epson black/white printer to graphics
mode. This character is followed by the number of bytes to be sent for the
line. After that the bit pattern will print every additional byte in the actual
line. If your printer has a different setting from the table above, you can
adjust these with a POKE of the new characters.

Printing out the screen can start either with a combined keypress, or with
the selection of a menu choice Print Screen or with the command
POKE 1262,0.

To program the printer to print special symbols you have to send the
proper command sequences to the printer. You have the additional choice
of the resolution in which the printer should operate. <Esc> L sets this to
double density which is necessary for printing a high resolution screen.
You can select the normal resolution with an Epson black and white
printer with <Esc> K. A small sample program for the output of special
characters:

10

20

30

40

50

60

70

80

90

rem

for i

read a

out 0,a
next i

lprint
data 27

data

data

** Print Special
1 to 16

rem

rem

Character 7.6.1**

Read character

and output

rem Done; Line feed

75,12,128
4,10,26,58,103,231
231,103,58,26,10,4

143

Atari ST Peeks and Pokes BASIC Programming

This example outputs a small UFO on the printer. The 27 is the code for
"Esc", the 75 is for "K". The 12 is the number of picture data items. With
a number larger than 255, the high byte of the number must be added to
the 128. After that, follow the data whose lowest bit is printed below. See
your printer manual for more information on programming your printer.

7.6.2 Using Disks

To use the disk drive for storing our program data, we can use the LOAD
and SAVE commands, or the BLOAD and BSAVE commands which have
already been described in section 2.2. The total control of disk access is
under BASIC or GEMDOS. However, it is also possible to take control
and to bypass the operating system. For this we need a machine language
program that can be stored in string variables.

In this section we want to examine a program that can do more. The first
part of the program reads the machine language program from DATA
lines into the text variable. This technique has been used before so that no
further explanation should be required. The second part of the program
determines which sector of the disk to read. The value input is introduced
into a machine language program to prepare it for this one sector. The
string variables D$ (0) and D$ (1) are then prepared to recieve the data
from the sector. Here two variables are needed which are located next to
each other, since a string can only be a maximum of 255 bytes long. The
variable D is then loaded with the beginning of the buffer.

Now follows the call of the machine language program which obtains the
buffer address as a parameter. The disk drive starts and the contents of the
selected sector are loaded into the buffer. Since each sector always
contains 512 bytes, D$ (0) andD$(l) are partially overwritten. Other
data buffers can also be used, but you have to be sure the memory region
is not used by some other program.

If the sector has been loaded into memory, its contents are displayed in
hexadecimal and as ASCII characters. This is helpful if you want to
investigate the directory of the disk. This table of contents starts in the
Atari ST disk format on side 0 in track 1, sector 1.

144

Abacus Software Atari ST Peeks and Pokes

10

20

30

40

50

60

70

80

90

95

100

110

120

130

140

142

144

150

160

170

180

190

200

210

220

230

240

245

250

260

270

280

290

300

rem *** Disk Access 7.6.2

fullw 2 : rem Output window large
def seg=0
a$=space$(36)
b=varptr(a$)
for i=0 to 40 step 2
read a

poke b+i,a
next i

rem Machine Language Data
data 8815,14,16188,1,16188,0,16188
data 1,16188,6,16188,0,17063,12041
data 16188,8,20046,-8196,20,200 85

kkk

: rem Set word access

: rem Prepare string
rem Determine Address

print :input

poke b+10,x
poke b+14,y
poke b+18,z
dim d$(4)
d$(0)=space$ (255)
d$(l)=space$ (255)
d= varptr(d$(0)):
call b (d)
def seg=l
print :for i = 1
x% = peek(i+d-2)
if x%<16 then print
Format

print hex$(x%);" "; :rem write Hex Byte
if (i and 15)>0 then 280:rem Line done?
print " "; :for j = 17 to 2 step -1
x%=peek(i+d-j)

rem

rem

Read Data

and store

'Load which Sector?";x
rem Sector Number

rem track

rem side

rem Prepare Buffer

rem Determine address

: rem Load Sector

: rem Byte Access
to 512

: rem

" 0 "; :
read Byte
rem only for

if x%<11 then ?"

print chr$(x%);
next j : print
next i

rem

rem

rem

goto 270
ASCII Character

next character

next line

145

Atari ST Peeks and Pokes BASIC Programming

The machine language program appears to be very simple:

MOVE.L 14 (SP),al * Save Buffer address

MOVE.W #l,-(sp) * Number of sectors=l

MOVE.W #0, -(SP) * Unit 0

MOVE.W #1, -(SP) * Track 1

MOVE.W #6, -(SP) * Sector Number 6

CLR.L ~(sp *

MOVE.L al, -(SP) * Buffer Address

MOVE.W #8, -(SP) * Command floppy read

TRAP #14 * Execute

ADD.L #14,SP * Repair Stack

RTS * Back to BASIC

Not only can the sector number be set, but also the unit number, the
number of sectors to be loaded, and the direction of the data. It is possible
to write from the buffer to the disk sector by changing the 0 to a 1 for the
data direction. Caution: attempts to write to a wrong sector can
completely destroy the disk. For example if you were to write over the
diskette's table of contents. We recommend that you work with a diskette
that does not contain important material.

This is a way to make a direct access to the diskette. The normal way is to
choose a name under which the data is stored on the disk. You issue a
LOAD"path:name. type" command and the program is loaded. The
path indicates the drive to be used, and/or the designation of the
subdirectories, and the category in which the file is located. The name is
the description of the file itself and can be a maximum of 8 characters.
The type (or extension) which appears at the end of the designation,
consists of three characters and is an abbreviation of the file usage. This
extension is arbitrary, but some of the type designations are reserved.
PRG means that it is an executable machine language program, BAS is
used for BASIC programs, etc.

These extensions help in selecting files or programs. If you search for a
BASIC program on a disk, the command DIR * . BAS will list all of the
available BASIC programs.

File selection works in similar manner when the LOAD command is
chosen. A window is opened on the screen which can be subdivided into
smaller windows. The top linecontains the selection criteria and the path
designations used to select the files available. If the line contains * . BAS

146

Abacus Software Atari ST Peeks and Pokes

all programs with the extension . BAS are shown. The asterisk character
is a wildcard that represents all characters that could appear. You can
only change the selection line and perhaps show the programs from
another disk drive.

The entire window with all its operating characteristics is controlled by
the AES. We can select a file with very little effort for a BASIC program.
For example, if we are writing a data base management program and
want to load a data file from the disk. To call the function that draws the
selection window and takes over the control we must prepare some
parameters.

First of all we need two buffers for this. In the first the selection criterion
which we discussed before is stored. The other contains a file name. It is
not required, but the selection of OK or Discontinue will store the
name of the selected file in the buffer. Along with the path definition of
the other buffer, we now have the exact definition of the file available
which we can now use for storing or loading our data. Here is a program
that calls this function:

10 rem *** File-Select 7.6.2 ***
20 poke contrl,122 : rem call VDI
30 poke intin,0
40 vdisys 0 : rem switch Cursor on
50 defdbl b,d : b=gb
60 cn=peek(b)
70 d=peek(b+16) : rem Field Definition
80 io=peek(b+12)
90 a$="*.PRG" : rem Define Path
100 for i=l to 40 : a$=a$+chr$(0) : next i
110 for i=l to 15 : b$=b$+chr$(0) : next i
120 a = varptr(a$): c = varptr(b$)
140 poke en,90 : rem AES Command
150 poke cn+2,0
160 poke cn+4,2
170 poke cn+6,2
180 poke cn+8,0
190 poke d,a : rem Set Path
200 poke d+4 ,c : rem Name Buffer
210 gemsys 90 : rem Call
220 print "In ";a$
230 print b$;" selected": rem Output Result

147

Atari ST Peeks and Pokes BASIC Programming

The beginning of this program consists of a VDI call. This function turns
on the mouse pointer, which disappears when a key is pressed. If you
omit the VDI function, and start the program without moving the mouse,
the cursor remains invisible during the entire execution of the function.
That is somewhat of a handicap for program selection.

Along with this the pointers for the AES parameters are defined. The
explanation of this process is in the chapter on menu and window
programming. The two buffers for the file definition are also prepared.
The two loops load these buffers with the value 0. This is necessary for
the proper operation of the AES routine.

Next, the parameters are transferred into the AES parameter tables.
ADDRIN (D) receives the two addresses of the buffers as longwords.
Finally we call the AES. After clicking one ofthe two choices ora double
clickon a file name, the selection window is erased and control is passed
to the BASIC program which issued the call. The two text variables now
contain the path,or nameof the selected file.

In addition, the function transfers which way (OK or Cancel) the
termination of the function was achieved. The information is contained in
INTOUT (1). Unfortunately BASIC destroys this information before it
can be read, so we must evaluate the position of the mouse.

7.6.3 Telecommunication

Telecommunication has developed into a widespread hobby among
computer owners. In the United States an enormous number of public
bulletin boards exist and choosing one of them can be a difficult job.
Let's look at how we can jointhe world of communications with the ST.

Firstof all we need a telephone modem. This equipment, which connects
the telephone and the computer, is available in many stores and through
mail order companies. You should make sure to follow FCC regulations
when youconnect a modem to your phone line.

A commercial modem usually has a serial port for connection with the
computer and a telephone jack which you connect to your telephone. The
speed of the transmission can be set at several different speeds.

148

Abacus Software Atari ST Peeks and Pokes

First we set the serial interface to 300 baud. Since most bulletin boards
send back every character received (a way to insure error-free
transmission), which is called echoing, we select as the operating method
Full-Duplex.

Now we connect the modem to the serial connector on the ST. To start
with telecommunications, we must run a suitable program which handles
the transmission. The simplest method is to call the VT-52 terminal
emulator of the ST. Every character typed in is automatically output on
the serial interface and all received characters are displayed on the
monitor. We can now call a bulletin board, and through the keyboard and
screen communicate with the other party.

There is a problem we must contend with. During our conversation with
the other party, using the terminal emulator, we can't print out or store
the information we are receiving. Since many bulletin boards send
introductory texts or help menus, much information can be lost if you are
not able to read as fast as the lines disappear from the screen.

Therefore we must give up the ease of use of the emulator and write a
small program ourselves which supports communication through the
modem and at the same time stores the received text. Such a program
must constantly interrogate the RS-232 interface and the keyboard to
determine if a character is present. In this way, two-way (full duplex)
operation can be maintained in which transmission and receipt are
executed almost simultaneously.

We have included a machine language program that checks whether a
character is from the keyboard or the RS-232 port. A flag checks the
direction of the data.

10 rem ** Terminal Program 7.6.3 **
15 fullw 2: clearw 2 : gotoxy 0,0
20 i = 0

30 dim a% (5000)

100 gosub 2000

170 goto 100

rem Reserve Storage

rem m/1 routine

loop

180 for j=l to i : rem Yes, all Output
185 if a%(j) = 13 then print:
190 print chr$(a%(j))
200 next j

300 end

149

Atari ST Peeks and Pokes BASIC Programming

1000 dim co%(34) :rem m/1 loader

1010 for y = 0 to 34: read co%(y): next

1490 data &h2a48,&h3f3c,&h000b,Sh4e41,&h548f

1500 data &h4a40,&h661e,&h3f3c,&h0012,&h4e41
1510 data &h548f,&h4a40,&h67e8,&h3f3c,&h0003

1520 data &h4e41,&h548f,&h2b40,&h0040,&h426d
1530 data &h0044,&h4e75,&h3f3c,&h0007,&h4e41

1540 data &h548f,&h2b40,&h0040,&h3b7c,&hffff
1550 data &h0044,&h4e75,&h0000,&h0000,&h0000

2000 d = varptr(co%(0)): call ad
2010 if co%(34) = -1 then gosub keyb else gosub v.24
2015 i = i + 1: a% (i) = x : rem store

2 02 0 return

3000 keyb:
3010 sc = 0:x=co%(33): if x = 0 the sc =l:x=co%(32)

3014 if x = asc("*") then 180: rem end

3015 if x = 13 then print

3016 print chr$ (x);

3020 out l,x

3030 return

4000 v.24:

4005 x = co%(33)

4010 if x = 13 then print

4020 print chr$(x);
4030 return

In lines 10 to 40 some preparations are made. Lines 100-170 are the main
loop. Lines 180-300 print out the recieved data. Lines 1000-1550 are the
loader for the machine language. Lines 2000-4020 reads and displays
data from the keyboard or RS-232 port using the machine language
routine.

If only an asterisk (*) is input, the program is terminated and the text is
redisplayed. At this point a PRINT or an LPRINT can be used to send
the output to the printer and produce hardcopy of the session.

150

Abacus Software Atari ST Peeks and Pokes

7.7 Character editors

A Font is the common term for the character set. The font set of the ST
contains an enormous variety of characters and symbols. The Greek
letters are available, which is helpful for physicists. Also mathematical
symbols such as V, J, or also <-> are available. You can provide scientific
text on the screen with the exact formulas.

For some applications you can define your own symbols. By doing this,
you can program games for example, by using a sequence of PRINT
CHR$ () statements which increases the speed of the graphics display
and at the same time simplifies the programming.

BASIC does not offer any way todefine your own symbols. Instead you
have to use PEEK and POKE to change the font.

The operating system has 3 built in fonts. They are identical in design,
but differ in resolution. For the display on the monochrome monitor there
is a 8*16 character set, i.e. every character is 8 dots wide and 16 dots
high. For the color monitor it is only 8*8 since the vertical resolution is
only half as great. And finally there is the 6*6 font for identifying icons
or the files in the table of contents.

Tochange one of these fonts, you must know where they are stored.

In the version of the operating system that is loaded from diskette, the
8*16 font is located at 101474. In the version of the operating system that
is stored in ROM, the 8*16 font is located at 1659294.

The fonts are arranged in memory in rows. The first row of each of the
256 characters is stored in the first 256 bytes offont memory. The second
row of each of the characters is stored in the next 256 bytes of font
memory.

151

Atari ST Peeks and Pokes BASIC Programming

101474
CHR$(0) CHR$(1) CHR$(2) CHR$(255)

w-

row 1 . . .

row 2 ...

row 3 . . .

• • •
•

row 16 . . .

Organization of 8 x 16 font in memory

The most significant bit of the character determines the left upper point of
the character. In the standard character set, the topmost row is always
zero, i.e. white. This prevents twocharacters from overlapping.

Now to a program which changes the character output by PRINT
CHR$ (1). This character is the up-arrow character. The symbol can also
be obtained by typing <Control> A.

The program again uses the binary decimal conversion which we already
used. We'll once again use the image of a little man. Of course you can
change this character as you like.

Important: This program only works when TOS is loaded into RAM
from disk, it will not work with TOS in ROM! The programs in this
section only work on the monochrome monitor.

10 rem *** Change Font Character 7.7 ***
20 def seg=l : rem Set Byte brightness
80 for i=0 to 12 : read x$: rem Fill Shading
82 x=0 : for j=l to 8 : rem Change
84 x= x-(mid$(x$, j,l)<»* 2A(8-j)
86 next j
90 poke 105436+i*256,x:rem TOS on disk
100 next i

110 print chr$(l) : rem test output

152

Atari ST Peeks and PokesAbacus Software Ata

120 end

130 rem +++ Test Data +++

150 data M *** »

160 data "* kkkkk I

170 data "* kkk I

180 data "** * 1

190 data II -kkkkkkk i

200 data II kkkk k t

210 data It kkkk k r

220 data II kkkk f

230 data II k k i

240 data II k k i

250 data II k k T

260 data II k k f

270 data II kk kk 1

If you want to change other characters, you only have to change the value
101474 in line 90. To create a new A, i.e. CHR$ (65) just add a 64 to
address 101474. You can create your own character set which you can
then store with BSAVE "MYFONT .FNT", 104536, 40 96 on the disk
and load later with BLOAD "MYFONT. FNT",104536.

This filename is not mandatory. You can store many fonts with files
saved in this manner and so prepare fonts for every application. Games
can be written or text prepared in the Cyrillic alphabet. The applications
of these fonts have no limit.

Some advice before you create your own characters, first store the
original font. If you do not need your characters any more, you can load
the the original font so that you can read the disk directory and the menu
choices.

There is a more general way to change a character set. This method
involves copying the original font into RAM and changing the operating
system pointer to the font. This pointer is utilized by the TOS when
accessing font data. This method has two advantages:

1) When the original character set lies in ROM (latest
versions of the ST), it cannot be altered. Once it is copied
to RAM, however, the copy can be edited, saved and
reloaded for later use.

153

Atari ST Peeks and Pokes BASIC Programming

2) The pointer which is used in the following example works
with the OUT function only.

Thus, you can have two different character sets, say one for PRINT and
one for OUT 2, x. Both fonts can also be combined. The program below
will work with TOS in ROM or RAM, simply change line 20. Here is an
application for the above mentioned method:

1 rem monochrome monitor only
5 rem *** Character Editor 7.7.A ***
10 defdbl a,b,c : rem pointer preparation
20 a=16595294: rem address of the original

font/TOS in ROM change to a=104536 for
TOS on disk

30 c=10532 : rem address of the pointer
40 x=a : rem copy font-pointer
50 dim a%(2050) : rem reserve position
60 for i=0 to 2050
70 a%(i)=peek(x+i*2) : rem copy font data
8 0 next i
100 c$="A" : rem to another screen
110 n=&H66 : rem bits of the top line
120 b=varptr(a%(0)): rem address of the new

font

130 poke c,b : rem change pointer
140 m=&HFF : rem screen preparation
150 o=asc(c$)
160 if (o mod 2)=1 then m=m*256 else

n=n*256

170 a%(o/2)=a%(o/2) and m or n
180 gosub 300 : rem modify test text
190 poke c,a : rem original font placement
200 gosub 300 : rem original test text
210 end

300 restore
310 for i=l to 9:rem output test text 'ABC
320 read x

330 out 2,x : next i
335 for i - 1 to 1000: next

340 return
350 data 27,72,27,66,27,66,65,66,67

154

Abacus Software Atari ST Peeks and Pokes

The first section of this program prepares the necessary pointers, then
copies the original font into the integer array a%. Note that every entry of
the character set requires two bytes in this array. For this reason, a mask
must be created when accessing a character; this mask will hide the extra
byte so that the byte you want changed will not be influenced. This mask
is set up in the second program section. This mask sets apart the second
byte, and overwrites it with the value n. For example, if the value $66 is
used, the A is altered.

The third part of this example displays ABC as the altered text. After
using the new font, the sample text will be output again, and will appear
as normal. This example shows just how easy it is to create a new
character set. Installing the new font data for applications is somewhat
more difficult. There is help, though. The program below is a simple
character editor which, although slow (in BASIC), will allow you to edit
fonts using the mouse.

Starting the program displays a pattern of 8 x 16 asterisks onscreen. The
actual character appears next to this matrix, and shows the actual size of
the character. Thus you have direct control over the appearance of the
new character. An asterisk in this matrix represents one set (black) point,
or pixel, in the real character. A character is built within a 128-pixel
matrix (8 pixel columns x 16 pixel rows).

The original character can be displayed within this pattern, although they
will appear unaltered with any PRINT statement. You will see "<" and
">" symbols beneath the original character. Click this symbol to display
the previous or next character.

Characterediting is fairly simple here. Clicking an asterisk on in the 8 x
16matrix also sets a corresponding pixel in the original character.

10 rem Character editor 7.7.B Mono only
20 dim a%(2050)
30 defdbl a,b,c
40 a=16595294: c=10532
50 d = a

60 for i = 1 to 2050
70 a%(i) = peek(d+i*2) : 'font copier
8 0 next i

90 b = varptr (a%(0)) : 'loc. of new data
100 fullw 2 : clearw 2

155

Atari ST Peeks and Pokes

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

275

280

285

290

300

310

320

330

340

350

355

356

360

370

380

390

400

poke c,b
ch = 65

poke contrl,
gotoxy 12,2
?"character :

gotoxy 11,4 :
if (ch mod 2)
gotoxy 0,1 :
for i = 1 to

gotoxy 0,i+1
x = a%(ch/2+128*i)
for j = 0 to 7
if (x and 2A (7-j+o))
9 u „ n •
- f

next j : ?"|"
next i
*p ii _n

out 2,27 : out 2,asc("Y")
out 2,36 : out
for i =1 to 5

characters

next i

poke contrl ,122

BASIC Programming

'install new font

'start with A

123 : vdisys 0:' mouse off

char",chr$(ch):'original
?" < >"

-0 then o = 8 else o=0
9 ii n

15
. 9 ii I H .

'draw char

then ?"* else

2,45
out

cursor

rem

position
5 new2,ch

vdisys 0
mx = int (peek(9952)/8)-l
my = int(peek((9954))/16)-4
position
if (peek(3581) and 1)=1 then 420
rem right button
if (peek(3581) and 2)=0 then 290
rem left button

if my =3 and mx = 24 then ch :
goto 130
if my = 3 and mx = 27 then ch
: goto 130
if my < 0 then 300
if my >15 then 300
if mx>8 then 300

x = a%(ch/2+128*my)
m =2 A (7-mx+o)
if (x and m)=0 then
x=x and (m xor &HFFFF)
a%(ch/2+128*my)=x : ' renew

'mouse on

mouse

ch - 1

= ch + 1

'selected bit

x = x or m else

156

Abacus Software Atari ST Peeks and Pokes

410 goto 130
420 gotoxy 0,18
430 input "File name :",f$: 'font save
440 bsave f$,b,4100

Lines 420-440 save the new character set to disk. You click the right
mouse button to save the character set. You can re-load this character set
and re-activate it using the pointer at 10532. Now nothing stands in your
way to keep you from creating exotic fonts and character sets for your
programs!

157

Atari ST Peeks and Pokes BASIC Programming

7.8 The keyboard buffer.

The keyboard buffer in the Atari St can be accessed with the PEEK
function. The keyboard buffer does not return an ASCII value, but instead
it returns a scan code.The following program outputs the scan code

10 rem ** Keyboard buffer 7.8**
20 p=3510 : rem Pointer to character
30 x=peek (p) : rem Temporary storage
40 gotoxy 10,1 : print y:y=y+l

: rem example
50 if peek(p)=x then 30: rem New character
60 x=peek (p) : rem Yes, New pointer
70 t=peek(3086+x) and 255 : rem Get

character

80 gotoxy 1,1: print t : rem scan code
90 goto 40 : rem Infinite loop

Every character typed at the keyboard is automatically stored in a buffer
by the operating system. This buffer begins in location 3086. The
information about which character is currently in the buffer is stored in
location 3510. This pointer is read by line 30 and is stored in variable x.
If another character is entered, this pointer is increased by 2. This change
is noted in line 50. The new pointer is read out and added to the start of
the buffer. The new character is obtained with PEEK (30 86+X). The
scan code is output and the program continues. You can clearly see in this
example that the program does not wait for a key to be pressed, but runs
continuously.

158

Abacus Software Atari ST Peeks and Pokes

Appendix A

Glossary

Addresses

The individually addressable, sequentially numbered storage locations of
the working storage area. These location numbers permit access
(read/write) to the contents of the storage location and represent its
address.

Application

An program that is directly executable.

ASCII (American Standard Code ofInformation Interchange)

A standard code set that assigns each alphanumeric character a binary
number. This is the most commonly used code set, in either the 7- or 8-bit
form with 128 or 256 characters.

Assembler

A program that translates machine language programs written in
mnemonic code into the object code of the microprocessor.

Baud

Baud is a measure of speed for serial data transmission on an RS-232
interface. 300 baud means a transmission speed of 300 bits per second.
Speeds of 300 to 9600 baud can be selected with the control panel of the
Atari ST.

Bit (Binary Digit)

Computers are equipped internally to work only with binary numbers, i.e.
numbers composed of 0 and 1. Binary digits (bits) are the smallest
information units in computer technology.

161

Atari ST Peeks and Pokes Glossary

Buffer Storage

A buffer represents a storage area in which data is stored temporarily.
Processes of different speeds can be combined with buffers, where the
faster process stores its results in the buffer and the other process can
later read them out at its own speed (for example a printer buffer).

Bus

A bus is a system of lines between the individual components of a
computer, for example between CPU and working storage, or between
several units such as computer and printer, such as the peripheral bus.
There are two different kinds of buses unidirectional (data transmission in
one direction) and bidirectional (data transmission in two directions).

Byte

A byte is an 8 digit binary number. It represents the smallest addressable
data unit, even if the CPU and storage is organized into two byte words or
two longwords as in the Atari ST.

C Programming Language

C is a higher level language that retains many of the characteristics of
machine language. It is very fast, close to the hardware and fairly simple
to learn. The structure of the language is based on ALGOL and PASCAL.
Programs written in C are easily transferred to other computers if a C
compiler exists for the target machine. Using this language, it is now
possible that operating systems (for example UNIX or GEM) can be
implemented in different CPUs without major rewriting.

Cartridge

Cartridges contain up to 128K of read-only storage which are inserted
into the slot on the left side of the Atari ST. They contain application
programs or extensions to the operating system.

162

Abacus Software Atari ST Peeks and Pokes

Centronics Interface

This interface was introduced by the Centronics company for connecting
printers and has established itself as a standard. It is a unidirectional 8 bit
wide parallel interface with a handshake line. In the Atari ST this
interface is bidirectional.

Clicking

Selection of a GEM symbol (Icon) by touching it with the mouse pointer
and pressing the mouse key.

Control Character

For execution of special functions with printers or terminals the non
printing ASCII codes from 0 to 31 or control sequences (the <control>
key following by any other key) are used.

Control Panel

Dialog box available in the desktop in which different parameters can be
set such as color, time of day, key noise, etc.

CPU (Central Processing Unit)

In microcomputers the microprocessor is called the CPU. The Atari ST
uses the MC 68000 from Motorola.

Cursor

The cursor is a differently formed symbol (arrow, bee, crosshairs or
block) which can be moved on the screen with the mouse (mouse cursor)
or keyboard (text cursor) and marks the next input position.

Debugger

A utility program for error detection and correction in assembled and
compiled machine language programs. Break points can be set and the
memory contents read and changed. (Symbolic Interactive Debugger or
SID)

163

Atari ST Peeks and Pokes Glossary

Desktop

The main display level under GEM which contains menu lists, disk icons
and the waste basket.

Dialog box

An interactive window that provides information to the user and waits for
a response.

Disassembler

A utility program capable of translating a machine language program
back to mnemonic code. Error correction and changes are facilitated.

DMA

DMA means Direct Memory Access and designates the capability of
peripheral units to write or read data in memory without the participation
of the CPU.

Duplex

A data transmission method in which it is possible to transport data in
two directions at the same time (Full Duplex) i.e. it only takes a short
time to change direction.

Emulation

The process where one computer is simulated by another computer with
the help of software and/or additional hardware. For example, on the
Atari ST in terminal mode, a VT52 terminal is emulated.

File

A file is a data group in memory, on a disk or a hard disk. The access to
this data occurs under a specific name.

164

Abacus Software Atari ST Peeks and Pokes

Folder

In the table of contents of the disk (directory), subdirectories are called
folders. These can contain files which are not shown in the higher level
table of contents. Access to these files is only possible after opening the
folder.

Formatting

Before data can be written on a new disk, it must be formatted, i.e. tracks
and sectors must be set up.

GDOS (Graphic Device Operating System)

Contains the device independent graphic functions of the GEM-VDI.

GIOS (Graphic Input/Output System)

This part of GEM-VDI contains the device dependent code.

Hardcopy

Output of the actual screen contents on the printer.

Hard Disk

A storage device which operates on the same magnetic principle as a
floppy disk. The difference lies in the storage capacity of the hard disk (5
to 500 megabytes) and the transmission speed. This is achieved by the
fixed installation of the "disk" which spins at a higher speed than the
floppy.

Hexadecimal

The representation of numbers in the base 16 system. This is the most
common number system besides the binary and octal systems in computer
science.

165

Atari ST Peeks and Pokes Glossary

I/O (Input/Output)

These concepts describe the data read from peripherals (mass storage,
keyboard, mouse, etc.) into the computer or are sent from the computer to
the peripherals (display, printer, plotter, etc.)

Interface

The electronic connection circuitry between computer and peripheral
equipment (for example Centronics or MIDI). It can also be a program
which standardizes the connection between differing, independent
programs or the user and programs (for example GEM between user and
TOS).

Interrupt

An interruption of the executing program and branching to a machine
language routine. After its processing, the interrupted program is
continued at the same location where it was halted (just as in a
subroutine). This interrupt is triggered by a hardware event at a certain
port of the CPU or through software by means of a program (for example
with a TRAP command).

K (Kilobyte)

Kilobyte really means 1,000 bytes, but in the computer field we calculate
in binary powers; a Kilobyte is therefore 2i° = 1,024 bytes.

Library

In data processing, a collection of subroutines, functions or utility
programs which can be included into a program.

Linker

A utility program which links together compiled programs, machine code
routines and parts of the library into a program capable of execution.

Menu

A menu in a program provides several choices from which one can be
selected with keyboard input or the mouse pointer.

166

Abacus Software Atari ST Peeks and Pokes

Memory Address (Address)

The locations of the computer memory are numbered consecutively so
that only one of the memory locations can be selected with the number
provided.

MIDI Interface

A standardized, serial interface for controlling musical instruments from
the computer. Several instruments can be controlled simultaneously thru
the ST's MIDI port.

Mnemonic Code

The actual machine code consists exclusively of ones and zeros. Since
commands consisting of only O's and l's would be difficult to read, easily
remembered alphabetic combinations were introduced. For example, the
sequence of ones and zeros which adds two numbers was changed to the
mnemonic code ADD. Programs written in mnemonic code have to be
translated by assemblers in order to create executable programs.

Object code

Represents program code (consisting of bit patterns or hexadecimal
numbers) which is directly executable on the CPU. This code is obtained
through compilation of a higher level language program or assembly of
mnemonic code.

Output

Transmission of data to a peripheral unit.

Parallel Interface

See Centronics Interface

Parameter

Variables or constants which are passed to commands, functions, or
subroutines for processing. Several parameters may be needed for one
function, for example LINEF A, B, C, D.

167

Atari ST Peeks and Pokes Glossary

PEEK

The BASIC command PEEK reads the contents of a specified mermory
location and transfers it to the calling program. This command can
process bytes, words or longwords.

Peripheral

The external units of a computer system such as printer, diskette drive or
display are called peripherals.

Pixel

The smallest addressable graphic element on the screen (picture point) or
printer (matrix point).

POKE

This BASIC command is the opposite of the PEEK command. Memory
locations can be directly changed with this instruction. This command
also processes bytes, words and longwords. An erroneous POKE
command can crash the system if an access to the operating system
results.

RAM (Random Access Memory)

This is memory that can be read from and written to.

Register

Describes the internal memory areas in a processor in which data is not
only stored, but combined. The MC 68000 has a total of 16 registers
(each with 32 bits) for use by the programmer.

RGB (Red - Green - Blue)

A video signal in which the three color signals are sent individually to the
television or monitor where they are additively mixed. The Atari ST can
represent each of these basic colors in 8 intensity steps to produce 8*8*8
= 512 color mixtures.

168

Abacus Software Atari ST Peeks and Pokes

ROM (Read Only Memory)

ROM designates memory which, in contrast to RAM, can only be read.
The programming of these chips occurs during production. They are often
used to store the operating system in a computer so that it will be
available immediately after powering up the unit.

RS232

This standardized interface works serially. The data transmission can be
performed in two directions. The signal strength used is + and -12 volts.

Scrolling

Shifting a window's contents in one of the four basic directions. This
shifting is performed by the operating system, when the user clicks the
vertical or horizontal shifters of a window with the mouse.

TOS (Tramiel Operating System)

The operating system used in the Atari ST is an enhancement of CP/M
68K with some additional functions. TOS is not compatible with other
computers .

VDI (Virtual Device Interface)

A portion of GEM which is responsible for graphic output to any desired
peripheral unit.

VT52 Terminal

This choice of the desk menu causes the ST to emulate a VT52 terminal,
which can be directly connected through a serial interface to a modem or
to another computer.

Word

On the Atari ST a word is a data unit which consists of 2 bytes, i.e. 16
bits, and can have a value from 0 to 65,535.

169

Atari ST Peeks and Pokes Important PEEKS and POKES

Appendix B

Important peeks and pokes for Disk and ROM versions of TOS

The following is a list of corresponding PEEK and POKE addresses. The
list can be used to adapt the programs in this book to the various ST
operating systems.

The first column is for the 197K operating system with the date
November 1985, the most common version loaded from disk.

The second column corresponds to the address which applies to the
orginal version of TOS, 207K and is also loaded from disk.

The third column is to be used if the TOS is built into the computer. This
applies to the April 1986 version. These values are used in this book.

197K 207K ROM

Address Function

3086 2256 3086 keyboard buffer

3510 2552 3510 pointer to keyboard

buffer

3581 2623 3581 mouse/joystick button

status

3582 2624 3582 joystick position

3584 2626 3584 clock buffer(6 bytes)

3591 2633 3592 joystick status

3652 2694 3652 sound sequence data

pointer
9952 8994 9952 mouse position

horizontal

9954 8996 9954 mouse pos vertical

10530 9572 10530 cursor blink delay

10531 9573 10531 cursor blink counter

10532 9574 10532 pointer to font data
36612 32090 16527388 sound data bell

36642 32120 16527418 sound data click

104536 101474 16595294 8x16 font start

170

Abacus Software

Index

ACIAs 5

Action points 63
ADD.W 89

ADDRIN 131, 132
ADDROUT 131, 132
AES 55,59,65,68,69, 131,
133, 134, 135
ALGOL 85

AND 45,46,47
Apple Macintosh 59
Arrows 116
ASC() 68
ASCII 68, 76, 144
Atari ST GEM Programmer's
Reference 68

Background music 127
BACKWARD 83

Bar graphs 108
BASIC 81,84,88
BASIC editor 84

BASIC interpreter 105
Baud 76
Baud rate 10, 98, 100
BCD (Binary Coded Decimal)
18,48
Binary 42
Binary system 43, 45
Binary-decimal conversion 63,
64

BIOS 30,52,55,69,94
Bit 42
Bit Evaluation 45

BLOAD 37, 101, 137, 144
BLT 93
Bold printing 66
BROOCH 83

BSAVE 37, 137, 144
Bubble sort algorithm 138

Atari ST Peeks and Pokes

BUS-ERROR 27, 97
Busy Line 7

C 68, 84, 85, 86, 87
CALL 98, 99, 100
Central processing unit 88
Centronics port 6, 7
Char 87

Circle 107

CIRCLE X,Y,R,A,E 108
CN 132

COBOL 84

Cold start 53,55
COLOR 4, 110, 117, 121
Color monitor 14, 68
Color registers 121
Color table 54

Command oriented 51
Condition Code Register 91, 93
CONTRL 60, 131, 132
CONTRL (0) 114
Control characters 142

Control panel 121
COPYOFF 82

COPYON 82
Cosine 107

CP/M 52

CPU 3, 4, 88

Data file 36
Data immediate 91

Datatypes 29,90
Database programs 138
Decimal number system 41
Decimal values 48
DEF SEG 105, 106
DEFSNG 106
Desktop 63, 76, 98, 99, 138
Desktop accessories 76

171

Atari ST Peeks and Pokes

Desktop customizing 73
DESKTOP. INF 73,74,76
Dialog boxes 119, 133
Digital Research 59, 82
Disk access 144

Disk buffer 55
Disk controller 10

Disk drive 142

Disk icons 75
Disk directory 144
DMA(Direct Memory Access)
controller 4

Documents 75
Double 87
Double precision 132
DRLOGO 83

Drop-down menus 63

Ellipse 109, 110
ELSE 87
Epson black/white printer 143
Error messages 133
Error Vectors 28
Exception 28
Expansion plug 13
Extended BIOS 100

Extension 37

FILL 116, 118
Fixed memory locations 26
Float 87
Floating point number 86
Floppy disks 25, 33, 34
Floppy-disk controller 4
Folders 75

Font 66, 69
FOR 87
FOR-NEXT loop 99
FORM ALERT 133

FORTH 82
FORTRAN 84,85
FORWARD 83

Index

GB 131, 132
GDOS 59

GEM 3, 30, 56, 59, 60, 61, 64,
66,69,85,99, 107,110, 111
GEM desktop 27,56
GEM files 75

GEM flag 69
GEMDOS 10,87,89,94,98,
99, 144
GEMSYS 60, 131, 132, 133, 134,
135

GIOS 59
GLOBAL 131

GLUE 4

GPO (General Purpose Output)
127
Graphic images 37
Graphic buffer 69
Graphic processing 107
Graphics Environment Manager
59

Handshake line 7
HD6301V1 4,20
HEX$ 44
Hexadecimal 41, 48, 144
Hexadecimal number system 42
Horizontal sliders 75

I/O (Input/Output) chips 27
I/O registers 125
IBM PC 3,85
Icon oriented 51
Icon oriented screen 56

IF 87
II 132

Indirect Addressing 91, 92
INPUT# 36
Int 87
Integer variables 30
Interfaces 6

172

Abacus Software

Interpreter 84
Interrupt routines 53, 129
INTIN 60,64,67, 131, 132,
133

INTIN array 63, 111
INTIN field 68
INTOUT 60, 131, 132, 135

JMP 94

Joystick 13, 45, 46, 140
JSR 93

LEFT 83
LEN() 67
Library 59, 85
LJFO 33

Line endings 116
Line types 114
Line thickness 115
LIST flag 69
LLIST 142

LOAD 144

Logical operators 46, 47
LOGO 21,81,82,84,88
Long 87
Longword 106
LPRINT 142

LPRINT from LOGO 82

Machine language 41, 59, 68,
84, 88, 89, 98, 99, 100, 137, 144
MAIN() 86
Marker 120

Markers 119
Mask 63

Masking 47
MC 68000 processor 3
Menus 130
Menus 130, 133, 140
MFP (MultiFunction Peripheral)
68901 5
MID$ 68

Atari ST Peeks and Pokes

MIDI interface 5, 12, 52
MMU 4
Modem 9, 142
Monochrome monitor 4, 14, 68
Mouse 134, 135, 140
Mouse buttons 134
Mouse pointer 64, 134, 141
MOVE 89,91

Nibbles 42
Noise generator 123
NOT 45,46,47
NTSC (American systems) 54
Number system 41

ON...GOTO 130

OPEN 36, 137
Operating system 51, 55, 83, 88,
89123,142,144
Options 73
OR 45, 46, 47
OUT 142

Outlined characters 66

OUTPUT window 7,67,69,
107,114,139

Parallel data transfer 6
Parallel port 7, 14, 127
Parity 77
PASCAL 85, 87
Pattern index 117
Pause 129

PCIRCLE X,Y,R 107
PEEK 16,53,60,68,83,91,98,
105,133
PlugO 13
Pointer 29, 31, 106, 129

173

Atari ST Peeks and Pokes

POKE 53, 60, 62, 67, 68, 69, 83,
88,91,98-100,105, 106,141,
143

Polyline 114
Port A 127

PortB 127

Post incrementing 92
Predecrementing 92
PRINT 85,89, 113, 135
PRINT* 36, 137
Printer 142
PRFNTF 85

Procedures 82

Processor 3

Programs 35
PTSIN 60,67
PTSOUT 60

RAM 25,53
RAM/ROM 25

Recursive program 21
Register direct 91
Register memory 55
Registers 89
Relative addressing 92
RETURN 99

RGB 4

RIGHT 83
ROM 12, 13, 25, 26
Roman font 69
RS-232 8

RTS 93,98,99
RTS/CTS 100

SAVE 144
Screen mask 138
Screen memory 25, 54
Sector 34, 35, 142, 144
Select line, 12
Serial interface 8, 88, 99, 127
SF314 disk drive 34
SF354 disk drive 34

Shaded characters 66

Shaded circle 109
Shaded rectangle 108
Shading 116
Shading pattern 117
Shading style 117
Shifter chip 4
Short 87

Shugart connections 11
Sine 107

Sine wave 128, 129
Sine wave generator 123
Siren sound 127

Sort routine 138, 139
SOUND 123, 129
Sound chip 5
Sound register 128
ST LOGO 82
Stack 32, 33
Stack Pointer 91

Startbit 9

States 42
Status Register 91
Stopbit 9
Storage devices 25
String variables 137, 144
Strobe 7

SWAP 138
SYSTAB 68,69
System variables 132
System variables 53
System-Timer 54

TD 8

Template 138
Text editor 84
Text formatting 110
Text variable 144
Token 84

Tone 123
Tone generation 127
Tone generators 123

174

Index

Abacus Software

TOS 26,52,56,58
TOS cursor 57
TOS Takes Parameters files 75
TOS-ERROR message 133
Tracks 34,35
Transmission protocol 77
TRAP 94, 97, 98, 100, 125
Trash can 75

Triangular curve 128
TTL level 14

Turtle-graphics 83

Underlined characters 66
UNIX 85

User-defined pattern 118

Variable memory locations 26
VARPTR () function 31
VBI routine number 54

VDI 54,55,59,66-68,110-112,
118,121,131,133
VDISYS 60, 107, 131
Vectors 28,29,31,53
Vertical sliders 75

Video display memory 92
Video memory 4
Video RAM 29
VIEW menu 74
Visible characters 142
VT52 emulator 56

WAVE 123, 129
WD 1772 5

WHILE 87
WIND_SET 135
Windows 75, 135
Working memory 53, 54, 55, 89

XBIOS 52,94
XON/XOFF 100
XOR 45, 46, 47

Atari ST Peeks and Pokes

68000 processor 15, 32, 42, 48,
89, 90, 94, 97, 105

175

Optional Diskette

Tfrrrrrrrrrrfrrrrrrrrrr^^

ATARI ST

Peeks

and Pokes

Optional Diskette

w

For your convenience, the program listings contained in this book are

available on an SF354 formatted floppy disk. You should order the diskette

if you want to use the programs, but don't want to type them in from the

listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software
P.O. Box 7219

Grand Rapids, MI 49510

Or for fast service, call 1- 616 / 241-5510.

from Abacus

PRESENTING THE ST
Give* you an in-depth look at
this sensational new
computer. Discusses the
architecture of tha ST, work
ing with GEM, Km mousa,
operating system, all the
various interfaces, the 66000
chip and its Instructions,
LOGO. 200pp $16.85

ST Beginner"* Quid*
Written for the firsthand ST
user. Get a basic understand
ing of your ST. Explora
LOGO and BASIC from tha
ground up. Simple explan
ations of the hardware and
Internal workings of tha ST.
Illustrations, diagram*. Gloss
ary. Index. 200pp $14.95

5T GRAPHICS & SOUND
Detailed guide to graphics
and sound on tha ST. 2D A
3D function plotters. Mo|r*
patterns, graphic memory
and various resolutions,
fractals, recursion, waveform
generation. Example* written
In C. LOGO, BASIC and
Modiia2. 250pp $1985

ST LOGO GUIDE

Take control of your ST by
learning ST LOGO—the easy
to use, powerful language.
Topics Include: file handling,
recursion-HI Ibart & Sierpinakl
curve*, 2b and 3D function
plots, data structure, error
handling. Helpful guide for
ST LOGO users. $18.95

ST INTERNALS
Essential guide to tha inside
information of the ST.
Detailed description* of
sound and graphics chips,
Intarnal hardware. I/O ports.
using GEM. Commented
BIOS listing. An indlspen-
sibie reference tar your ST
library. 4S0pp $18.95

ST PEEKS * POKES
Enhance your program* with
the examples found within
this book. Explores using
different languages BASIC,
C, LOGO and machine
language, using various
Interfaces, memory usage,
reading and saving from and
to disk, more. 260pp $16.95

OEM Programmer'• Ref.
For serious programmers
needing detailed information
on GEM. Presented In an
*asy-to-und«rstand format.
AD examples ar* in C and
assembly language. Covers
VDI and AES functions. No
sarioun programershould be
without 410pp $1805

MACHINE LANGUAGE

Program In tha fastest lang
uage for your ATARI ST.
Learn 69000 assembly lang
uage. Its numbering system.
use of registers, structure &
Important details of instruc
tion set, and us* of Internal
system routines. Geared for
the ST. 260pp $18.85

ST TRICKS A TIPS
Fantastic collection of pro
grams and info for the ST.
Complete programs Include:
super-fast RAM disk: time-
saving printer spooler; color
print hardcopy; plotter output
hardcopy, creating access
ories. Money saving tricks
and tips. 260pp $18.85

3D GRAPHICS
FANTASTIC I Rotate, loom,
and shade 3D objects. All
programswrittenIn machine
language for high speed.
Learn the mathematics
behind 3D graphics. Hidden
line removal, shading. With
3D pattern maker and
animator. $24.95

BASIC Training Guide
Thorough guide for learning
ST BASIC programming.
Detailed programming funda
mentals, commands descrip
tions, ST graphics & sound,
using GEM In BASIC, file
management, disk operation.
Tutorial problems give hands
on experience. 300pp $16.95

BASIC to C
Move up from BASIC to C. If
you're already a BASIC
programmer, you can learnC
all that much faster. Parallel
examples demostrate the
programming techniques and
constructs In both languages.
Variable*, pointers, arrays,
data structure. 250pp $19.95

The ATARIlogoand ATARIST aretedemarks of Atari Corp.

Abacusl^fflSoftware
P.O. Box 7219 Dept. A9 Grand Rapids, Ml 49510 •Telex 709-101 •Phone (616) 241-5510
Optional diskettes are availablefor all book titles at $14.95
Call now for the name of your nearest dealer. Or order directly from ABACUS with your MasterCard, VISA, or Amex card. Add
$4.00 per order for postage and handling. Foreign add $10.00 per book. Other software and books coming soon. Call or
write for your free catalog. Dealer inquiries welcome-over 1400 dealers nationwide.

AA Rated Software
Atari and Abacus
DataTrieve

The electronic
filing system

for the ST

ST DataTrieve

A simple-to-use and versatile database
manager. Features help screens;
lightning-fast operation; tailorable
display using multiple fonts;
user-definable edit masks; capacity up
to 64,000 records. Supports multiple
files. RAM-disk support for 1040ST.
Complete search, sort and file
subsetting. Interfaces to TextPro. Easy
printer control. $49.95

ST Forth/MT

Powerful, multi-tasking Forth for the ST.
A complete, 32-bit implementation
based on Forth-83 standard. Develop
ment aids: full screen editor, monitor,
macro assembler. 1500+ word library.
TOS/LINEA commands. Floating point
and complex arithmetic. $49.95

ST TextPro

Wordprocessor with professional
features and easy-to-use! Full-screen
editing with mouse or keyboard
shortcuts. High speed input, scrolling
and editing; sideways printing;
multi-column output; flexible printer
installation; automatic index and table
of contents; up to 180 chars/line; 30
definable function keys; metafile
output; much more. $49.95

AssemPro
The complete 68000

assembler development
package for the ST

ST AssemPro

Professional developer's package
includes editor, two-pass interactive
assembler with error locator, online help
including instruction address mode and
GEM parameter information,
monitor-debugger, disassembler and
68020 simulator, more. $59.95

PaintPro
_/lV

Create double-
sized pictures

For erg—~p*~-

PaintPro
Multiple
windows

For creative illustrations on the ST

ST PaintPro

A GEM™ among ST drawing programs.
Very friendly, but very powerful design
and painting program. A must for
everyone's artistic or graphics needs.
Use up to three windows. You can
even cut & paste between windows.
Free-form sketching; lines, circles,
ellipses, boxes, text, fill, copy, move,
zoom, spray, paint, erase, undo, help.
Double-sized picture format. $49.95

PCBoard
Designer

Create printed circuit board layouts

PCBoard Designer
Interactive, computer aided design
package that automates layout of printed
circuit boards. Auto-routlng, 45° or
90° traces; two-sided boards; pin-to-pin,
pin-to-BUS or BUS-to-BUS. Rubber-
banding of components during place
ment. Outputs pinout, component and
net list. $395.00

ST and 1040ST are trademarks of Atari Corp.
GEM is a trademark of Digital Research Inc.Call now for the name of the dealer nearest you.

Or order directly using your MC, Visa or Amex
card. Add $4.00 per order for shipping. Foreign
orders add $10.00 per item. Call (616) 241-5510
or write for your free catalog. 30-day money
back software guarantee. Dealers inquires
welcome-over 1400 dealers nationwide.

Abacus
ifwwmi

P.O. Box 7219 Dept.NB Grand Rapids, Ml 49510
Phone616/241-5510 •Telex 709-101 •Fax 616/241-5021

ST DataTrieve
for the Atari ST

(formerly ST FilePro)

ST DataTrieve is a simple-to-use, versatile
database program. DataTrieve's drop-down
menus let you quickly define a file and enter
your information through screen templates.
DataTrieve allows you to store data in
different type styles, create subsets of a file,
change file definition and format, and do fast
searches and sorts. A RAM disk is supported
on the 1040ST, as well as multiple files.
DataTrieve also features hardcopy to most
dot-matrix printers (Epson and compatible).
If your printer is not one of those listed, the
printer driver is easily adapted by the user to
his printer model. DataTrieve even supports
text effects, and contains an integral list editor,
to print out either thedata file itself or a list,
such as a mailing list.

DataTrieve

OTHER FEATURES OF ST DataTrieve:

* four files can be open simultaneously
* maximum file size of 2,000,000 characters
* maximum data set size of 64,000 characters
* maximum of 64,000 data sets
* unlimited number of data fields
* mass-memory-oriented file organization
* up to 20 index fields per file
* unlimited number of search criteria
* data exchangewithother programs possible
* maximum screen mask size of 5000 x 5000 pixels
* text editor-like mask input

Suggested Retail Price:

$49.95

wmtm

HUH!

The electronic
system

for the ST

ABACUS SOFTWARE

P. O. Box 7219
Grand Rapids, Ml 49510
Phone:(616)241-5510

ST TextPro
for the Atari ST

ST TextPro is the professional
wordprocessing package designed for the ST
by profession-1 writers. ST TextPro
combines greatfeatures with flexibility, speed
and easy operation—butat a very reasonable
price! ST Textpro offers full-screen editing
with mouse or keyboard shortcuts, as well as
high-speed input, scrolling and editing. The
authors designed TextPro for professionals
and two-digit typists alike. ST TextPro
includes a number of practical formatting
commands, fast and easy cursor manipulation
and text enhancement. Features include a
C-source mode, which allows you to writeC
program code in TextPro format; mail
merging; and much more.

OTHER FEATURES OF ST TEXTPRO:

* up to 180 characters per line with horizontal scrolling
upto 30 user-assignable function keys, with upto 160 characters perkey

* any number of tabulators
* automatic hyphenation
* up to 5-column output(printed sideways)
* DIN A4 vertical printout for Epson FX and compatibles
* flexible printer driver
* RS-232 file transfer possible (computer-computer)
* detailed manual

TextPro files can be set for layout with ST TextDesigner (available
separately)

Suggested Retail Price:

$49.95

wmmt

BUM

ABACUS SOFTWARE

P. O. Box 7219

Grand Rapids, Ml 49510
Phone:(616)241-5510

ST PaintPro
for the Atari ST

ST PaintPro is a very friendly and very
powerful package for drawing and design.
Based on GEM™, PaintPro supports up to
three active windows and has a complete
toolkit of functions, including drawing, lines,
circles, rectangles, fill, spray, and others.
Text can be typed in in one of fourdirections
(forward, up, down, backward) and in one of
six GEM fonts and eight sizes. You can even
load pictures from other formats, such as ST
LOGO, DEGAS and DOODLE for
enhancement, using PaintPro's double-sized
picture format. Hardcopy can be sent to most
popular dot-matrix printers. Works with either
monochrome or color ST systems.

OTHER FEATURES OF ST PAINTPRO:

PaintPro ^

PaintPro

PaintPro
on the ST

For creative illustrations on the ST

*

*

*

four drawing modes (replace, transparent, inverse and XOR)
four line thicknesses
all Atari ST patterns
maximum of threewindows (depending on available memory)
resolution of up to 640 x 400 or 640 x 800 (DIN A4) pixels (monochrome
ur^sirGEM type fonts, in 8-, 9-, 10-, 14-, 16-, 18-, 24- and 36-Point
sizes-text can be printed in four directions
blocks can be cut and pasted; mirrored horizontally and vertically; marked,
saved in LOGO format, andrecalled inLOGO
most dot-matrix printers can be easily adapted by the user
accepts LOGO, DEGAS and DOODLE graphic

Suggested Retail Price:

$49.95

ABACUS SOFTWARE

P. O. Box 7219
Grand Rapids, Ml 49510
Phone:(616)241-5510

Multi-Tasking
Full-Featured

Forth/MT, the multi-tasking, full-featured Forth
language for the ST, is for serious programmers.
Forth/MT is a complete, 32-bit implementation
based on Forth '83 standard. Includes many
development aids: full screen editor, monitor,
macro assembler, over 1500 word library.
Includes TOS, LINEA, floating-point and complex
arithmetic commands. $49.95

HHHUB

HBO!
ABACUS SOFTWARE
P. O. Box 7219

Grand Rapids, Ml 49510
Phone:(616)241-5510

AssemPro
The complete 68000

assembler development
package for the ST

AssemPro is the professional developer's
package for programming in 68000 assembly
language on the ST. The package includes:
editor, two-pass interactive assembler with error
locator, online help including instruction address
mode and GEM parameter information,
monitor-debugger, disassembler and 68020
simulator. $59.95

HHSffiS

mm

ABACUS SOFTWARE
P.O. Box 7219
Grand Rapids, Ml 49510
Phone:(616)241-5510

	Front Cover
	Title
	Copyright

	Preface
	Contents
	Contents 2
	Contents 3

	1: A Look Inside the ST
	A Look Inside the ST
	1.1: Internal Configuration
	1.2: Interfaces
	1.2.1: The Parallel Interface
	1.2.2: The Serial Interface
	1.2.3: Disk Drive Connections
	1.2.4: The MIDI-Interface
	1.2.5: The ROM Expansion port
	1.2.6: The Mouse/Joystick Connection
	1.2.7: The Monitor Connector

	1.3: The Intelligent Keyboard
	1.3.1: Command Overview
	1.3.2: Reading the Joystick
	1.3.3: Mouse as Cursor Control
	1.3.4: Time and Date Functions
	1.3.5: Reading Keys

	1.4: The Mouse
	1.4.1: The Mouse as a Paintbrush

	2: Memory Structures
	Memory Structures
	2.1: Internal Memory
	2.1.1: Address Assignment of the ST
	2.1.2: The Addresses of the I/O Chips
	2.1.3: Error Vectors
	2.1.4: Pointers
	2.1.5: Stacks

	2.2: Disk storage
	2.2.1: Program Files
	2.2.2: Data Files
	2.2.3: Graphic Data Files

	3: Computer Mathematics
	Computer Mathematics
	3.1: Number System Conversion
	3.2: Bit Evaluation
	3.3: Logical Operators

	4: Operating Systems
	The Operating Systems
	4.1: The Tramiel Operating System
	4.1.1: The BIOS
	4.1.2: System Variables
	4.1.3: Talking to the TOS

	4.2: GEM
	4.2.1: GEM Programming from BASIC
	4.2.2: Getting Input from the Mouse
	4.2.3: Changing the Mouse Form
	4.2.4: Changing the Font
	4.2.5: Graphic Text

	5: The Desktop
	The Desktop
	5.1: Customizing the Desktop
	5.1: Setting the RS-232 Interface

	6: Programming Languages
	Programming Languages
	6.1: DR LOGO
	6.2: ST BASIC
	6.3: The C Language
	6.4: 68000 Machine Language
	6.4.1: Combining Machine Language and BASIC

	7: BASIC Programming
	BASIC Programming
	7.1: Graphics
	7.1.1: Circles, Ellipses and Squares
	7.1.2: Text on the graphics screen
	7.1.3: Lines and arrows
	7.1.4: Shading surfaces
	7.1.5: Creating your own shading patterns
	7.1.6: Setting markers in the display
	7.1.7: Testing points on the screen
	7.1.8: Mixing colors

	7.2: Music and sound
	7.3: Window and Menu programming
	7.4: Text processing
	7.4.1: Templates

	7.5: Mouse/Joystick Control
	7.6: Input/Output
	7.6.1: Printer Control
	7.6.2: Using Disks
	7.6.3: Telecommunication

	7.7: Character editors
	7.8: The keyboard buffer

	Appendices
	A: Glossary
	B: Important PEEKs and POKEs for Disk and ROM versions of TOS

	Index
	A-D
	D-I
	I-P
	P-T
	T-X, 68000

	Optional Diskette
	Adverts
	Back Cover

