

ERROR CODES

ERROR ERROR
CODE ERROR CODE MESSAGE CODE ERROR CODE MESSAGE

Memory Insufficient
Value ~ r r o r
Too Many Variables
String Length Error
Out of Data Error
Number greater than 32767
Input Statement Error
Array or String DIM Error
~ r ~ ; r n c n t Stack Overflow
Floating Point Overflow/

Underflow Error
Line Not Found
No Matching FOR Statement
Line Too Long Error
GOSUB or FOR Line Deleted
RETURN Error
Garbage Error
Invalid String Character

Note: The following are INPUT/OUTPUT er-
rors that result during the use of' disk drives,
printers, or other accessory devices. Further in-
formation is provided with the auxiliary hard-
ware.

LOAD program Too Long
Device Number Larger
LOAD File Error
BREAK Abort
IOCB
Nonexistent Device
IOCB Write Only
Invalid Command
Device or File not Open
BAD IOCB Number
IOCB Read Only Error
EOF
Truncated Record
Device Timeout
Device NAK
Serial Bus
Cursor Out of Range

Serial Bus Data Frame Overrun
Serial bus data frame checksum error
Devicp done error
Read after write compare error
Function not implemented
Insufficient RAM
Drive number error
Too many OPEN files
Disk full
Unrecoverable system data I/O error
File number mismatch
File name error
POINT data length error
File locked
Command invalid
Directory full
File not ibund
POINT invalid

For explariation of Error Messages see Appendix B.

TABLE OF MODES

Mode
TY pe

TEXT
TEXT
TEXT

GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS

Horiz.
(C o l u m n s)

AND SCREEN FORMATS

R A M
R e q u i r e c

(Bytes)

Vert. (R o w s)
Split

Screen

20
10
20
40
40

80
80
160

Default

LIGHT BLUE
DARK BLUE

Vert. (Rows)
F u l l

Screen

24
24
12
24
48
48

96
9 6
192

BLACK

ORANGE
LIGHT GREEN

DARK BLUE

BLACK

C o l o r s

2
5
5
4
2
4

2
4

112

ORANGE
LIGHT GREEN
DARK BLUE

BLACK

ORANGE

I BLACK

LIGHT GREEN
DARK BLUE

BLACK

MODE, SET COLOR, COLOR TABLE

Mode or
Condition

SETCOLOR
(aexpl)
Color

Register No.
Color
(aexp)

MODE 0 and
ALL TEXT
WINDOWS

COLOR data
actually

determines
character to
be plotted

MODES 1
and

2
(Text Modes)

COLOR data
actually determines

character to be
plotted

MODE 8
(1 Color

2 Luminances)

MODES 3, 5,
and 7

(Four-color
Modes)

MODES 4
and 6

(Two-color
Modes)

4

DESCRlPTION AND COMMENTS

-
Character luminance (same color as backgoundl
Background
-

Border

Character
Character
Character
Character
Background. Border

0
1
2
3
4

0
1
2
3
0

Graphics point
Graphics point
Graphics point

1
2
3

0

1

-

Gmphics point (backgrc~und default), Border

Grdphics point
-
-
-

Graph~cspo in t (background default), Border

-
Graphics point luminance (same color as background)
Graphlcs point (background det jul t)
-

Border

CONTENTS

PREFACE vii

1 GENERAL INFORMATION

Terminology
Special Notations Used In This Manual
Abbreviations Used In This Manual
Operating Modes
Special Function Keys
Arithmetic Operators
Operator Precedence
Built-In Functions
Graphics
Sound and Games
Wraparound and Keyboard Rollover
Error Messages

2 COMMANDS

BYE
CONT
END
LET
LIST
NEW
REM
RUN
STOP

3 EDIT FEATURES

Screen Editing
Control (CTRL) Key
Shift Key

Double Key Functions
Cursor Control Keys
Keys Used With CTRL Key
Keys Used With Shift Key

Special Function Keys
Break Key
Escape Key

4 PROGRAM STATEMENTS

Contents iii

ON/GOSUB
ON/GOTO
POP
RESTORE
TRAP

5 INPUT/OUTPUT COMMANDS

Input/Output Devices 23
CLOAD 24
CSAVE 24
DOS 25
ENTER 25
INPUT 25
LOAD 26
LPRINT 26
NOTE 26
OPEN/CLOSE 26
POINT 28
PRINT 28
PUT/GET 28
READIDATA 28
SAVE 29
STATUS 29
XI0 30
Chaining Programs 30

6 FUNCTION LIBRARY
Arithmetic Functions

ABS
CLOG
EXP
INT
LOG
RND
SGN
SQR

Trigonometric Functions
ATN
COS
SIN
DEGIRAD

Special Purpose Functions
ADR
FRE
PEEK
POKE
USR

7 STRINGS
ASC
CHR$

iv Contents

LEN
STR$
VAL
String Manipulations

8 ARRAYS AND MATRICES

DIM
CLR

9 GRAPHICS MODES AND COMMANDS

GRAPHICS
Graphics Modes

Mode 0
Modes 1 and 2
Modes 3,5, and 7
Modes 4 and 6
Mode 8

COLOR
DRAWTO
LOCATE
PLOT
POSITION
PUTIGET
SETCOLOR
XI0 (Special Fill Application)
Assigning Colors to Text Modes
Graphics Control Characters

10 SOUND AND GAME CONTROLLERS

SOUND
PADDLE
PTRIG
STICK
STRIG

1 I ADVANCED PROGRAMMING TECHNIQUES

Memory Conservation
Programming In Machine Language

APPENDIX A BASIC RESERVED WORDS A-I

APPENDIX B ERROR MESSAGES B-I

APPENDIX C ATASCII CHARACTER SET
VVITH DECIMAL/
HEXADECIMAL LOCATIONS c-I

APPENDIX D ATARI 400/800
MEMORY MAP

Contents V

APPENDIX E DERIVED FUNCTIONS E-I
- -

APPENDIX F PRINTED VERSIONS OF
CONTROL CHARACTERS F-1

APPENDIX G GLOSSARY G-I

APPENDIX H USER PROGRAMS H-1

APPENDIX I MEMORY LOCATIONS
INDEX 117

vi Contents

PREFACE

This manual assumes the user has read the Atari BASIC - A Sew-Teaching
Guide or some other book on BASIC. This manual is not intended to "teach"
BASIC. It is a reference guide to the commands, statements, functions, and
special applications of Atarim BASIC.

The programs and partial programming examples used in this manual are
photostats of listings printed on the Atari 820TM Printer. Some of the special sym-
bols in the Atari character set do not appear the same on the printer; e.g., the
clear screen symbol "7" appears as a ") ". The examples in the text were
chosen to illustrate a particular function - not necessarily "good" programming
techniques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of Atari BASIC. For instance, Section 9 contains
all the statements pertaining to Atari's unique graphics capabilities. The appen-
dices include quick references to terms, error messages, BASIC keywords,
memory locations, and the ATASCII character set.

As there is no one specified application for the Atari Personal Computer System,
this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the Atari system's capabilities.

Preface vii

GENERAL
INFORMATION

This section explains BASIC terminology, special notations, and abbreviations
used in this manual, and the special keys on the ATARI 400TM and ATARI 800TM
Personal Computer Systems keyboard. It also points to other sections where
BASIC commands deal with specific applications.

TERMINOLOGY BASIC: Beginner's All-purpose Symbolic Instruction Code.

BASIC Keyword: Any reserved word "legal" in the BASIC language. May be
used in a statement, as a command, or for any other purpose. (See Appendix A
for a list of all "reserved words" or keywords in ATARI BASIC.)

BASIC Statement: Usually begins with a keyword, like LET, PRINT, or
RUN.

Constant: A constant is a value expressed as a number rather than represented
by a variable name. For example, in the statement X = 100, X is a variable and
100 is a constant. (See Variable.)

Command String: Multiple commands (or program statements) placed on the
same numbered line separated by colons.

Expression: An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Expressions can be
either arithmetic, logical, or string.

Function: A function is a computation built into the computer so that it can be
called for by the user's program. A function is NOT a statement; it is part of an
expression. It is really a subroutine used to compute a value which is then
"returned" to the main program when the subroutine returns. COS (Cosine),
RND (random), FRE (unused memory space), and INT (integer) are examples of
functions. In many cases the value is simply assigned to a variable (stored in a
variable) for later use. In other cases it may be printed out on the screen im-
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are:

(print out the random
number returned)

(add the value re-
returned to 100 and
store the total in
variable X)

General Irlforrnation 1

Logical Line: A logical line consists of one to three physical lines, and is ter-
minated either by a m or automatically when the maximum logical line
limit is reached. Each numbered line in a BASIC program consists of one logical
line when displayed on the screen. When entering a line which is longer than
one physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. If -is
not entered, then both physical lines will be part of the same logical line.

Operator: Operators are used in expressions. Operators include addition (+),
subtraction I-), multiplication I *), division (A, exponentiation (A), greater than
(>I, less than (<), equal to I=), greater than or equal to (> =), less than or equal to
(<,=I, and not equal to I< >). The logical keywords AND, NOT and OR are also
operators. The + and - operators can also be used as unary operators; e.g., - 3.
Do not put several unary operators in a row; e.g.,--3, as the computer will in-
terpret it incorrectly.

Physical Line: One line of characters as displayed on a television screen.

String: A string is a group of characters enclosed in quotation marks.
"ABRACADABRA" is a string. So are "ATARI MAKES GREAT COMPUTERS"
and "123456789". A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the
character $. For example, the string "ATARI BOO" may be assigned to a variable
called A$ using (optional) LET like this:

(LET is optional; the
qrwtes are required.)

Quotation marks may not be used within a string. However, the closing quota-
tion can be omitted if it is the last character on a logical line. (See Section 7 -
STRINGS).

Variable: A variable is the name for a numerical or other quantity which may
(or may not) change. Variable names may be up to I20 characters long.
However, a variable name must start with an alphabetic letter, and may contain
only capital letters and numerical digits. It is advisable not to use a keyword as a
variable name or as the first part of a variable name as it may not be interpreted
correctly. Examples of storing a value in a variable:

Note: LET is optional and may be omitted)

Variable N a m e Limit: ATARI BASIC limits the user to 128 variable names.To
bypass this problem, use individual elements of an array instead of having
separate variable names. BASIC keeps all references to a variable which has
been deleted from a program, and the name still remains in the variable name
table.

2 General Information

If the screen displays an ERROR-4 (Too Many Variables) message, use the follow-
ing procedure to make room for new variable names:

LIST f i 1 ewei

NEGl

ENTER f i 1 B P ~ C

The LIST filespec writes the untokenized version of the program onto a disk or
cassette. NEW clears the program and the table areas. The program is then re-
entered, re-tokenized, and a new variable table is built. he tokenized version
is Atari BASIC's internal format. The untokenized versions in ATASCII
which is the version displayed on the screen).

Arrays and Array Variables: An array is a list of places where data can be
filed for future use. Each of these places is called an element, and the whole array
or any element is an array variable. For example, define "Array A" as having 6
elements. These elements are referred to by the use of subscripted variables
such as A(2), A(3), A(4), etc. A number can be stored in each element. This
may be accomplished element by element (using the LET statement), or as a part
of a FOR/NEXT loop (see Chapter 8).

Note: Never leave blanks between the element number in parentheses and the
name of the array.

Correct Incorrect

A (23)
ARRAY (3)
XI23 (38)

SPECIAL Line Format: The format of a line in a BASIC program includes a line number

NOTATIONS (abbreviated to lineno) at the beginning of the line, followed by a statement
keyword, followed by the body of the statement and ending with a line ter-

USED IN minator command (-key). In an actual program, the four elements might
MANUAL look like this:

STATEMENT
A r 4

Line Number Keyword Body Terminator
100 PRINT A/X * (Z+4.567) Emu

Several statements can be typed on the same line provided they are separated by
colons (:I. See IF/THEN in Section 5, and Section 11.

Capital Letters: In this book, denote keywords to be typed by the user in up-
per case form exactly as they are printed in this text. Reverse-video characters
will not work except in the case of the RUN command. Here are a few ex-
amples:

PRINT INPUT LIST END GOT0 GOSUB FOR NEXT IF

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables
(var), expressions (exp), and the like. The abbreviations used for these classes of
items are shown in Table 1.1.

General Information 3

Items in Brackets: Brackets, [1, contain optionalitems which may be used,
but are not required. If the item enclosed in brackets is followed by three dots
[exp, ... I, it means that any number of expressions may be entered, but none are
required.

Items stacked vertically in braces: Items stacked vertically in braces indicate
that any one of the stacked items may be used, but that only one at a time is per-
missible. In the example below, type either the GOT0 or the GOSUB.

Command abbreviations in headings: If a command or statement has an ab-
breviation associated with it, the abbreviation is placed following the full name
of the command in the heading; e.g., LET (L.).

ABBREVIATIONS The following table explains the abbreviations used throughout this manual:

USED IN THIS
MAN1 JAL TABLE 1.1 ABBREVIATIONS

- - - - - - - - --

avar Arithmetic Variable: A location where a numeric value is
stored. Variable names may be from 1 to 120 alphanumeric
characters, but must start with an alphabetic character, and all
alpha characters must be unreversed and upper case.

svar String Variable: A location where a string of characters may be
stored. The same name rules as avar apply, except that the last
character in the variable name must be a $. String variables may
be subscripted. See Section 7, STRINGS.

mvar Matrix Variable: Also called a Subscripted Variable. An ele-
ment of an array or matrix. The variable name for the array or
matrix as a whole may be any legal variable name such as A, X,
Y , ZIP, or K. The subscripted variable (name for the particular
element) starts with the matrix variable, and then uses a number,
variable, or expression in parentheses immediately following the
array or matrix variable. For example, A(ROW), A(1), A(X + I).

var Variable: Any variable. May be mvar, avar, or svar.

aoP Arithmetic operator.

lop Logical operator.

aexp Arithmetic Expression: Generally composed of a variable,
function, constant, or two arithmetic expressions separated by an
arithmetic operator.

lexp Logical Expression: Generally composed of two arithmetic or
string expressions separated by a logical operator. Such an ex-
pression evaluates to either a 1 (logical true) or a 0 (logical false).

For example, the expression 1<2 evaluates to the value I (true)
while the expression "LEMON" = "ORANGE" evaluates to a zero
(false) as the two strings are not equal.

4 General Information

sexp String Expression: Can consist of a string variable, string literal
(constant), or a function that returns a string value.

exP Any expression, whether sexp or aexp.

lineno Line Number: A constant that identifies a particular program
line in a deferred mode BASIC program. Must be any integer
from 0 through 32767. Line numbering determines the order of
program execution.

adata ATASCII Data: Any ATASCII character excluding commas and
carriage returns. (See Appendix C.)

filespec File Specification: A string expression that refers to a device
such as the keyboard or to a disk file. It contains information on
the type of 110 device, its number, a colon, an optional file name,
and an optional filename extender. (See OPEN, Section 5.)

Example filespec: "D1:NATALIE.EDfl

OPERATING Direct Mode: Uses no line numbers and executes instruction immediately after

MODES key is pressed.

Deferred Mode: Uses line numbers and delays execution of instruction(s) until
the RUN command is entered.

Execute Mode: Sometimes called Run mode. After RUN command is entered,
each program line is processed and executed.

Memo Pad Mode: A non-programmable mode that allows the user to experi-
ment with the keyboard or to leave messages on the screen. Nothing written
while in Memo Pad mode affects the RAM-resident program.

SPECIAL
FUNCTION
KEYS

Q Reverse (Inverse) Video key, or "ATARI LOGO KEY". Press-
ing this key causes the text to be reversed on the screen (dark
text on light background). Press key a second time to return to
normal text.

. . . . Lower Case key: Pressing this key shifts the screen characters
from upper case (capitals) to lower case. To restore the characters
to upper case, press the key and the &.r:li-.. -A key
simultaneously.

Escape key: Pressing this key causes a command to be entered
into a program for later execution.

Example: To clear the screen, you would enter:

10 PRINT " m,,
and press m.
Escape is also used in conjunction with other keys to print special
graphic control characters. See Appendix F and back cover for
the specific keys and their screen-character representations.

General Information 5

ARITHMETIC
OPERATORS

LOGICAL
OPERATORS

Break key: Pressing this key during program execution causes
execution to stop. Execution may be resumed by typing CONT
followed by pressing .
System Reset key: Similar to in that pressing this key
stops program execution. Also returns the screen display to
Graphics mode 0, clears the screen, and returns margins and
other variables to their default values.

Tab key: Press and t h e m keys simultaneously to
set a tab. To clear a tab, press the w and keys
simultaneously. Used alone, t h e m a d v a n c e s the cursor to
the next tab position. In Deferred mode, set and clear tabs by
preceding the above with a line number, the command PRINT, a
quotation mark, and press t h e m k e y .

Examples:
100 PRINT " . , ,>
200 PRINT " m . , : "

Default tab settings are placed at columns 7 , 15, 23, 31, and 39.

Insert key: Press the and keys simultaneously to
insert a line. To insert a single character, press the and

keys simultaneously.

Delete key: Press the and C;mm keys simultaneously
to delete a line. To delete a single character, press and
b-4 simultaneously.

Back Space key: Pressing this key replaces the character to the
left of the cursor with a space and moves cursor back one space.

Clear key: Pressing this key while holding down the or
key blanks the screen and puts the cursor in the upper left

corner.

Return key: Terminator to indicate and end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted and
added to a BASIC program RAM. An unnumbered line (in Direct
mode) is interpreted and executed immediately. Any variables
are placed in a variable table.

The Atari Personal Computer System uses five arithmetic operators:

+ addition (also unary plus; e.g., + 5)
- subtraction (also unary minus; e.g., - 5)
* multiplication
/ division
A exponentiation

The logical operators consists of two types: unary and binary. The unary
operator is NOT. The binary operators are:

6 General Information

AND Logical AND
OR Logical OR

Both expressions must
be true before GOOD is
printed.

I f both expressions
true, A = + 1; otherwise
A =O.

I f either expression
true, A = + I ; otherwise
A =O.

If expression is false,
A = + I ; otherwise A = 0.

The rest of the binary operators are relational.

< The first expression is less than the second expression.
> The first expression is greater than the second.
= The expressions are equal to each other.

< = The first expression is less than or equal to the second.
> = The first expression is greater than or equal to the second.
< > The two expressions are not equal to each other.

These operators are most frequently used in IF/THEN statements and logical
arithmetic.

OPERATOR Operations within the innermost set of parentheses are performed first and pro-

PRECEDENCE c&d out to the next level. When sets ofparentheses areenclosed in anotherset,
they are said to be "nested". Operations on the same nesting level are performed
in the following order:

Highest <,>,=,<=,>=,<->
precedence

NOT
AND

Lowest OR
precedence

Relational operators used in string expres-
sions. Have same precedence and are per-
formed from left to right.
Unary minus
Exponentiation.
Multiplication and division have the same
precedence level and are performed from left
to right.
Addition and subtraction have the same
precedence level and are performed from left
to right.
Relational operations in numeric expressions
have the same precedence level from left to
right.
Unary operator
Logical AND
Logical OR

General Information 7

BUILT-IN The section titled FUNCTION LIBRARY explains the arithmetic and special

FUNCTIONS functions incorporated into Atari BASIC.

GRAPHICS Atari graphics include 9 graphics modes. The commands have been designed
to allow maximum flexibility in color choice and pattern variety. Section 9 ex-
plains each command and gives examples of the many ways to use each.

SOUND AND The Atari Personal Computer is capable of emitting a large variety of soundsb

GAMES including simulated explosions, electronic music, and "raspberries." Section 10
defines the commands for using the SOUND function and for controlling pad-

CONTROLLERS dle, joystick, and keyboard controllers.

WRAPAROUND The ATARI Personal Computer System has screen wraparound thus allowing
AND KEYBOARD greater flexibility. It also allows the user to type one key ahead. If the user

ROLLOVER
presses and holds any key, it will begin repeating after l/z second.

ERROR If a data entry error is made, the screen display shows the line reprinted preced-

MESSAGES ed by the message ERROR- and the offending character is highlighted. After
correcting the character in the original line, delete the line containing the
ERROR- before pressing m. Appendix B contains a list of all the error
messages and their definitions.

8 General Information

COMMANDS

BYE (B.)

CONT (CON.)

END

Whenever the cursor (0) is displayed on the screen, the computer is ready to ac-
cept input. Type the command (in either Direct or Deferred mode), and press
w. This section describes the commands used to clear computer memory
and other useful control commands.,

The commands explained in this section are the following:

BYE
CONT
END
LET
LIST

Format: BYE
Example: BYE

NEW
REM
RUN
STOP

The current function of the BYE command is to exit BASIC and put the com-
puter in Memo Pad mode. This allows the user to experiment with the keyboard
or to leave messages on the screen without disturbing any BASIC program in
memory. To return to BASIC, press .

Format: CONT
Example: CONT

Typing this command followed by a causes program execution to
resume. If a m, STOP, or END is encountered, the program will stop until
CONT is entered. Execution resumes at the next sequential line number
following the statement at which the program stopped.

Note: If the statement at which the program is halted has other commands on
the same numbered line which were not executed at the time of t h e m ,
STOP, or END, they will not be executed. On CONT, execution resumes at the
next numbered line. A loop may be incorrectly executed if.the program is
halted before the loop completes execution.

This command has no effect in a Deferred mode program.

Format: END
Example: 1000 END

This command terminates program execution and is used in Deferred mode. In
Atari BASIC, an END is not required at the end of a program. When the end of
the program is reached, Atari BASIC automatically closes all files and turns off
sounds (if any). END may also be used in Direct mode to close files and turn off
sounds.

Commands 9

LET (LE.)

LIST (L.)

NEW

Format: [LET] var = exp
Example: LET X = 3.142 * 16

LET X = 2

This statement is optional in defining variables. It can just as easily be left out of
the statement. It may be used, however, to set a variable name equal to a value.

Format: LIST nineno [, linen01 1
LIST [filespec [,lineno I: ,linen01 I I

Examples:

LIST
LIST 10
LIST? 18) 1@3

LIST "F. "?20?1@1

LIST "F"
LIST "D:DEMO.LSTU

This command causes the computer to display the source version of all lines cur-
rently in memory if the command is entered without line number(s), or to
display a specified line or lines. For example, LIST 10,100 displays lines
10 through 100 on the screen. If the user has not typed the lines into the com-
puter in numerical order, a LIST will automatically place them in order.

Typing L."P will print the RAM-resident program on the printer.

LIST can be used in Deferred mode as part of an error trapping routine (See
TRAP in Section 4).

The LIST command is also used in recording programs on cassette tape. The sec-
ond format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified.

Example: LIST "C1"
1000 LIST "Cl"

Format: NEW
Example: NEW

This command erases the program stored in RAM. Therefore, before typing
NEW, either SAVE or CSAVE any programs to be recovered and used later.
NEW clears BASIC's internal symbol table so that no arrays (See Section 8) or
strings (See Section 7) are defined. Used in Direct mode.

REM (R. or Format: REM text
Example: 10 REM ROUTINE TO CALCULATE X

This command and the text following it are for the user's information only. It is
ignored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line which occurs after a
REM statement will be ignored.

10 Commands

RUN (RU.)

STOP (STO.)

Format: RUN [filespec]
Examples: RUN

RUN "D:MENU"

This command causes the computer to begin executing a program. If no filespec
is specified, the current RAM-resident program begins execution. If a filespec is
included, the computer retrieves the specified, tokenized program from the
specified file and executes it.

All variables are set to zero and all open files and peripherals are closed. All ar-
rays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used, an error message is displayed if any error is
detected during execution and the program halts.

RUN can be used in Deferred mode.

Type RUN and press m. To end, press-.

To begin program execution at a point other than the first line number, type
GOT0 followed by the specific line number, then press-.

Format: STOP
Example: 100 STOP

When the STOP command is executed in a program, BASIC displays the
message STOPPED AT LINE , terminates program execution, and
returns to Direct mode. The STOP command does not close files or turn off
sounds, so the program can be resumed by typing CONT m.

Commands 11

NOTES

12 Notes

EDIT
FEATURES

SCREEN
EDITING

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilities. These keys are used in
conjunction with the or keys.

The following key functions are described in this section:

The keyboard and display are logically combined for a mode of operation
known as screen editing. Each time a change is completed on the screen, the

key must be pressed. Otherwise, the change is not made to the program
in RAM.

To delete line 20 from the program, type the line number and press the
key. Merely deleting the line from the screen display does not delete it from the
program.

The screen and keyboard as 110 devices are described in Section 5.

Control key. Striking this key in conjunction with
the arrow keys produces the cursor control functions
that allow the user to move the cursor anywhere on
the screen without changing any characters already
on the screen. Other key combinations control the
setting and clearing of tabs, halting and restarting
program lists, and the graphics control symbols.
Striking a key while holding the key will pro-
duce the upper-left symbol on those keys having
three functions.

Shift key: This key is used in conjunction with the
numeric keys to display the symbols shown on the
upper half of those keys. It is also used in conjunction

Edit Features 13

with other keys to insert and delete lines, return to a
normal, upper case letter display, and to display the
function symbols above the subtraction, equals, addi-
tion, and multiplication operators as well as the
brackets, [I, and question mark,?.

DOUBLE-KEY Cursor Control Keys

FUNCTIONS
Moves cursor up one physical line without changing
the program or display.

Moves cursor one space to the right without disturb-
ing the program or display.

Moves cursor down one physical line without chang-
ing the program or display.

Moves cursor one space to the left without disturbing
the program or display.

Like the other keys on the Atari keyboard, holding the cursor control keys for
more than l/z second causes the keys to repeat.

Keys Used With

Inserts one character space.

Deletes one character or space.

Stops temporarily and restarts screen display
without "breaking out" of the program.

Rings buzzer.

Indicates end-of-file.

Keys Used With

Inserts one physical line.

Deletes one physical line.

Returns screen display to upper-case alphabetic
characters.

Special Furidion Keys

Stops program execution or program list, prints a
READY on the screen, and displays cursor.

Allows commands normally used in Direct mode to
be placed in Deferred mode; e.g., In Direct mode,

clears the screen display. To clear the
screen in Deferred mode, type the following after the
program line number. Press m then press
and together.

PRINT " m "

14 Edit Features

PROGRAM
STATEMENTS

This section explains the commands associated with loops, conditional and un-
conditional branches, error traps, and subroutines and their retrieval. It also ex-
plains the means of accessing data and the optional command used for defining
variables.

The following commands are described in this section:

FOR, TO, STEP/NEXT IF/THEN POP
GOSUB/RETURN ON, GOSUB RESTORE

FOR (F.), TO, Format:

STEPINEXT (N.)
Examples:

ON, GOT0 TRAP

FOR avar = aexpl TO aexp2 [STEP aexp31
NEXT avar
FOR X = I TO 10
NEXT X
FOR Y = 10 TO 20 STEP 2
NEXT Y
FOR INDEX = Z TO 100 * Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is exe-
cuted. The loop variable (avar) is initialized to the value of aexpl. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers. If there is no STEP aexp3 command, the loop
increments by one. When the loop completes the limit as defined by aexp2, it
stops and the program proceeds to the statement immediately following the
NEXT statement; it may be on the same line or on the next sequential line.

Loops can be nested, one within another. In this case, the innermost loop is com-
pleted before returning to the outer loop. The following example illustrates a
nested loop program.

Figure 4-1. Nested Loop P r o g r a m

Program Statements 15

In Figure 4-1, the outer loop will complete three passes (X = 1 to 3). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner loop must precede
the NEXT statement for the outer loop. In the example, the inner loop's number
of passes is determined by the STEP statement (STEP Z). In this case, Z has
been defined as 0, then redefined as Z+2. Using this data, the computer must
complete three passes through the inner loop before returning to the outer loop.
The aexp3 in the step statement could also have been defined as the numerical
value 2.

The program run is .illustrated in Figure 4-2.

Figure 4-2. N e s t e d L o o p E x e c u t i o n

The return address for the loops are placed in a special group of memory ad-
dresses referred to as a stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack (see POP.)

GOSUB (GOS.) Format: GOSUB lineno
lineno
RETURN

Example: 100 GOSUB 2000
2000 PRINT WJBROUTINE~
2010 RETURN

A subroutine* is a program or routine used to compute a certain value, etc. It is
generally used when an operation must be replaced several times within a pro-
qram sequence using the same or different values. This command allows the
;ser to "call" the subroutinel, if necessary. The last line of the subroutine must
contain a RETURN statement. The RETURN statement goes back to the physical
line following the GOSUB statement.

Like the preceding FOR/NEXT command, the GOSUBIRETURN command
uses a stack for its return address. If the subroutine is not allowed to complete
normally; e.g., a GOT0 lineno before a RETURN, the GOSUB address must be
"popped" off the stack (see POP) or it could cause future errors.

* Generally, a subroutine can do anything that can be done in a program. It is used to save memory
and program-entering time, and to make programs easier to read and debug.

16 Program Statements

To prevent accidental triggering of a subroutine (which normally follows the
main program), place an END statement preceding the subroutine. The follow-
ing program demonstrates the use of subroutines.

Figure 4-3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three
times to compute and print out different values of X and Y. Figure 4-4 illustrates
the results of executing this program.

Figure 4-4. GOSUB/RETURN Program R u n

Examples: 100 GOT0 50
500 GOT0 (X+Y)

The GOT0 command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target line
number or arbitrary expression. However, using anything other than a con-
stant will make renumbering the program difficult. If the target line number is
non-existent, an error results. Any GOT0 statement that branches to a
preceding line may result in an "endless" loop. Statements following a GOT0
statement will not be executed. Note that a conditional branching statement (see
IF/THEN)can be used to break out of a GOT0 loop. The following program il-
lustrates two uses of the GOT0 command.

Program Statements 17

Figure 45. GOT0 Program Listing

Upon execution, the numbers in the above listing will be listed first followed by
the three rows of symbols. The symbols listed on lines 70,80, and 90 are ignored
temporarily while the program executes the GOT0 100 command. It proceeds
with the printing of the numbers "SIX" through "TEN", then executes the se-
cond GOT0 statement which transfers program control back to line 70. (This is
just an example. ?'his program could be rewritten so that no GOT0 statements
were used.) The program, when executed, looks like the following:

15kE
TI@
TH?EE
FOUR
F I YE

EIGHT
N I t4E
TDI
$$$$$$$$$$$$$$$$$;!;. >;. ..;, :;,>;.:..:..;...............
.-...~.-;.-;.-;.7.y..y..y..y..y.,y..y..y..y..-..-.

1 I I L l l l l l l l / ~ l l i i

Figure 4-6. GOT0 Program Run

Format: IF aexp THEN lineno
... (statement [:statement]

Examples: IF X = 100 THEN 150
IF A$ = '<ATARP THEN 200

I
IF AA = 145 and BB = I THEN PRINT AA, BB
IF X = 100 THEN X = 0

18 Prograrn Statements

The IFITHEN statement is a conditional branch statement. This type of branch
occurs only if certain conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF statement is true (non-zero),
the program executes the THEN part of the statement. If, however, the aexp is
false (a logical O), the rest of the statement is ignored and program control passes
to the next numbered line.

In the format, IF aexp THEN lineno, lineno must be a constant, not an expression
and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be ex-
ecuted if and only if the expression is true. Several IF statements may be nested
on the same line. For example:

The statements R = 9: GOT0 100 will be executed only if X = 5 and Y = 3. The
statement Y = 3 will be executed if X = 5.

The following program demonstrates the IFITHEN statement.

5 GE~~PHICS a:? :.? II IF DEfKI"
10 .? :? "ENTER A " ; : It.plfl A
28 I F fi=1 THE).] 4Ei : RErl :$Jl.T If'LE STfiTErlENT

HERE 1.J @,!EE EE c.{EclJTEz i

Figure 4-7. IF/THEN P r o g r a m

Figure 4-8. IF/THEN P r o g r a m E x e c u t i o n .

Program Statements 19

RETURN
ONIGOTO

POP

20 Program Statements

Format: ON aexp j GOTO lineno [,lineno...]
- IGOSUB~

Examples: 100 ON X GOT0 200, 300, 400
100 ON A GOSUB 1000, 2000

Note: GOSUB and GOT0 may not be abbreviated.

These two statements are also conditional branch statements like the IF/THEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is I, then program control
passes to the first lineno in the list following the GOSUB or GOTO. If the
resulting number is 2, program control passes to the second lineno in the list,
and so on. If the resulting number is 0 or is greater than the number of linenos
in the list, the conditions are not met and program control passes to the next
statement which may or may not be located on the same line. With ONIGOSUB,
the selected subroutine is executed and then control passes to the next state-
ment.

The following routine demonstrates the ONIGOTO statement:

Figure 4 9 ON/GOTO P r o g r a m Listing

When the program is executed, it looks like the following:

Figure 4-1 0 ON/GOTO P r o g r a m Execution

Format: POP
Example: 1000 POP

In the description of the FORNEXT statement, the stack was defined as a group
of memory addresses reserved for return addresses. The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers. If another
GOSUB is executed, that top location needs to be cleared. To prepare the stack
for a new GOSUB, use a POP to clear the data from the top location in the stack.

The POP command must be used according to the following rules:

1. It must be in the execution path of the program.
2. It must follow the execution of any GOSUB statement that is not brought

back to the main program by a RETURN statement.

The following example demonshrates the use of the POP command with a
GOSUB when the RETURN is not executed:

Figure 4-11. GOSUB Statement Wi th POP

RESTORE (RES .) Format: RESTORE [aexp]
Example: 100 RESTORE

The Atari Personal Computer System contains an internal "pointer" that
keeps track of the DATA statement item to be read next. Used without the op-
tional aexp, the RESTORE statement resets that pointer to the first DATA item
in the program. Used with the optional aexp, the RESTORE statement sets the
pointer to the first DATA item on the line specifed by the value ofthe aexp. This
statement permits repetitive use of the same data.

18 FOR N=l TO 2
20 READ A
30 RESTORE
48 READ E
50 Pl=A+E
GB PRINT "TOTAL EQUALS ";M
70 NEXT N
€a Eta
9l DATA 30,15

Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line
50 will print SUM TOTAL EQUALS 60, but on the second pass, A will equal 15

Program Statements 21

TRAP (T.)

and B, because of the RESTORE statement, will still equal 30. Therefore, the
PRINT statement in line 50 will display SUM TOTAL EQUALS 45.

Format: TRAP aexp
Example: 100 TRAP 120

The TRAP statement is used to direct the program to a specified line number if
an error is detected. Without a TRAP statement, the program stops executing
when an error is encountered and displays an error message on the screen.

The TRAP statement works on anv error that mav occur after it has been ex-
ecuted, but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command. This TRAP command may be placed at
the beginning of the section of code that handles input from the keyboard so
that the TRAP is reset after each error. PEEK(195) will give you an error
message (see Appendix B). 256*PEEK(187)+ PEEK(186) will give you the number
of the line where the error occurred. The TRAP may be cleared by executing a
TRAP statement with an aexp whose value is from 32767 to 65535 (e.g., 40000).

22 Program Statements

INPUTIOUTPUT
COMMANDS AND DEVICES

This section describes the inputloutput devices and how data is moved between
them. The commands explained in this section are those that allow access to the
inputIoutput devices. The input commands are those associated with getting
data into the RAM and the devices geared for accepting input. The output com-
mands are those associated with retrieving data from RAM and the devices
geared for generating output.

The commands described in this section are:

CLOAD INPUT OPENICLOSE READIDATA
CSAVE LOAD POINT SAVE
DOS LPRINT PRINT STATUS
ENTER NOTE PUTIGET XI0

INPUT/OUTPUT
DEVICES The hardware configuration of each of the following devices is illustrated in the

individual manuals furnished with each. The Central InputIOutput (CIO) sub-
system provides the user with a single interface to access all of the system
peripheral devices in a (largely) independent manner. This means there is a
single entry point and a device-independent calling sequence. Each device has a
symbolic device name used to identify it; e.g., K: for the keyboard. Each device
must be opened before access and each must be assigned to an InputIOutput Con-
trol Block (IOCB). From then on, the device is referred to by its IOCB number.

ATARI BASIC contains 8 blocks in RAM which identifies to the Operating
System the information it needs to perform an 110 operation. This information
includes the command, buffer length, buffer address, and two auxiliary control
variables. ATARI BASIC sets up the IOCB's, but the user must specify which
IOCB to use. BASIC reserves IOCB #O for I/O to the Screen Editor, therefore the
user may not request IOCB #O. The GRAPHICS statement (see Section 9) opens
IOCB #6 for input and output to the screen. (This is the graphics window S:).
IOCB #7 is used by BASIC for the LPRINT, CLOAD, and CSAVE commands. The
IOCB number may also be referred to as the device (or file) number. IOCB's 1
through 5 are used in opening the other devices for inputloutput operations. If
IOCB #7 is in use, it will prevent LPRINT or some of the other BASIC I/O
statements from being performed.

Keyboard: (K:) Input only device. The keyboard allows the user to read the
converted (ATASCII) keyboard data as each key is pressed.

Line Printer: (P:) Output only device. The line printer prints ATASCII
characters, a line at a time. It recognizes no control characters.

Program Recorder: (C:) Input and Output device. The recorder is a read/write
device which can be used as either, but never as both simultaneously. The
cassette has two tracks for sound and program recording purposes. The audio
track cannot be recorded from the ATARI system, but may be played back
through the television speaker.

I/O Commands and Devices 23

Disk Drives: (Dl:, DZ:, D3:, D4:) Input and Output devices. If 16K of RAM is
installed, the ATARI can use from one to four disk drives. If only one disk drive
is attached, there is no need to add a number after the symbolic device code D.

Screen Editor: (E:) Input and Output device. This device uses the keyboard
and display (see TV Monitor) to simulate a screen editing terminal. Writing to
this device causes data to appear on the display starting at the current cursor
position. Reading from this device activates the screen editing process and
allows the user to enter and edit data. Whenever the key is pressed, the
entire logical line within which the cursor resides is selected as the current
record to be transferred by CIO to the user program. (See Section 9).

TV Monitor: (S:) Input and Output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the
screen addressing mechanism. Both text and graphics operations are supported.
See Section 9 for a complete description of the graphics modes.

Interface, RS-232: (R:) The RS232 device enables the ATARI system to inter-
face with RS-232-compatible devices such as printers, terminals, and plotters. It
contains a parallel port to which the 80-column printer (ATARI 825TM) can be at-
tached.

CLOAD (CLOA.) Format: CLOAD
Examples: CLOAD

I00 CLOAD

This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD, one bell rings
to indicate that the PLAY button needs to be pressed followed by .
However, do not press PLAY until after the tape has been positioned. Specific in-
structions for CLOADing a program are contained in the ATARI 410 Program
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CHAINING PROGRAMS at the end of this section.

CsAVE (CS.) Format: CSAVE
Examples: CSAVE

I00 CSAVE
100 CS.

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version of the program. On enter-
ing CSAVE two bells ring to indicate that .the PLAY and RECORD buttons must
be pressed followed by m. Do not, however, press these buttons until the
tape has been positioned. It is faster to save a program using this command
rather than a SAVE "C" (see SAVE) because short inter-record gaps are used.

Notes: Tapes saved using the two commands, SAVE and CSAVE, are not com-
patible

It may be necessary to enter an LPRINT (see LPRINT) before using
CSAVE. Otherwise, CSAVE may not work properly.

For specific instructions on how to connect and operate the hardware,
cue the tape, etc., see the ATARI 410 Program Recorder Manual.

24 1/O Commands and Devices

Dos (DO.) Format: DOS
Example: DOS

The DOS command is used to go from BASIC to the Disk Operating System
(DOS). If the Disk Operating System has not been booted into memory, the com-
puter will go into Memo Pad mode and the user must press to return
to Direct mode. If the Disk Operating System has been booted, the DOS Menu is
displayed. To clear the DOS Menu from the screen, press w. Control
then passes to BASIC. Control can also be returned to BASIC by selecting B (Run
Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the Atar i DOS Manual.

ENTER (E.) Format: ENTER filespec
Examples: ENTER "C

ENTER c L ~ : ~ ~ ~ ~ ~ ~ . ~ ~ ~ n

This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un-
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the
old and new programs. This ENTER statement is usually used in Direct mode.

INPUT (I.) Format: INPUT [gaexp ()] (ts) [, (%:] ...I
Examples: 100 INPUT X

100 INPUT N$
100 PRINT "ENTER THE VALUE OF X"
110 INPUT X

This statement requests keyboard data from the user. In execution, the com-
puter displays a ? prompt when the program encounters an INPUT statement. It
is usually preceded by a PRINT statement that prompts the user as to the type of
information being requested.

String variables are allowed only if they are not subscripted. Matrix variables
are not allowed.

The #aexp is optional and is used to specify the file or device number from
which the data is to be input (see InputIOutput Devices). If no #aexp is specified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
m, type the next string, w, etc. Arithmetic numbers can be typed on
the same line separated by commas.

Figure 5-1 Input Program Listing

I/O Commands and Devices 25

LOAD (LO.) Format: LOAD filespec
Example: LOAD "D1:JANINE.BRY"

This command is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token-
ized version of the program. When using only one disk drive, it is not necessary
to specify a number after the "D" because the default is disk drive #I.

LPRINT (LP.) Format: LPRINT [exp] [(j) exp. ..]
Example: LPRINT "PROGRAM TO CALCULATE X"

100 LPRINT X;" ";Y;" " ;Z

This statement causes the computer to print data on the line printer rather than
on the screen. It can be used in either Direct or Deferred modes. It requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB #7.)

The above program listing illustrates a program that will add 5 numbers
entered by the user. To print a program listing on the line printer, see LIST.

NOTE (NO.) Format: NOTE gaexp, avar, avar
Example: 100 NOTE #I, X, Y

This command is used to store the current disk sector number in the first avar
and the current byte number within the sector in the second avar. This is the
current read or write position in the specified file where the next byte to be
read or written is located. This NOTE command is used when writing data to a
disk file (see POINT). The information in the NOTE command is written into a
second file which is then used as an index into the first file.

OPEN (0.) Formats: OPEN #aexp,aexpl,aexp2, filespec

CLOSE (CL.) CLOSE #aexp
Examples: 100 OPEN #2,8,O,"Dl:ATAR1800.BAS"

100 A$ = "DI:ATARI800.BAS"
110 OPEN #2,8,O,A$
150 CLOSE #2

Before a device can be accessed, it must be opened. This "opening" process links
a specific IOCB to the appropriate device handler, initializes any CIO-related con-
trol variables, and passes any device-specific options to the device handler. The
parameters for the OPEN command are defined as follows:

Mandatory character that must be entered by the
user.

aexp Reference IOCB or file number to same parameters
for future use (as in CLOSE command). Number
may be 1 through 7.

26 1/O Commands and Devices

aexpl Code number to determine input or output opera-
tion.

Code 4 = input operation
8 = output operation

12 = input and output operation
6 = disk directory input operation

(In this case, the filespec is the search specifica-
tion.)

9 = end-of-file append (output) operation. Append is
also used for a special screen editor input mode.
This mode allows a program to input the next
line from E: without waiting for the user to press
m.

aexp2 Device-dependent auxiliary code. An 83 in this
parameter indicates sideways printing on a printer
(see appropriate manuals for control codes).

filespec Specific file designation. Must be enclosed in quota-
tion marks. The format for the filespec parameter
is shown in Figure 5-2.

Number
(optional)

" D I : A T A R I 8 O O -
Device

Required A
Colon

File name
(up to 8
characters-
must begin
with alphabetic
character)

Period required
as separator if
extender is used.

Extender
(optional)-
Includes
0-3 characters

Figure 5-2 Filename Breakdown

Note: Filenames are
not used with
the program
recorder.

The CLOSE command simply closes files that have been previously opened with
an OPEN command. Note in the example that the aexp following the mandatory
character must be the same as the aexp reference number in the OPEN state-
ment.

I/O Commands and Devices 27

POINT (P.)

PRINT (PR or ?)

READ (REA.)
DATA (D.)

Format: POINT aaexp, avar, avar
Example: 100 POINT #2, A,B

This command is used when reading a file into RAM. The first avar specifies the
sector number and the second avar specifies the byte within that sector where
the next byte will be read or written. Essentially, it moves a software-controlled
pointer to the specified location in the file. This gives the user "random" access
to the data stored on a disk file. The POINT and NOTE commands are discussed
in more detail in the DOS Manual.

Format: PRINT [aaexp] (j) ' [exp] ~,exp.. .I
Examples: PRINT X, Y, Z, A$

100 PRINT "THE VALUE OF X IS ";X
100 PRINT "COMMAS", "CAUSE", "COLUMN", "SPACING"
100 PRINT #3, A$

A PRINT command can be used in either Direct or Deferred mode. In Direct
mode, this command prints whatever information is contained between the
quotation marks exactly as it appears. In the first example, PRINT X,Y,Z,A$, the
screen will display the current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the last example, PRINT #3,A$, the #3 is the file
specifier (may be any number between 1 and 7) that controls to which device
the value of A$ will be printed. (See Input/Output Devices.)

A comma causes tabbing to the next tab location. Several commas in a row cause
several tab jumps. A semicolon causes the next aexp or sexp to be placed im-
mediately after the preceding expression with no spacing. Therefore, in the
second example a space is placed before the ending quotation mark so the value
of X will not be placed immediately after the word "IS". If no comma or
semicolon is used at the end of a PRINT statement, then a m is output and
the next PRINT will start on the following line.

Format: PUT #aexp, aexp
GET #aexp,

Examples: 100 PUT #6, ASC("An)
200 GET #1,X

The PUT and GET are opposites. The PUT command,outputs a single byte from
0-255 to the file specified by #aexp. (# is a mandatory character in both these
commands). The GET command reads one byte from 0-255 (using #aexp to
designate the file, etc. on diskette or elsewhere) and then stores the byte in the
variable avar.

Formats: READ var [, var ...I
DATA adata [, adata ... 1

Examples: 100 READ A,B,C,D,E
110 DATA 12,13,14,15,16
I00 READ A$,B$,C$,D$,E$
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

These two commands are always used together and the DATA statement is
always used in Deferred model. The DATA statement can be located anywhere

'A Direct mode READ will only read data if a DATA statement was executed in the program.

28 1/O Commands and Devices

in the program, but must contain as many pieces of data as there are defined in
the READ statement. Otherwise, an "out of data" error is displayed on the
screen.

String variables used in READ statements must be dimensioned and cannot be
subscripted. (See STRINGS Section). Neither may array variables may be used in
a READ statement.

The DATA statement holds a number of string data for access by the READ
statement. It cannot include arithmetical operations, functions, etc. Further-
more, the data type in the DATA statement must match the variable type de-
fined in the corresponding READ statement.

The following program totals a list of numbers in a DATA statement:

5% PEINT "SIJM TOTAL EQIJAiS " ;/I
60 EblD

Figure 5-3 Read/Data Program Listing

The program, when executed, will print the statement:

SUM TOTAL EQUALS 255.

SAVE 6 .) Format: SAVE filespec
Example: SAVE "D l:YVONNE.PATn

The SAVE command is similar to the CSAVE command except that the full file
name system can be used. The device code number is optional when using only
one disk drive. The default is to disk drive #I. SAVE, like LOAD, uses long inter-
record gaps on the cassette (see CSAVE) and the tokenized form of the program.

STATUS (ST.) Format: STATUS #aexp,avar
Example: 350 STATUS #1,Z

The STATUS command calls the STATUS routine for the specified device (aexp).
The status of the STATUS command (see ERROR MESSAGES, Appendix B) is
stored in the specified variable (avar). This may be useful for future devices such
as the RS-232 interface.

X I 0 (X.) Format: XI0 cmdno, #aexp, aexpl, aexp2, filespec
Example: XI0 18,#6,0,O,"S:"

The XI0 command is a general input/output statement used for special opera-
tions. One example is its use to fill an area on the screen between plotted points

I/O Commands and Devices 29

and lines with a color (see Section 9). The parameters for this command are de-
fined as follows:

cmdno Number that stands for the particular command to
be performed.

cmdno OPERATION EXAMPLE

OPEN
GET RECORD
GET CHARACTERS
PUT RECORD
PUT CHARACTERS
CLOSE
STATUS REQUEST
DRAW LINE
FILL
RENAME
DELETE
LOCK FILE
UNLOCK FILE
POINT
NOTE
FORMAT

Same as BASIC OPEN
These 4 commands are similar to
BASIC INPUT GET, PRINT, and PUT

respectively.
Same as BASIC CLOSE
Same as BASIC STATUS
Same as BASIC DRAWTO
See Section 9
XI0 32,#1,O,O,"D:TEMP.CAROL"
XI0 33,#1,0,O,"D:TEMP.BAS"
XI0 35,#1,O,O,"D:TEMP.BAS"
XI0 36,#1,0,0,"D:TEMP.BASn
Same as BASIC POINT
Same as BASIC NOTE
XI0 254,#1,0,0,"D2:"

aexp Device number (same as in OPEN). Most of the time
it is ignored, but must be preceded by #.

aexpl Two auxiliary control bytes. Their usage
aexp2 depends on the particular device and command. In

most cases, they are unused and are set to 0.

filespec String expression that specifies the device. Must be
enclosed in quotation marks. Although some com-
mands, like Fill (Section 9), do not look at the
filespec, it must still be included in the statement.

CHAINING ~f a program requires more memory than is available, use the following steps to

PROGRAMS string programs of less than the maximum memory available into one program.

1. Type in the first part of the program in the normal way.
2. The last line of the first part of'the program should contain only the line

number and the command RUNLCC:"
3. Cue the tape to the blank section. Write down the program counter number

for later RUN purposes. Press PLAY and RECORD buttons on the deck so that
both remain down.

4. Type SAVE"C:" and press .
5. When the beeping sound occurs, press again.
6. When the screen displays "READY", do not move tape. Type NEW m.
7. Repeat the above instructions for the second part of the program.
8. As the second part of the program is essentially a totally new program, it is

possible to re-use the line numbers used in the first part of the program.
9. If there is a third part of the program, make sure the last line of the second

part is a RUNccC:" command.

30 1/O Commands and Devices

To execute a "chained" program, use the following steps:

1. Cue the tape to the beginning of part I of the program.
2. Press PLAY button on the recorder.
3. Type RUN%" .
4. When the "beep" sounds, press again.

The computer automatically loads the first part of the program, runs it, and
sounds a "beep" to indicate when to hit the space bar or to trigger the
tape motor for the second LOADIRUN. The loading takes a few seconds.

Note: A one-part program can be recorded and reloaded in the same way or
CSAVE and CLOAD can be used.

Note: Remember to boot DOS before typing in your program.

MODIFYING A The procedure for modifying an existing BASIC program stored on a diskette is

BASIC PROGRAM demonstrated in the following steps:

ON DISK I. Turn off ATARI console and insert BASIC cartridge.
2. Connect disk drive and turn it on - without inserting diskette.
3. Wait for Busy Light to go out and for the drive to stop. Open disk drive door.
4. Insert diskette (with DOS) and close door.
5. Turn on console. DOS should boot in and the screen show READY.
6. To load program from disk, type

LOAD "D:filename.ext
7 . Modify program (or type in new program).
8. To save program on disk, type

SAVE "D:filename.ext
9. Always wait for the Busy light to go out before removing diskette.
10. To get a Directory listing, do not remove diskette and type

DOS
Upon m, the DOS Menu will be displayed. Select command letter A,
type it, and press twice to list the directory on the screen; or type A
followed by pressing then P: m to list directory on the printer.

11. To return to BASIC, type B m or press .

110 Commands and Devices 31

NOTES

32 Notes

FUNCTION
LIBRARY

ARITHMETIC
FUNCTIONS

ABS

CLOG

EXP

INT

This section describes the arithmetic, trigonometric, and special purpose func-
tions incorporated into the ATARI BASIC. A function performs a computation
and returns the result (usually a number) for either a print-out or additional
computational use. Included in the trigonometric functions are two statements,
radians (RAD) and degrees (DEG), that are frequently used with trigonometric
functions. Each function described in this section may be used in either Direct
or Deferred mode. Multiple functions are perfectly legal.

The following functions and statements are described in this section:

ABS
CLOG
EXP
INT
LOG
RND
SGN
SaR

ATN
COS
SIN
DEG/RAD

Format: ABS(aexp)
Example: 100 AB = ABS (- 190)

ADR
FRE
PEEK
POKE
USR

Returns the absolute value of a number without regard to whether it is positive
or negative. The returned value is always positive.

Format: CLOG (aexp)
Example: 100 C = CLOG(83)

Returns the logarithm to the base 10 of the variable or expression in paren-
theses. CLOG(0) should give an error and CLOG(1) should be 0.

Format: EXP (aexp)
Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283), raised to the power specified
by the expression in parentheses. In the example given above, the number
returned is 20.0855365. In some cases, EXP is accurate only to six significant
digits.

Format: INT (aexp)
Examples: 100 I = INT(3.445) (3 would be stored in I)

100 X = INT(- 14.66778) (-15 would be stored in X)

Function Library 33

LOG

RND

SGN

Returns the greatest integer less than or equal to the value of the expression.
This is true whether the expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store the number 3. In the second
example, X is used to store the number - 15 (the first whole number that is less
than or equal to - 14.66778). This INT function should not be confused with the
function used on calculators that simply truncates (cuts off) all decimal places.

Format: LOG(aexp1
Example: 100 L = LOG(67.8912.57)

Returns the natural logarithm of the number or expression in parentheses.
LOG(0) should give an error and LOG(1) should be 0.

Format: RND(aexp1
Example: 10 A = RND (0)

Returns a hardware-generated random number between 0 and 1, but never
returns 1. The variable or expression in parentheses following RND is a dummy
and has no effect on the numbers returned. However, the dummy variable must
be used. Generally, the RND function is used in combination with other BASIC
statements or functions to return a number for games, decision making, and the
like. Here's a simple routine that returns a random number between 0 and 999.

Format: SGN(aexp)
Example: 100 X = SGN(-1991

10 is dummy variable)

1-1 would be returned)

Returns a -1 if aexp evaluates to a negative number; a 0 if aexp evaluates to 0, or a
I if aexp evaluates to a positive number.

Format: SQR(aexp1
Example: 100 PRINT SQR(1OO) (10 would be printed)

Returns the scluare root of the aexp which must be positive.

TRIGONOMETRIC
FUNCTIONS

ATN Format: ATN(aexp1
Example: 100 X = ATN(6.5)

Returns the arctangent of the variable or expression in parentheses.

cos Format: COS(aexp)
Example: 100 C = COS(X + Y + Z)

Note: Presumes X, Y, Z previously defined!

Returns the trigonometric cosine of the expression in parentheses.

34 Function Library

SIN Format: SIN(aexp1
Example: 100 X = SIN(Y)

Note: Presumes Y previously defined.

Returns the trigonometric sine of the expression in parentheses.

DEG/RAD Format: DEG
RAD

Example: 100 DEG
100 RAD

These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been executed, RAD must be used
to return to radians.

See Appendix E for the additional trigonometric functions that can be derived.

SPECIAL
PURPOSE
FUNCTIONS

ADR

FRE

PEEK

POKE

Format: ADR(svar1
Example: ADR(A$)

Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa-
tion to USR routines, etc. (See USR and Appendix Dl

Format: FRE(aexp)
Examples: PRINT FRE (0)

100 IF FRE (0) < 1000 THEN PRINT "MEMORY CRITICAL"

This function returns the number of bytes of user RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

Format: PEEK(aexp)
Examples: 1000 IF PEEK (4000) = 255 THEN PRINT "255"

100 PRINT "LEFT MARGIN IS"; PEEK (82)

Returns the contents of a specified memory address location (aexp). The address
specified must be an integer or an arithmetic expression that evaluates to an in-
teger between 0 and 65535 and represents the memory address in decimal nota-
tion (not hexadecimal). The number returned will also be a decimal integer with
a range from 0 to 255. This function allows the user to examine either RAM or
ROM locations. In the first example above, the PEEK is used to determine
whether location 4000 (decimal) contains the number 255. In the second exam-
ple, the PEEK function is used to examine the left margin.

Format: POKE aexpl, aexp2
Examples: POKE 82, 10

100 POKE 82, 20

Function Library 35

USR

~ l t h o u g h this is not a function, it is included in this section because it is closely
associated with the PEEK function. This POKE command inserts data into the
memory location or modifies data already stored there. In the above format,
aexpl is the decimal address of the location to be poked and aexp2 is the data to
be poked. Note that this number is a decimal number between 0 and 255. POKE
cannot be used to alter ROM locations. In gaining familiarity with this command
it is advisable to look at the memory location with a PEEK and write down the
contents of the location. Then, if the POKE doesn't work as anticipated, the
original contents can be poked into the location.

The above Direct mode example changes the left screen margin from its default
position of 2 to a new position of 10. In other words, the new margin will be 8
spaces to the right. To restore the margin to its normal default position, press

Format: USR (aexpl [, aexp2l[, aexp3 ... 1)
Example: I00 RESULT = USR (ADDl,A*2)

This function returns the results of a machine-language subroutine. The first ex-
pression, aexpl, must be an integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed. The input arguments aexp2, aexp3, etc., are optional.
These should be arithmetic expressions within a decimal range of 0 through
65535. A non-integer value may be used; however, it will be rounded to the
nearest integer.

These values will be converted from BASIC's Binary Coded Decimal (BCD)
floating point number format to a two-byte binary number, then pushed onto
the hardware stack, composed of a group of RAM memory locations under
direct control of the 6502 microprocessor chip. Figure 6-1 illustrates the struc-
ture of the hardware stack.

N (Number of arguments on the stack-may be 0)
XI (High byte of argumerit X)
xz (Low byte of argument x)
y I (High byte of argument Y)
y z (Low byte of argument Y)
ZI (High byte of argument Z)

zz (Low byte of argument z)

RI (Low byte of return address)
Rz (High byte of return address)

Figure 6-1. Hardware Stack Definition

Note: X is the argument following the address of the routine, Y is the
second, Z is the third, etc. There are N pairs of bytes.

See Section 11 for a description of the USR function in machine language pro-
gramming. Appendix D defines the bytes in RAM available for machine
language programming.

36 Function Library

STRINGS

ASC

This section describes strings and the functions associated with string handling.
Each string must be dimensioned (see DIM statement, Section 8) and each string
variable must end with a $. A string itself is a group of characters "strung"
together. The individual characters may be letters, numbers, or symbols
(including the Atari special keyboard symbols.) A substring is a part of a longer
string and any substring is accessible in Atari BASIC if the string has been pro-
perly dimensioned (see end of section). The characters in a string are indexed
from 1 to the current string length, which is less than or equal to the dimen-
sioned length of the string.

The string functions described in this section are:
ASC STR$
CHR$ VAL
LEN

Format: ASC(sexp)
Examples: 100A = ASC(A$)

This function returns the ATASCII code number for the first character of the
string expression (sexp). This function can be used in either Direct or Deferred
mode. Figure 7-1 is a short program illustrating the ASC function.

Figure 7-1. ASC Function Program

When executed, this program prints a 69 which is the ATASCII code for the let-
ter "E". Note that when the string itself is used, it must be enclosed in quotation
marks.

Format: CHR$ (aexp)
Examples: 100 PRINT CHR$ (65)

I00 A$ = CHR$ (65)

This character string function returns the character, in string format,
represented by the ATASCII code number(s) in parentheses. Only one character
is returned. In the above examples, the letter A is returned. Using the ASC and
CHR$ functions, the following program prints the upper case and lower case let-
ters of the alphabet.

Strings 37

LEN

VAL

Figure 7-2. ASC and CHR$ Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.

Format: LEN (sexp)
Example: 100 PRINT LEN(A$)

This function returns the length in bytes of the designated string. This informa-
tion may then be printed or used later in a program. The length of a string
variable is simply the index for the character which is currently at the end of
the string. Strings have a length of 0 until characters have been stored in them.
It is possible to store into the middle of the string by using subscripting.
However, the beginning of the string will contain garbage unless something
was stored (using STO) there previously.

The following routine illustrates one use of the LEN function:

Figure 7-3. LEN Function Example

The result of running the above program would be 5.

Format: STR$ (aexp)
Example: A$ = STR$(65)

This string from number function returns the string form of the number in
parentheses. The above example would return the actual number 65, but it
would be recognized by the computer as a string.

Note: There can only be one STR$ and only one CHR$ in a logical comparison.
For example, A = STR$(I) > STR$(2) is not valid and will not work correctly.

Format: VAL(sexp)
Example: 100 A = VAL(A$)

This function returns a number of the same value as the number stored as a
string. This is the opposite of a STR$ function. Using this function, the computer
can perform arithmetic operations on strings as shown in the following exam-
ple program:

Figure 7-4. VAL Function Program

38 Strings

Upon execution, the screen displays THE SQUARE ROOT OF B$ IS 100.

It is not possible to use the VAL function with a string that does not start with a
number, or that cannot be interpreted by the computer as a number. It can,
however, intrepret floating point numbers; e.g.,VAL("1E9")would return the
number 1,000,000,000.

STRING Strings can be manipulated in a variety of ways. They can be split, concatenated,
MANIPULATIONS rearranged, and sorted. The following paragraphs describe the different

manipulations.

String Concatenation

Concatenation means putting two or more strings together to form one large
string. Each string to be included in a larger string is called a substring. Each
substring must be dimensioned (see DIM). In Atari BASIC, a substring can con-
tain up to 99 characters (including spaces). After concatenation, the substrings
can be stored in another string variable, printed, or used in later sections of the
program. Figure 7-5 is a sample program demonstrating string concatenation.
In this program, A$, B$, and C$ are concatenated and placed in A$.

Figure 7-5. S t r i n g C o n c a t e n a t i o n E x a m p l e

String Splitting

The format of a subscript string variable is as follows:

svarname(aexpl[,aexp2l)

The svarname is used to indicate the unsubscripted string variable name (with
$1. aexpl indicates the starting location of the substring and aexp2 (if used) in-
dicates the ending location of the substring. If no aexp2 is specified, then the end
of the substring is the current end of the string. The starting location cannot be
greater than the current length of the string. The two example programs in
Figure 7-6 illustrate a split string with no end location indicated and a split
string with an ending location indicated.

Result is BCD.
(without ending location)

Result is 800.
(with ending location)

Figure 7-6. Sp l i t S t r i n g E x a m p l e s

Strings 39

String Comparisons and Sorts

In string comparisons, the logical operators are used exactly the way they are
with numbers. The second program in Appendix H is a simple example of bub-
ble sort.

In using logical operators, remember that each letter, number, and symbol is
assigned an ATASCII code number. A few general rules apply to these codes:

1. ATASCII codes for numbers are sized in order of the numbers' real
values and are always lower than the codes for letters (see Appendix C).

2. Upper case letters have lower numerical values than the lower case let-
ters. To obtain the ATASCII code for a lower case letter if you know the
upper case value, add 32 to the upper case code.

Note: Atari BASIC's memory management system moves strings around in
memory to make room for new statements. This causes the string address to
vary if a program is modified or Direct mode is used.

40 Strings

ARRAYS AND
MATRICES

An array is a one-dimensional list of numbers assigned to subscripted variables;
e.g., A(O), A(l), A(2). Subscripts range from 0 to the dimensioned value. Figure
8-1 illustrates a 7-element array.

Figure 8-1. E x a m p l e of a n A r r a y

A matrix, in this context, is a two-dimensional table containing rows and col-
umns. Rows run horizontally and columns run vertically. Matrix elements are
stored by BASIC in row-major order. This means that all the elements of the
first row are stored first, fillowed by all the elements of the second row, etc.
Figure 8-2 illustrates a 7 x 4 matrix.

Columns

:
2

Figure 8-2. E x a m p l e of a Matr ix

This section
strings, and
tion are:

DIM
CLR

describes the two commands associated with arrays, matrices, and
how to load both arrays and matrices. The commands in this sec-

DIM (DI.) Format:
D m (svar(aexp)] 1 ,svar(aexp)

mvar(aexp[,aexpl) ,mvar(aexp [,aexp ... I

Examples: DIM A(1OO)
DIM M(6,3)
DIM B$(20) used with STRINGS

Ar r avs and Mattkes 41

A DIM statement is used to reserve a certain number of locations in memory for
a string, array, or matrix. A character in a string takes one byte in memory and
a number in an array takes six bytes. The first example reserves 101 locations
for an array designated A. The second example reserves 7 rows by 4 columns
for a two-dimensional array (matrix) designated M. The third example reserves
20 bytes designated B$. All strings, arrays, and matrices must be dimen-
sioned. It is a good habit to put all DIM statements at the beginning of the pro-
gram. Notice in Figure 8-1 that although the array is dimensioned as DIM A(6),
there are actually 7 elements in the array because of the 0 element. Although
Figure 8-2 is dimensioned as DIM M(6,3), 28 locations are reserved.

Note: The ATARI Personal Computer does not automatically initialize array or
matrix variables to 0 at the start of program execution. To initialize array or
matrix elements to 0, use the following program steps:

Arrays and matrices are "filled" with data by using FOWNEXT statements,
READDATA statements and INPUT commands. Figure 8-3 illustrates the
"building" ofpart of an array using the FOWNEXT loop and Figure 8-4 builds an
array using the READ/DATA statements.

Figure 8-3. Use of FOR/NEXT to Build A n A r r a y

100 [GTA 33 45.; 12

Figure 8-4. Use of READ/DATA to Build A n A r r a y

42 Arrays and Matrices

CLR

Figure 8-5 shows an example of building a 6 x 3 matrix.

Figure 8-5. Building A M a t r i x

Note that the words ROW and COLUMN are not BASIC commands, statements,
functions, or keywords. They are simply variable names used here to designate
which loop function is first. The program could just as easily have been written
with X and Y as the variable names.

Format: CLK
Example: 200 CLR

This command clears the memory of all previously dimensioned strings, arrays,
and matrices so the memory and variable names can be used for other purposes.
It also clears the values stored in undimensioned variables. If a matrix, string, or
array is needed after a CLR command, it must be redimensioned with a DIM
command.

Arrays and Matrices 43

NOTES

44 Notes

GRAPHICS MODES
AND COMMANDS

This section describes the Atari BASIC commands and the different graphics
modes of the ATARI Personal Computer. Using these commands, it is possible to
create graphics for game, graphics, and patterns.

The commands to be described in this section are:

GRAPHICS
COLOR
DRAWTO

LOCATE
PLOT
POSITION

PUT/GET
SETCOLOR
XI0

The PUT/GET and XI0 commands explained in this section are special applica-
tions of the same commands described in Section 5.

GRAPHICS (GR.) Format: GRAPHICS aexp
Example: GRAPHICS 2

This command is used to select one of the nine graphics modes. Table 9-1 sum-
marizes the nine modes and the characteristics of each. The GRAPHICS com-
mand automatically opens the screen, %(the graphics window1,as device #6. So
when printing text in the text window, it is not necessary to specify the device
code. The aexp must be positive, rounded to the nearest integer. Graphics mode
0 is a full-screen display while modes I through 8 are split screen displays. To
override the split-screen, add the characters + 16 to the mode number (aexp) in
the GRAPHICS command. Adding 32 prevents the graphics command from
clearing the screen.

To return to graphics mode 0 in Direct mode, press or type GR.0
and press

--

TABLE 9.1-TABLE OF MODES AND SCREEN FORMATS
--

SCREEN FORMAT

Vert. Vert. Number
Gr . Mode Horiz. (Col) (Col) Of RAM

Mode Type (Rows) Split Full Colors Required
Screen Screen (Bytes)

TEXT
TEXT
TEXT

GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS

The following paragraphs describe the nine graphics modes.

Graphic M o d s and Cornmarlds 45

GRAPHICS This mode is the 1-color, 2-luminance (brightness) default mode for the ATARI
MODE O Personal Computer. ~t contains a 24 by 40 character screen matrix. The default

margin settings at 2 and 39 allow 38 characters per line. Margins may be chang-
ed by poking LMARGN and RMARGN (82 and 83). See Appendix I. Some systems
have different margin default settings. The color of the characters is determined
by the background color. Only the luminance of the characters can be different.
This full-screen display has a blue display area bordered in black (unless the
border is specified to be another color). To display characters at a specified loca-
tion, use one of the following two methods.

Method 1.
lineno POSITION aexpl, aexp2 Puts cursor at location
lineno PRINT sexp specified by aexpl and aexp2.

Method 2
lineno GR. 0
lineno POKE 752,l
lineno COLOR ASC(sexp1

lineno PLOT aexpl,aexp2

Specifis graphics mode.
Suppresses cursor.
Specifies character to be
printed.
Specifies where to print
character.
Start loop to prevent READY
from being printed. (GOTO
same lineno.)

Press to terminate
loop.

GRAPHICS 0 is also used as a clear screen command either in Direct mode or
Deferred mode. It terminates any previously selected graphics mode and
returns the screen to the default mode (GRAPHICS 0).

GRAPHICS As defined in Table 9-1, these two 5-color modes are Text modes. However, they

MODES are both split-screen (see Figure 9-11 modes. Characters printed in Graphics
mode I are twice the width of those printed in Graphics 0, but are the same

1 AND 2 height. Characters printed in Graphics mode 2 are twice the width and height
of those in Graphics mode 0. In the split-screen mode, a PRINT command is used
to display characters in either the text window or the graphics window. To
print characters in the graphics window, specify device #6 after the PRINT com-
mand.

Example: 100 GR. 1
110 PRINT#6;"ATARIH

The default colors depend on the type of character input. Table 9-2 defines the
default color and color register used for each type.

Table 9-2. Default Colors for Specific Input Types

Character Type Color Register Default Color

Upper case alphabetical
Lower case alphabetical
Inverse upper case alphabetical
Inverse lower case alphabetical
Numbers
Inverse numbers

0 Orange
1 Light Green
2 Dark Blue
3 Red
0 Orange
2 Dark Blue

Note: See SETCOLOR to change character colors.

46 Graphic Modes and Commands

GRAPHICS
MODES
3, 5, AND 7

GRAPHICS
MODES
4 AND 6

GRAPHICS
MODE 8

Unless otherwise specified, all characters are displayed in upper case non-
inverse form. To print lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics modes 1 and 2, there is no inverse video, but it is possible to get all
the rest of the characters in four different colors (see end of section).

S :
- Graphics Wi

(graphics or
ndow
text1

Figure 9-1. Split-Screen Disp lay For Graph ic s Modes 1 a n d 2

The X and Y coordinates start at 0 (upper left of screen). The maximum values
are the numbers of rows and columns minus 1 (see Table 9-1).

This split-screen configuration can be changed to a full screen display by adding
the characters + 16 to the mode number.

Example: GRAPHICS 1 + 16

These three kcolor graphics modes are also split-screen displays in their default
state, but may be changed to full screen by adding + 16 to the mode number.
Modes 3, 5, and 7 are alike except that modes 5 and 7 use more points (pixels) in
plotting, drawing, and positioning the cursor; the points are smaller, thereby
giving a much higher resolution.

These two 2-color graphics modes are split-screen displays and can display in
only two colors while the other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space (see Table 9-1). Therefore,
it is used when only two colors are needed and RAM is getting crowded. These
two modes also have a higher resolution which means smaller points than
Graphics mode 3.

This graphics mode gives the highest resolution of all the other modes. As it
takes a lot of RAM to obtain this kind of resolution, it can only accomodate a
maximum of one color and two different luminances.

Graphic Modes and Commands 47

COLOR (C.) Format: COLOR aexp
Examples: 110 COLOR ASC("A")

110 COLOR 3

The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO com-
mands until the next COLOR statement is executed. The value must be positive
and is usually an integer from 0 through 255. Non-integers are rounded to the
nearest integer. The graphics display hardware interprets this data in different
ways in the different graphics modes. In text modes 0 through 2, the number
can be from 0 through 255 (8 bits) and determines the character to be displayed
and its color. (The two most significant bits determine the color. This is why on-
ly 64 different characters are available in these modes instead of the full
256-character set.)

Tables 9-6 and 9-7 at the end of this section illustrate the internal character set
and the character/color assignment. Table 9-2 is a simplified table which allows
easy generation of some of the colors. For example, COLOR ASC("A''): PLOT
5,5 will display an orange A character in graphics modes 1 or 2 at location 5,5.

Graphics modes 3 through 8 are not text modes, so the data stored in the display
RAM simply determines the color of each pixel. Two-color or two-luminance
modes require either 0 or I (I-bit) and four-color modes require 0, I, 2, or 3. (The
expression in the COLOR statement may have a value greater than 3, but only
one or two bits will be used.) The actual color which is displayed depends on the
value in the color register which corresponds to the data of 0, I, 2, or 3 in the
particular graphics mode being used. This may be determined by looking in
Table 9-5, which gives the default colors and the corresponding register
numbers. Colors may be changed by using SETCOLOR.

Note that when BASIC is first powered up, the color data is 0, and when a
GRAPHICS command (without +32) is executed, all of the pixels are set to 0.
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed. Correct by doing a
COLOR I first.

DRAWTO (DR.) Format: DRAWTO aexpl, aexp2
Example: 100 DRAWTO 10, 8

This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexpl and aexp2. The first expression
represents the X coordinate and the second represents the Y-coordinate (see
Figure 9-11. The color of the line is the same color as the point displayed by the
PLOT.

LOCATE (LOC.) Format: LOCATE aexpl, aexp2, var
Example: 150 LOCATE 12, 15, X

This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a number from 0 to 255 for Graphics
modes 0 through 2; 0 or 1 for the 2-color graphics modes; and 0, I, 2, or 3 for the
4-color modes. The two arithmetic expressions specify the X and Y coordinates
of the point. LOCATE is equivalent to:

POSITION aexpl, aexp2:GET #6,avar

48 Graphic M o d s and Commrcrrils

Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified. This problem is avoided by
repositioning the cursor and putting the data that was read, back into the pixel
before doing the PRINT. The following program illustrates the use of the
LOCATE command.

Figure 9-2. Example Program Using LOCATE

On execution, the program prints the data (I) determined by the COLOR state-
ment which was stored in pixel 12, 15.

PLOT (PL.) Format: PLOT aexpl, aexp2
Example: 100 PLOT 5,5

The PLOT command is used in graphics modes 3 through 8 to display a point in
the graphics window. The aexpl specifies the X-coordinate and the aexp2 the
Y-coordinate. The color of the plotted point is determined by the hue and
luminance in the color register from the last COLOR statement executed. To
change this color register, and the color of the plotted point, use SET-
COLOR. Points that can be plotted on the screen are dependent on the graphics
mode being used. The range of points begins at I and extends to one less than
the total number of rows (X-coordinate) or columns (Y-coordinate) shown in
Table 9-1.

POSITION (POS.) Format: POSITION aexpI, aexp2
Example: 100 POSITION 8, 12

The POSITION statement is used to place the invisible graphics window cursor
at a specified location on the screen (usually precedes a PRINT statement). This
statement can be used in all modes. Note that the cursor does not actually move
until an I10 command which involves the screen is issued.

Formats: PUT #aexp, aexp
GET #aexp, avar

Examples: 100 PUT #6, ASC("A")
200 GET #I, X

In graphics work, PUT is used to output data to the screen display. This state-
ment works hand-in-hand with the POSITION statement. After a PUT (or GET),
the cursor is moved to the next location on the screen. Doing a PUT to device #6
causes the one-byte input (second aexp) to be displayed at the cursor position.
The byte is either an ATASCII code byte for a particular character (modes 0-2) or
the color data (modes 3-81.

GET is used to input the code byte of the character displayed at the cursor posi-
tion, into the specified arithmetic variable. The values used in PUT and GET cor-
respond to the values in the COLOR statement. (PRINT and INPUT may also be
used.)

Graphic Modes and Commands 49

Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read, back into the pixel before
doing the PRINT.

SETCOLOR (SE.) Format: SETCOLOR aexpl, aexp2, aexp3
Example: 100 SETCOLOR 0, I, 4

This statement is used to choose the particular hue and luminance to be stored
in the specified color register. The parameters of the SETCOLOR statement are
defined below:

aexpl = Color register (0-4 depending on graphics mode)
aexp2 = Color hue number (0-15. See Table 9-31
aexp3 = Color luminance (must be an even number between 0 and 14; the

higher the number, the brighter the display. 14 is almost pure
white.)

TABLE 9.3-THE ATARI HUE (SETCOLOR COMMAND)
NUMBERS AND COLORS

COLORS SETCOLOR (aexp2) NUMBERS

GRAY
LIGHT ORANGE (GOLD)
ORANGE
RED-ORANGE
PINK
PURPLE-BLUE
BLUE
BLUE
LIGHT BLUE
TURQUOISE
GREEN-BLUE
GREEN
YELLOW-GREEN
ORANGE-GREEN
LIGHT ORANGE

Note: Colors will vary with type and adjustment of TV or monitor used.

The ATARI display hardware contains five color registers, numbered
from 0 through 4. The Operating System (0s) has five RAM locations (COLOR0
through COLOR4, see Appendix I - Memory Locations) where it keeps track of
the current colors. The SETCOLOR statement is used to change the values in
these RAM locations. (The OS transfers these values to the hardware registers
every television frame.) The SETCOLOR statement requires a value from 0 to 4
to specify a color register. The COLOR statement uses different numbers
because it specifies data which only indirectly corresponds to a color register.
This can be confusing, so careful experimentation and study of the various
tables in this section is advised.

No SETCOLOR commands are needed if the default set of five colors is used.
Although 128 different color-luminance combinations are possible, not more
than five can be displayed at any one time. The purpose of the color registers
and SETCOLOR statement is to specify these five colors.

50 Graphic Modes and Commands

TABLE 9.4-TABLE OF SETCOLOR CCDEFAULT" COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color

8 ORANGE
10 GREEN
4 DARK BLUE
6 PINK OR RED
0 BLACK

*"DEFAULTM occurs if not SETCOLOR statement is used.

Note: Colors'may vary depending upon the television monitor type, condition,
and adjustment.

A program illustrating Graphics mode 3 and the commands explained so far in
this section is shown below:

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9.5). The SETCOLOR command loads color register 0 with hue 2
(orange) and a luminance of 8 ("normal"). The next 4 lines plot the points to be
displayed. Line 90 suppresses the cursor and line 100 prints the string expres-
sion ATARI PERSONAL COMPUTERS in the text window (6 spaces in).

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it will print the Atari logo in the graphics window
and the string expression in the text window as in Figure 9-3.

Graphic Modes and Commands 51

X-AXIS POINTS (COLUMNS)

Figure 9-3. Atari Logo Program Execution

,(GRAPHICS WINDOW)

DEVICE CODE "S."
Screen

(Graphics or Text)

J Editor
DEVICE CODE "E."

-3
(Text Only)

z
E
9

Y Y Y

.2 .2 .2
8 8 8

Graphic Modes and Comnzands 53

X I 0 (x.) Format: XI0 18, #aexp, aexpl, aexp2, filespec
SPECIAL FILL Example: 100 XI0 18, #6, 0, 0, "S:"

APPLICATION
This special application of the XI0 statement fills an area on the screen between
plotted points and lines with a non-zero color value. Dummy variables (0) are
used for aexpl and aexp2.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).
2. DRAWTO upper right corner (point 2). This outlines the right edge of the

area to be filled.
3. DRAWTO upper left corner (point 3).
4. POSITION cursor at lower left corner (point 4).
5. POKE address 765 with the fill color data (1, 2, or 3).
6. This method is used to fill each horizontal line from top to bottom of the spe-

cified area. The fill starts at the left and proceeds across the line to the right
until it reaches a pixel which contains non-zero data (will wraparound if
necessary). This means that fill cannot be used to change an area which has
been filled in with a non-zero value, as the fill will stop. The fill command
will go into an infinite loop if a fill with zero (0) data is attempted on a line
which has no non-zero pixels. or can be used to stop the
fill if this happens.

The following program creates a shape and fills it with a data (color) of 3. Note
that the XI0 command draws in the lines of the left and bottom of the figure.

Figure 9-4. Example "FILL" Program

Assigning Colors To Characters In Text Modes 1 and 2

This procedure describes the method of assigning colors to the Atari character
set. First, look up the character number .in Table 9-6. Then, see Table 9-7 to get
the conversion of that number recluired to assign a color register to it.

Example: Assign SETCOLOR 0 to lower case "r" in mode 2
whose color is determined b y register 0.

1. In Table 9-6, find the column and number for "r" (114-column 4).
2. Using Table 9-7, locate column 4. Conversion is the character number minus

32 (114 - 32 = 82).

54 Graphic Modes and Comnmrlds

Table 9.6-INTERNAL CHARACTER SET

I Column 1 I Column 2 I Column 3 I Column 4 I

1. In mode 0 these characters must be preceded with an escape, CHR$(27), to be printed.

I Table 9.7-CHARACTER/COLOR ASSIGNMENT 1

I POKE 756,224 POKE 756,226 I
MODE 1 I----

Conversion 4

NONE

MODE 2

Conversion 3

#- 32

Conversion 2

#+ 32

2. Luminance controlled by SETCOLOR 1, 0, LUM.

Conversion 1

#+ 32 MODE 0

SETCOLOR 0

SETCOLOR 1
I

SETCOLOR 2

SETCOLOR 3

3. POKE the Character Base Address (CHBAS) with 226 to specify lower case let-
ters or special graphics characters; e.g.,

POKE 756,226
or

CHBAS = 756
POKE CHBAS, 226

2
SETCOLOR 2

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS
with 224.

-$32

NONE

#+I60

#+ 128

4. A PRINT statement using the converted number (82) assigns the lower case
"r" to SETCOLOR 0 in mode 2 (see Table 9-5).

Graphic Control Characters

#+ 32

#+ 64

#+I60

+ 192

These characters are produced when the key is pressed with the
alphabetic keys shown on back cover. These characters can be used to draw
design, pictures, etc., in mode 0 and in modes 1 and 2 if CHBAS is changed.

56 Graphic Modes and Commands

#- 32

#- 64

#+96

#+64

#- 32

NONE

#+96

#+ 128

SOUNDS AND GAME
CONTROLLERS

This section describes the statement used to generate musical notes and sounds
through the audio system of the television monitor. Up to four different sounds
can be "played" simultaneously creating harmony. This SOUND statement can
also be used to simulate explosions, whistles, and other interesting sound ef-
fects. The other commands described in this section deal with the functions
used to manipulate the keyboard, joystick, and paddle controllers. These func-
tions allow these controllers to be plugged in and used in BASIC programs for
games, etc.

The command and functions covered in this section are:

SOUND PADDLE
PTRIG

STICK
STRIG

SOUND (SO.) Format: SOUND aexpl, aexp2, aexp3, aexp4
Example: 100 SOUND 2, 204, 10, 12

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program en-
counters another SOUND statement with the same aexpl or an END statement.
This command can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

aexpl =

aexp2 =

aexp3 =

aexp4 =

Voice. Can be 0-3, but each voice requires a separate SOUND state-
ment.

Pitch. Can be any number between 0-255. The larger the number,
the lower the pitch. Table 10-1 defines the pitch numbers for the
various musical notes ranging from two octaves above middle C to
one octav~ below middle C.

Distortion. Can be even numbers between 0-14. Used in creating
sound effects. A 10 is used to created a "pure" tone whereas a 12
gives an interesting buzzer sound. A buzzing sound (like engines at
a race track) can be produced using two separate SOUND commands
with the distortion value (aexp3) alternating between 0 and 1. A
value of 1 is used to force output to the speaker using the specified
volume (see aexp4). The rest of the numbers are used for other
special effects, noise generation, and experimental use.

Volume control. Can be between 1 and 15. Using a i creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered nor-
mal. If more than 1 sound statement is being used, the total volume
should not exceed 32. This will create an unpleasant "clipped" tone.

Sounds and Game Controllers 57

Using the note values in Table 10-1, the following example demonstrates how to
write a program that will "play" the C scale.

TABLE 10.1. TABLE OF PITCH VALUES FOR THE MUSICAL
NOTES

HIGH
NOTES

MIDDLE C

LOW NOTES

Figure 10-1. Musical Scale Program

Note that the DATA statement in line 80 ends with a 256, which is outside of the
designated range. The 256 is used as an end-of-data marker.

58 Sounds and Game Controllers

GAME Figure 10-2 is an illustration of the three controllers used with the Atari Per-

CONTROLLER sonal Computers. The controllers can be attached directly to the Atari Per-

FUNCTIONS
sonal Computer or to external mechanical devices so that outside events can be
fed directly to the computer for processing and control purposes.

PADDLE

PTRIG

STICK

Figure 10-2. Game Controllers

Format: PADDLE(aexp1
Example: PRINT PADDLE(3)

This function returns the status of a particular numbered controller. The paddle
controllers are numbered 0-7 from left to right. This function can be used with
other functions or commands to "cause" further actions like sound, graphics
controls, etc. For example, the statement IF PADDLE(3) = 14 THEN PRINT
"PADDLE ACTIVE." Note that the PADDLE function returns a number bet-
ween 1 and 228, with the number increasing in size as the knob on the con-
troller is rotated counterclockwise (turned to the left).

Format: PTRIG(aexp1
Example: 100 IF PTRIG(4) = 0 THEN PRINT "MISSILES FIRED!"

The PTRIG function returns a status of 0 if the trigger button of the designated
controller is pressed. Otherwise, it returns a value of 1. The aexp must be a
number between 0 and 7 as it designates the controller.

Format: STICK(aexp1
Example: 100 PRINT STICK(3)

This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The joystick controllers are numbered from
0-3 from left to right.

Controller 1 = STICK(0)
Controller 2 = STICK(1)
Controller 3 = STICK(2)
Controller 4 = STICK(3)

Figure 10-3 shows the numbers that will be returned when the joystick con-
troller is moved in any direction.

Sounds and Game Controllers 59

STRIG

Figure 10-3. Joystick Controller Movement

Format: STRIG(aexp1
Example: 100 IF STRIG(3) = 0 THEN PRINT "FIRE TORPEDO"

The STRIG function works the same way as the PTRIG function. It can be used
with both the joystick and keyboard controllers.

GO Sounds and Game Controllers

ADVANCED PROGRAMMING
TECHNIQUES

This section includes hints on increasing programming efficiency, conserving
memory, and combining machine language programs with Atari BASIC pro-
grams. This section does not include an instruction set for the 6502 micro-
processor chip nor does it give instructions on programming in machine
language. An additional purchase of the Atari Assembler Editor cartridge* and
a careful study of Atari's Assembler Editor Manual are strongly recommended.

MEMORY
CONSERVATION These hints give ways of conserving memory. Some of these methods make pro-

grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations.

I. In many small computers, eliminating blank spaces between words and
characters as they are typed into the keyboard will save memory. This is not
true of the ATARI Personal Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (just as in typing on a
conventional typewriter) between successive keywords and between
keywords and variable names. Here is an example:

I0 IF A = 5 THEN PRINT A

Note the space between IF and A and between THEN and PRINT. In most
cases, a statement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true. Use conventional spacing.

2. Each new line number represents the beginning of what is called a new
"logical line". Each logical line takes 6 bytes of "overhead", whether it is
used to full capacity or not. Adding an additional BASIC statement by using a
colon (:I to separate each pair of statements on the same line takes only 3
bytes.

*Available late 1980.

Advanced Programming Techniques 61

If you need to save memory, avoid programs like this:

and consolidate lines like this:

This consolidation saves 12 bytes.

3. Variables and constants should be "managed" for savings, too. Each time a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new
variable requires 8 bytes plus the length of the variable name (in characters).
But each time it is used after being defined, it takes only I byte, regardless of
its length. Thus, if a constant (such as 3.14159) is used more than once or
twice in a program, it should be defined as a variable, and the variable name
used throughout the program. For example:

10 PI=3.14153
28 PRINT WECi OF k CIRCLE I S THE RAClIUS

SQUARED TIMES ";PI

4. Literal strings require 2 bytes overhead and I byte for each character
(including all spaces) in the string.

5. String variables take 9 bytes each plus the length of the variable name
(including spaces) plus the space eaten up by the DIM statement plus the size
of the string itself (I byte per character, including spaces) when it is defined.
Obviously, the use of string variables is very costly in terms of RAM.

6. Definition of a new matrix requires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of col-
umns). Thus, a 25 row by 4 column matrix would require 15 + approxi-
mately 3 (for variable name) + approximately 10 (for the DIM statement) + 6
times 100 (the matrix size), or about 630 bytes.

62 Advanced Programming Techniques

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to
remove remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times. On the other
hand, a subroutine that is only called once takes extra bytes for the GOSUB
and RETURN statements.

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer.
However, removing unnecessary parentheses and relying on operator
precedence will same a few bytes.

PROGRAMMING Machine language is written entirely in binary code. The ATARI Personal Com-
IN MACHINE puter contains a 6502 microprocessor and it is possible to call 6502 machine code

LANGUAGE subroutines from BASIC using the USR function. Short routines may then be
entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac-
cumulator (PLA) instruction to remove the number (N) of input arguments off
the stack. If this number is not 0, then all of the input arguments must be pop-
ped off the stack also using PLA. (See Figure 6-11.

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) in-
struction. The BASIC interpreter will convert the 2-byte binary number stored
in locations 212 and 213 into an integer between 0 and 65535 in floating-point
format to obtain the value returned by the USR function.

The ADR function may be used to pass data that is stored in arrays or strings to a
subroutine in machine language. Use the ADR function to get the address of the
array or string, and then use this address as one of the USR input arguments.

The following program, Hexcode Loader, provides the means of entering hexa-
decimal codes, converting each hexadecimal number to decimal, and storing the
decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)

Advanced Programming Techniques 63

1. To use this program, first enter it. After entering it, save this program on
disk or cassette for future use.

10 GRAPHICS O:PRINT "HEXCODE LOkDER FROG
W1" :PRIHT
2@ REM STORES DECI !I& EQlJIUALEt4TS I N iiRR
AY A, OUTPUTS I N PRINTED 'DATA STATBENT
S' kT
21 EEM L I E NUMBER ISM.
38 E M USER THEN PLACES C L I M E 13.4 FTINTE
D OUTPUT LINE, HITS "RETURN", ANfi ENTERS

31 E M E S T Of BAS1 C PROGRW IKLUliIEIG U
SR STATEMENT.
46 DIM k(50 I, HE.:$.(5 5
50 kEfl I WUT, COtWERS IQN, STORAGE OF DATA.

Figure 11-1. Hexcode Loader Input Program

64 Advanced Frogmmming Techniques

Now add the BASIC language part of your program starting at line 1080 in-
cluding the USR function that calls the machine language subroutine. (See
example below.)

Count the total number of hex codes to be entered and enter this number on
line 1000 when requested. If another number is already entered, simply
replace it.

Run the program and enter the hexadecimal codes of the machine level
subroutine pressing after each entry. After the last entry, type
DONE and press m.

Now the DATA line (1500) displays on the screen. It will not be entered into
the program until the cursor is moved to the DATA line and is
pressed.

Add a program line 5 GOT0 1000 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by
using CSAVE or SAVE. It is important to do this before executing the part of
the program containing the USR call. A mistake in a machine language
routine may cause the system to crash. If the system does hang up, press
m. If the system doesn't respond, turn power off and on again,
reload the program, and correct it.

Note: This method only works with relocatable machine language routines.

The following two sample programs can each be entered into the Hexcode
Loader program. The first program prints NOTHING IS MOVING while the
machine program changes the colors. The second sample program displays a
BASIC graphics design, then changes colors.

After entering this program, check that line 1000 reads:

Type RUN m.

Advanced Programming Techniques 65

Now enter the hexadecimal codes as shown column by column.

BYTES = 21

When completed, type DONE and press m. Now place the cursor after the
last entry (999) on the DATA line and press-.

Now run the program by typing GOT0 I000 .and pressing m, or if line 5
has been added, type RUN m. Press -to stop program and delete line
5.

The second program, which follows, should be entered in place of the
NOTHING IS MOVING program. Be sure to check the BYTES = count in
line 1000. Follow steps 2 through 6.

Type RUN

Enter the hexadecimal codes for this program column by column.

BYTES = 21

66 Advanced Programming Techniques

When completed, type DONE and press m. Now place the cursor after the
last entry (999) on the DATA line and press m.
Now run the program by typing GOT0 1000 and pressing -,or add line 5
GOT0 1000 and type RUN m. Press to stop program and delete line
5.

Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. It is included here for the information of the user.

Address Object
Code

Assembler
Prints This

Assembler Subroutine to Rotate Colors..

Line Label Mnemonic Data
No.

* =

PLA
LDX
LDY

LOOP LDA
STA
INX
CPX

BCC

STY
RTS

$6000

#O
COLOR0

COLOR1,X
COLOR0,X

#3

LOOP

COLOR3

Routine to rotate COLOR data
From one register to another.
4 colors are rotated.

Operating system address
COLOR 0 = $02C4
COLOR 1 = $02C5
COLOR 2 = $02C6
COLOR 3 = $02C7

Machine program starting address*
Pop stack (See Chapter 4)
Zero the X register
Save COLOR 0

Increment the X register (add one)
Compare contents of X register
with 2
Loop if X register contents are
less than 2
Save COLOR 0 in COLOR 3
Return from machine level sub-
routine

This Portion is Source Information Programmer Enters
Using Atari Assembler Cartridge

Indicates data (source)
* Routine is relocatable
$ Indicates a hexadecimal number

Figure 11-2. Assembler Subroutine To Rotate Colors

Advanced Programming Techniques 67

APPENDIX A

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note : The period is mandatory after all abbreviated keywords.

RESERVED
WORD:

BRIEF SUMMARY
OF BASIC STATEMENT ABBREVIATION:

Function returns absolute value (unsigned) of the
variable or expression.

A B S

Function returns memory address of a string. A D R

A N D Logical operator: Expression is true only if both subex-
pressions joined by A N D are true.

ASC String function returns the numeric value of a single
string character.

Function returns the arctangent of a number or expres-
sion in radians or degrees.

A T N

B.

CLOA.

BYE Exit from BASIC and return to the resident operating
system or console processor.

Loads data from Program Recorder into RAM. CLOAD

CHR$ String function returns a single string byte equivalent
to a numeric value between 0 and 255 in ATASCII code.

Function returns the base 10 logarithm of an expres-
sion.

CLOG

CLOSE CL. I/O statement used to close a file at the conclusion of I/O
operations.

The opposite of DIM: Undimensions all strings;
matrices.

CLR

COLOR Chooses color register to be used in color graphics
work.

COM

CONT

Same as DIM.

CON. Continue. Causes a program to restart execution on the
next line following use of t h e m key or encounter-
ing a STOP.

Function returns the cosine of the variable or expres-
sion (degrees or radians).

COS

CSAVE Outputs data from RAM to the Program Recorder for
tape storage.

Appendix A-1

RESERVED
WORD: ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

Part of READ/DATA combination. Used to identify the
succeeding items (which must be separated by commas)
as individual data items.

DATA D .

DEG DE. Statement DEG tells computer to perform
trigonometric functions in degrees instead of radians.
(Default in radians.)

DIM DI. Reserves the specified amount of memory for matrix,
array, 0.r string. All string variables, arrays, matrices
must be dimensioned with a DIM statement.

Reserved word for disk operators. Causes the menu to
be displayed. (See DOS Manual.)

DOS

DRAWTO

END

DO.

D R . Draws a straight line between a plotted point and
specified point.

Stops program execution; closes files; turns off sounds.
Program may be restarted using CONT. (Note: END
may be used more than once in a program.)

ENTER

EXP

FOR

I/O command used to store data or programs in un-
tokenized (source) form.

Function returns e (2.7182818) raised to the specified
power.

Used with NEXT to establish FOR/NEXT loops. In-
troduces the range that the loop variable will operate in
during the execution of loop.

Function returns the amount of remaining user
memory (in bytes).

FRE

GET GE. Used mostly with disk operations to input a single byte
of data.

Branch to a subroutine beginning at the specified line
number.

GOSUB GOS.

GOT0

GRAPHICS

G.

GR.

Unconditional branch to a specified line number.

Specifies which of the eight graphics modes is to be
used. GR.0 may be used to clear screen.

Used to cause conditional branching or to execute
another statement on the same line (only if the first ex-
pression is true).

INPUT Causes computer to ask for input from keyboard. Ex-
ecution continues only when - key is pressed aAer
inputting data.

INT Function returns the next lowest whole integer below
the specified value. Rounding is always downward,
even when number is negative.

String function returns the length of the specified str-
ing in bytes or characters (1 byte contains 1 character).

LEN

RESERVED
WORD:

BRIEF SUMMARY
OF BASIC STATEMENT ABBREVIATION:

LET LE. Assigns a value to a specific variable name. LET is op-
tional in Atari BASIC, and may be simply omitted.

L. Display or otherwise output the program list. LIST

LOAD

LOCATE

LO. Input from disk, etc. into the computer.

LOC. Graphics: Stores, in a specified variable, the value that
controls a specified graphics point.

Function returns the natural logarithm of a number. LOG

LPRINT

NEW

NEXT

LP.

N.

Command to line printer to print the specified message.

Erases all contents of user RAM.

Causes a FOR/NEXT loo to terminate or continue

P P de ending on the particu ar variables or expressions.
A1 loops are executed at least once.

NOT A "I" is returned only if the expression is NOT true. If
it is true, a "0" is returned.

See DOS/FMS Manual ... used only in disk operations. NOTE

ON

NO.

Used with GOT0 or GOSUB for branching purposes.
Multiple branches to different line numbers are possible
depending on the value of the ON variable or expres-
sion.

OPEN

OR

Opens the specified file for input of output operations.

Lo ical operator used between two ex ressions. If f C' ,P eit er one is true, a "1" is evaluated. A 0 results only
if both are false.

PADDLE

PEEK

Function returns position of the paddle game controller.

Function returns decimal form of contents of specified
memory location (RAM or ROM).

PLOT PL. Causes a single point to be plotted at the X,Y location
specified.

POINT

POKE

P .

POK.

Used with disk operations only.

Insert the specified byte into the specified memory loca-
tion. May be used only with RAM. Don't try to POKE
ROM or you'll get an error.

POP Removes the loop variable from the GOSUB stack. Used
when departure from the loop is made in other than
normal manner.

Sets the cursor to the specified screen position. POSITION

PRINT

POS.

P R . or 7 I/O command causes output from the computer to the
specified output device.

Appendit- A-3

RESERVED
WORD: ABBREVIATION:

PTRIG

PUT

RAD

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

SGN

SIN

SOUND

sw
STATUS

STEP

STICK

STRIG

PU.

REA.

R. or .

RES.

RET.

RU.

S.

SE.

so.

ST.

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns status of the trigger button on game
controllers.

Causes output of a single byte of data from the computer
to the specified device.

Specifies that information is in radians rather than
degrees when using the trigonometric functions.
Default is to RAD. (See DEG.)

Read the next items in the DATA list and assign to
specified variables.

Remarks. This statement does nothing, but comments
may be printed within the program list for future
reference by the programmer. Statements on a line that
starts with REM are not executed.

Allows DATA to be read more than once.

RETURN from subroutine to the statement immediate-
ly following the one in which GOSUB appeared.

Function returns a random number between 0 and 1,
but never 1.

Execute the program. Sets normal variables to 0, un-
dims arrays and string.

I10 statement causes data or rogram to be recorded on
disk under filespec provide d' with SAVE.

Store hue and luminance color data in a particular color
register.

Function returns + 1 if value is positive, 0 if zero, - 1 if
negative.

Function returns trigonometric sine of given value
(DEG or RAD).

Controls register, sound pitch, distortion, and volume of
a tone or note.

Function returns the square root of the specified value.

Calls status routine for specified device.

Used with FORINEXT. Determines quality to be
skipped between each pair of loop variable values.

Function returns position of stick game controller

Function returns 1 if stick trigger button not pressed, 0
if pressed.

STOP STO. Causes execution to stop, but does not close files or turn
off sounds.

A-4 Appendix

RESERVED
WORD: ABBREVIATION:

THEN

TO

T R A P

USR

VAL

X I 0

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns a character string equal to numeric
value given. For example: STR$(65) returns 65 as a
string.

Used with IF: If ex ression is true, the THEN
statements are enecutezlf the expression is false, con-
trol passes to next line.

Used with FOR as in "FOR X = I TO 10". Separates the
loop range expressions.

Takes control of program in case of an INPUT error
and directs execution to a specified line number.

Function returns results of a machine-language
subroutine.

Function returns the equivalent numeric value of a
string.

General I10 statement used with disk operations (see
DOS/FMS Manual) and in graphics work (Fill).

Appendix A-5

APPENDIX B

ERROR
MESSAGES

ERROR
CODE NO.

2

3

4

5

6

7

8

9

ERROR CODE MESSAGE

Memory insufficient to store the statement or the new variable name or to DIM a
new string variable.

Value Error: A value expected to be a positive integer is negative, a value ex-
pected to be within a specific range is not.

Too Many Variables: A maximum of 128 different variable names is allowed.
(See Variable Name Limit.)

String Length Error: Attempted to store beyond the DIMensioned string length.

Out of Data Error: READ statement requires more data items than supplied by
DATA statement(&

Number greater than 32767: Value is not a positive integer or is greater than
32767.

Input Statement Error: Attempted to INPUT a non-numeric value into a
numeric variable.

Array or String DIM Error: DIM size is greater than 32767 or an arraylmartix
reference is out of the range of the dimensioned size, or the arraylmatrix or string
has been already DIMensioned, or a reference has been made to an undimensioned
array or string.

Argument Stack Overflow: There are too many GOSUBs or too large an expres-
sion.

Floating Point OverflowlUnderflow Error: Attempted to divide by zero or
refer to a number larger than I x log8 or smaller than 1 x 10 - 99.

Line Not Found: A GOSUB, GOTO, or THEN referenced a non-existent line
number.

No Matching FOR Statement: A NEXT was encountered without a previous
FOR, or nested FORNEXT statements do not match properly. (Error is reported at
the NEXT statement, not at FOR).

Line Too Long Error: The statement is too complex or too long for BASIC to
handle.

GOSUB or FOR Line Deleted: A NEXT or RETURN statement was encoilritered
and the corresponding FOR or GOSUB has been deleted since the last RUN.

Appendix B-1

ERROR
CODE NO.

Note:

ERROR CODE MESSAGE

RETURN Error: A RETURN was encountered without a matching GOSUB.

Garbage Error: Execution of "garbage" (bad RAM bits) was attempted. This error
code may indicate a hardware problem, but may also be the result of faulty use of
POKE. Try typing NEW or powering down, then re-enter the program without
any POKE commands.

~nvalid String Character: String does not start with a valid character, or string
in VAL statement is not a numeric string.

The following are INPUT/OUTPUT errors that result during the use of disk
drives, printers, or other accessory devices. Further information is pro-
vided with the auxiliary hardware.

LOAD program Too Long: Insufficient memory remains to complete LOAD.

Device Number Larger than 7 or Equal to 0.

LOAD File Error: Attempted to LOAD a non-LOAD file.

BREAK Abort: User hit key during I/O operation.

IOCB1 already open.

Nonexistent Device specified.

IOCB Write Only. READ command to a write-only device (Printer).

Invalid Command: The command is invalid for this device.

Device or File not Open: No OPEN specified for the device.

Bad IOCB Number: Illegal device number.

IOCB Read Only Error: WRITE command to a read-only device.

EOF: End of File read has been reached. (NOTE: This message may occur when
using cassette files.)

Truncated Record: Attempt to read a record longer than 256 characters.

Device Timeout. Device doesn't respond.

Device NAK: Garbage at serial port or bad disk drive.

Serial bus input framing error.

Cursor out of range for particular mode.

Serial bus data frame overrun.

IIOCB refers to Input/Output Control Block. The device number is the same as the IOCB number.

B-2 Appendix

ERROR
CODE N O . ERROR CODE MESSAGE

Serial bus data frame checksum error.

Device done error (invalid "done" byte): Attempt to write on a write-protected
diskette.

Read after write compare error (disk handler) or bad screen mode handler.

Function not implemented in handler.

Insufficient RAM for operating selected graphics mode.

Drive number error.

Too many OPEN files (no sector buffer available).

Disk full (no free sectors).

Unrecoverable system data I/O error.

File number mismatch: Links on disk are messed up.

File name error.

POINT data length error.

File iocked.

Command invalid (special operation code).

Directory full (64 files).

File not found.

POINT invalid.

Appendix 8-3

APPENDIX C

ATASCII
CHARACTER SET

IC 0
ID 0
IE 0
IF Q
20 Space

21

22 9 9

23 #

24 $

25 70

26 &

Appendix C-1

39

40

4 1

42

43

44

45

46

47

48

49

5 0

51

52

53

54

C-2 Appendix

Appendix C-3

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

E 1

E2

E3

E4

E5

E6

Appendix C-5

(Buzzer)

m o l e . character)

See Appendix H for a user program that performs decimal/hexadecimal conversion.

Notes:

I. ATASCII stands for "ATARI ASCII". Letters and numbers have the same values as those in ASCII, but
some of the special characters are different.

2. Except as shown, characters from 128-255 are reverse colors of I to 127.

3. Add 32 to upper case code to get lower case code for same letter.

4. To get ATASCII code, tell computer (direct mode) to PRINT ASC (" ") Fill blank with letter,
character, or number of code. Must use the quotes!

5. On pages C-1 and C-3, the normal display keycaps are shown as white sym-
bols on a black background; on pages C-4 and C-6 inverse keycap symbols
are shown as black on a white background.

C-6 Appendix

APPENDIX D

ATARI 400I800
MEMORY MAP

ADDRESS CONTENTS
Decimal Hexadecimal

FFFF
EOOO

OPERATING SYSTEM ROM

DFFF
D800

FLOATING POINT ROM

HARDWARE REGISTERS

CFFF
COO0

NOT USED

BFFF
CARTRIDGE SLOT A
(may be RAM if no A or B cartridge)

CARTRIDGE SLOT B
(may be RAM if no B cartridge) 4 RAMTOP (MSB) 1

(7FFF if 32K system)
DISPLAY DATA (size varies)

DISPLAY LIST (size varies)
31755 7CIF (7ClF if 32K system, (GRAPHICS% Os MEMTOp I

FREE RAM
(size varies) 4 BASIC MEMTOP

BASIC program, buffers, tables, run-time stack.
(2A80 if DOS, may vary)

10880 2A80
0s MEMLO

BASIC LOMEM

10879 2A 7F DISK OPERATING SYSTEM (2A7F-700)

9856 2680
DISK 110 BUFFERS (current DOS)

DISK OPERATING SYSTEM RAM (current DOS)

Appendix D-1

ADDRESS

Decimal Hexadecimal

CONTENTS

FILE MANAGEMENT SYSTEM RAM (current DOS)

FREE RAM

FLOATING POINT (used by BASIC)

BASIC CARTRIDGE

I OPERATING SYSTEM RAM (47F-200)
CASSETTE BUFFER

RESERVED
- -- --

PRINTER BUFFER

] MISCELLANEOUS OS VARIABLES

HARDWARE STACK

PAGE ZERO
FLOATING POINT (used by BASIC)

BASIC or CARTRIDGE PROGRAM

209 D 1
208 DO FREE BASIC RAM

FREE BASIC AND ASSEMBLER RAM

FREE ASSEMBLER RAM I BASIC

ASSEMBLER ZERO PAGE ZERO PAGE

OPERATING SYSTEM RAM

As the addresses for the top of RAM, OS, and BASIC and the ends of OS and BASIC vary according to the
amount of memory, these addresses are indicated by pointers. The pointer addresses for each are defined
in Appendix I.

D-2 Appendix

APPENDIX E

DERIVED
FUNCTIONS

Derived Functions Derived Functions in Terms of Atari Functions

Secant

Cosecant

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent

Hyperbolic Sine

Hyperbolic Cosine

Hyperbolic Tangent

Hyperbolic Secant

Hyperbolic Cosecant

Hyperbolic Cotangent

Inverse Hyperbolic Sine

Inverse Hyperbolic Cosine

Inverse Hyperbolic Tangent

Inverse Hyperbolic Secant

Inverse Hyperbolic Cosecant

Inverse Hyperbolic Cotangent

Notes:

SEC(X) = I/COS(X)

CSC(X) = I/SIN(X)

ARCSIN(X) = ATN(X/SQR(-X*X + I))

ARCCOS(X) = - ATN(X/SQR(- X*X + 1) +CONSTANT

ARSEC(X) = ATN(SQR(X* X-I)) + (sGN(X-I)* CONSTANT

ARCCSC(X) = ATN(I/SQR(X*X-11) + (SGN(X-I)*CONSTANT

ARCCOT(X) = ATN(X) + CONSTANT

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X) + EXP(-X))/2

TANH(X) = -EXP(-X)/(EXP(X) + EXP(-X))*2 + I

SECH(X) = 2/(EXP(X) + EXP(-XI)

CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP(-XI) *2 + 1

ARCSINH(X) = LOG(X + SQR(X*X + 1))

ARCCOSH(X) + LOG(X + SQR(X*X-I))

ARCTANH(X) = LOG((1 + X)/(I-X))/2

ARCSECH(X) = LOG((SQR(-X*X + 1) + I)/x)

ARCCSCH(X) = LOG((SGN(X) * SQR(X* x + 1) + I)/x)

ARCCOTH(X) = LOG((X + I)/(X-1))/2

I. If in RAD (default) mode, constant = 1.57079633
If in DEG mode, constant = 90.

2. In this chart, the variable X in parentheses represents the value or expression to be evaluated by the
derived function. Obviously, any variable name is permissible, as long as it represents the number or
expression to be evaluated.

Appendix E-1

APPENDIX F

PRINTED VERSIONS
OF CONTROL CHARACTERS

The cursor and screen control characters can be placed in a string in a program or used as a Direct mode
statement by pressing the rn key before entering the character from the keyboard. This causes the
special symbols which are shown below to be displayed. (Refer to Section 1 - Key.)

SEE THIS

PRESS

m
m

m
PRESS AND

HOLD PRESS

0 0
0 a

a
0 Q

0 Q

APPENDIX G

GLOSSARY

Alphanumeric:

Array:

ATASCII:

BASIC:

Binary:

Bit:

Branch:

Bug:

Byte:

Central Processing
Unit (CPU):

Code:

Command:

The alphabetic letters A-Z, the numbers 0-9, and some symbols. (No
punctuation marks or graphics symbols).

A list of numerical values stored in a series of memory locations
preceded by a DIM statement. May be referred to by use of an array
variable, and its individual elements are referred to by subscripted
variable names.

Stands for Atari American Standard Code for Information Inter-
change.

High level programming language. Acronym for Beginner's All-
purpose symbolic Intruction Code. BASIC is always written using all
capital letters. Developed by Mssrs. Kemeny and Kurtz at Dartmouth
College in 1963.

A number system using the base two. Thus the only possible digits
are 0 and 1, which may be used in a computer to represent true and
false, on and off, etc.

Short for Binary Digit. A bit can be thought of as representing true or
false, whether a circuit is on or off, or any other type of two-
possibility concept. A bit is the smallest unit of data with which a
computer can work.

Atari BASIC executes a program in order of line numbers. This ex-
ecution sequence can be altered by the programmer, and the pro-
gram can be told to skip over a certain number of lines or return to a
line earlier in the program. This contrived change in execution se-
quence is called "branching".

A mistake or error usually in the program or "software".

Usually eight bits (enough to represent the decimal number 255 or
11111111 in binary notation). A byte of data can be used to represent
an ATASCII character or a number in the range of 0 to 255.

In microcomputers such as the Atari systems, these are also called
microprocessors or MPU. At one time, the CPU was that portion of
any computer that controlled the memory and peripherals. Now the
CPU or MPU is usually found on a single integrated circuit or "chip"
(in Atari's case a 6502 microprocessor chip).

Instructions written in a language understood by a computer.

An instruction to the computer that is executed immediately. A good
example is the BASIC command RUN. (See Statement.)

Computer:

Concatenation:

Control Characters:

CRT:

Cursor:

Data:

Debug:

Default:

Digital:

Diskette:

Editing:

Execute:

Expression:

Format:

Hard Copy:

Any device that can receive and then follow instructions to
manipulate information. Both the instructions and the information
may be varied from moment to moment. The distinction between a
computer and a programmable calculator lies in the computer's abili-
ty to manipulate text as well as numbers. Most calculators can only
handle numbers.

The process of joining two or more strings together to form one
longer string.

Characters produced by holding down the key labeled while
simultaneously pressing another key.

Abbreviation for "cathrode ray tube" (the tube used in a TV set). In
practice, this is often used to describe the television receiver used to
display computer output. Also called a "monitor".

A square displayed on the TV monitor that shows where the next
typed character will be displayed.

Information of any kind.

The process of locating and correcting mistakes and errors in a pro-
gram.

A mode or condition "assumed" by the computer until it is told to do
something else. For example, it will "default" to screen and keyboard
unless told to use other I10 devices.

Information that can be represented by a collection of bits. Virtually
all modern computers, especially microcomputers, use the digital ap-
proach.

A small disk. A record/playback medium like tape, but made in the
shape of a flat disk that is placed inside a stiff envelope for protection.
The advantage of the disk over cassette or other tape for memory
storage is that access to any part of the disk is virtually immediate.
The Atari 800 Personal Computer System can control up to 4 diskette
drive peripherals simultaneously. In this manual, disk and diskette
are used interchangeably.

Abbreviation for "disk operating systemy'. The software or pro-
grams which facilitate use of a disk-drive system. DOS is pronounced
either "dee oh ess" or "doss".

Making corrections or changes in a program or data.

To do what a command or program specifies. To RUN a program or
portion thereof.

A combination of variables, numbers, and operators (like +, -, etc.)
that can be evaluated to a single quantity. The quantity may be a
string or a number.

To specify the form in which something is to appear.

Printed output as opposed to temporary TV monitor display

6-2 Appendix

Hardware:

Increment:

Initialize:

Input:

Interactive:

Interface:

IOCB

Keyword:

Language:

Memory:

Menu:

Microcomputer:

Monitor:

Null String:

0s:

Output:

Parallel:

Peripheral:

The physical apparatus and electronics that make up a computer.

Increase in value (usually) by adding one. Used a lot for counting (as
in counting the number of repetitions through a loop).

Set to an initial or starting value. In Atari BASIC, all non-array
variables are initialized to zero when the command RUN is given. Ar-
ray and string elements are not initialized.

Information transfer to the computer. Output is information transfer
away from the computer. In this manual, input and output are
always in relation to the computer.

A system that responds quickly to the user, usually within a second
or two. All personal computer systems are interactive.

The electronics used to allow two devices to communicate.

Input/Output Control Block. A block of data in RAM that tells the
Operating System the information it needs to know for an I/O opera-
tion.

Short for input/output, I/O devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.

Stands for "kilo" meaning "times 1000". Thus 1 KByte is (approx-
imately) 1000 bytes. (Actually 1024 bytes.) Also, the device type code
for the Keyboard.

A word that has meaning as an instruction or command in a com-
puter language, and thus must not be used as a variable name or at
the beginning of a variable name.

A set of conventions specifying how to tell a computer what to do.

The part of a computer (usually RAM or ROM) that stores data or in-
formation.

A list of options from which the user may choose.

A computer based on a microprocessor chip; in Atari's case, the 6502.

The television receiver used to display computer output.

A string consisting of no characters whatever.

Abbreviation for Operating System. This is actually a collection of
programs to aid the user in controlling the computer. Pronounced
"oh ess".

See I/O.

Two or more things happening simultaneously. A parallel interface,
for example, controls a number of distinct electrical signals at the
same time. Opposite of serial.

An 110 device. See I/O.

Appendix 6-3

Pixel:

Precedence:

Program:

Prompt:

RAM:

Random Number
Generator:

Reserved Word:

ROM:

Save:

Screen:

Serial:

Software:

Special Character:

Statement:

String:

Subroutine:

Variable:

Window:

Picture Element. One point on the screen display. Size depends on
graphics mode being used.

Rules that determine the priority in which operations are conducted,
especially with regard to the arithmeticalAogica1 operators.

A sequence of instructions that describes a process. A program must
be in the language that the particular computer can understand.

A symbol that appears on the monitor screen that indicates the com-
puter is ready to accept keyboard input. In Atari BASIC, this takes the
form of the word "READY". A "?" is also used to prompt a user to
enter (input) information or take other appropriate action.

Random Access Memory. The main memory in most computers.
RAM is used to store both programs and data.

May be hardware (as is Atari's) or a program that provides a num-
ber whose value is difficult to predict. Used primarily for decision-
making in game programs, etc.

See Keyword.

Read Only Memory. In this type of solid-state electronic memory, in-
formation is stored by the manufacturer and it cannot be changed by
the user. Programs such as the BASIC interpreter and other car-
tridges used with the Atari systems use ROM.

To copy a program or data into some location other than RAM (for ex-
ample, diskette or tape).

The TV screen. In Atari BASIC, a particular 110 device codes "S:"

The opposite of parallel. Things happening only one at a time in se-
quence. Example: A serial interface.

As opposed to Hardware. Refers to programs and data.

A character that can be displayed by a computer but is neither a let-
ter nor a numeral. The Atari graphics symbols are special characters.
So are punctuation marks, etc.

An instruction to the computer. See also Command. While all com-
mands may be considered statements, all statements are certainly not
commands. A statement contains a line number (deferred mode), a
keyword, the value to be operated on, and the -command.

A sequence of letters, numerals, and other characters. May be stored
in a string variable. The string variable's name must end with a $.

A part of a program that can be executed by a special statement
(GOSUB) in BASIC: This effectively gives a single statement the power
of a whole program. The subroutine is a very powerful construct.

A variable may be thought of as a box in which a value may be
stored. Such values are typically numbers and strings.

A portion of the TV display devoted to a specific purpose such as for
graphics or text.

6-4 Appendix

APPENDIX H

USER
PROGRAMS

This appendix contains programs and routines that demonstrate the diverse
capabilities of the Atari Personal Computer System. Included in this appendix is
a Decimal/Hexadecimal program for those users who write programs that re-
quire this type of conversion.

CHECKBOOK This is one of the "traditional" programs that every beginning computerist

BALANCER writes. It allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits.

Appendix H-1

3338 7 ll I!: t4EW CHECk:: ST 1 tL "3 IT'T..'.' ' ?T \f:-il .
LIU I 4 I WLI i I 112 .I

: I tPUT AO
5840 i F LE#: A$::I=@ THE!.; 5838
5 0 3 I F A$(1 , 1)< > " N" TFEl{ 5868
c J@5 B~t.l\:::BAt=~hN\(&.~L-&~$~ttf~~JT
5057 I F PERM Thrri !JRIt.{T " CHECiC HAS CiEA
RED. "
5858 RETURN
5868 I F A$< 1, l).(>""" TEf.4 5038
5070 0U.TSTAtt41J=OUTSf fit .#jfi+A~"~I;~~T
51375 I F PERM THEN LPRItC "CHECK I S ST1 L L

iIlJTSTiiNfi I ;#: . "
5080 RETI JRI.4
6008 REM NE$i UEpJS I T ([IF: INTEREST ;I -- JU
ST CF:EIS I TED
,501 Ist$=f.Q;&$: 81 60
13328 'i30UWGAL=${OURB3L+GPIjfJt.IT
6030 ? "HAS YOLIE){EX 3EQ;IT BEEW CREDIT
ED"; : IN 'UT A$
6048 I F LEI.#: A$ >=@ f HEt.4 61339
605f4 1 F A$:: J ., 1 ' i l l 'f 11

I 1 ... THEN 61369
@52 ~At4KEAL=EA~.j~~Ai+~t.f~~J~iT
6053 I F PEF:M THiri LPRIf.fl "itEpuSIf HAS BE
EN CREDITED . "
6855 F:ET!JEEI
CQCa 1 F &$(1 , 1)() " H!' T E N 3333
6070 iillTSTAt.jD=OI!TSTfit.;:i-AM::;tif..IT
6075 I F PERM T E E LPEIt.IT "DEFGS IT HAS 1.40
T I3EEt.S CREDITED. "
6088 RETURF4

--9- iuikj '? "REMEMBER., YOIJ Cfit.4 EtjTEH i.jEGATI
VE DOLLAR LrALUE TO MAKE Ci CORRECTIDt4.
I1

Appendix H-3

BUBBLE SORT This program uses the string comparison operator "<= " that orders strings ac-
cording to the ATASCII values of the various characters. Since Atari BASIC does
not have arrays of strings, all the strings used in this program are actually
substrings of one large string. A bubble sort, though relatively slow if there are
a lot of items to be stored, is easy to write, fairly short, and simpler to under-
stand than more complex sorts.

Appendix H-5

TEXT MODES This program prints the Atari characters in their default colors for text rrlodes

CHARACTER 0, I, and 2. In entering this program, remember that the clear screen symbol
''7" is printed as ") ",

PRINT

Appendix H-7

LIGHT SHOW This program demonstrates another aspect of Atari graphics. It uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video
(use the Atari logo key).

10 FOR ST=1 TO 8 :GRAPHICS 7
15 POKE 7% .I !

40 FOR DE=8 TO 8Q STEP ST
3 PLOT 8,13 : DRfi1.1TO !L3QJ 6R

NE:x:T : FOR t]=l TO 81,3Q : NEXT N : l{EXT ST

H-8 Appendix

UNITED STATES This program involves switching colors to set up the stripes. It uses graphics

FLAG mode 7 plus 16 so that the display appears as a full-screen. Note the cor-
respondence of the COLOR statements with the SETCOLOR statements. For fun
and experimentation purposes, add a SOUND statement and use a READ/DATA
combination to add "The Star Spangled Banner" after line 470. (Refer to Section
10.1

Appendix H-9

SEAGULL OVER This program combines graphics and sounds. The sounds are not "pure"

OCEAN sounds, but simulate the roar of the ocean and the gull's "tweet". The graphics
symbols used to simulate the gull could not be printed on the line printer. Enter
the following characters in line 20.

Appendix H-11

H-12 Appendix

KEY BOARD This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further 110, hit . - or POKE PACTL,GO. If

CONTROLLER this program is to be loaded from disk, use RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this
light goes out, otherwise the disk will continue to spin.

TYPE-A-TUNE This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.

KEY MUSICAL VALUE

To play "Mary Had A Little Lamb" press the following keys:

Appendix H-15

COMPUTER This program generates random musical notes to "write" some very interesting

BLUES melodies for the programmed bass.

95 FOR TO 3
97 FOR '(=I f 0 7
98 R 3 3 A : JAM('f : MET 'f : NE::.::T X
100 GOSUE 504
118 T=T+1
1 15 Gtj$llE 238
120 GOTfl 180
4,- -
r&i REM PEOCESS STUFF
285 I F R'da(0 fi.:;' 3.25 THEE; EETi jRN
210 IF ~ ~ a < g i . c a . s THEN 250
.-,.-, - &LC? FiT=t.lT+f .- - I F i.jT)T THEPI $iT=7
24@ GMCl 263
258 NT=f-IT- 1
255 I F NT(1 THEN HT=l .-, .- - 7 . r . r Sgtfi-Jij 2) J$r?< CjORS ,, ST :I, 18 I l.i ;
288 RET i-iRi.{
S@@ RE8 PROCESS BASE Si@,C
5 1 ~ IF ~ ~ ' c - 4 ,,-A THEt.4 780
533 ~ D l J R = ~ ~ 2 + :
S j g I F E:DGR.< ::.f El";? 0 f #t.j 523

H-16 Appendix

Appendix H-17

APPENDIX I

MEMORY
LOCATIONS

Note: Many of these locations are of primary interest to expert programmers and are included here as a
convenience. The labels given are used by Atari programmers to make programs more readable.

LABEL

APPMHI

RTCLOK

SOUNDR

LMARGIN,
RMARGIN

ROWCRS

COLCRS

OLDROW

OLDCOL

NEWROW

NEWCOL

RAMTOP

LOMEM

MEMTOP

STOPLN

ERRSAV

PTABW

FRO

DECIMAL
LOCATION

14,15

18,19,20

65

77

82,83

84

85,86

90

91,92

93

96

97,98

106

128,129

144,145

186,187

195

201

212,213

HEXADECIMAL
LOCATION

DE

12,13,14

41

COMMENTS A N D DESCRIPTION

Highest location used by BASIC (LSB, MSB)

TV frame counter (1160 sec.) (LSB, NSB, MSB)

Noisy 110 Flag (0 = quiet)

Attract Mode Flag (128 =Attract mode)

Left, Right Margin (Defaults 2, 39)

Current cursor row (graphics window).

Current cursor column (graphics window).

Previous cursor row (graphics window).

Previous cursor column (graphics window).

Data under cursor (graphics window unless mode
0).

Cursor row to which DRAWTO will go.

Cursor column to which DRAWTO goes.

Actual top of memory (number of pages).

BASIC low memory pointer.

BASIC top of memory pointer.

Line number at which STOP or TRAP occurred
(2-byte binary number).

Error number

Print tab width (defaults to 10)

Low and high bytes of value to be returned to
BASIC from USR function.

Appendix 1-1

LABEL

RADFLG

LPENH

LPENV

TXTROW

TXTCOL

COLOR0

COLOR1

COLOR2

COLOR3

COLOR4

MEMTOP

MEMLO

CRSINH

CHACT

CHBAS

ATACHR

CH

FILDAT

DSPFLG

SSFLAG

HATABS

IOCB

CONSOL

* Future product.

DECIMAL
LOCATION

HEXADECIMAL
LOCATION COMMENTS AND DESCRIPTIONS

RADIDEG flag (0 = radians, 6 =degrees).

Light Pen* Horizontal value.

Light Pen* Vertical value.

Cursor row (text window)

Cursor column (text window)

Color Register 0

Color Register 1

Color Register 2

Color Register 3

Color Register 4

OS top of available user memory pointer (LSB,
MSB)

OS low memory pointer

Cursor inhibit (0 =cursor on, 1 =cursor off)

Character mode register (4 = vertical reflect; 2 =

normal; 1 =blank)

Character base register (defaults to 224) (224 = up-
per case, 226 = lower case characters)

Last ATASCII character.

Last keyboard key pressed; internal code; (255
clears character).

Fill data for graphics Fill (XIO).

Display Flag (1 = display control character).

StartIStop flag for paging (0 = normal listing) Set by
1.

Handler address table (3 byteshandler)

110 control blocks (16 bytesAOCB)

Spare RAM

Console switches (bit 2 = Option; bit 1 = Select; bit
0 = Start. POKE 53279, 0 before reading. 0 =

switch pressed.)

LABEL

PORTA
PORTB

PACTL

PBCTL

SKCTL

DECIMAL HEXADECIMAL
LOCATION LOCATION COMMENTS AND DESCRIPTIONS

54016 D300 PIA Port A Controller Jack I/O ports.
54017 D301 PIA Port B Initialized to hex 3C.

54018 D302 Port A Control Register (on Program Recorder 52
= ON, 60 = OFF).

54019 D303 Port B control register.

53775 D20F Serial Port control register. Bit 2 = 0 (last key still
pressed).

Appendu 1-3

INDEX

A Abbreviations, 4-5
Commands in headings, 4

ABS, 33
adata, 5
ADR, 35,63
aexp, 4
sop, 4
Array, 3-4, 41
ASC, 37
ATASCII, 5, 40, C-1 through C-6
ATN, 34
Audio track of cassette, 23
avar, 4

B BASIC, 1
Blanks (see Spaces)
Booting DOS, 25
Braces, 4
Brackets, 4
Branching,

Conditional Statements, 19
Unconditional Statements, 17

Brightness (see Luminance)
Bubble Sort Program, H-5
Buzzer, 14

Deferred Mode, F-1
Direct Mode, 14

BYE, 9

C C-Scale Program, 58
Central InputIOutput Subsystem, 23
Character

Assigning Color to, 54
ATASCII, C-1 through C-6
Display at specified locations, 46, 47
Set, internal, 55
Sizes in Text modes, 46

Chaining Programs, 30
Checkbook Balancer Program, H-1 through H-4
CHR$, 58
CIO (see Central InputlOutput Subsystem) 6
CLEAR key, 6
Clear Screen,

Deferred mode, 5, 14, 46
Direct mode, 6, 46

CLOAD, 24
CLOG, 33
CLOSE, 27
CLR, 43
Codes,

Device, 23-24
Colons, 3, 61
COLOR, 48

Color
Assigning, 54
Changing, 50
Default, 46, 51
Registers, 50

COM (see DIM)
Computer Blues Program, H-16
cmdno, 30
Comma, 26, 27
Command Strings, 1
Commands

BYE, 9
CONT, 9
END, 9
LET, 10
LIST, 10
NEW, 10
REM, 10
RUN, 11
STOP, 11

Conservation,
Memory, 61

Constant, 2
CONT, 9
Controllers,

Game, 59
COS, 34
CSAVE, 24
Cursor, 9

Graphics, 49
Inhibit, 46

D Decimal/Hexadecimal Conversion Program, H-18
Default

colors, 46
disk drive, 24, 29
margins in Mode 0, 46
tab settings, 6

Deferred mode, 5
DEG, 35
Devices, 23-24
Delete line, 13
DIM, 41
Direct mode, 5
Disk Drive

Default number, 24, 29
Requirements (see ATARI DOS Manual)

Disk file
Modification of BASIC program, 31

Display, split-screen override, 45, 47
Distortion, 57
DOS, 25
DRAWTO, 48

Index 117

E Editing, screen, 13
Editor, Screen, 24
END, 9

before subroutine, 7
End of file, 14
Error messages, B-I through B-3
Escape key, 5

w i t h Control Graphics Symbols, F-I
EXP, 33
exp, 5
Exponentiation symbol, 6
Expression, 1

Arithmetic (see aexp)
Logical (see lexp)
String (see sexp)

F filename, breakdown, 27
filespec, 5

Usage, 26, 27 H
Fill (XIO), 54
FOR'NEXT, 15
building arrays and matrices, 42

w i t h STEP, 15
without STEP, 15 I

FRE, 35
Function, 1

Arithmetic
ABS, 33
CLOG, 33
EXP, 33
INT, 33
LOG, 34
RND, 34
SGN, 34
SQR, 34

Built-in, 7
Derived, E-I
Library, 33
Special Purpose, 35

ADR, 35
FRE, 35
PEEK, 35
POKE. 35
USR, 36

Trigonometric, 34
ATN, 34
cos, 34
DEG, 35
RAD, 35
SIN, 35

G Game controllers
Keyboard, 59
Joystick, 59
Paddle, 59
Video Graffitti program, H-12 th rough H-13

Game controller commands
PADDLE, 59
PTRIG, 59
STICK, 59
STRIG, 60

J
GET, 28,49 K
GOSUB/RETURN, 16, 21

GOTO, 17
w i t h conditional branching, 17

GRAPHICS, 45
Graphics

Modes, 46-47
Statements, 48

COLOR, 48
DRAWTO, 49
GET, 45
GRAPHICS, 48
LOCATE, 48
PLOT, 49
POSITION, 49
PUT, 49
SETCOLOR, 50
XI0 (Fill), 54

Graphics Control Characters, 56

Harmony, 57
Hexadecimal

/Decimal Conversion Program, H-18
Hexcode Loader program, 64

INPUT, 25
Input/Output Commands, 23

CLOAD, 24
CLOSE, 27
CSAVE, 24
DATA, 28
DOS, 25
ENTER, 25
GET, 28
INPUT, 25
LOAD, 26
LPRINT, 26
NOTE, 26
OPEN, 26
POINT, 28
PRINT, 3,5, 14, 26
PUT, 28
READ, 28
SAVE, 29
STATUS, 29
XIO, 29

Input/Output Devices
Disk Drives (D:), 24
Keyboard (K:), 23
Line Printer (L:), 23
Program Recorder (C:), 23
RS-232 Interface (R:), 24
Screen Editor (E:), 24
TV Monitor (S:), 24

INT, 33
Internal pointer for DATA, 21
Input/Output Control Block, 23
Inverse Key, 5
Invisible graphics cursor, 48-49
IOCB (see Input/Output Control Block)

Joystick Controller, 59

Keyboard (K:), 23
Keyboard Controllers, 59

1 18 Index

Keyboard Controller Program, H-I4
Keys

Special Function
ATARI, 5
BACK SPACE, 6
BREAK, 6
CAPSLOWR, 5
CLEAR, 6
DELETE, 6
ESCAPE, 5
INSERT, 6
RETURN, 6
SYSTEM RESET, 6
TAB, 6

Editing
CTRL (Control) Key, 13
SHIFT key, 13

Cursor Control, 14
Down arrow, 14
Left arrow, 14
Right arrow, 14
Up arrow, 14

Keywords
BASIC, A-1 through A-5

L LEN, 38
LET, 2, 3, 10
Letters

Capital (upper case), 3
Lower case, 3, 47

lexp, 4
Light Show Program, H-8
Line

Format, 3
Logical, 2
Numbers, 3
Physical, 2

lineno, 5
LIST, 10
LOAD, 26
Load program from cassette tape, 24
LOCATE, 48
LOG, 34
Loops

Endless, 17
Nested, 15

lop, 4
LPRINT, 26

before CSAVE, 24
Luminance, 50

M Mandatory # symbol, 26, 27
Margins

Changing, 36, 46
Default in mode 0, 46

Matrix, 41-42
Variable, 4

Memory Map, D-I through D-2
Modes, graphics, 46, 47
Modes, operating

Deferred, 5
Direct, 5
Execute, 5
Memo Pad, 5, 25

Modes, text, 46
Override split-screen, 47

Multiple commands (see
Command Strings)

mvar, 4

N NEW, 10
Notations

floating point, 39
in manual, 3

0 ONIGOSUB, 20
ONIGOTO, 20
OPEN, 26-28
Operators, 2

Arithmetic, 4, 6
Binary, 6, 7
Logical, 4, 6
Relational, 7
Unary, 6

Output devices, 23
Oversized programs (see Chaining Programs)

P Paddle Controller, 59
Parentheses,

Usage, 7, 63
PEEK, 35
Peripheral devices (see InputIOutput Devices)
Pitch

Definition, 57
Values, 58

Pixel, 48
Size in modes, 47

PLA, 63
PLOT, 49
POINT, 28
POKE, 35
POP, 20-21
POSITION, 49
Precedence, operator, 7
PRINT, 3, 5, 14, 26
Printer listing, 10
Program continuation, 11
Programs,

Machine language, 67
User, Appendix H
with Hexcode Loader, 65, 66

PUT, 49

a Question mark as prompt, 25
Quotation marks, 2

R RAD, 35
RAM (Random Access Memory), 23
Random Access to disk file, 28
READ, 28

Direct mode, 28
REM, 10
RESTORE, 21
RETURN Key, 6
Return, Abnormal (see POP)
Rollover,

Keyboard, 8
RND, 34

	Atari 400/800: BASIC Reference Manual (Cover)
	Error Codes
	Table of Modes & Screen Formats
	Mode, Set Color, Color Table
	Contents
	Preface
	1. General Information
	Terminology
	Special Notations Used In This Manual
	Abbreviations Used In This Manual
	Operating Modes
	Special Function Keys
	Arithmetic Operators
	Logical Operators
	Operator Precedence
	Built-In Functions
	Graphics
	Sound & Game Controllers
	Wraparound & Keyboard Rollover
	Error Messages

	2. Commands
	BYE
	CONT
	END
	LET
	LIST
	NEW
	REM
	RUN
	STOP
	Notes

	3. Edit Features
	Screen Editing
	Double-Key Functions

	4. Program Statements
	FOR/STEP/NEXT
	GOSUB/RETURN
	GOTO
	IF/THEN
	ON/GOSUB/RETURN
	ON/GOTO
	POP
	RESTORE
	TRAP

	5. Input/Output Commands & Devices
	Input/Output Devices
	CLOAD
	CSAVE
	DOS
	ENTER
	INPUT
	LOAD
	LPRINT
	NOTE
	OPEN/CLOSE
	POINT
	PRINT
	PUT/GET
	READ/DATA
	SAVE
	STATUS
	XIO
	Chaining Programs
	Modifying A Basic Program On Disk
	Notes

	6. Function Library
	Arithmetic Functions
	RND
	SGN
	INT
	LOG
	SQR
	EXP
	ABS
	CLOG

	Trigonometric Functions
	ATN
	COS
	SIN
	DEG/RAD

	Special Purpose Functions
	ADR
	FRE
	PEEK
	POKE
	USR

	7. Strings
	ASC
	CHR$
	LEN
	STR$
	VAL
	String Manipulation

	8. Arrays & Matrices
	DIM
	CLR
	Notes

	9. Graphics Modes & Commands
	GRAPHICS
	Graphics Modes
	Mode 0
	Modes 1 & 2
	Modes 3, 5, & 7
	Modes 4 & 6
	Mode 8

	COLOR
	DRAWTO
	LOCATE
	PLOT
	POSITION
	PUT/GET
	SETCOLOR
	XIO (Special Fill Application)
	Assigning Colors To Text Modes
	Internal Character Set

	10. Sounds & Game Controllers
	SOUND
	Pitch Values For Musical Notes

	Game Controller Functions
	PADDLE
	PTRIG
	STICK
	STRIG

	11. Advanced Programming Techniques
	Memory Conservation
	Programming In Machine Language

	Appendix A: Alphabetical Directory Of Basic Reserved Words
	Appendix B: Error Messages
	Appendix C: ATASCII Character Set
	Appendix D: Atari 400/800 Memory Map
	Appendix E: Derived Functions
	Appendix F: Printed Versions Of Control Characters
	Appendix G: Glossary
	Appendix H: User Programs
	Checkbook Balancer
	Bubble Sort
	Text Modes Character Print
	Light Show
	United States Flag
	Seagull Over Ocean
	Video Graffitti
	Keyboard Controller
	Type-A-Tune
	Computer Blues
	Decimal/Hexadecimal Conversion

	Appendix I: Memory Locations
	Index
	Control Graphics Keyboard (Back Cover)

