AR]*400/800"

- ATARI HOME COMPUTER SYSTEM

TECHNICAL
REFERENCE NOTES

includes:

Operating System User’s Manual
Operating System Source Listing
and

Hardware Manual

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

N\

®
ATARI A Warner Communications Company @ C016555 Rev. A

AAR400/800"

ATARI' HOME COMPUTER SYSTEM

OPERATING SYSTEM
USER’S MANUAL

A

®
ATARI A Warner Communications Company @

COPYRIGHT 1982, ATARI, INC.
“ ALL RIGHTS RESERVED

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

Every effort has. been made to ensure that this manual accurately
documents this product of the ATARI Home Computer Division.
However, due to the ongoing improvement and update of the computer
software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and disclaims
liability for changes, errors, or omissions.

ATARI Home Computer
Operating System USER ‘'S MANUAL

PREFACE

1 INTRODUCTION

GENERAL DESCRIPTION
OF THE ATARI COMPUTER SYSTEM

Conventions Used in This Manual

HEXADEC IMAL NUMBERS

MEMORY ADDRESSES

KILOBYTES OF MEMORY

PASCAL AS AN ALGORITHM—-SPECIFICATION LANGUAGE
MEMORY LAYOUTS

BACKUS—-NAUR FORM (BNF)

O0S-EQUATE FILENAMES

17

18

i8

20

20
26
20
20
20
21
21

2 OPERATING SYSTEM FUNCTIONAL ORGANIZATION

Input/Qutput Subsystem
Interrupt Processing
Initialization

Power—Up
System Reset

Floating Point Arithmetic Package

CONFIGURATIONS
Program Environments

Blackboard Mode
Cartridge
Diskette—Boot
Cassette—Boot

RAM Expansion
Peripheral Devices

Game Controllers
Program Recorder
Serial Bus Devices

SYSTEM MEMORY UTILIZATION
RAM Region

Page ©

Page 1

0S Data Base

User Workspace

Boot Region

Screen Display List and Data
Free Memory Region

22

22
22
a2

22
23

24

25
25

25
26
26
26

27
27

27
27
28

2%
29

30
30
30
31
31
31
31

Cartridges A and B

Mapped

1/0

Resident 0S8 and Floating Point Package ROM
Central Data Base Description

Memory

Dynamics

System Initialization Process
Changing Screen Modes

I1/0 SUBSYSTEM

Central I/0 Utility

CIo

CIO

Design Philosophy

DEVICE INDEPENDENCE

DATA ACCESS METHODS

MULTIPLE DEVICE/FILE CONCURRENCY
UNIFIED ERROR HANDLING

DEVICE EXPANSION

CALLING MECHANISM

HANDLER ID --— ICHID [03401
DEVICE NUMBER -- ICDNO [03411
COMMAND BYTE —-- ICCMD L[03421
STATUS —— ICSTA [03431]
BUFFER ADDRESS

ICBALLO3441 AND ICBAH [03451
PUT ADDRESS --

ICPTL [O3461 AND ICPTH [03471
BUFFER LENGTH/BYTE COUNT —--

ICBLL [0O3481 and ICBLH [034%]
AUXILIARY INFORMATION --

ICAX1 [O34A]1 and ICAX2 [O034B1
REMAINING BYTES (ICAX3-ICAX&)

31
a2
32
32
32

a3
a3
34

36
37

37
37
38
38
38

as
a9
39
40
40
40
40
40

40
41

CI0 Functions

OPEN —— Assign Device/Filename to IOCB
and Ready for Access

CLOSE —— Terminate Access to Device/File
and Release IOCB

GET CHARACTERS —— Read n Characters
(Byte—-Aligned Access)

PUT CHARACTERS —— Write n Characters
{(Byte—Aligned Access)

GEY RECORD -- Read Up To n Characters
(Record—-Aligned Access)

PUT RECORD -- Write Up To n Characters
(Record—-Aligned Access)

GET STATUS -- Return Device-Dependent
Status Bytes

SPECIAL —- Special Function

Device/Filename Specification
1/0 Example

Device Specific Information
Keyboard Handier

CID Function Descriptions
Theory of Operation
Display Handler (S:)
Screen Modes
TEXT MODE O
TEXT MODES 1 AND 2
GRAPHICS MODES (Modes 3 Through 11}
SPLIT-SCREEN CONFIGURATIONS
CIO Function Descriptions
User—Alterable Data Base Variables
Theory of Operation
Screen Editor (E:)
CIO Function Descriptions

User—Alterable Data Base Variables

Cassette Handler (C:)
CI0 Function Descriptions

Theory of Operation
File Structure

41

41

42

43

43

44

44

45
45

44
47

S50
50

51
51
o4
54
54
55
56
o6&
57
61
&2
bé
&7
70
72
72

74
75

6

Printer Handler (P:)
CIO Function Descriptions
Theory of Operation

Disk File Manager (D:)

CI0 Function Descriptions
Device/Filename Specification

Filename Wildcarding

Special CIO functions
Theory of Operation
FMS Diskette Utilization

FMS BOOT RECORD FORMAT
BOOT PROCESS MEMORY MAP
VOLUME TABLE OF CONTENTS
FILE DIRECTORY FORMAT
FMS FILE SECTOR FORMAT

Non—-CIO 1/0
Resident Device Handler Vectors

Resident Diskette Handler
Diskette Handler Commands

Sevrial Bus 1/0

INTERRUPT PROCESSING

Chip-Reset
Nonmaskable Interrupts

Stage 1 VBLANK Process
Stage 2 VBLANK Process

Maskable Interrupts
Interrupt Initialization
System Timers

Usage Notes

POKEY Interrupt Mask

Setting Interrupt and Timer Vectors
Stack Content at Interrupt Vector Points
Miscellaneous Considerations

Flowcharts

76
76
78

78

79
81

82

84
87
a9

90
92
93
94
95

Qb
26

?7
%

101

102

103
103

104
1095

107
i08
109
109

110
110
111
112

113

7 SYSTEM INITIALIZATION

Power-Up Initialization (Coldstart) Procedure
System Reset Initialization (Warmstart) Procedure

8 FLOATING POINT ARITHMETIC PACKAGE
Functions/Calling Sequences

ASCII to Floating Point Conversion (AFP)}
Floating Point to ASCII Conversion (FASC)
Integer to Floating Point Conversion (IFP}
Floating Point to Integer Conversion (FPI}
Floating Point Addition (FADD)
Floating Point Subtraction (FSUB)
Floating Point Multiplication (FMUL)
Floating Point Division (FDIV)
Floating Point Logarithms (LOG and LOG10}
Floating Point Exponentiation (EXP and EXP10}
Floating Point Polynomial Evaluation (PLYEVL)
Clear FRO (ZFRO)
Clear Page-Zero Floating Point Number (ZF1)
Load Floating Point Number to FRO
(FLDOR and FLDOP)
Load Floating Point Number to FRI1
(FLDIR and FLDIiP)
Store Floating Point Number From FRO
(FSTOR and FSTOP)
Move Floating Point Number From FRO to FRI
(FMOVE}

Resource Utilization
Implementation Details

Q ADDING NEW DEVICE HANDLERS/PERIPHERALS

Device Table
CI0/Handler Interface

Calling Mechanism
Handler Initialization
Functions Supported
Error Handling
Resource Allocation

LERO-PAGE RAM
NONZERO-PAGE RAM
STACK SPACE

Handler/SI0 Interface

114

116
119

121

122

iz22
i22
i23
123
124
124
124
125
125
126
126
127
127

127
iz28
128
128

128
i29

131

134
134

i35
136
136
140
140

141
141
142

142

10

Calling Mechanism
Functions Supported
Error Handling

Serial I/0 Bus Characteristics and Protocol

Hardware/Electrical Characteristics
Serial Port Electrical Specifications
Bus Commands

COMMAND FRAME

COMMAND FRAME ACKNOWLEDGE
DATA FRAME

OPERATION COMPLETE

Bus Timing
Handler Envivonment
Bootable Handler

Cartridge Resident Handler
Flowcharts

PROGRAM ENVIRONMENT AND INITIALIZATION
Cartridge

Cartridge Without Booted Support Package
Cartridge With Booted Support Package

Diskette—-Booted Software

Diskette—Boot File Format

Diskette-Boot Process

Sample Diskette—Bootable Program Listing
Program to Create Diskette-Boot Files

Cassette~Booted Software

Cassette-Boot File Format

Cassette—-Boot Process

Sample Cassette~Bootable Program Listing
Program to Create Cassette-Boot Files

142
144
144

145

145
147
147

148
148
149
149

150
152
153
153
153
157
157

158
158

159

159
160
161
162

164

1465
165
1467
168

11

10

ADVANCED TECHNIGUES AND APPLICATION NOTES
Sound Generation

Capabilities
Conflicts With 0S

Screen Graphics
Hardware Capabilities
0S Capabilities
Cursor Control
Color Control
Alternate Character Sets
Player/Missile Graphics

Hardware Capabilities
Conflicts With 0S8

Reading Game Controllers

Keyboard Controller Sensing
Front Panel Connectors as I/0 Ports

Hardware Information:
Software Information:

Other Miscellaneous Software Information:

170
170

170
170

171

171
171
171
171
172

174

174
174

174

174
176

176
177
179

APPENDICES

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

| o]

.

K

T ©® M Mm o o W >

Keyboard

Display

CIO COMMAND BYTE VALUES

CI0 STATUS BYTE VALUES.

SI0 STATUS BYTE VALUES

ATASCII CODES

DISPLAY CODES (ATASCII)

KEYBOARD CODES (ATASCII)

PRINTER CODES (ATASCII)

SCREEN MODE CHARACTERISTICS
SERIAL BUS ID AND COMMAND SUMMARY
ROM VECTORS

DEVICE CHARACTERISTICS

ATARI 410LTM1 Program Recorder
ATARI 820LTM] 40-Column Impact Printer
ATARI 810LTM] Disk Drive

Appendix £ —— 0S5 DATA BASE VARIABLE

FUNCTIONAL DESCRIPTIONS

Central Data Base Description

FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS

A. MEMORY CONFIGURATION

180
181
182
183
184
185
186
188
191
192
194
194
194
194

195
197

200

200

201

211

11

12

TEXT/GRAPHICS SCREEN

Cursor Control

Screen Margins

Text Scrolling

Attract Mode

Tabbing

Logical Text Lines

Split Screen

Displaying Control Characters
Escape (Display Following Control Character?
Display Control Characters Made
Bit-Mapped Graphics

Internal Working Variables
Internal Character Code Conversion

DISKETTE HANDLER

CASSETTE

Baud Rate Determination
Cassette Mode

Cassette Buffer

Internal Working Variables

KEYBOARD

Key Reading and Debouncing

Special Functions

Start/Stop

Autorepeat

Inverse Video Control

Console Keys: [SELECTI1, [START1, and [OPTION]

PRINTER

Printer—-Buffer
Internal Working Variables

212

212
213
215
215
216
217
218
220
221
221
221
222
224

225

225

226
227
227
228

229

229
230
230
231
232
232

232

233
233

G.

£ 2 - F

CENTRAL I/0 ROUTINE (CIO)

User Call Parameters

1/0 Control Block

Device Status

Device Table

CI0/Handler Interface Parameters
Zero-Page IOCB

Internal Working Variables

SERIAL I/0 ROUTINE (SIO)

User Call Parameters

Device Control Block

Bus Sound Control

Serial Bus Control

Retry Logic

Checksum

Data Buffering

General Buffer Control
Command Frame Qutput Buffer
Receive/Transmit Data Buffering
SI0 Timeout

Internal Working Variables

ATARI CONTROLLERS
Joysticks

Paddles

Light Pen

Priving Controllers

DISK FILE MANAGER

DISK UTILITY POINTER
FLOATING POINT PACKAGE
Power-Up and System Reset
RAM Sizing

Diskette/Cassette—~Boot
Environment Control

233

233

233
234
235
235
235
236

237

237
237
238
238
238
239
240
240
240
241
241
242

243
243
244
245
246
247
248
248
249
249

250
251

13

INDEX

14

INTERRUPTS

System Timers

Real Time Clock

System Timer 1

System Timer 2

System Timers 3, 4 and S
RAM Interrupt Vectors

NMI Interrupt Vectors

IRG Interrupt Vectors
Hardware Register Updates
Internal Working Variables

USER AREAS

Alphabetical List of Data Base Variables

Memory Address Ordered List of Data Base
Variables

Floating Point Package Variables

252

253
253
253
254
254
2595
255
259
256
258

258

259

266
270

271

TABLE OF ILLUSTRATIONS

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Utilization

Figure
Figure

i-1.
1-2.

4-1.
4-2.

S5-1.
S5-2.
5-3.
S5-4.
5-9.
S9=6.
S-7.
S5-8.
5-9.
5-10.
S5-11.

S5-12.
5-13.

Memory Map

Figure

of Contents

Figure
Figure
Figure
Figure
Figure

S-14,

5-15.
S5-16.
S5-17.
S5-18.
5-19.

ATARI Home Computer Block Diagram
Memory Layout Chart

6502 System Memory Map
Mapped 1I/0

1/0 Subsystem Structure Flow Diagram

CIO Calling Mechanism

An I/0 Example

Keycode to ATASCII Conversion Table

Text Modes 1 and 2 Data Form

Graphics Modes 3-11 GET Data Form
Graphics Modes 3-11 PUT Data Form

Screen Display Block Diagram

Cassette Handler Record Format
Device/Filename Syntax

File Management Subsystem Diskette Sector
Map

File Management Subsystem Boot Record Format
File Management Subsystem Boot Process

File Management Subsystem Volume Table

File Management Subsystem Volume Bit Map
File Directory Format

File Management Subsystem File Sector Format
Resident Device Handler Vectors

DVSTAT 4-Byte Operation Status Format

i9
20

29
32

35
38
49
53
56
58
59
64
74
81

89
?0

P2

93
93
94
95
96

100

i5

Figure
Figure
Figure
Figure

6-1.
6-2.
&-3.
b4,

L.ist of System Interrupt Events
Interrupt RAM Vector Initialization
POKEY Interrupt Mask Example
Interrupt and Timer Vector RAM Stack

Content Table

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

16

10~-1.
10-2.
10-3.
10-4.

11-1.
11-2.
11-3.
11-4.
11-5.

11-6.

1/0 Subsystem Flow Diagram

Device Table Format

Handler Vector Table

Serial Bus Connector Pin Descriptions
Serial Bus Command Frame Format
Serial Bus Timing Diagram

Cartridge Header Format

Diskette Boot File Format
Diskette—Bootable Program Listing Example
Sample Cassette-Bootable Program

User—Defined Character Set Bit Memory Address
User—~Defined B8 x B8 Character Matrix Bit Table
Character Base Diagram

Reading Data From an ATARI Keyboavrd Controller
ATARI Keyboard Controller Variable/Register
Value Table

Using Front Panel Connectors As I/0 Ports: Pin
Function Tables

io2
108
110

112

133
134
135
144
148
151

157
159
162
168

172
173
173
174

176

179

PREFACE

This manuval describes the resident Operating System (0S) for the
ATARI@ Home Computer, for readers who are familiar with the
internal behavior of the system. It discusses:

0 System functions and uvtilization techniques
o Subsystem relationships and organization

o Characteristics of the ATARI peripheral devices that can
be attached to the ATARI4Q00LTM] and ATARI B0O0OLTM1 Home

Computer

0 Advanced techniques for going beyond the basic 085
capabilities

o The general features of the computer system hardware used
by the 0S.

It would be helpful to have a familiarity with programming concepts
and terminology. assembly language programming in general, the
Synertek 6502 in particular, and digital hardware concepts and
terminology. you will be provided with the information you need to
use the 0S resources, without resorting to trial-and-error techniques
or the 0S8 listing. Supporting information for tasks that involve 05
listing references is also provided.

This manual does not present a comprehensive description of the
hardware used to provide 08 capabilites. The programmer who needs to
go beyond the capabilities described should consult the ATARI Home

Computer Hardware Manual.

OPERATING SYSTEM C016555 —- Section 1

i7

1 INTRODUCTION

GENERAL DESCRIPTION OF THE ATARI HOME COMPUTER SYSTEM

Operating systems in the ATARI@ 400LTM]1 and ATARI 800L{TM]1 Home
Computer are identical. The primary differences between the two are:

o)

[»]

Physical packaging

The ATARI 400 Computer console has one cartridge slot, the
ATARI B0O Computer console has two cartridge slots

The ATARI 400 Home Computer contains 16K RAM and cannot be
expanded. The ATARI 800 Home Computer can be expanded to a
maximum of 48K RAM.

The ATARI 800 Computer has a monitor jack: the ATARI 400
Computer does not.

The Hardware Circuitry

o Produces both character and point graphics for black and

white (B/W! or color television.

o Produces four independent audio channels (fregquency

controlled) which use the television sound system.

o Provides one bi-level audio output in the base unit

o Interfaces with up to four Joysticks and eight Paddle

Controllers.

o Interfaces with a serial 1/0 bus for expansion.

o Contains a built—-in keyboard

Figure 1-1 presents a simplified block diagram of the hardware.
See the hardware manuval for supporting documentation.

i8

OPERATING SYSTEM CO16555 —— Section 1

]
1)
]
4

e =
0s
ROM

{ DBOO~FFFF |

e e

e
6502
iprocessor!
P
]
s

L IR AR IR L R LRI C I ERTIE DI A had 4 - -4 L SRR IR L I
{ \n | { 0 | i ® { { |] |]
IR i | v s | | o | 1 | o &~ | i - |
| — - | i -~ o< |] ¥ m | - |] | I -k Z 1
i o0 i | gl | 4 @ | m0 w | | o~ | | 00O
| - o i { O s A | I @ I w31 i wm | el |
| ¥ i ol w1 v | &.~ao | | © w i 1 € 4k 1
| € - | | | % | w4 | o { | oo | | o |
i owm | |l o+ | o} @ [i | umn] jmwoa i
| o i | %o I N1 v | | | I i i
+ -+ -+ EEEC TN B N ~AE B B A L I RN BELRE + -+ -+
R R i o i 1 i i ! i
! I | | | | |
R LRI hdE LR L | | { E< |
i | { i i { O = |
+(¢|¢¢(+ _+..li...ll...la(...c...«olla.c(t(o...+ i ~ i
| »x | it i I { % O |
- » m — _ + - e we e ve we we ww + _
! x | [{ | |
.N X~ __— — +(lll++CKICll!llll(l((lll.\(t{c-....C+
1 < i w (| (I { {
_R 0- M e v ve we we we + e ww ww ey we * e v ww we we +
i O | u [| [| i i | [
i O | o i1 I 1 i | i (= |
| Q| + 1t | I 01 B | 4 v ovwe @ | wv v wc - ¢ LRI
+ - -~ w [w | f =~ § on}] | | [- i | §
> [+ | o1l =1 11 @ | i 1 i
=] It o | 21 1 11 -t | |] i
- (| o | it mi 1 11 - | | | 1
[| | ! 11l o i L ARSI >]
+ L IR + 4+ 4+ + + LI I N I N B R N R TRE R RO | | i
| | ooyl i i w1 | w it wiweil w i o i |
i | oned L | | ~ | | - | |1 -] -] | o i i
{ |l ol i 1 M i i > (o' I O ol >l o I oo] l
i it~ mi 1€ gl Y] ol 11 g (= I | =~ QO P - E R
! N B | | 11 | X | + + + = | + o4 i1 - >
| | O 1 o O | 1 O O i | - Q| | Z lo 3 n o~
| i .00 | | O | | o o | | O O | 1€ O oo
§ | 9O | i 01 i o | | O 1 } < | o
| o wn® | | a1 | =S| 1 = I] [~ I Ev
+ +4 -4+ 44~ 4 4e-4t-4+ 4e-4+t-—-4 4+--4--4 002
| | | - | N u
i { } P
i I { t
} | (]] < < i -
i | o 1 144 b 1 z
] | - i - (=] | 2z
| 1 i 1
| | | i
| i 1 i
- - m- ._T - - - ‘v o o me we e + - m- we we we + - e ww w- - ‘_T - e we we wo G -

processor
external

bus

19

OPERATING SYSTEM C016555 —— Section 1

ATARI Home Computer Block Diagram

Figure 1-1,

CONVENTIONS USED IN THIS MANUAL
This manual uses the following special notations:
Hexadecimal Numbers

All two—digit numbers preceded by a dollar sign (%) designate
hexadecimal numbers. All other numbers (except memory addresses)
are in decimal form unless otherwise specified in the supporting
text.

Memory Addresses
All references to computer memory and mapped I/0 locations are in
hexadecimal notation. Memory addresses may or may not be contained

in square brackets. (Example: [D20F] and D20F are the same
address.)

Kilobytes of Memory

Memory sizes are frequently expressed in units of kilobytes, such
as 32K, where a kilobyte is 1024 bytes of memory.

PASCAL As an Algorithm—Specification Language

The PASCAL language (procedure block only) is used as the
specification language in the few places where an algorithm is
specified in detail. PASCAL syntax is similar to any number of
other block-structured languages, and you should have no
difficulty following the code presented.

Memory Layouts

Diagrams similar to Figure 1-2 are used whenever pictures of bytes
or tables are presented:

76543210

el R e T S s

H { === This is a single byte.
e s et S

H H

+ + ——= This is a word (2 bytes).
[[

] E

e s s TS T SR S

H H

= = —-=— This is a block of memory
H H of unspecified length.
e e h &

Figure 1-2. Memory tayout Chart

OPERATING SYSTEM CO16555 ~—- Section 1
20

Bit 7 is the most significant bit (MSB) of the byte, and Bit O
is the least significant bit (LSB).

In tables and figures, memory addresses always increase toward the
bottom of the figure.

Backus—-Naur Form

A modified version of Backus—-Naur Form (BNF) is used to express some

syntactic forms, where the following metalinguistic symbols are used:

= is the substitution (assignment) operator.
< > a metasyntactic variable.

H separates alternative substitutions.

L 1 an optional construct.

Anything else is a syntactic literal constant, which stands for
itself.

For Example:
{device specification> ::= <Jdevice namel>f<{device number>]:
<device name> ::= CIDIEIKIPIRIS
{device number> ::= 112i314i516!7i8
A “"device specification" consists of a mandatory “device name, "
followed by an optional "device number." followed by the mandatory
colon character. The device name in turn must be one of the

characters shown as alternatives. The device number (if it is presen
must be a digit 1 through 8.

08 Equate Filenames

Operating System ROM (Read Only Memory!) and RAM (Random Access
Memory) vector names, RAM database variable names and hardware
register names are all referred to by the names assigned in the 0S5
program equate list. When one of these names is used, the memory
address is usually provided, such as BOOTAD [02421.

OPERATING SYSTEM C016555 —— Section 1

t)

21

2 DOPERATING SYSTEM FUNCTIONAL ORGANIZATION

This section describes the various subsystems of the resident 0S in
general terms.

Input/Output Subsystem

The Input/Output (I/0) subsystem provides a high—level interface
between the programs and the hardware. Most functions are
device—independent, such as the reading and writing of character data;
yet provisions have been made for device-dependent functions as well.
All peripheral devices capable of dealing with character data have
individual symbolic names (such as K,D:P, etc). and can be accessed
using a Central I/0 (CIO) routine.

A RAM data base provides access to controllers (joysticks and paddle
controllers}, which do not deal with character data. This RAM data
base is periodically updated to show the states of these devices.

INTERRUPT PROCESSING

The interrupt system handles all hardware interrupts in a common
and consistent manner. By default, all interrupts are fielded by
the 0S. At your discretion, individual interrupts (or

groups of interrupts) can be fielded by the application program.

INITIALIZATION

The system provides two levels of initialization: power up and
system reset. The 0S5 performs power—~up initialization each time
the system power is switched to ON: and system reset
initialization is performed each time the [SYSTEM. RESET] key is
pressed.

Power-Up

The 0S examines and notes the configuration of the unit whenever
the system power is switched to ON. The system performs the following
tasks at power up:

OPERATING SYSTEM CO16555 —— Section 2
22

o Determines the highest RAM address.

o Clears all of RAM to zeros.

o Establishes all RAM interrupt vectors.
0 Formats the device table.

o Initializes the cartridge(s}.

0 Sets up the screen for 24 x 40 text mode.
0 Boots the cassette if directed.
] Checks cartridge slot(s) for diskette-boot instructions.

0 Boots the diskette if directed to do so and a disk drive unit¢
is attached,

o Transfers control to the cartridge, diskette—-booted program.
cassette-booted program, or blackboard program.

[SYSTEM. RESET]
Pressing the [SYSTEM. . RESET] key causes the OS5 to perform these
following tasks:

o Clears the 0S portion of RAM.

o Rechecks top of RAM.

0 Reestablishes all RAM interrupt vectors.

0 Formats the device table.

0 Initializes the cartridge(s).

0 Sets up the screen for 24 x 40 text mode.

o Transfers control to the cartridge, a diskette—-booted program,
a cassette~booted program, or the blackboard program.

Note that [SYSTEM. RESET] does not perform all the power-up
tasks listed in the power—-up section.

OPERATING SYSTEM C0146555 —— Section 2
23

FLOATING POINT ARITHMETIC PACKAGE

The 09 ROM contains a Floating Point (FP) package that is available
to nonresident programs such as ATARI BASIC.

The package is not used by the other parts of the 0S itself.

The

floating point numbers are stored as 10 BCD digits of mantissa,
i~-byte exponent. The package contains these routines:

24

Q

(2]

ASCII-to-FP and FP-to—-ASCII conversion.
Integer—to-FP and FP-to-integer conversion.
FP add, subtract, multiply and divide.

FP log. exp, and polynomial evaluation.

FP number clear. load, store. and move.

OPERATING SYSTEM CO16555 —— Section 2

plus a

3 CONFIGURATIONS

The ATARI 400 and ATARI 800 Home Computers support a
wide variety of configurations, each with a unique operating
environment:

o Cartridge(s) may or may not be inserted

0 Memory can be optionally added to the ATARI 800 Computer
console in 16K increments

o Many different peripheral devices can be attached to the
serial 1/0 bus.

The 0OS accounts for all of these variables without requiring a
change in the resident DS itself (see Section 2). The machine
configuration is checked when power is first turned on and then
is not checked again, unless system reset is used. A general
discussion of some of the valid configurations follows.

PROGRAM ENVIRONMENTS

The 0S allows one of four program types to be in control at any
point in time:

o The 0OS blackboard (ATARI Memo Pad) program

o A cartridge-resident program

o A diskette—-booted program

0 A cassette-booted program
Control choice is based upon information in the cartridge(s), upon
whether or not a disk drive is attached, and upon operator keyboard
inputs. The exact algorithms are discussed in detail in Section 7.
Blackboard Mode
In blackboard mode, the screen is established as a 24 x 40 text
screen. Anything entered from the keyboard goes to the screen
without being examined, although all of the screen editing
functions are supported. Blackboard mode is the lowest priority

environment. You go there only by command from a higher

OPERATING SYSTEM CO14555 —— Section 3
25

priority environment, or by default, if there is no other
reasonable environment for the 0S to enter. For example., typing BYE
in BASIC causes the 0S5 to enter the blackboard mode. The blackboard
mode can be exited by pressing the [SYSTEM. RESET] key if it was
entered from a higher environment.

Cartridge

An inserted cartridge normally provides the main control after
initialization is complete (for example: ATARI BASIC, SUPER
BREAKOUTLTM], BASKETBALL, COMPUTER CHESS, and others. All these
cartridge programs interface directly with you in some way). Although
a cartridge can provide a supporting function for some other program
environment., this has not yet been done. Some cartridges (particularly
keyboard-oriented ones) can change environments by entering special
commands (such as “BYE") to go to blackboard mode or “DOS" to enter
the disk utility. Other cartridges cannot change environments. Note
that a hardware interlock prevents the removal or insertion of a
cartridge with the power on; this feature causes the entire system to
reinitialize with every cartridge change.

Diskette Boot

The diskette may or may not be booted when the system powers up
with diskette-bootable software. This paragraph assumes that a
diskette boot did occur. See Section 7 for boot condition
explanations.

The diskette—-booted software can take control as the Disk Utility
Program (DUP) does under certain conditions, or can provide a
supporting function as the File Management System (FMS) does. This
environment is so flexible that it is difficult to generalize on its
capabilities and restrictions. The only machine requirement (other
than the disk drive} is that sufficient RAM be installed to support
the program being booted.

Cassette—Boot

The cassette-boot environment is similar to the diskette—-boot
environment, although the cassette is limited as an I/0 device. It
is slow and can access only one file at a time in sequence. Note
that the cassette-boot facility has no relation to the use of
cassettes to store high—-level language programs (e.g., programs
written in ATARI BASIC): nor to the use of cassettes to store data.

OPERATING SYSTEM CO14555 ~—— Section 3
26

RAM EXPANSION

Although you can expand RAM noncontiguously in the

ATARI 800 Home Computer, the OS5 will only recognize RAM

that is contiguous starting from location O. Installation
directions are provided with the purchased RAM modules. RAM can be
added until it totals 48K. After 32K, additional RAM overlays first
the right—cartridge addresses (32K to 40K} and then the
left—-cartridge addresses (40K to 48K). Note that in cases of
conflict, the inserted cartridge has higher priority and disables
the conflicting RAM in BK increments. See Section 4 for a detailed
discussion of system memory.

As a result of power—up, the 05 will generate two pointers that
define the lowest available RAM location and the highest available
RAM location. The 0S8 and diskette or cassette—booted software will
determine the location of the lowest available RAM, while the
number of RAM modules and the current screen mode will determine
the highest available RAM.

PERIPHERAL DEVICES

Peripheral devices of several types can be added to the system
using standard cables to either the serial bus or the connectors at
the front of the computer console. The most common types deal with
either transmission of bytes of data (usually serial bus) or
transmission of sense information (usuvally game controllers).

Game Controllers

The 0S periodically senses (50 or 60 times per second} the standard
game controllers (Paddles and Joysticks) and the values read are
stored in RAM. You can plug in, remove, and rearrange these
controllers at will without affecting system operation: because the
system will always try to read all of these controllers.

The Driving Controllers are read, but not decoded, by the 0S. Special

instructions are required to read the keyboard controller (see
Section 11},

Program Recoarder

The ATARI 410{TM]1 Program Recorder is a special peripheral. It uses
the serial bus to send and receive data, but does not conform to
the protocol of the other peripherals that use the serial bus. The
Program Recorder must also be the last device on the serial bus,
because it does not have a serial bus extender connector as the
other peripherals do. There can never be more than one Program
Recorder connected to any system for the same reason. The system
cannot sense the presence or absence of the Program Recorder, so it
can be connected and disconnected at will.

OPERATING SYSTEM C016555 —-— Section 3

27

Serial Bus Devices

A serial bus device conforms to the serial I/0 bus protocol as
defined in Section 9, but this does not include the Program
Recorder. Each serial bus device has two identical connectors: a
serial bus input, and a serial bus extender. Either connector can
be used for either purpose. Peripherals can be “daisychained" by
cabling them together in a sequential fashion. There are usually no
restrictions on the cabling order because each device has a unique

identifier. Where restrictions exist, they will be mentioned in
Section 5.

OPERATING SYSTEM C016555 —— Section 4
28

4 SYSTEM MEMORY UTILIZATION

Memory in the system is decoded in the full 64K range of the 6502
microcomputer and there are no provisions for additional mapping to
extend memory. Memory is divided into four basic regions (with some
overlap possible}: RAM, cartridge area:; I/0 region and the resident
0S5 ROM. The regions and their address boundaries are listed below
(all addresses are in hexadecimal):

OCCO0-1FFF = RAM (minimum required for operation)

2000-7FFF = RAM expansion area

8000-9FFF = Cartridge B, Cartridge A (half of 16K size) or RAM
AQCO-BFFF = Cartridge A or RaAM

COO0-CFFF = Unused

DOOO-D7FF = Hardware I/0 decodes

DB8OO-DFFF = Floating Point Package (0S)

EQOO=FFFF = Resident Operating System ROM

Figure 4—-1 4502 System Memory Map

This section will break these regions into even smaller functional
divisions and provide detailed explanations of their usage.

RAM REGION

The 0OS and the control program share the RAM region. The RAM region
can be further subdivided into the following sub regions for
discussion purposes:

Page O = 6502 page zero address mode region.
Page 1 = 4502 stack region.

Pages 2-4 = 0S database and user workspace.

Pages 5-& = User program workspace.

Pages 7-XX = Bootable software area/free RaAM. #

Pages XX—-top of RAM = Screen display list and data. #

Note that XX is a function of the screen graphics mode and the
amount of RAM installed.

The paragraphs that follow describe how the OS5 uses RAM subregions,
and presents user program recomendations.

OPERATING SYSTEM C016555 —— Section 4
29

Page ©

The architecture of the 6502 microcomputer instruction set and
addressing modes gives page O special significance. References to
addresses in that page (0000 to OOFF) are faster, require fewer
instruction bytes, and provide the only mechanism for hardware
indirect addressing. Page O should be used sparingly so that all
possible users can have a portion of it. The 0OS permanently takes the
lower half of page O (0000 to OO7F). This portion can never be used by
any outer environment unless the 0S is completely disabled and all
interrupts to the OS are eliminated.

The upper half of page O (0080 to OOFF) is available to outer
environments with the following restriction: the floating point
package, if used, requires OOD4 through OOFF.

Page 1

Page 1 is the 6502 hardware stack region; JSR instructions, PHA
instructions, and interrupts all cause data bytes to be written to
page 1. Conversely RTS, PLA, and RTI instructions all cause data bytes
to be read from page 1. The 256 byte stack is adequate for normal
subroutine calls plus interrupt process nesting, so no restrictions
have been made on page 1 usage. It is obvious that a stack of this
size is totally inadequate for deeply recursive processes or for
nested processes with large local environments to be saved. So, for
sophisticated applications, software maintained stacks must be
implemented.

The 6502 stack pointer is initialized at power—up or system reset to
point to locaftion OIFF. The stack then pushes downward toward 0100.
The stack will wrap around from 0100 to OIFF if a stack overflow
condition occurs, because of the nature of the 6502‘s B-bit stack
pointer register.

0S Data Base

Locations 0200 through 047F are allocated by the 0OS for working
variables, tables and data buffers. Portions of this region can be
used only after you determine that nonconflict with the OS

is guaranteed. For example, the printer and cassette buffers could be
vused if I/0 operations to these devices are impossible within the
controlling environment. The amount of work involved in determining
nonconflict seems to be completely out of line with the benefits to be
gained (except for a few trivial cases) and it is recommended that
pages 2 through 4 not be used except by the 0S.

OPERATING SYSTEM C016555 —- Section 4
30

User Workspace

Locations 0480 through O&6FF are dedicated for outer environment use

except when the floating point package is used. The floating point
package uses locations O57E through OSFF.

Boot Region

Page 7 is the start of the "boot region. " When software is booted from
either the diskette or the cassette, it can start at the lowest free
memory address (that is 0700) and proceed upward (although it can also
start at any address above 0700 and below the screen display list).
The top of this region defines the start of the "free memary" region.
When the boot process is complete, a pointer in the data base contains
the address of the next available location above the software just

booted. When no software has been booted, this pointer contains the
value 0700.

Screen Display List and Data

When the 0S5 is handling the screen display, the display list that
defines the screen characteristics and the current data that is
contained on the screen are placed at the high address end of RAM. The
bottom of this region defines the end of the free memory region and
its location is a function of the screen mode currently in effect. A

pointer in the data base contains the address of the last available
location below the screen region.

Free Memory Region

The free memory region is all the RAM between the end of the boot
region and the start of the screen region. The outer level application
is responsible for managing the free memory region.

CARTRIDGES A AND B

There are two BK regions reserved for plug—in cartridges. Cartridge B,
that is the right-hand cartridge slot found only in the ATARI 800
Home Computer. has been allocated memory addresses 8000

through 9FFF. Cartridge A (the left—-hand cartridge slot in the ATARI
800 Computer console, and the only slot in the ATARI 400 Computer
console) has been allocated memory addresses AQCOO through BFFF and
optionally 8000 through BFFF, for 16K cartridges. If a RAM module is
plugged into the last slot such as to overlay any of these addresses,
the RAM takes precedence as long as a cartridge is not inserted.
However, if a cartridge is inserted, it will disable the entire
conflicting RAM module in the last slot in BK increments.

OPERATING SYSTEM C014555 —-— Section 4
31

MAPPED 1/0

The 6502 performs input/output operations by addressing the external
support chips as memory; some chip registers are read/write while
others are read-only or write-only (the ATARI Home Computer

Hardware Manual gives descriptions of all of the external registers).
While the entire address space from DOOO to D7FF has been allocated
for I/0 decoding, only the following subregions are used:

DOOO-DOLIF = CTIA
D200-D21F = POKEY
D300-D31F = PIA

D400-D41F = ANTIC

Figure 4-2. Mapped 1/0

RESIDENT 0S AND FLOATING POINT PACKAGE ROM

The region from DBOO through FFFF always contains the 0S and the
floating point package. Care should be taken to avoid using any entry
points that are not guaranteed not to move, to allow for the
possibility that another, but functionally compatible, 0OS can be
generated in the future. The 0SS contains many vectored entry points at
the end of the ROM and in RAM that will not move. The floating point
package is not vectored, but all documented entry points will be
fixed: Do not use undocumented routines found by scanning the listing.
A list of the fixed ROM vectors can be found in Appendix J.

CENTRAL DATA BASE DESCRIPTION

See Appendix L.

MEMORY DYNAMICS

The free memory region is the area between the end of the boot region
and the start of the screen region. As such, its limits are variable.
MEMLO CO2E7] defines the bottom of the free region, and MEMTOP [O2ES]
defines the top of the region. This section presents the conditions
that cause the setup or alteration of these variables.

OPERATING SYSTEM C0O16555 —— Section 4
a2

System Initialization Process

The 0S5 determines the extent of the lowest block of contiguous RAM,
and saves the limits. The Screen Editor is then opened, thus setting a
new (and lower) value in MEMTOP. Diskette or cassette-booted software
might be brought into memory, that would probably set a new (and
higher}) value in MEMLDO (see Section 7). MEMLO and MEMTOP will define
the maximum amount of free memory available when the application

program finally gets control. That amount of free memory can later
decrease, as described in the next paragraph.

Changing Screen Modes

The Display Handler interprets the variable APPMHI ‘COOOEl’ to contain
the address below which MEMTOP cannot extend. This allows you to
protect the portion of free memory space that you are using from being
overwritten as a result of screen mode change. The display handler
will set the screen for mode O, update MEMTOP, and return an error
status to you, if it determines that the screen memory will

extend below APPMHI as a result of a screen mode change. In other

cases the Display Handler effects the desired mode change and updates
MEMTOP.

OPERATING SYSTEM C016555 -— Section 4
33

S I/0 SUBSYSTEM

This section discusses the I/0 subsystem of the Operating System. The
I/0 subsystem comprises a collection of routines that allow you

to access peripheral and local devices at three different levels. The
CIO (Central I/0 Utility), provides the highest level, device
independent access to devices. The second level allows communication
with the device handlers. The lowest level is the SIO (Serial I/0 bus
Utility) routine. Any lower level access to a device involves the
direct reading and writing of the hardware registers associated with
the device.

The data byte is the basic unit of input/output. A data byte can
contain either “binary” (non text) information, or encoded text
information. The text encoding scheme supported by the OS is called
ATASCII, derived from the words "ATARI ASCII." Most ATASCII codes are
the same as ASCII, with the primary deviations being the control
codes. Appendix D shows the ATASCII character set, and Appendices E,
F. and G show device-specific implementations for the display,
keyboard, and printer.

Thegstructure of the I/0 subsystem is shown on the following page.

OPERATING SYSTEM CO016555 —— Section S
34

it wuser H
From e —————————— i program - e +
H Fmm i e + H
S mtatadatattty + H H
H i IOCB‘s {3s#sdssesats! i
| e + } !
Fhm——————————— + Fm e ——— + H
! Resident ! H cIO H Rt + H
! Handler H { Utility | H BCB {33836 30 303038 |
i Vector Table! Fo e + P ———— + % i
Fr———— + ! * i
H H #* H
H P ———— e + P e + R + # H
H i ZIOCB ¢ { Device | iDisk File! H
ettt + i Table ! +===-1 Manager {—-———- +
: * Fo e + H Fm e ———— + HE
H * H H HE
Form e ————————— Fomm——— o e F——p—— —— HE
i i i H HE
P —————— + m————— + e + bm—————— + +
i Printer { | Cassette! HEE H | Keyboard! { Disk H
{ Handler | i Handler | ! Handler | { Handler | { Handler |
et + em—————— + oo e e + Femmm————— + e ————— +
H H H !
o + ——r————— + o e e —— —— +
H
e ——— + !
H DCB § 336330363636 30 3¢ |
P ——— + !
o e e e e +
| SI0 H
P Utility |
e e e e +

Where: ~——-- shows a control path. ###% shows the data structure
required for a path.

Note the following:
o The Keyboard/Display/Screen Editor Handlers don’t use SIO.
0 The Diskette handler cannot be called directly from CIO.
0 The DCB is shown twice in the diagram.

Figure 5-1 I/0 Subsystem Structure Flow Diagram

OPERATING SYSTEM C016555 -- Section 5

35

CENTRAL I/O UTILITY

The Central I/0 Utility provides you with a single interface in which
to access all of the system peripheral devices in a device-independent
manner. The minimum unit of data transfer is the data byte. The CID
also supports multiple byte transfers. All I/0 operations are
performed on a “"return-to-user-when-complete" basis: there is no way
to initiate concurrent “overlapped" I/0 processes.

I/0 is organized by "files," where a file is a sequential
collection of data bytes. A file can or may not contain textual
data and it can or may not be organized by “records, " where a
record is a contiguous group of bytes terminated by an EOL (End of
Line) character. Some files are synonymous with a device (as with
the printer and the Screen Editor), while other devices can contain
multiple files, each with a unique name (as with the disk drive).

CIO allows you to access up to eight independent device/files
at one time, because there are eight I/0 Control Blocks (IOCB‘s) in
the system. Each of the IOCB‘s can be assigned to control any
device/file because there are no preferred assignments, except that

IOCB #0 is assigned to the Screen Editor at power—-up and
system reset.

To access a peripheral, you first set up an IOCB for the OPEN
command, that supplies the system name for the device to bhe
accessed (e.g. K:, for the keyboard, P:, for the printer, D:STARS
for a diskette file named ‘STARS’, etc). You then call the CIOD,
telling it to examine the IOCB to find the OPEN information. CIO
attempts to find the specified device/file and returns a status
byte indicating the success of the search. If the specified
device/file can be found by CIO, then CIOD stores control

information in the IOCB. The IOCB is now used for as long as that
file is apen.

Once a file is open, it can then be accessed using data-read or
data-write types of commands: in general, reading can proceed until
there is no more data to read (End of File) and writing can proceed
until there is no more medium to store data on (End of Medium),
although neither reading nor writing need proceed to that point.
The reading and writing of data generally occurs into and out of
user—supplied data buffers (although a special case allowing single
byte transfers using the 4502 A register is provided).

When there are no more accesses to be performed on an open
device/file, you perform the close operation. This
accomplishes two functions:

o It terminates and makes permanent an output file (essential
for diskette and cassette).

0 It releases that IOCB to be used for another I/0 operation.

OPERATING SYSTEM C016555 —- Section S
36

CIO Design Philosophy

The CIO utility was designed specifically to meet the following
design criteria.

o The transfer of data is device independent.

0 Byte-at—a-time, multiple byte and record-aligned accesses are
supported.

o Multiple device/files can be accessed concurrently.

o Error handling is largely device independent.

o New device handlers can be added without altering the system
ROM.

Device Independence

CIO provides device independence by having a single entry point for
all devices (and for all operations) and by having a
device—independent calling sequence. Once a device/file is opened,
data transfers occur with no regard to the actual device involved.
Uniform rules for handling byte— and record-oriented data transfers
allow the actual device storage block sizes to be transparent to you.

Data Access Methods

The CIO supports two file access methods: byte—aligned and
record—aligned.

Byte—aligned accesses allow you to treat the device/file as a
sequential byte stream; any number of bytes can be read or written
and the following opevation will continue where the prior one left
off. Records are of no consequence in this mode, and reads or
writes can encompass multiple records if desired.

Record~aligned accesses allow you to deal with the data stream

at a higher level, that of the data record or "line of text." Each
and every write operation creates a single record (by definition).
Each read operation assures that the following read operation

will start at the beginning of a record. Record—aligned accesses
cannot deal with portions of more than one record at a time.
Record—aligned accesses are useful only with text data or with
binary data guaranteed not to contain the EOL character ($9B) as
data.

Note that any file can be accessed using the byte—-aligned access
method, regardless of how the file was created. But not all files
can be successfully read using record—aligned accesses; the file

OPERATING SYSTEM C016555 —— Section 5
37

must contain EOL characters at the end of each record and at no
other place.

Multiple Device/File Concurrency

Up to eight device/files can be accessed concurrently using CIO,
each operating independently of the others.

Unified Error Handling

All error detection and recovery occurs within the CIO subsystem.
The status information that reaches you is in the form of a
status byte for each device/file. Error codes are device
independent as much as possible (see Appendix B).

Device Expansion

Devices are known by single character names such as K or P, and a
number of device handlers are part of the resident system ROM.
However, additional device handlers can be added to the system
using the RAM-resident device table; this is normally done at
power—up time as with the diskette boot process, but can be done at
any point in time.

CIO Calling Mechanism

The input/output control block (IOCB) is the primary parameter
passing structure between you and CIO. There are eight IOCB‘s
in the system, arranged linearly in RAM as shown below:

o + low address [0340]

O — + high address

Figure 5-2 CIO Calling Mechanism

OPERATING SYSTEM CD146555 ——- Section S
38

One IOCB is required for each open device/file. any IOCB can be used
to control any device/file, although IOCB O is normally assigned to
the Screen Editor (E:). You perform a typical I/0 operation by:

o Inserting appropriate parameters into an IOCB of your choosing
o Putting the IOCB number times 16 into the 6502 X register
o Performing a JUSR to the CID entry point CIOV C[E456].

CIO returns to you when the operation is complete or if an

error was encountered. The operation status is in the IOCB used, as
well as in the 6502 Y register. The 6502 condition codes will also
reflect the value in the Y register. In some cases a data byte will
be in the 46502 A register. The X register will remain unchanged for

all operations and conditions. An example is shown below:
I10CB2X = %20 i INDEX FOR IOCB #2.
DX #I0CB2X
JSR cIoVv
CcPY #0 i (optional)
BMI ERROR

This sector describes each IOCB byte, with its file name and
address. Each IOCB is 16 bytes long. Some bytes can be altered by

you and some are reserved for use by CIO and/or the device
handlers.

Handler ID —-- ICHID (03401

The handler ID is an index into the system device table (see
Section ?) and is not user-alterable. This byte is set by CIO as
the result of an OPEN command and is left unchanged until the
device/file is closed, at that time CID will set the byte to $FF.

Device Number —-— ICDNO [0341]

The device number is provided by CIO as the result of an OPEN
command and is not user—alterable. This byte is used to

distinguish between multiple devices of the same type, such as
Di: and D2:.

OPERATING SYSTEM C0146555 —-— Section 5
3%

Command Byte -- ICCMD [03421]

You set the command byte. It specifies the command to be
performed by the CIO. This byte is not altered by CIOD.

Status —— ICSTA [0343]

The CIO conveys operation status to you with the command

status byte as a result of each and every CID call. Each and
every CIO call updates the command status byte. The most
significant (sign) bit is a one for ervor conditions and zero for
non-error conditions, and the remaining bits represent an error
number. See Appendix B for a list of status codes.

Buffer Address —— ICBAL [03441 and ICBAH {0345}

You set this 2-byte pointer; it is not altered by CIO. The

pointer contains the address of the beginning (low address) of a
buffer that:

o Contains data for read and write operations

o Contains the device/filename specification for the OPEN
command.

You can alter the pointer at any time.

PUT Address —-- ICPTL [03441 and ICPTH [03471

The CIO sets this 2-byte pointer at OPEN time to the handler’s
PUT CHARACTER entry point (- 1). The pointer was provided ¢to
accommodate the people writing the ATARI BASIC cartridge, and has
no legitimate use in the system. This variable is set to point to

CI0’s "IOCB not OPEN" rvoutine on CLOSE, Power—-up and
[SYSTEM. RESET].

Buffer Length/Byte Count —- ICBLL [0348] and ICBLH [034%91

You set this 2-byte count to indicate the size of the data

buffer pointed to by ICBAL and ICBAH for read and write
operations. It is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes
actually transferred into or out of the data buffer. For
record—-aligned access, the record length can well be less than
the buffer length. Also an end of file condition or an error can
cause the byte count to be less than the buffer length.

Auxiliary Information —-- ICAX1 [034A] and ICAX2 [O034B]

OPERATING SYSTEM C016555 —- Section S
40

You set thesé 2-bytes. They contain information that is
used by the OPEN command process and/or is device-dependent.

For OPEN, two bits of ICAX1 are always used to specify the OPEN
direction as shown below, where R is set o 1 for input (read)
enable and W is set to 1 for output (write) enable.

+
[
LI

e e e e o e e o e e o e

ICAX1 is not altered by CID. You should not alter ICAX1
once the device/file is open.

The remaining bits of ICAX1 and all of ICAX2 contain only
device-dependent data and are explained later in this section.

Remaining Bytes (ICAX3—-ICAX&)

The handler reserves the four remaining bytes for processing the
I1/0 command for CIO. There is no fixed use for these bytes. They
are not user—alterable except as specified by the particular
device descriptions. These bytes will be referred to as ICAX3,
ICAX4, ICAXS and ICAXé, although there are no equates for those
names in the 0S5 equate file.

CI0 Functions

The CID supports records and blocks and the handlers support
single bytes. All of the system handlers support one or more
of the eight basic functions sub ject to restrictions based
upon the direction of data transfer (e.g. one cannot read data
from the printer). The basic functions are: OPEN, CLOSE, GET
CHARACTERS, PUT CHARACTERS:, GET RECORD, PUT RECORD, GET STATUS,
and SPECIAL.

DPEN -— Assign Device/Filename to IOCB and Ready for Access

A device/file must be opened before it can be accessed. This
process links a specific IOCB to the appropriate device
handler, initializes the device/file, initializes all CIOD
caontrol variables, and passes device-specific options to the
device handler.

OPERATING SYSTEM C016555 —— Section 5
41

You set up the following IOCB parameters prior to calling CIO for an
OPEN operation:

COMMAND BYTE = $03

BUFFER ADDRESS = pointer to a device/filename specification.

AUX1 OPEN direction bits, plus device-dependent information.
AUX2 = device—dependent information.

After an OPEN operation, CID will have altered the following IOCB
parameters:

HANDLER ID = index to the system device table; this is
vsed only by CIO and must not be altered.

DEVICE NUMBER = device number taken from the device/filename
specification and must not be altered.

STATUS = result of OPEN operation; see Appendix B for a list
of the possible status codes. In general, a negative status
will indicate a failure to open properly.

PUT ADDRESS = pointer to the PUT CHARACTERS routine for the
device handler just opened.

It is recommended that this pointer not be used.

CLOSE ~- Terminate Access to Device/File and Release IOCBH.

You issue a CLOSE command after you are through accessing a
given device/file. The CLOSE process completes any pending data
writes, goes to the device handler for any device-specific
actions, and then releases the IOCB.

You set the following IOCB parameter prior to calling
CIO:

COMMAND BYTE = $0C

The CID alters the following IOCB parameters as a result of the
CLOSE operation:

HANDLER ID = $FF
STATUS = Result of CLOSE operation.

PUT ADDRESS = pointer to "IOCB not OPEN" routine.

OPERATING SYSTEM CO16555 —- Section 5
42

GET CHARACTERS —— Read n Characters (Byte—Aligned Access)

The specified number of characters are read from the device/file
to the user—supplied buffer. EOL characters have no termination
features when using this function; there can be no EOL, or many
EOL‘s, in the buffer after operation completion. There is a
special case provided that passes a single byte of data in the
6502 A register when the buffer length is seft to zero.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero,
the data will be returned in the 6502 A register only.

The CIO alters the following INDCB parameters as a result of the
GET CHARACTERS operation:

STATUS = result of GET CHARACTERS operation.
BYTE COUNT/BUFFER LENGTH = number of bytes read to the

buffer. The BYTE COUNT will always equal the BUFFER LENGTH
except when an error or an end-of-file condition occurs.

PUT CHARACTERS —-- Write n Characters (Byte—-Aligned Access)

The specified number of characters are written from the user-supplied
buffer to the devicesfile. EOL characters have no buffer

terminating properties, although they have their standard meaning

to the device/file receiving themi no EOL’s are generated by CIO.
There is a special case that allows a single character to be

passed to CIO in the 6502 A register if the buffer length is
zero.

You set the following IOCB parameters prior ¢o initiating the PUT
CHARACTERS operation:

COMMAND BYTE = $0B
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = number of bytes of data in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT CHARACTERS operation:

STATUS = result of PUT CHARACTERS operation.

OPERATING SYSTEM C0146555 -- Section 5
43

GET RECORD —— Read Up To n Characters (Record—-Aligned Access)

Characters are read from the device/file to the user—supplied
buffer until either the buffer is full or an EOL character is
read and put into the buffer. If the buffer fills before an EOL
is read, then the CIO continues reading characters from the
device/+ile until an EOL is read,, and sets the status to
indicate that a truncated record was read. No EOL will be put at
the end of the buffer.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = %05
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes to read (including
the EOL character).

The CIO alters the following IOCB parameters as a result of the
GET RECORD operation:

STATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to data
buffer; this can be less than the maximum buffer length.

PUT RECORD —— Write Up To n Characters (Record-Aligned Access)

Characters are written from the user—supplied buffer to the
device/file until either the buffer is empty or an EOL character
is written. I+ the buffer is emptied without writing an EOL
character to the device/file, then CIO will send an EOL after the
last user—-supplied character.
You set the following IOCB parameters prior to calling CIO:

COMMAND BYTE = $09

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT RECORD operation:

STATUS = result of PUT RECORD operation.

OPERATING SYSTEM CO16555 —— Section S
44

GET STATUS —-- Return Device-Dependent Status Bytes

The device controller is sent a STATUS command, and the
controller returns four bytes of status information that are
stored in DVSTAT [0O2EA1].

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = $0D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already OPEN; see the discussion of the
implied OPEN option below.

After a GET STATUS operation, CID will have altered the following
parameters:

STATUS = result of GET STATUS operation; see Appendix B for
a list of the possible status codes.

DVSTAT = the four-byte response from the device controller.

SPECIAL -- Special Function

Any command byte value greater than %$0D is treated by CIO as a

special case. Since CI0O does not know what the function is, CIO
transfers control to the device handler for complete processing
of the operation.

The user sets the following IOCB parameters prior to
calling CIO:

COMMAND BYTE > $0D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already open; see the discussion of the
implied OPEN option below.

Dther IOCB bytes can be set up, depending upon the specific
SPECIAL. command being performed.

After a SPECIAL operation, CIO will have altered the following
parameters:

STATUS = result of SPECIAL operationi see Appendix B for a
list of the possible status codes.

Other bytes can be altered, depending upon the specific
SPECIAL command.

OPERATING SYSTEM C016555 ~— Section 5
45

Implied OPEN Option

The GET STATUS and SPECIAL commands are treated specially by CIO;
they can use an already open IOCH to initiate the process or they
can use an unopened IOCB. If the IOCB is unopened, then the
buffer address must contain a pointer to a device/filename
specification, just as for the OPEN command; CIO will then open
that IOCB, perform the specified command and then close the IOCBH
again.

Device/Filename Specification

As part of the OPEN command, the IOCB buffer address parameter
points to a device/filename specification, that is a string of
ATASCII characters in the following format:

Lspecification’ .= {deviceXf<number>]:. [<{filename>l<eol>

<devicel> ::= CIDIEIKIPIR!S

<numberl :: 1i12i13i1415161718

<filenamel has device-dependent characteristics.
<eol2 ::= $9B

The following devices are supported at this writing:

C Cassette drive

D1 through D8 = Floppy diskette drives #
E = Screen Editor
K =
P

Keyboard
= 40-column printer
P2 = 80—column printer *
R1 through R4 = RS-232-C interfaces #
S = Screen display

Devices flagged by asterisks (#) are supported by nonresident
handlers.

I+ <number> is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassette
D2: BDAT File "BDAT" on disk drive #2
D: HOLD File "HOLD" on disk drive #i
K: Keyboard

OPERATING SYSTEM C0O16555 —— Section 5
46

1/0 Example

The example provided in this section illustrates a simple example of

an I/0 operation using the CID routine.

drive

N W we w

- e e W we

1.

This code segment jllustrates the simple example of reading
text lines (records) from a diskette file named TESTER on disk

#1. All symbols used are equated within the program

Opens the file

i I/0 EGUATES

although many of the symbols are in the 08 equate file.
The program performs the following steps:
‘D1: TESTER’ using IOCB #3.

2. Reads records until an error or EOF is reached.
3. Closes the file.

EOL= $9B i END OF LINE CHARACTER.
IOCB3= %30 i 10CB #3 OFFSET (FROM IQOCB #0).
ICHID= #0340 i (HANDLER ID —-- SET BY CIO).
ICDNO= ICHID+1 i (DEVICE # -- SET BY CIO).
ICCOM= ICDNO+1 i COMMAND BYTE.

ICSTA= ICCOM+1 i STATUS BYTE -- SET BY CIO.
ICBAL= ICSTA+1 i BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 i BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1

ICPTH= ICPTL+1

ICBLL= ICPTH+t1 i BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 i BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 i AUX 1.

ICAX2= ICAX1i+1 i AUX 2.

OPEN= $03 i OPEN COMMAND.

GETREC= $05 i GET RECORD COMMAND.

CLOSE= $0C i CLOSE COMMAND.

OREAD= 404 i OPEN DIRECTION = READ.
OWRIT= $08 i OPEN DIRECTION = WRITE.
EOQOF= %88 i END OF FILE STATUS VALUE.
Ci0v= $E456 i CIOD ENTRY VECTOR ADDRESS.

i FIRST INITIALIZE THE IOCB FOR FILE “OPEN".

LDX #I10CB3 i SETUP TO ACCESS IOCB #3.

OPERATING SYSTEM C0O16555 ~- Section 5

47

LDA
STA

LDaA
S5Ta
LDA
STA

LDaA
STa

LDaA
STA

JSR
BPL

JMpP

i SETUP TO READ

TP10 L.DA
STA

LDA
STA
LDaA
STA

i READ RECORDS.

i

LooP LDA
STaA
LDA
STA

JER
BMI

i

i A RECORD IS NOW IN THE DATA BUFFER "BUFF".

48

#OPEN
ICCOM, X

#NAME
ICBAL, X
#NAME /256
ICBAH, X

#OREAD
ICAXL., X

#0
Icaxa, X

"OPEN" THE FILE.

cIav
TP10

ERROR

A RECORD.

#GETREC
ICCOM, X

#BUFF
ICBAL., X
#BUFF /256
ICBAH, X

#BUFFSZ
ICBLL, X

#BUFFSZ1/256

ICBLH, X

cIov
TP20

i

SETUP OPEN COMMAND.

SETUP BUFFER POINTER TO .
POINT TO FILENAME.

SETUP FOR OPEN READ.

CLEAR AUX 2.

PERFORM “OPEN" OPERATION.
STATUS WAS POSITIVE -~ OK.

NO -- "“OPEN" PROBLEM.

SETUP “GET RECORD" COMMAND.

SETUP DATA BUFFER POINTER.

SETUP MAX RECORD SIZE ..
PRIOR TO EVERY READ.

READ A RECORD.
MAY BE END OF FILE.

OPERATING SYSTEM CO16555 —— Section S

IT IS TERMINATED BY

i AN EOL CHARACTER, AND THE RECORD LENGTH IS IN “ICBLL" and "“ICBLH".
i THIS EXAMPLE WILL DO NOTHING WITH THE RECORD JUST READ.

JMP Loop i READ NEXT RECORD.

i NEGATIVE STATUS ON READ -- CHECK FOR END OF FILE.

TP20 CPY #EOF i END OF FILE STATUS?
BNE ERROR i NO -- ERROR.
LDA #CLOSE i YES -- CLOSE FILE.
STA ICCOM, X
JER cIov i CLOSE THE FILE.
JMP #* i ##% END OF PROGRAM #33

i DATA REGION OF EXAMPLE PROGRAM

i

NAME . BYTE “Di:TESTER", EOL
BUFFSZ= 80 ; 80 CHARACTER RECORD MAX
(INCLUDES EOL).
BUFF= i READ BUFFER.
= #+BUFFSZ
. END

Figure 5-3 An I/0 Example

OPERATING SYSTEM C016555 —- Section 5

Device-8pecific Information

This section provides device—specific information regarding the
device handlers that interface to CIO.

Keyboard Handler (K:)

The keyboard device is a read only device with a handler that
supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null function)

The Keyboard Handler can produce the following errvor statuses:

$80 -— [BREAK] key abort.
$88 -— end-of-file (produced by pressing [CTRL] 3).

The Keyboard Handler is one of the resident handlers. It has a
set of device vectors starting at location E420.

The keyboard can produce any of the 256 codes in the ATASCII
character set (see Appendix F). Note that a few of the keyboard
keys do not generate data at the Keyboard Handler level. These
keys are described below:

L/7i\1 - The ATARI key toggles a flag that enables/disables the
inversion of bit 7 of each data character read. The
Screen Editor editing keys are exempted from such
inversion, however.

CAPS -~ The [CAPS/LOWR] key provides three functions:

[(SHIFTILCAPS/LOWR] —~— Alpha caps lock.
CCNTRLILCAPS/LOWR] —— Alpha [CTRLI lock.
C[CAPS/LOWR] —-— Alpha unlock.

OPERATING SYSTEM C0146555 —- Section 5
50

The system powers up and will system reset to the alpha
caps lock option.

Some key combinations are ignored by the handler, such as
CLCTRLY 4 through CCTRLY 9, [CTRL] O, £CTRL1I 1, {CTRL] /., and
all key combinations in that the [SHIFT1 and LCTRL] keys are
depressed simultaneously.

The L[CTRLY 3 key generates an EOL character and returns EOF status.

The [BREAK] key generates an EOL character and returns BREAK status.

CIO Function Descriptions

The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is K, and the handler ignores any device number
and filename specification, if included.

There are no device—dependent option bits in AUX1 or AUXZ.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CID as they are
entered, with no facility for editing.

GET STATUS

The handler does nothing but set the status to %01.

Theory of Operation

Pressing a keyboard key generates an IRQ interrupt and vectors to
the Keyboard Handler ‘s interrupt service routine (see Section 6).
The key code for the key pressed is then read and stored in data
base variable CH [0O2FC]. This occurs whether or not there is an
active read request to the Keyboard Handler, and effects a one-byte
FIFO for keyboard entry. See Appendix L (EB) for a discussion of
the auto repeat feature.

OPERATING SYSTEM C016555 —-- Section 5
51

The Keyboard Handler monitors the CH variable for not containing
the value %FF (empty state) whenever there is an active read
request for the handler. When CH shows nonempty. the handler
takes the key code from CH and sets CH to $FF again. The key code
byte obtained from CH is not an ATASCII code and has the
following form:

7 0
e o o o o e e o o e e e e e
tCiSt key code |
o o o e e e e e e e e

Where: C
s

1 if the ECTRL] key is pressed.
1 if the [SHIFT] key is pressed.

The remaining six bits are the hardware key code.

The key code obtainad is then converted to ATASCII using the
first of the following rules that applies:

Ignore the code if the C and S bits are both set.

If the C bit is set, process the key as a L[CTRLI code.

If the S bit is sef, process the key as a [SHIFT1 code.

If £CTRL] lock is in effect, process alpha characters as CTRL
codes, all others as lowercase.

IF £SHIFT3 lock is in effect, process alpha characters as SHIFT
codes, all others as lowercase,

Else, process as lowercase character.

o 0 kUM

Then: I+ the resultant code is nat a Screen Editor control code,
and if the video inverse flag is set, then set bit 7 of the
ATASCII code (will cause inverse video when displayed).

OPERATING SYSTEM CO16555 —- Section 5
92

KEY CODE TO ATASCII CONVERSION TABLE

Key ey
Code Cap

00 i
(031 J
o2 i
03 -
04 ——
05 N
06 +
07 #*
o8 0
o9 —
OA P
OB U
oC R
I
v

m
P!

oD

OE

OF

10

11 -
12 c
13 -
14 —
15 B
16 X
17 z
18 4
i2 -
1A 3
iB &
iC LESC]
iDp 5
1E 2
1F i

[CTRL]I 3 returns EOF status.

Lwr.
Case

&6c
bA
3B
6B
2B

2A
6F

70
75
7B
&9
2D
aD
74

63

&2
78
74
34
33
36
iB
35

32
31

LSHIFT]

4ac
aA
34
4B
5C
SE
4F
50
55
9B
49
S5F
7C
56

43

42
o8
SA
24
23
26
iB
29

22
21

ECTRL.]

ocC
oA
7B

oB
1E
iF
OF
10
15
9B
09
1C
iD
16

03

Key
Code

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
3%
34
3B
3C
3D
SE
aF

Key
Cap

SPACE

ACKS

OINY ANORBNO

PO
>
T
n

Lwr.
Case

2C
20
2E
&E

&b
2F

72
&5
79
7F
74
77
71
3%
30
37
7E
38
3C
3E
&b
&8
&4

&7
73
61

SHIFT

°B
20
SD
4E

4D
aF
52
45
59
9F
54
57
51
28
29
27
9C
40
7D
9D
44
ag
44

47
93
41

CTRL

A complement of this table (ATASCII to keystroke) is given in

Appendix F.

Figure 5-4

Keycode to ATASCII Conversion Table

OPERATING SYSTEM C0146555 ~— Section 5

53

Display Handler (S:)

The display device is a read/write device with a handler
that supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD ; .
GET STATUS (null function)
DRAW

FILL

The Display Handler can produce the following error statuses:

$84 —- Invalid special command.

$8D -~ Cursor out—-of-range.

$?1 ~— Screen mode 2> 11.

$93 —— Not enough memory for screen mode selected.

The Display Handler is one of the resident handlers, and
therefore has a set of device vectors starting at location E410.

Screen Modes

You can operate the display screen in any of 20

configurations (modes 1 through 8, with or without split
screen; plus mode O, and modes 9 through 11 without split
screen). Mode O is the text displaying mode. Modes 1 through
i1 are all graphics modes (although modes 2 and 3 do display a
subset of the ATASCII character set). Modes 9 through 11
require a GTIA chip to be installed in place of the standard
CTIA chip.

TEXT MODE ©

In text mode O the screen is comprised of 24 lines of 40
characters per line. Program alterable left and right margins
limit the display area. They default to 2 and 39 (of a possible O
and 39).

OPERATING SYSTEM C016555 —— Section 5
54

A program—controllable cursor shows the destination of the next

character to be output onto the screen. The cursor is visible as
the inverse video representation of the current character at the
destination position.

The text screen data is internally organized as variable length
logical lines. The internal representation is 24 lines when the
screen is cleared. Each EOL marks the end of a logical line as
text is sent to the screen. If more than 3 physical lines of text
are sent, a logical line will be formed every 3 physical lines.
The number of physical lines used to comprise a logical line (1
to 3) is always the minimum required to hold the data for that
logical line.

The text screen "scrolls" upward whenever a text line at the
bottom row of the screen extends past the right margin, or a text
line at the bottom row is terminated by an EOL. Scrolling removes
the entire logical line that starts at the top of the screen, and
then moves all subsequent lines upward to £ill in the void. The
cursor also moves upward, if the logical line deleted exceeds one
physical line.

All data going to or coming from the text screen is represented
in 8-bit ATASCII code as shown in Appendix E.

TEXT MODES 1 AND 2

In text modes 1 and 2 the screen comprises either 24 lines of 20
characters (mode 1), or 12 lines of 20 characters (mode 2). The
left and right margins are of no consequence in these modes and
there is no visible cursor. There are no logical lines associated
with the data and in all regards these modes are treated as
graphics modes by the handler.

Data going to or coming from the screen is in the form shown
below:

7 0
e b e e e e o
it C i D H
ek e S e A

Where:C is the color/character—set select field

OPERATING SYSTEM C016555 ~— Section S

55

C Color Color Character Character

Value (default) Register 8et Set

(see CHBAS=%EQ CHBAS=%ER2

Appendix

H)

0 green (PF1) -7 {HEART] [ARRDOW]
i gold (PFO) HE fHEART1 CARROWI
2 gold (PFO? e - CDIAMONDILTRIANGLE]
3 green (PF1) e - _ EDIAMONDICLTRIANGLE]
4 red (PF3)? b= 7 CHEART1 [ARROW]
9 blue (PF2) L {HEART] LARROW]
b6 blue (PF2} e - _ [DIAMONDILTRIANGLE]
7 red (PF3) e - {DIAMONDILTRIANGLE]

D is a 5~bit truncated ATASCII code that selects the specific
character within the set selected by the C field., See Appendix E
for the graphics representations of the characters.

Data base variable CHBAS [02F4] allows for the selection of
either of two data sets. The default value of $EC provides the
capital letters, numbers and punctuation characters: the
alternate value of $E2 provides lowercase letters and the special
character graphics set.

Figure 5-5 Text Modes 1 and 2 Data Form

GRAPHICS MODES (Modes 3 Through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H. Depending upon the mode, a
1 to 16 color selection is available for each pixel and the
screen size varies from 20 by 12 (lowest resolution} to 320 by
192 (highest resolution) pixels.

There is neo visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented
as 1 to 8-bit codes as shown in Appendix H and in the GET/PUT
diagrams following.

SPLIT-SCREEN CONFIGURATIONS

In split-screen configurations, the bottom of the screen is
reserved for four lines of mode O text. The text region is
controlled by the Screen Editor, and the graphics region is
controlled by the Display handler. Two cursors are maintained in

this configuration so that the screen segments can be managed
independently.

OPERATING SYSTEM C016555 —— Section S
56

To operate in split-screen mode, the Screen Editor must first be

opened and then the Display Handler must be opened using a
separate IOCB (with the split—screen option bit set in AUX1).

CI0O Function Descriptions

The device—specific characteristics of the standard CIO functions

(described earlier in this section) are detailed below:

OPEN

The device name is S, and the handler ignores any device number ani

filename specification, if included.

The handler supports the following options:

7 o
B et e e S s 2
AUX1 H ICISIWIR! H
e e e e
Where: € = 1 indicates to inhibit screen clear on OPEN.
8 = 1 indicates to set up a split-screen configuration (for

modes 1 through 8 only}.
R and W are the direction bits (read and write).

7 o)

e ek S SR S T

AUX2 ! { mode |
o oo o e = —

Where: mode is the screen mode (O through 11},

Note: If the screen mode selected is O, then the AUX1 C and
S options are assumed to be 0.

You share memory utilization with the Display Handler
information. Sharing is necessary because the Display Handler
dynamically allocates high address memory for use in generating
the screen display, and because different amounts of memory are
needed for the different screen modes. Prior to initiating an
OPEN command the variable APPMHI [QOOE] should contain the
highest address of RAM you need. The Screen handler

will open the screen only if no RAM is needed at or below that

address.

Upon return from a screen OPEN, the variable MEMTOP L[O2ES] will
contain the address of the last free byte at the end of RAM
memory prior to the screen—required memorTy.

OPERATING SYSTEM C016535 ~— Section 5

57

As a result of every OPEN command,

are altered:

the following screen variables

The text cursor is enabled (CRSINH = 0). The tabs are set to
the default settings (2 and 39). The color registers are set
to the default values (shown in Appendix H}.

Tabs are set at positions 7,15,23,31, 39,
47,55, 63,71,79, 87,95, 103,111, 119,

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where
each byte contains the data for one cursor position (pixel); there
is no facility for having the handler return packed graphics data.

TR R

+ -+

4 -+

+
t
t

+

7

0

o o e o e o e o e e e e e
ATASCII
s s S st S S

S
c
F

e —
zero
D s St St o

— ==t
zero
e s St S

e e e e
zero |

s et St

+
D
+

+

+

Figure 5-6 Graphics Mode

+

+ -+
+ 04

+
D
+

]
t

e

-~

——

+ -
o
+ -+

—

—

Mode O

Modes 1,2 -—- C = color/data
set.

D = truncated ATASCII.

]

Modes 3, 5,7 —— D color.

Modes 4, 4.8 —— D color.

Modes 9, 10,11 —— D = data.

3-11 GET Data Form

The cursor moves to the next position as each data byte is

returned. For mode O,
margins; for all other modes,

o8

the cursor will stay within the specified
the cursor ignores the margins.

OPERATING SYSTEM C016555 ~— Section 5

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the following screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 O

o e o e e o e e o

H ATASCI1I ! Mode O
e o e e e e e o =

e h s o TR R P

t € i D H Modes 1,2 -~ C = color/data
abal dad dof Lol Jot St ot sk o set,

D = truncated ATASCII.

B e S e S

H ? HERS I Modes 3,5,7 —— D = color.
B et S A s s 3
Bl ot ot S e S

H ? v Modes 4, 6,8 —— D = color.
B T N e s Lt T e
B T S St e s e 4

H ? H D H Modes 9,10,11 —— D = data.
Bk Lt T ST SR

Figure 5-7 Graphics Mode 3~11 PUT Data Form

NOTE: For all modes, if the output data byte equals $9B (EOL), that
byte will be treated as an EOL character; and i+ the output

data byte equals $7D (CLEAR) that byte will be treated as a
screen—clear character.

The cursor moves to the next cursor position as each data byte is
written. For mode O, the cursor will stay within the specified
margins; for all other modes, the cursor ignores the margins.

While outputting, the Display Handler monitors the keyboard to
detect the pressing of the [CTRL] 1 key combination. When this
occurs, the handler loops internally until that key combination
is pressed again: This effects a stop/start function that
freezes the screen display. Note that there is no ATASCII code
assoctiated with either the [CTRL] 1 key combination or the
start/stop function. The stop/start function can be controlled
only from the keyboard (or by altering database variable CH as
discussed in Appendix L, E4).

OPERATING SYSTEM C0146555 —- Section 5

GET STATUS

No handler action except to set the status to $01.

DRAW

This special command draws a simulated “"straight" line from the
current cursor position to the location specified in ROWCRS
E00C54]1 and COLCRS [0O055]. The color of the line is taken from the
last character processed by the Display Handler or Screen Editor.
To force the color, store the desired value in ATACHR L[O2FB]1. At
the completion of the command, the cursor will be at the location
specified by ROWCRS and COLCRS.

The value #for the command byte for DRAW is $11.

FILL

This special command fills an area of the screen defined by two
lines with a specified color. The command is set up the same as
in DRAW, but as each point of the line is drawn, the routine
scans to the right performing the procedure shown below (in
PASCAL notation):

WHILE PIXEL [ROW,COL] = O DO
BEGIN
PIXEL [ROW,COLY := FILDAT;
COL .= COL + 1;
IF COL > Screen right edge THEN COL := O
END;

An example of a FILL operation is shown below:

Where: ‘~’ represents the £ill operation.
‘+’ are the line points, with ‘+’ for the endpoints.

-- gset cursor and plot point.

-~ sef cursor and DRAW line.

set cursor and plot point.

-~ gset £ill data value, set cursor, and FILL.

PO~
1
I

OPERATING SYSTEM CO14555 —— Section 5
&0

FILDAT [O2FD] contains the fill data: and ROWCRS and COLCRS
contain the cursor coordinates of the line endpoint. The value
in ATACHR [O2FB] will be used to draw the line:; ATACHR always
contains the last data read or written, so if the steps above
are followed exactly, ATACHR will not have to be modified.

The value for the command byte for FILL is $12.

User—Alterable Data Base Variables

Certain functions of the Display Handler require you ¢o

examine and/or alter variables in the 05 database. The following
describes some of the more commonly used handler variables. (see
Appendix L, B1-55, for additional descriptfions).

Cursor Position

Two variables maintain the cursor position for the graphics
screen or mode O text screen. ROWCRS [0054] maintains the display
row number; and COLCRS LO055] maintains the display column
number. Both numbers range from O to the maximum number of
rows/columns, — 1. The cursor can be set outside of the defined
text margins with no ill effect. You can read and write this
region. The home position (0,0} for both text and graphics is the
upper left corner of the screen.

ROWCRS is a single byte. COLCRS is maintained at 2-bytes. with
the least significant byte being at the lower address.

When you alter these variables:, the screen representation
of the cursor will not move until the next I/0 operation
involving the display is performed.

Inhibit/Enable Visible Cursor Display

You can inhibit the display of the text cursor on the screen
by setting the variable CRSINH [02F0] to any nonzero valwue.
Subsequent I/0 will not generate a visible cursor.

You ctan enable the display of the text cursor by setting
CRSINH to zero. Subsequent I/0 will then genarate a visible
cursor.

Text Margins

The text screen has user—alterable left and right margins. The 08
sets these margins to 2 and 39. The variable LMARGN [00521
defines the left margin, and the variable RMARGN [00531 defines
the right margin. The leftmost margin value is O and the

DPERATING SYSTEM CD146555 —- Section S
61

rightmost margin value is 39

The margin values inclusively define the useable portion of the
screen for all operations in that you do not explicitly

alter the cursor location variables as described prior to this
paragraph.

Color Control

The 0OS updates hardware color registers using data from the 0OS
data base as part of normal Stage 2 VBLANK processing (see Section
&). Shown below are the data base variable names, the hardware
register names, and the function of each register. See Appendix H
for the mode dependent uses for the registers.

Data Base Hardware Function

COLORO COLPFO PFQO —— Playfield O

COLOR1 COLPF1 PF1 —-— Playfield 1.

COLOR2 COLPF2 PF2 —-— Playfield 2.

COLOR3 COLPF3 PF3 —— Playfield 3.

COLOR4 COLBK BAK —— Playtfield background.
PCOLRO COLPMO PMO -~ Player/missile O.
PCOLR1 caLpPmMi PM1 —— Player/missile 1.
PCOLR2 coLpPM2 PM2 —— Player/missile 2.
PCOLR3 COLPM3 PM3 -- Player/missile 3

Theory of Operation

The Display Handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time.
The screen generation hardware requires that two distinct data
areas exist for graphics modes: 1) a display list and 2} a
screen data region. A fthird data area must exist for text modes.
This data area defines the screen representation for each of the
text characters. Consult the ATARI Home Computer

Hardware Manual for a complete understanding of the material that
is to follow.

OPERATING SYSTEM CD16555 ——- Section 5
&2

The simplified block diagram below shows the relationships
between the memory and hardware registers used to set up a screen
display (without player/missile graphics) by the 0S5 Note that

the hardware registers allow for many other possibilities.

DATA BASE HARDWARE

VARIABLE REGISTER
(Updated every
VBLANK)

o o e +

{ MEMTOP H

+ +

H H

e e o e e e o e e +

+ - -

e o e s e e e e i +
P e + b ——————— + A o e o o e e + |
H Display { | SDLSTL | { DLISTL | |
H List t+ +m———— >+ +=+
= = { SDLSTH | i DLISTH !

o e e o e e e o o o e e + T +

; - +

! Screen Data {<{-- SAVMSC H

= = 4+ +

{ Graphics L H

i and/or HEE & +

H Text H

+ +

End of RAM memory

+— - - ———
H + + o e s + H
H { CHBAS=EQO {——~2{ CHBASE +~=——= +
H + + o e e o e e o +

e e e o S —— +

! Specials and! EQOO

{ Numbers H

B — +

{ Capital { E100

{ Letters H

{ Special ! E200

! Graphics i

+- +

{ Lowercase i E300

{ Letters H

T —— +

OPERATING SYSTEM CO16555 —— Section S

e + o o e e +
{ COLOR O | { COLPFO |
= =—=3! COLPF1 |
{ COLOR 1 | i COLPF2 |
! COLOR 2 | { COLPF3 |
¢ COLOR 3 | i COLBK |
{ COLOR 4 | e +
o o o e o e e e +

Figure 5-8 Screen Display Block Diagram

The following relationships are present in the preceding diagram:

1.

&4

Data base variables SDLSTL/SDLSTH contain the address of
the current display list. This address is stored in the
hardware display list address registers DLISTL and DLISTH
as part of the VBLANK process.

The display list itself defines the characteristics of the
screen to be displayed and points to the memory containing
the data to be displayed.

Data base variable CHBAS contains the MSB of the base address
of the character representations for the character data (text
modes only).

The default value for this variable is $EO. This variable
declares that the character representations start at memory
address EQOQO (the character set provided by the 05 in ROM]}.
Each character is defined as an 8XB bit matrix, requiring 8
bytes per character. 1024 bytes are required fo define the
largest set, since a character code contains up to 7
significant bits (set of 128 characters). The 0S5 ROM contains
the default set in the region from EQOO to E3JFF.

All character codes are converted by the handler from ATASCII
to an internal code (and vice versa), as shown belouw:

ATASCII INTERNAL
CODE CODE
00~-1F 40-5SF
20-3F 00-1F
40~5F 20-3F
&0-7F &0~-7F
B80~-9F CO~-DF
AQ~BF 80-9F
CO-DF AO-BF
EO~-FF EO-FF

OPERATING SYSTEM CO16555 -- Section S

The character set in ROM is ordered by internal code order. Three
considerations differentiate the internal code from the external
(ATASCII} code:

ATASCII codes for all but the special graphics characters were to
be similar to ASCII. The alphabetic, numeric, and punctuation
character codes are identical to ASCII.

In text modes 1 and 2 it was desired that one character subset
include capital letters, numbers, and punctuation and the other
character subset include lowercase letters and special graphics
characters.

The codes for the capital and lowercase letters were to be
identical in text modes 1 and 2.

Database variables COLORO through COLOR4 contain the current
ctolor register assignments. Hardware color registers receive
these values as part of the stage 1 VBLANK process, thus
providing synchronized color changes (see Appendix H).

Database variable SAVMSC points to the lowest memory address of
the screen data region. It corresponds to the data displayed at
the upper left corner of the display.

When the Display Handler receives an open command, it first
determines the screen mode from the OPEN IOCB. Then it allocates
memory from the end of RAM downward (as specified by data base
variable RAMTOP), +first for the screen data and then for the
display list. The screen data region is cleared and the display
list is created if sufficient memory is available. The display
list address is stored to the database.

OPERATING SYSTEM C016555 -— Section 5

65

Screen Editor (E:)}

The Screen Editor is a read/write handler that uses the Keyboard
Handler and the Display Handler to provide “"line—at-a-time" input
with interactive editing functions, as well as formatted output.

The Screen Editor supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)

See Keyboard Handler and Display Handler Sections for a
discussion of Screen Editor error statuses.

The Screen Editor is one of the resident handlers:, and

therefore has a set of device vectors starting at location
E400.

The Screen Editor is a program that reads key data from the
Keyboard Handler and sends each character to the Display Handler
for immediate display. The Screen Editor also accepts data from
you to send to the Display Handler, and reads data from the
Display Handler (not the Keyboard Handler) for you. In fact,

the Keyboard Handler, Display Handler, and the Screen Editor are
all contained in one monolithic hunk of code

Most of the behaviors already defined for the Keyboard Handler
and the Display Handler apply as well to the Screen Editor: The
discussions in this Section will be limited to deviations from
those behaviors: or to additional features that are part of the
Screen Editor only. The Screen Editor deals only with text data
(screen mode O). This Section also explains the split—-screen
configuration feature.

The Screen Editor uses the Display Handler to read data from
graphics and text screens on demand. You use the Screen

Editor to determine when the program will read Screen data, and
where upon the screen the data will be read from. You

first locates the cursor on the screen to determine the screen
area to be readi you then press the [RETURN] key fto determine
when the program will begin to read the data indicated.

OPERATING SYSTEM CO16555 —- Section 3
&b

When the [RETURN] key is pressed, the entire logical line within
that ¢the cursor resides is then made available to the calling
program: Trailing blanks in a logical line are never returned as
data, however. After all of the data in the line has been sent to
the caller (this can entail multiple READ CHARACTERS functions if
desired), an EOL character is returned and the cursor is

positioned to the beginning of the logical line following the one
Just read.

CID Function Descriptions

The device-specific characteristics of the standard CIO
functions are detailed below:

OPEN

The device name is E, and the Screen Editor ignores any
device number and filename specification, if included.

The Screen Editor supports the following option:

7 o

s Do S SN GETEE

AUX1 H tWIRY IFI
B T e el s 2

Where: R and W are the direction bits (read and write).
F = 1 indicates that a "forced read" is desired (see GET
CHARACTER and GET RECORD for more information).

CLOSE

No special handler actions.

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data only when you press the
[RETURN] key at the keyboard. However, the “forced read" OPEN option
allows you to read text data without intervention. When you command a
READ operation: the Screen Editor will return data from the start of
the logical line in which the text cursor is located, and then

move the cursor to the beginning of the following logical line. A

read of the last logical line on the screen will cause the screen
data to scroll.

A special case occurs when characters are output without a
terminating EOL:. and then additional characters are appended to

OPERATING SYSTEM C016555 —-— Section 5
&7

that logical line from the keyboard. When the [RETURNI key is
pressed, only the keyboard entered characters are sent to the
caller, unless the cursor has been moved out of and then back
into the logical line, in that case all of the logical line will
be sent.

PUT CHARACTER and PUT RECORD

The Handler accepts ATASCII characters as one character per byte.
Sixteen of the 256 ATASCII characters are control codes; the EOL
code has universal meaning, but most of the other control codes
have special meaning only to a display or print device. The
Screen Editor processing of the ATASCII control codes is
explained below:

CLEAR ($7D} —— The Screen Editor clears the current display of
all data and the cursor is placed at the home position (upper
left corner of the screen).

CURSOR UP ($1C) —~— The cursor moves up by one physical line. The
cursor will wrap from the top line of the display to the bottom
line.

CURSOR DOWN ($1D} —— The cursor moves down by one physical line.
The cursor will wrap from the bottom line of the display to the
top line.

CURSOR LEFT ($1E} ~—— The cursor moves left by one column. The
cursor will wrap from the left margin of a line to the right
margin of the same line.

CURSOR RIGHT (#$1iF) —— The cursor moves right by one column. The
cursor will wrap from the vright margin of a line to the left
margin of the same line.

BACKSPACE ($7E) —— The cursor moves left by one column (but never
past the beginning of a logical line), and the character at that
new position is changed to a blank (£20).

OPERATING SYSTEM C016555 ~— Section 5
&8

SET TAB ($9F) -~ The Screen Editor establishes a tab point at the
logical line position at that the cursor is residing. The logical
line tab position is not synonymous with the physical line column
position since the logical line can be up $to 3 physical lines in
length. For example, tabs can be set at the 15th, 30th, 45th,
60th and 75th character positions of a logical line as shown
below:

02 9 19 29 39 Screen column #.
——f - + + ———— R L/R = margins.

X x—= T ———— T A logical line.
xx -7 T e e o e T x = inaccesible
Xx— - - columns.

Note the effect of the left margin in defining the limits of the
logical line.

The Handler default tab settings are shown below:

o2 ? 19 29 39 Screen column #,
-—L + ——— -+ --R L/R = margins.
xxT— T - T =T T --T A logical line.
X X o T oo oo e T T Tomm———— T x = inaccesible
xx -=T --=T e T e T T columns.
CLEAR TAB ($9E) —— The Screen Editor clears the current cursor

position within the logical line from being a tab point. There is
no “clear all tab points" facility provided by the Handler.

TAB ($7F) —-— The cursor moves to the next tab point in the
current logical line, or to the beginning of the next line if no
tab point is found. This function will not increase the logical
line length to accommodate a tab point outside the current length
(e.g. the logical line length is 38 characters and there is a tab
point at position 50},

INSERT LINE (49D} — All physical lines at and below the physical
line in that the cursor resides, are moved down by one physical
line. The last logical line on the display can be truncated as a
result. The blank physical line at the insert point becomes the
beginning of a new logical line. A logical line can be split into
tfwo logical lines by this process, the last half of the original
logical line being concatenated with the blank physical line
formed at the insert point.

OPERATING SYSTEM C0O16555 ——~ Section 5

b9

DELETE LINE ($9C} —-— The logical line in that the cursor resides
is deleted and all data below that line is moved upward to fill
the void. Empty logical lines are created at the bottom of the
display.

INSERT CHARACTER (%FF) —— All physical characters at and behind
the cursor position on a logical line are moved one position to
the right. The character at the cursor position is set to blank.
The last character of the logical line will be lost when the
logical line is #full and a character is inserted. The number of
physical lines comprising a logical line can increase as a result
of this function.

DELETE CHARACTER ($FE}) —— The character on which the cursor
resides is removed, and the remainder of the logical line to the
right of the deleted character is moved to the left by one
position. The number of physical lines composing a logical line
can decrease as a result of this function.

ESCAPE ($1B) —— The next non—EOL character following this code is
displayed as data, even if it would normally be treated as a
control code. The sequence [ESCILESC] will cause the second [ESCI]
character to be displayed.

BELL ($FD) -— An audible tone is generated; the display is not
modified.
END OF LINE ($9B) —— In addition to its record termination

function, the EOL causes the cursor to advance to the beginning
of the next logical line. When the cursor reaches the bottom line
of the screen, the receipt of an EOL will cause the screen data
to scroll uvpward by one logical line.

GET STATUS

The Handler takes no action other than to set the status to $01.

User—Alterable Data Base Variables

Also see the Display Handler data base variable discussion.

OPERATING SYSTEM CD16555 —— Section 5
70

Cursor Position

When in a split-screen configuration, ROWCRE and COLCRS are associated
with the graphics portion of the display and two other variables,
TXTROW [0290]1 and TXTCOL [0291]1, are associated with the text window.
TXTROW is a single byte, and TXTCOL is 2-bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCOL should always be zero.

The home position (0,0} for the text window is the upper le#t corner
of the window.

Enable/Inhibit of Control Codes in Text

Normally all text mode control codes are operated upon as received,
but sometimes it is desirable to have the control codes displayed as
if they were data characters. This is done by setting the variable
DSPFLG [O2FE] to any nonzero value before outputting the data
containing control codes. Setting DSPFLG ¢to zero restores normal
processing of text control codes.

OPERATING SYSTEM CD16555 —— Section S
71

Cassette

Handler (C:}

The Cassette device is a read or write device with a Handler
that supports the following CIO functions:

OPEN
CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function?

The Cassette Handler can produce the following error statuses:

$80 ——
$84 -
$88 -——
$8A-90

LBREAK] key abort.

Invalid AUX1 byte on OPEN.
end—-of-file,.

-= SI0 error set (see Appendix C).

The Cassette Handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440.

CID Function Descriptions

The device—

specific characteristics of the standard CID functions are

detailed below:

OPEN

The device

name is C, and the Handler ignores any device number and

filename specification, it included.

The Handler supports the following‘option:

72

OPERATING SYSTEM CO16555 —— Section S

7 0

Rk Lk S W S R

AUX2 H W !
s ms o TSR

Where: C = 1 indicates that the cassette is to be read/written withodt
stop/start between records (continuous mode).

Opening the cassette for input generates a single audible tone, as a
prompt for you to verify that the cassette player is set up

for reading (power on; Serial Bus cable connected; tape cued to start
of file; and PLAY button depressed). When the cassette is ready,

Yyou can press any keyboard key (except L[BREAK]) to initiate tape
reading.

Opening the cassette for output generates two closely spaced audible
tones, as a prompt for you to verify that the cassette player

is set up for writing (as above, plus RECORD button depressed). When
the cassette is ready, you can press any keyboard key (except

LBREAK]} to begin tape writing. There is no way for the computer to
verify that the RECORD or PLAY button is depressed. It is possible for
the file not to be written, with no immediate indication of this fact.

There is a potential problem with the cassette in that when the
cassette is opened for writing, the motor keeps running until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is closed within about 30 seconds of the OPEN,
and no other serial bus I/0 is performed, then there is no problem.
However, if those conditions are not met, some noise will be written
to the tape prior to the first record and an error will occur when
that tape file is read later. If lengthy delays are anticipated
between the time the cassette file is opened and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
innocuous data would be written, such as all zeros, all #$FFs, or all
blanks ($20}.

The system sometimes emits whistling noises after cassette I/0 has

occurred. The sound can be eliminated by storing $03 to SKCTL [D20F1,
thus bring POKEY out of the two—tone (FSK) mode.

CLOSE
The CLOSE of a tape read stops the cassette motor.
The CLOSE of a tape write does the following:
Writes any remaining user data in the buffer to tape.

Writes an end-of-file record.
Stops the cassette motor.

OPERATING SYSTEM C0O146555 —-— Secfion 5
73

GET CHARACTERS and GET RECORD
The Handler returns data in the following format:

7 0
R s s ST LRt
i data byte H
R e aat St T St T S

PUT CHARACTERS and PUT RECORD
The Handler accepts data in the following format:

7 0
Rk s St S S S T
H data byte H
e s e et

The Handler attaches no significance to the data bytes
written, a value of $9B (EOL) causes no special action.

GET STATUS

‘The Handler does no more than set the status to $01.

Theory of Operation

The Cassette Handler writes and reads all data in fixed—length records
of the format shown below:

Bt e T s el 2
i01010101: Speed measurement bytes.
R e e s s ot 3
i01 010101
R e e s s It
control byte |
s ks St S TR
i28
data
bytes
o me o o e e e e e e o
H checksum
i o S A e

-l e

(Managed by SI0, not the
Handler.)

e

Figure 5-9 Cassette Handler Record Format

OPERATING SYSTEM C016555 —— Section 5
74

The control byte contains one of three values:
0 %$FC indicates the record is a full data record (128 bytes).

o ®$FA indicates the record is a partially full data record; you
supplied fewer than 128 bytes to the record. This case can
occur only in the record prior to the end-of-file. The number
of user—supplied data bytes in the record is contained in the
byte prior to the checksum.

o &$FE indicates the record is an End—of file record; the data
portion is all zeroes for an end—of-file record.

The SIO routine generates and checks the checksum. It is part of the
tape record, but it is not contained in the Handler ‘s record buffer
CASBUF [O3FD1.

The processing of the speed-measurement bytes during cassette reading
is discussed in Appendix L, D1-D7.

File Structure

The Cassette Handler writes a file to the cassette device with a file
structure that is totally imposed by the Handler (soft format) A file
consists of the following three elements:

o A 20-second leader of mark tone.
o Anyg number of data-record frames.

o An end—-of-file frame.

The cassette~data record frames are formatted as shown below:

frame = pre-record write tone (PRWT),
+ data record,
+ post record gap (PRG)

The nondata portions of a frame have characteristics that are
dependent upon the write OPEN mode, i.e. continuous or
start/stop.

Stop/start PRWT = 3 seconds of mark tone.
Continuous PRWT = .25 second of mark tone.

Stop/start PRG = up to 1 second of unknown tones.
Continuous PRG = from O to n seconds of unknown tones:, where
n is dependent upon your program timing.

The inter-record gap (IRG) between any two records consists of

the PRG of the first record followed by the PRWT of the second
record. :

OPERATING SYSTEM CO16555 —— Section S
79

Printer Handler (P:}

The Printer device is a write-only device with a Handler that
supports the following CIO functions:

OPEN

CLOSE

PUT CHARACTERS
PUT RECORD

GET STATUS

The Printer Handler can produce the following error statuses:
$8A-90 -~ SI0 error set (see Appendix C).

The Printer Handler is one of the resident handlers, and
therefore has a set of device vectors starting at location E430.

CIO Function Descriptions

The device~specific characteristics of the standard CIO functions
are detailed below: '

OPEN

The device name is P. The Handler ignores any device number and
filename specification: it included.

CLOSE
The Handler writes any data remaining in its buffer to the
printer device, with trailing blanks to #ill out the line.
PUT CHARACTERS and PUT RECORD
The Handler accepts print data in the following format:
7 c
s s ot S S S A
H ATASCII H
s e e St =
The only ATASCII control code of any significance to the Handler
is the EOL character. The printer device ignores bit 7 of every
data byte and prints a sub set of the remaining 128 codes. (see
Appendix G for the printer character set).

The Handler supports the following print option:

OPERATING SYSTEM C014555 —- Section §
76

7 0
s e e e et Lot 2t
AUX2 { print mode H
o o o e e e o o e e e e

Where: $4E (N) selects normal printing (40 characters per line).
$53 (5) selects sideways printing (29 characters per line).
$57 (W) selects wide printing (not supported by printer

device).

Any other value (including 00) is treated as a normal (N)
print select, without producing an error status.

GET STATUS

The Handler obtains a 4-byte status from the printer
controller and puts it in system location DVSTAT [02EA]. The
format of the status bytes is shown below:

D e B s ottt T
{ command stat.
Bl et T B e h
i AUX2 of prev.

+
b DVSTAT + O
+
!
s st S S R
1
+
'
+

H timeout
Dk et T W W TR Y
H (unused)
R s o S we S T

The command status contains the following status bits and
condition indications:

bit O: an invalid command frame was received.
bit 1: an invalid data frame was received.
bit 7: an intelligent controller (normally = 0).

The next byte contains the AUX2 value from the previous operation.

The timeout byte contains a controller provided maximum timeout
value (in seconds}.

Theory of Operation

The ATARI 820LTM] 40-Column Printer is a line—at—a—time printer rather
than a character—at—-a—-time printer, so your data must be buffered by
the Handler and sent to the device in records corresponding to one
print line (40 characters for normal, 29 characters for sideways).

OPERATING SYSTEM C016555 —— Section 5
77

The printer device does not attach any significance to the EOL
character, so the Handler does the appropriate blank f£ill
whenever it sees an EOL.

Disk File Manager (D:)

The OS supports four unique File Management Subsystems at the
time of this writing. Version IA is the original version.

Version IB is a slightly modified version of IA and is the one
described in this document. Most of this discussion applies as
well to Version II, that handles a double-~density diskette (720
256~-byte sectors? in addition to the single~density diskette (720
128-byte sectors). Version III has all new file/directory/map
structures and can possibly contain changes to your interface

as well,

The File Management Subsystem includes a disk—bootable
(RAM-resident}) Disk File Manager (DFM} that maintains a
collection of named files on diskettes. Up to 4 disk drives

(Di: through D4:) can be accessed, and up to 64 files per
diskette can be accessed. The system diskettes supplied by ATARI
allow a single disk drive (D1) and up to 3 OPEN files., but

you can alter these numbers as described later in

this section.

The Disk File Manager supports the following CID functions:

OPEN FILE

OPEN DIRECTORY
CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS
PUT RECORD

GET STATUS

NOTE
POINT
LOCK
UNL.OCK
DELETE
RENAME
FORMAT

OPERATING SYSTEM C0O16555 —— Section 5
78

The Disk File Manager can produce the following error statuses:

$03 -- Last data from file (EOF on next read).
$88 —— end—of-file.

$8A-90 —- SI0 error set (see Appendix C).

$A0 —— Drive number specification error.

$A1 -- No sector buffer available (too many open files).
$A2 —— Disk full.

$A43 —~- Fatal I/0 error in directory or bitmap.

$A4 —— Internal file # mismatch (structural problem).
$A5 —— File name specification errvor.

$A4 —— Point information in error.

$A7 —— File locked to this operation.

$A8 -— Special command invalid.

$AF? —— Directory full (64 files).

$AA —— File not found.

$4B -~ Point invalid (file not OPENed for update).

CIO Function Descriptions

The device-specific characteristics of the standard CIO functions
are detailed below:

OPEN FILE

The device name is D. Up to four disk drives can be accessed (D1
through D4). The disk filename can be from 1 to B characters in
length with an optional 1- to 3~character extension.

The OPEN FILE command supports the following options:

+
AUX1 i
-+

Where: W and R are the direction bi¢s.
WR = 00 is invalid
01 indicates OPEN for read only.
10 indicates OPEN for write only.
11 indicates OPEN for read/write (update).

A =1 indicates appended output when W = 1.

You may use these following valid AUX1 options:

OPERATING SYSTEM C016555 ~—- Section S

7%

OPEN Input (AUX1 = $04)

The indicated file is opened for input. Any wild-card characters
are used to search for the first match. If the file is not found,
an error status is returned, and no file will be opened.

OPEN Output (AUX1 = $08)

The indicated file is opened for output starting with the first
byte of the file, if the file is not locked. Any wild-card
characters are used to search for the first match., I+ the file
already exists, the existing file will be deleted before opening
the named file as a new file. If the file does not already exist,
it will be created.

A file opened for output will not appear in the directory until
it has been closed. If an output file is not properly closed,
some or all of the sectors that were acquired for it can be lost
until the disk is reformatted.

A file that is opened for output can not be opened concurrently
for any other access.

OPEN Append (AUX1 = $09)

The indicated file is opened for output starting with the byte
after the last byte of the existing file (that must already
exist), if the file is not locked. Any wild-card characters are
used to search for the first match.

I+ a file opened for append is not properly closed, the appended
data will be lost. The existing file will remain unmodified and
some or all of the sectors that were acquired for the appended
portion can be lost until the diskette is reformatted.

OPEN Update (AUX1 = $0C)

The indicated file (that must already exist) will be opened for
update provided it is not locked. Any wild—-card characters are
used to search for the first match.

The GET, PUT, NOTE and POINT operations are all valid, and can be
intermixed as desired.

I# a file opened for update is not properly closed, a sector’s
worth of information can be lost to the file. A file opened for
update can not be extended.

OPERATING SYSTEM CD146555 -- Section S
80

Device/Filename Specification

The Handler expects to find a device/filename specification of
the following form:

DE<number>l: <filename><EOL>

where:
<number> ::= 112314
<filename> ::= [{primary>ll. [{extension>)l<terminator>
<primary> ::= an uppercase alpha character followed by O to 7

alphanumeric characters. I+ the primary name is
less than 8 characters, it will be padded with
blanks; if it is greater than B characters, the
extra characters will be ignored.

<extension> ::= Zero to 3 alphanumeric characters. I+ the
extension name is missing or less than 3
characters, it will be padded with blanks; if
it is greater than 3 characters: the extra
characters will be ignored.

<terminatorl .= LEOL>!{<blank>

Figure 5-10 Device/Filename Syntax

The following are all valid device/filenames for the diskette:

Di: GAME. SRC
D: MANUAL.&
D: . WHY

D3: FILE.

D4: BRIDGE. 002

Filename Wildcarding

The filename specification can be further generalized to include
the use of the “wild-card" characters # and ?. These wildcard
characters allow portions of the primary and/or extension to be
abbreviated as follows:

The 7 character in the specification allows any filename
character at that position to produce a “match. ¥ For example, WH?
will match files named WHO, WHY., WH4, etc.. but not a file named
WHAT.

OPERATING SYSTEM C016555 —— Section S

81

The # character causes the remainder of the primary or extension
field in that it is used to be effectively padded with ?
characters. For example, WH# will match WHO, WHEN, WHATEVER, etc.

Some valid uses of wild-card specifications are shown below:

#. SRC Files having an extension of SRC.

BASIC. % Files named BASIC with any extension.

3*_ 3 All files.

H*, ? Files beginning with H and having a 0 or 1

ctharacter extension.

It wildcarding is used with an OPEN FILE command, the first file
found (if any}) that meets the specification will be the one (and
only one) opened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows you read directory

information for the selected filename(s}), using normal GET
CHARACTERS or GET RECORD commands. The informaftion read will be
formatted as ATASCII records, suitable for printing, as shown
below. Wildcarding can be used to obtain information for multiple
files or the entire diskette.

The OPEN DIRECTORY command uses the same CIO parameters as a standard
OPEN FILE command: '

COMMAND BYTE = %03
BUFFER ADDRESS = pointer to device/filename specification.
AUX1 = $04
After the directory is opened, a record will be returned to fhe
caller for each file that matches the OPEN specification. The

record, that contains only ATASCII characters:, is formatted as
shown below:

1
12345678201 2345678
B R s S S st ot S S S R et A sl Tt e 5
isib! primary name | ext i(bicountiel
R e e s S s St o S S S P S e e e &

OPERATING SYSTEM C016555 —-— Section 5
82

Where: s = # or * ‘, with #* indicating file locked.

b = blank.

primary name = left—justified name with blank fill.
ext = left-justified extension with blank fill

b = blank.

count = number of sectors comprising the file.

e = EOL ($7B).

After the last filename match record is returned, an additional

record is returned. This record indicates the number of unused

sectors available on the diskette. The format for this record is shown
below:

1
12345464789 012342567
e R s st S Tl L Lt B Lo e e
icount! F R E E SECTOR Siet
s e s ot St Sl L B Tt e e

Where: count = the number of unused sectors on the diskette.
e = EOL ($9B).

The EOF statuses (%03 and $88) are returned as in a normal data
file when the last directory record is read.

The opening of another diskette file while the directory read is

open will cause subsequent directory reads to malfunction, so
care must be taken to avoid this situation.

CLOSE

Upon closing a file read, the Handler releases all internal
resources being used to support that file.

Upon closing a file write, the Handler:

o writes any residual data from its file buffer for that file
to the diskette.

0 updates the directory and allocation map for the associated
diskette. :

o releases all internal resources being utilized to support
that file

GET CHARACTERS and GET RECORD

Characters are read from the diskette and passed to CID as a raw
data stream. None of the ATASCII control characters have any
special significance. A status of $88 is returned if an attempt
is made to read past the last byte of a file.

OPERATING SYSTEM C016555 —~— Section S
83

PUT CHARACTERS and PUT RECORD

Characters are obtained from CIO and written to the diskette as a raw

data stream. None of the ATASCII control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status
byte values is returned in ICSTA and register Y:

$01 —— File found and unlocked.

$A7 —— File locked.
$AA — File not found.

Special CIO Functions

The DFM supports a number of SPECIAL commands, that are device
specific. These are explained in the paragraphs that follow:

NOTE (COMMAND BYTE = $25)

This command returns to the caller the exact diskette location of

the next byte to be read or written, in the variables shown
below:

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS =

relative sector displacement to byte (0-124}.

POINT (COMMAND BYTE = $26)

This command allows you to specify the exact diskette location of
the next byte to be read or written. In order to use this commmand,
the file must have been opened with the “"update®" option.

ICAX3 = LGB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS =

relative sector displacement to byfte (0-124}.

OPERATING SYSTEM C016555 —— Section S
84

LOCK

This command allows you to prevent write access to any

number of named files. Locked files can not be deleted, renamed,
nor opened for output unless they are first unlocked. Locking a
file that is already locked is a valid operation. The Handler
expects a device/filename specification; then all occurrences of
the filename specified will be locked, using the wild-card rules.

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = 423
BUFFER ADDRESS = pointer to device/filename specification.

After a LOCK operation, the following IOCB parameter will have
been altered:

STATUS = result of LOCK operation: see Appendix B for a list
of possible status codes.

UNLOCK

This command allows you to remove the lock status of any

number of named files. Unlocking a file that is not locked is a
valid operation. The Handler expects a device/filename
specification; then all occurrences of the filename specified
will be unlocked:, using the wild-card rules.

You set up these following IOCB parameters prior to
calling CIOD:

COMMAND BYTE = $24
BUFFER ADDRESS = pointer to device/filename specification.

After an UNLOCK operation, the following IOCB parameter will have been
altered:

STATUS = result of UNLOCK operation; see Appendix B for a
list of possible status codes.

DELETE

This command allows you to delete any number of unlocked

named files from the directory of the selected diskette and to
deallocate the diskette space used by the files involved. The
Handler expects a device/filename specification; then all
occurences of the filename specified will be deleted, using the
wild-card rules.

OPERATING SYSTEM C016555 -— Section 3
85

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = 421
BUFFER ADDRESS = pointer to device/filename specification.

After a DELETE operation, the following IDCB parameter will have
been altered:

STATUS = result of DELETE operation; see Appendix B for a list of
possible status codes.

RENAME

This command allows you to change the filenames of any
number of unlocked files on a single diskette. The Handler
expects to find a device/filename specification that follows:

<device spec>: <filename spec> {filename spec><EOL>

All occurrences of the first filename will be replaced with the
second filename, using the wild-card rules. No protection is
provided against forming duplicate names. Once formed, duplicate
names cannot be separately renamed or deleted: however, an OPEN
FILE command will always select the first file found that matches
the filename specification, so that file will always be
accessible. The RENAME command does not alter the content of the
files involved, merely the name in the directory.

Examples of some valid RENAME name specifications are shown
below:

D1i:# SRC, #. TXT
D: TEMP, FDATA
D2: F#, F%. OLD

You set up these following IOCB parameters prior to
talling CIO:

COMMAND BYTE = %20
BUFFER ADDRESS = pointer to device/filename specification.

After a RENAME operation, the following IOCB parameter will have
been altered: ‘

STATUS = result of RENAME operation; see Appendix B for a
list of possible status codes

OPERATING SYSTEM C0O16555 ~- Section 5
86

FORMAT

Soft—-sector diskettes must be formatted before they can store
data. The FORMAT command allows you to physically format a
diskette. The physical formatting process writes a new copy of
every sector on the soft-sectored diskette, with the data portion
of each sector containing all zeros. The FORMAT process creates
an "empty" non system diskette. When the formatting process is
complete, the FMS creates an initial Volume Table of Contents
(VTOC? and an initial File Directory. The boot sector (#1) is
permanently reserved as part of this process.

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = S$FE
BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation, the following IOCB parameter will have
been altered:

STATUS = result of FORMAT operation; see Appendix B for a
list of possible status codes.

To create a system diskette, a copy of the boot file must then be
written to sectors #2-n. This is accomplished by writing the file
named DDS. SYS. This is a name that is recognized bg the FMS even
though it is not in the directory initially.

Theory of Operation

The resident 0SS initiates the disk-boot process (see Section 10).
The 0SS reads diskette sector #1 to memory and then transfers
control ¢o the "boot continuation address" (boot address + 6).
The boot—continuation program contained in sector #1 then
continues to load the remainder of the File Management Subsystem
to memory using additional information contained in sector #1.
The File Management Subsystem loaded, will contain a Disk File
Manager ,and optionally., a Disk Utilities (DOS) package.

When the boot process is complete, the Disk File Manager will
allocate additional RAM for the creation of sector buffers.
Sector buffers are allocated based upon information in the boot
record as shown below:

Byte 9 = maximum number of open files: one buffer per (the
maximum value is 8).

Byte 10 = drive select bits; one buffer per (1-4 only).

OPERATING SYSTEM C014555 ~— Section 5
87

The Disk File Manager will then insert the name D and the Handler
vector table address in the device table.

NOTE: There is a discrepancy between the Disk File Manager'’s
numbering of diskette sectors (0-719) and the disk controller’s
numbering of diskette sectors (1-720); as a result, only sectors
1- 719 are used by the Disk File Manager.

The Disk File Manager uses the Disk Handler to perform all
diskette reads and writes; the DFM’s function is to support and
maintain the directory/file/bitmap structures as described in the
following pages:

OPERATING SYSTEM CO14555 ~-~ Section 5
a8

FMS Diskette Utilization

The map below shows the diskette sector utilization for a

standard 720 sector diskette.

BOOT record

FMS BOOT
file
DOS. SYS

User
File
Area

R e

VTOC(note 2}

File
Directory

User
File
Area

unused

D e e L T

HE Sl I I
i
I

IR e TR e R S N TR Tr TN I

Sector
Sector
Sector
Sector
Sector
Sector
Sector

Sector

Sector

Sector

n+l
359
360
361

36468

719
720

Figure 5-11 File Management Subsystem Diskette

Map

-

3
t

+— Note 1

1
1]

-
($167)
($168)
($169)

($170)

($2CF)

($2D0)

Sector Utilization

NOTE 1 ~ If the diskette is not a system diskette, then your

File Area startszs at sector 2 and no space is reserved for the FMS
BOOT file. However, “DOS" (DOS. S8YS and DUP. 8YS) may still be
written to a diskette that has already used sectors "“2-N. "

NOTE 2 ~—~ VTOC stands for Volume Table of Contents.

OPERATING SYSTEM C016555 -— Section 5

89

FMS Boot Record Format

The FMS BOOT record (sector #1) is a special case of diskette—booted
software (see Section 10). The format for the FMS BOOT record is
shown below:

DOS. SYS H
starting +
sector number H
+
]

- — -
{ boot #lag = 0 | Byte O
e e T — +
{ # sectors =1 H 1
T R — +
{ boot address | 2
+ +
H = 0700 H
e e e e e e +
H init address | 4
+ +
H :
T S —— +
H JMP = $4B H &
+ +
H boot read !
+ continuation +
H address H
e e e e i e d ———
{ max files = 3 | H ? Note 1
o o e e e e e e e e + !
{ drive bits = 1 | H 10 Note 2
o e o e e s e s e + [
{ alloc divrc = 0O | i 11 Note 3
S + !
{ boot image end | ¢
+ + H FMs
{ address + 1 ! o o e e e e o e e configuration
o ———————— + { data
{ boot flag <> O | : 14 Note 4
———————————————— +]
sector count H H 15 Note 35
———————————————— + !
i
+

R,

s cvers oo et Gt Settn Senes Snams - o

{ code for second
{ phase of boot

Figure 5-12 File Management Subsystem Boot Record Format

OPERATING SYSTEM C016555 -- Section 5
90 |

NOTE 1§

NOTE 2

NOTE 3

NOTE 4

NOTE S

Byte @ specifies the maximum number of concurrently open
files to be supported. This value can range from 1 to B.

Byte 10 specifies the specific disk drive numbers to be
supported using @ bit encoding scheme as shown below:

7 &5 43210
o e s e e e e
H 141312111 where a 1 indicates a selected drive.
R SRS W ST ST GO

Byte 11 specifies the buffer allocation direction, this
byte should equal O.

Byte 14 must be nonzero for the second phase of the boot
process to initiate. This flag indicates that the ¢file
DOS. 8YS has been written to the diskette.

This byte is assigned as being the sector count for the
DOS. 8YS file. It is actually an unused byte.

OPERATING SYSTEM C016555 -—- Section S

71

Boot Process Memory Map

The diagram below shows how the boot sector (part of file
DOS. 8YS) and following sectors are loaded to memory as part of
the boot process.

+ - ————— Memory address 0700
{ data from boot | H

= sector read by = H

{ resident 0OS H 077C
+ +

{ data from rest | 077D
{ of DOS. 8YS H H

{ read by the ! H

= program in the = H

{ boot sector. H H

t 4 [
+—— e - end of boot

Figure 5-13 File Management Subsystem Boot Process Memory Map

OPERATING SYSTEM CO16555 —-- Section 5
P2

Volume Table o

The format for ¢
360) is shown in

f Contents

he FMS volume table of contents (VTOC, sector
the diagram below:

+ +

{ directory type ! Byte O Note 1
-+

{ maximum {(lo) ! 1 Note 2
+ sector # +

{ = 02CS (hi) |

o e e — +

i number of (lo) | 3 Note 3
+ sectors +

{ available (hi) !

+ +

+ — +

H H i0

= volume bit map =

R —— e e +

f f

S a—— — +

Figure 3-14 Fil

The volume bit m

+

1
4

+

e e

-+
Figure 5-15 Fil

At each map bit
is in use and a

NOTE 1 - The dir
NOTE 2 - The max

incorre
number

e Management Subsystem Volume Table of Contents

ap organization location follows:

7 O
et T SR
i1 23 485 6 7! Byte 10 of VTOC
e s T e e A s
8 9 . . i1
: 99
e it St T R e

e Management Subsystem Volume Bit Map

position, a O indicates the corresponding sector
1 indicates that the sector is available.

ectory type byte must equal O.
imum sector number is not used because it is

ctly set to 709 decimal. The true maximum sector
is actually 719 for the DFM.

OPERATING SYSTEM C016535 —— Section O

3

NOTE 3 ~ The number of sectors available is initially set to 709
after a diskette is freshly formatted; this number is
ad justed as files are created and deleted to show the
number of sectors available. The sectors that are
initially reserved are 1 and 3&60-3468.

File Directory Format

The FMS reserves eight sectors (361-368) for a file directory.
Each sector containing directory information for up to eight
files, thus providing for a maximum of &4 files for any volume.
The format of a single l4-byte file entry is shown below:

e e e e e e e e e +
H flag byte H Byte O
e e e e e e e e e +

{ sector (lo) | i
+ count +

H thi) |

e e e e o e o +

{ starting (lo) | 3
+ sector +

{ number (hi) |

e o e e e e e e +

H (1) | 9
+ +

H 2) 1

+ +

H (3 |

+ +

H file (4) |

+ +

H name (5) |

+ +

H primary (&) |

+ +

H (7) |

+ +

H (8) |

o e e e e e +

H file (1) | 13
+ +

H name (2) |

+ +

{ extension (3) |

e e e e o e e e e +

Figure 5-14& File Directory Format

Where the flag byte has the following bits assigned:

OPERATING SYSTEM C016555 —- Section 5
94

bit 7 = 1 if the file has been deleted.
bit &6 = 1 if the file is in use.

bit 5 =1 if the file is locked.

bit O = 1 if OPEN output.

The flag byte can take on the following values:

$00 = entry not yet used (no file).

$40 = entry in use (normal CLOSEd file).
$41 = entry in use (OPEN output file).

$60 = entry in use (locked file).

$80 = entry available (prior file deleted).

Sector count is the number of sectors comprising the file.

FMS File Sector Format

The format of a sector in your data file is shown below:

7 0
B L e s st st o o
{ data i +0
H H
e Tt T Lot Bl
i file # thi | +125
s T T aERr +

{forward pointer! +126
e et S T R e e
8! byte count | +127
B et e et o e Do

Figure S5-17 File Management Subsystem File Sector Format

The FMS uses the file # to verify file integrity. The file #

is a redundant piece of information. The file number field
contains the value of the directory position of that file. If a
mismatch occurs between the file’s directory position, and the
file number as contained in each sector, then the DFM will
generate the error $A4.

The forward pointer field contains the 10-bit value for the
diskette sector number of the next sector of the file. The
pointer equals zero for the last sector of a file.

The § bit indicates whether or not the sector is a “short sector"
(a sector containing fewer than 125 data bytes). S is equal to
1 when the sector is short.

OPERATING SYSTEM C016555 —— Section 5
25

The byte—count field contains the number of data bytes in the
sector.

Non-CIO I/0

Some portions of the I/0 subsystem are accessed independently of
the Central I/0 Utility (CIO); this section discusses those
areas.

Resident Device Handler Vectors

All of the O0S ROM resident device handlers can be accessed via
sets of vectors that are part of the OS ROM. These vectors
increase the speed of I/0 operations that utilize fixed device
assignments, such as output to the Display Handler. For each

resident Handler there is a set of vectors ordered as shown
below:

S +

+- OPEN -+ +0

e e e e e e e s s e e e +

+- CLOSE -+ +2

o e e e e e s e o e +

+- GET BYTE -+ +4

e et e e +

+- PUT BYTE -+ +&

e e e e e e e +

+- GET STATUS -+ +8

o e e e e +

+- SPECIAL -+ +10
e e et et e +

+= JMP -+ +12
+= INIT -+

e e o e et e e e +

+- SPARE -+

+- BYTE -+

e +

Figure 5-18 Resident Device Handler Vectors

See Section 9 for a detailed description of the data interface
for each of these Handler entry points.

Each of the vectors contains the address (lo.hi) of the Handler
entry point minus 1. A technique similar to the one shown below
is required to access the desired routines:

OPERATING SYSTEM CD16555 —— Section 5
?6

VTBASE=%$E400 i BASE OF VECTOR TABLE.

LDX #xx i OFFSET TO DESIRED ROUTINE.

LDA data
JER GOVEC i SEND DATA TO ROUTINE.
LDX #yy i OFFSET TO DIFFERENT ROUTINE.
JSR GOVEC ; GET DATA FROM ROUTINE.
STA data

GOVEC TAY i SAVE REGISTER A.
L.DA VTBASE+1, X i ADDRESS MSB TO STACK.
PHA
LDA VTBASE, X ; ADDRESS LSB TO STACK.
PHA
TYA i RESTORE REGISTER A.
RTS i JUMP TO ROUTINE.

The JMP INIT slot in each set of vectors jumps to the Handler
initialization entry (not minus 1).

The base address of the vector set for each of the resident
handlers is shown below:

Screen Editor (E:) E400.
Display Handler (S:) E410.
Keyboard Handler (K:) E420.
Printer Handler (P:) E430.
Cassette Handler (C:) E440.

The resident diskette Handler is not CIO-compatible, so its
interface does not use a vectar set.

Resident Diskette Handler

The resident Diskette Handler (not to be confused with the Disk
File Manager) is responsible for all physical accesses to the
diskette. The unit of data transfer for this Handler is a single
diskette sector containing 128 data bytes.

Communication between you and the Diskette Handler is

effected using the system’s Device Control Block (DCB), that is
also used for Handler/SI0 communication (see Section 9). The DCB
is 12 bytes long. Some bytes are user—alterable and some are for
use by the Diskette Handler and/or the Serial I/0 Utility (SI0).
You supply the required DCB parameters and then do a JSR

DSKINV [E453].

OPERATING SYSTEM C016555 -- Section O

7

Each of the DCB bytes will now be described, and the
system—equate file name for each will be given.

SERIAL BUS ID -- DDEVIC [03001]

The Diskette Handler sets up this byte to contain the Serial Bus ID
for the drive to be accessed. It is not user—alterable.

DEVICE NUMBER -- DUNIT [03011

You set up this byte to contain the disk drive number to be
accessed (1 - 4).

COMMAND BYTE -- DCOMND [O03021

You set up this byte to contain the disk device command to

be performed.

STATUS BYTE —-- DSTATS (03031

This byte contains the status of the command upon return to the
caller. See Appendix C for a list of the possible status codes.
BUFFER ADDRESS —-- DBUFLO {03041 and DBUFHI [03051]

This 2-byte pointer contains the address of the source or
destination of the diskette sector data. You need not supply

an address for the disk status command. The Disk Handler will
obtain the status and insert the address of the status buffer
into this field.

DISK TIMEOUT VALUE -- DTIMLO [03061

The Handler supplies this timeout value (in whole seconds) for
use by SIO.

BYTE COUNT -- DBYTLO [03081 and DBYTHI [030%1]

This 2-byte counter indicates the number of bytes transferred to
or from the disk as a result of the most recent command, and is
set up by the Handler.

SECTOR NUMBER -- DAUX1 [O30A1 and DAUX2 [O30Bl

This 2-byte number specifies the diskette sector number (1 - 720)
to read or write. DAUX1 contains the least significant byte, and

OPERATING SYSTEM CO16555 ~- Section S
98

DAUX2 contains the most significant byte.

Diskette Handler Commands

There are five commands supported by the Diskette Handler:

GET SECTOR (PUT SECTOR ~—-##3# not supported by current handler ##*)

PUT SECTOR WITH VERIFY

STATUS REQUEST

FORMAT DISK
GET SECTOR (Command byte = $52)
The Handler reads the specified sector to your buffer and returns th
operation status. You set the following DCB parameters prior to
calling the Diskette Handler:

COMMAND BYTE = #52.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128-byte buffer.

SECTOR NUMBER = sector number to read.
Upon return from the sector, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only
parameter of interest to you, however.

PUT SECTOR (Command byte = #$50)

Not supported by current Handler i
(But can be accessed through SI0 directly.)

The Handler writes the specified sector from your buffer and returns
the operation status. You set the following DCB parameters prior to
calling the Diskette Handler:

COMMAND BYTE = %50.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128 byte buffer.

SECTOR NUMBER = sector number to write.
Upon return from the operation, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of

interest you, however.

OPERATING SYSTEM CO16555 —— Section S

e

99

PUT SECTOR WITH VERIFY (Command Byte = $57)

The Handler writes the specified sector from your buffer

and returns the operation status. This command differs #from PUT
SECTOR in that the diskette controller reads the sector data after
writing to verify the write operation. Aside from the COMMAND
BYTE value:. the calling sequence is identical to PUT SECTOR.

STATUS REQUEST (Command byte = $53)

The Handler obtains a 4-byte status from the diskette controller and
puts it in system location DVSTAT [O2EA]. The operation status
format is shown below:

7 0
Y S SN R R S

{ command stat. | DVSTAT + O
T N RO —

! hardware stat. | + 1
T T W s S

H timeout i + 2
ST S S SRS G S

H (unused) § + 3
N O X r oG ¥

Figure 5-19. DVSTAT 40-Byte Operation Status Format

The command status contains the following status bits:

Bit O = 1 indicates an invalid command frame was received.
Bit 1 = 1 indicates an invalid data frame was received.
Bit 2 = 1 indicates that a PUT operation was unsuccessful.
Bit 3 = 1 indicates that the diskette is write protected.
Bit 4 = 1 indicates active/standby.

The hardware status byte contains the status register of the
INS1771-1 Floppy Diskette Controller chip used in the diskette
controller. See the documentation for that chip to obtain
information relating to the meaning of each bit in the byte.

The timeout byte contains a controller—provided maximum timeout
value (in seconds) to be used by the Handler.

You set the following DCB parameters prior to calling
the Diskette Handler:

COMMAND BYTE = $53.
DEVICE NUMBER = disk drive number (1-4).

Upon return from the operation, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of

OPERATING SYSTEM C016555 -~ Section S
100

interast to you:. however.

FORMAT DISK (Command Byte = $21)
The Handler commands the diskette controller to format the entire
diskette and then to verify it. All bad sector numbers (up to a
maximum of &3) are returned and put in the supplied buffer,
followed by two bytes of all 1‘s ($FFFF). You set up the
following DCB parameters prior to calling the Diskette Handler:
COMMAND BYTE = $21.
DEVICE NUMBER = disk drive number (1-4)},

BUFFER ADDRESS = pointer to your 12B8-byte buffer.

Upon return, you might be interested in the following DCB parameters:

STATUS BYTE = status of operation.

BYTE COUNT = number of bytes of bad sector information in
your buffer, not including the $FFFF terminator. If there
are no bad sectors, the count will equal zero.

Serial Bus 1/0

Input/Output to devices other than the keyboard, the screen, and
the ATARI Computer controller port devices, must utilize the
Serial I/0 bus. This bus contains data, control, and clock lines
to be used to allow the computer to communicate with external
devices on this “"daisychained" bus. Every device on the bus has
a unique identifier and will respond only when directly
addressed.

The resident system provides a Serial I/0 Utility (SI0), that
provides a standardized high—level program interface to the bus.
SI0 is utilized by the resident Diskette, Printer, and Cassette
handlers, and is intended to be used by nonresident handlers (see
Section 9}, or by applications: as well. For a detailed
description of the program/SI0 interface and for a detailed bus
specification refer to Section 9.

OPERATING SYSTEM C0146555 —— Section 5

101

é INTERRUPT PROCESSING

Section & describes system actions for the various interrupt
causing events, defines the many RAM vectors and provides
recommended procedures for dealing with interrupts.

The 6502 microcomputer processes three general interrupt types:
chip—reset, nonmaskable interrupts (NMI) and maskable interrupts
(IRG). The IRG interrupt type can be enabled and disabled using
the 6502 CLI and SEI instructions. The NMI type cannot be
disabled at the processor level; but the NMI interrupts other
than [SYSTEM. RESET] key can be disabled at the ANTIC chip.

The system events that can cause interrupts are listed below:
chip-reset - power-up

NMI -~ Display list interrupt (unused by 0OS)
verticai-blank (50/60 Hz)
{SYSTEM. RESET] key

IRQ@ ~ Serial bus output ready
Serial bus output complete
Serial bus input ready
Serial bus proceed line (unused by system)
Serial bus interrupt line (unused by system)
POKEY timers 1, 2 and 4
Keyboard key
£BREAK] key
6502 BRK instruction (unused by 0S)

Figure 6-1 List of System—-Interrupt Events

OPERATING SYSTEM CO146555 —- Section &
102

The chip-reset interrupt is vectored via location FFFC to E477,
where a JMP vector to the power-up routine is located. All NMI
interrupts are vectored via location FFFA to the NMI interrupt
service routine at E7B4, and all IRQ@ interrupts are vectored
via location FFFE to the IRQ interrupt service routine at E6F3;
at that point the cause of the interrupt must be determined by
a series of tests. For some of the events there are built in
monitor actions and for other events the corresponding
interrupts are disabled or ignored. The system provides RAM
vectors so that you can intercept interrupts when

necessary.

CHIP-RESET

The 0S generates chip-reset in response to a power—up condition.
The system is completely initialized (see Section 7).

NONMASKABLE INTERRUPTS

When an NMI interrupt occurs, control is transferred through

the ROM vector directly to the system NMI interrupt service
routine. A cause for the interrupt is determined by examining
hardware register NMIST [D40OF31. The NMI makes a jump through the
global RAM vector VDSLST [02001 if a display list interrupt is
pending. The 0S does not use display list interrupts, so VDSLST
is initialized to point to an RTI instruction, and you must not
change it before VDSLST generates a display interrupt.

If# the interrupt is not a display—list interrupt, then a test is
made t£o see if it is a [SYSTEM. RESET] key interrupt. If so, then a
Jump is made to the system reset initialization routine (see Section
7 for details of system reset initialization}.

If the interrupt is neither a display list interrupt nor a
LOSYSTEM. RESET] key interrupt; then it is assumed to be a
vertical-blank (VBLANK)} interrupt, and the following actions
occur:
Registers A, X and Y are pushed to the stack.
The interrupt request is cleared (NMIRES [D40OF1).
A jump is made through the "immediate' vertical-blank global
RAM vector VWBLKI [0222]1 that normally points to the Stage 1
VBLANK processor.
The following actions occur assuming that you have not changed VVBLKI.

OPERATING SYSTEM CO16555 —— Section &
103

The stage 1 VBLANK processor is executed.

The 0S tests to see if a critical code section has been
interrupted. If so; then all registers are restored, and an
RTI instruction returns from the interrupt to the critical
section. A critical section is determined by examining the
CRITIC #lag [00421, and the processor I bit. If either are
set, ¢then the interrupted section is assumed to be critical.

If the interrupt was not from a critical section, then the
stage 2 VBLANK processor is executed.

The OS then jumps through the "deferred" wvertical-blank
global RAM vector VBLKD [02241, that normally points to the
VBLANK exit routine.

The following actions occur assuming that you have not changed VVBLKD.
o The 6502 A, X and Y registers are restored.

o0 An RTI instruction is executed.

NOTE: You can alter the deferred and immediate

VBLANK RAM vectors, but still enable normal system processes; or
restore original vectors without having to save them. The
instruction at E40F is a JMP to the stage 1 VBLANK processori the
address at [E460,2] is the value normally found in VVBLKI. The
instruction at E442 is a JMP to the VBLANK exit routine; the
address at [E463,.2] is the value normally found in VWBLKD. These
ROM vectors to stage 1 VBLANK processor and to the VBLANK exit
routine will accomplish your goal.

NOTE: Every VBLANK interrupt jumps through vector VVBLKI. Only
VBLANK interrupts from noncritical code sections jump through
vector VVBLKD.

Stage 1 VBLANK Process

The following stage 1 VBLANK processing is performed at every
VBLANK interrupt:

The stage 1 VBLANK process increments the 3-byte frame
counter RTCLOK [0012-00141; RTCLOK+0 is the MSB and RTCLOK+2
is the LSB. This counter wraps to zero when it overflows
(every 77 hours or so), and continues counting.

The Attract mode variables are processed {(see Appendix L.
B10-123.

The stage 1 VBLANK process decrements the System Timer 1
CDTMV1 £0218,21 if it is nonzero; if the timer goes from

OPERATING SYSTEM C016555 —— Section 6
104

nonzero to zero then an indirect JSR is performed via CDTMAl
£o226, 21.

Stage 2 VBLANK Process

The stage 2 VBLANK processing performs the following for those
VBLANK interrupts that do not interrupt critical sections:

The stage 2 VBLANK process clears the 6502 processor I bit.
This enables the IRG interrupts.

The stage 2 VBLANK process updates various hardware
registers with data from the 0S data base, as shouwn belqw:

Pata Base Hardware Reason for Update
Item Register

SDLSTH £02311 DLISTH [D4031] Display list start
SDLSTL £02301 DLISTL [D4021]

SDMCTL [022F1] DMACTL {D4001

CHBAS ([O02F41 CHBASE [D40%1]

CHACT (02F31 CHACTL [D4011

GPRIOR £026F1 PRIOR ([DO1B1

COLORO £02C41 COLPFO [DC161] Attract mode.
COLOR1 E£02CS1] COLPF1 [DO171]

COLOR2 £02C61 COLPF2 [DO18]

COLOR3 t02C71 COLPF3 LDO1?1]

COLOR4 £02C81 COLBK [DO1A1l

PCOLRO £02C01 COLPMO [DO121

PCOLR1 [02C11 COLPM1 [DO131

PCOLR2 E£02C21 COLPM2 L[DO141

PCOLR3 £02C33 COLPM3 L[DO151]

Constant = 8 CONSOL [DO1F1 Console speaker off.

The stage 2 VBLANK process decrements the System Timer 2
CDTMV2 [021A, 2] if it is nonzero; if the timer goes from
nonzero to zero, then an indirect JSR is performed
through CDTMAZ2 [0228, 21.

The stage 2 VBLAMK process decrements System Timers 3, 4 and
S if they are nonzero; the corresponding flags are set to
zero for each timer that changes from nonzero to zero.

OPERATING SYSTEM C01655% —— Section &
105

106

Timer Timer Value Timer Flag

3 CDTMV3 [021C, 21 CDTMF3 L[022A,11
4 CDTMV4 [021E, 21 CDTMF4 [022C, 11
o CDTMVS (0220, 2] CDTMFS [O22E,11

A character is read from the POKEY keyboard register and
stored in CH [Q2FCl, if auto repeat is active.

The stage 2 VBLANK process decrements the keyboard debounce
counter if it is not equal to zero, and if no key is
pressed.

The stage 2 VBLANK process processes the keyboard auto
repeat (see Appendix L., EB).

The stage 2 VBLANK process reads game controller data from
the hardware to the RAM data base, as shown below:

Hardware Data Base Function
Register Item
PORTA ([D3001 STICKO (02781 Joysticks and

STICK1 [027%1]
PTRIGO [027C1 Paddle Controllers
PTRIGL L[027D1
PTRIG2 [027E1
PTRIG3 [027F1
PORTB ([D3011 STICK2 [027A]
STICK3 [027B1
PTRIG4 [02801]
PTRIGS [02811
PTRIGS (02821
PTRIG7 [02831

POT ¢ (D2001 PADDLO £02701 Paddle Controllers
POT 1 (D2011 PADDL1 [02711]
POT 2 (D2021 PADDL2 £02721
POT 3 [D2031 PADDL3 [02731
POT 4 (£D2041 PADDL4 [£02741
POT & ([D2051 PADDLS [02731]
POT & (D2041 PADDLS6 [027641]
POT 7 £ED2071 PADDL7 £02771
TRIGO ([DOO11 STRIGO [£0284] Joystick triggers.
TRIG1 ([DOO21] STRIG1 £02851]
TRIG2 (D0O031 STRIGZ2 {02861
TRIG3 ([DO04] STRIG3 [0287]

OPERATING SYSTEM CD16555 ~- Section &

MASKABLE INTERRUPTS

An IRG interrupt causes control to be transferred through the

immediate IRQ global RAM vector VIMIRG [021é]. Ordinarily this
vector points to the system IRG Handler. The Handler performs

these following actions:

The IRG Handler determines a cause for the interrupt by

examining the IRQGST (D20E] register and the PIA status

registers PACTL [D3021 and PBCTL [D3031. The interrupt status bit
is cleared when it is found. One interrupt event is cleared and
processed for each interrupt—service entry. If multiple IRGs are
pending, then a separate interrupt will be generated for each
pending IRGQ, until all are serviced.

The system IRQ interrupt service routine deals with each of the
possible IRG causing events: in the following ways:

o The 6502 A register is pushed fo the stack.

s) If the interrupt is due to serial I/0 bus output ready.,
then clear the interrupt and jump through global RAM
vector VSEROR L[020CI.

o If the interrupt is due to serial I/0 bus input ready,
then clear the intervrupt and jump through global RAM
vector VSERIN [O20A].

o I# the interrupt is due to serial I/0 bus output
complete, then clear the interrupt and jump through
global RAM vector VSEROC L[O20E].

0 If the intervupt is due to POKEY timer #1, then clear the
interrupt and jump through global RAM vector VTIMR1 C£02101.

) If the interrupt is due to POKEY timer #2, then clear the
interrupt and jump through global RAM vector VTIMRZ2 [02121].

o If the interrupt is due to POKEY timer #4, then clear the
interrupt. The service routine contains a bug, and falls
into the following test.

o If pressing a keyboard key caused the interrupt (other

than [BREAK], [START], [OPTION], or [SELECTI); then clear the

interrupt and jump through global RAM vector VKEYBD [02081.

0 If pressing the [BREAKI key caused the interrupt: then
clear the interrupt. Set the BREAK flag BRKKEY [0011]1 to
zero, proceed to clear the following:

Start/stop flag SSFLAG [O2FF]

Cursor inhibit flag CRSINH [O2FO01
Attract mode flag ATRACT [00G4D1]

OPERATING SYSTEM C016555 —— Section 6

107

Return from the interrupt after restoring the &502 A
register from the stack.

0 If the interrupt is due to the serial I/0 bus proceed line;
then clear the interrupt, and jump through global RAM vector
VPRCED [02021.

0 I+ the interrupt is due to the serial I/0 bus interrupt
line, then clear the interrupt and jump through global RAM
vector VINTER [02041].

0 If the interrupt is due to a 6502 BRK instruction, then jump
through global RAM vector VBREAK [02041].

0 If none of the above, restore the 6502 A register and return
from the interrupt (RTI).

INTERRUPT INITIALIZATION

The interrupt subsystem completely reinitializes itself whenever
the system is powered up or the [SYSTEM. RESET] key is pressed.
The 0S8 clears the hardware registers, and sefts the interrupt
global RAM vectors to the following configurations:

Vector Type Function
VDSLST [02001 NMI RTI —— ignore interrupt.
VVBLKI L[02221 " System stage 1 VBLANK.
CDTMAL [02261 " 810 timeout timer.
CDTMAZ [0228] " No system function.
VVBLKD [02241] " System return from interrupt.
VIMIRQG [021646] IRG System IRQ processor.
VSEROR [020C1] " SI0.
VSERIN [020A1 " SI0.
VSEROC [020E1] “ SI0.
VTIMR1 [02101] " PLA,RTI —— ignore interrupt.
VTIMR2 [0212] " PLA, RTI —— ignore interrupt
VTIMR4 [0214] o ### doesn‘t matter #xx
VKEYBD {02081 " System keyboard

: interrupt handlier.
VPRCED [0202] " PLA,RTI —— ignore interrupt.
VINTER £02041 u PLA, RTI ~- ignore intervupt.
VBREAK [0206] BRK PLA/RTI —— ignore interrupt.

Figure &6-2 Interrupt RAM Vector Initialization

OPERATING SYSTEM CO16555 —-— Section 6
108

System initialization sets the interrupt enable status
as follows:

SYSTEM TIMERS

NMI

IRQ

VBLANK enabled, display list disabled.

LBREAK] key and data key interrvrupts enabled,

disabled.

The 08 contains five general purpose software timers, plus an
0S-supported frame counter.
(lo,hi}) and the frame counter RTCLOK (00121 is three bytes in
iength (hi,mid, lo}.
nonzero value to zero. Upon
an associated flag.
counter counts upward, wrapp

The time

The timers are 2 bytes in length

rs ctount downward from any
reaching zero, they either clear

or JSR through a RAM wvector. The frame

ing to zero when it overflows.

The following table shows the timers and the frame counter
characteristics:

*

Timer Name

CDTMV1
CDTMYV2
CDTMV3
CDTMV4
CDTMVS
RTCLOK

to2181
£021A1
fo21C1
to21iE]
£0o2201
£ooi21

Flag/Vector Use

CDTMAL
CDTMAZ
CDTMF3
CDTMF4
CDTMFS

(02261 2-byte vector —— SI0 timeout.
£02281 2-byte vector
E0O22A]1 1-byte flag
L022C] 1-byte flag
L0221 1-byte flag
3-byte frame counter.

These two timers are maintained as part of every VBLANK
interrupt (stage 1 process). The other timers are subject to
the critical section test (stage—-2 proctess). that can defer
their updating to a later VBLANK interrupt.

USAGE NOTES

This subsection describes the techniques you need to know in
order to utilize interrupts in conjunction with the operating

system.

OPERATING SYSTEM C014555 —— Section &

all others

109

POKEY Interrupt Mask

ANTIC (display—list and vertical-blank) and PIA (interrupt and
proceed lines}) interrupts can be masked directly (see the
Hardware Manuval). However, eight bits of a single byte IRGEN
[D20E] mask the POKEY interrupts (LBREAK] key. data key.
serial input ready, serial output ready, serial output done
and timers 1,2 and 4).)

IRGEN is a write-only register. Thus, we must maintain a
current value of that register in RAM in order to update
individual mask bits selectively, while not changing other bits.
The name of the variable used is POKMSK [0010], and it is used
as shown in the examples below:

i EXAMPLE OF INTERRUPT ENABLE

SEI i TO AVOID CONFLICT WITH IRG ...
L.DA POKMSK i ... PROCESSOR WHICH ALTERS VAR.
ORA #bxx i ENABLE BIT(S).

STA POKMSK

STA IRGEN i TO HARDWARE REG TO0O.

CLI

i EXAMPLE OF INTERRUPT DISABLE

SEI i TO AVOID CONFLICT WITH IRG ...
LDA POKMSK ; ... PROCESSOR WHICH ALTERS VAR.
AND #$FF-xx ;i DISABLE BIT(S).

STA POKMSK

STA IRGEN i TO HARDWARE REGISTER TO0O.

CLI

Figure 6-3 POKEY Interrupt Mask Example

Note that the O0S IRQ service routine uses and alters POKMSK, so
alterations to the variable must be done with interrupts
inhibited. If done at the interrupt level there is no problem, as
the I bit is already seti if done at a background level then the
SEI and CLI instructions should be used as shown in the examples.

Setting Interrupt and Timer Vectors

Because vertical-blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately, there is a
problem with setting the VBLANK vectors (VWBLKI and VVBLKD) or

the timer values (CDTMV1 through CDTMV3) directly. A VBLANK
interrupt could occur when only one byte of the two-byte value had
been updated, leading to undesired consequences. For this reason.

OPERATING SYSTEM CO14555 —— Section 6
110

the SETVBV

LE4SF] routine is provided to perform the desired

update in safe manner. The calling sequence is shown below:

>
]

X
Y

JSR

The
The

update item indicator

1 - 5 for timers 1 —~ 5.

& for immediate VBLANK vector VVBLKI.
7 for deferred VBLANK vector VVBLKD.
MSB of value to store.

LSB of value to store.

SETVBV

A)X and Y registers can be altered.
display list interrupt will always be disabled on

return, even if enabled upon entry.

It is possible to fully process a vertical-blank intervrupt
during a call to this routine.

When working with the System Timers,

2 and the flags for timers 3.4 and 5 should be set while the

associated

timer is equal to zero, then the timer should be set

to its (nonzero) value.

Stack Content at Interrupt Vector Points

The following table shows the stack content at every one of the

RAM interrupt vector points:

OPERATING SYSTEM CO14555 —— Section &

the vectors for timers 1 and

111

RAM STACK CONTENT

INTERRUPT VECTOR DESCRIPTION 0S RETURN CONTROL

VDSLST (02001 Display list return, P

VWBLKI [0222]1 # VBLANK immediate return, P, A& X, Y

CDTMAL1 (02261 System Timer 1 return, P, A, X, Y: return
CDTMA2 [02281] System Timer 2 return, P, A, X, Y., return
VVBLKD [02241 + VBLANK defer. return, P, A X, Y

VIMIRG (02161 IRQ immediate return, P, A

VSEROR [020C1 =+ Serial out ready return, P, A

VSERIN [020A]1 # Serial in ready return, P, A

VSEROC [0O20E1 # Serial out compare return, P, A

VTIMRL £C2101] POKEY timer 1 return, P, A

VTIMR2 [0212] POKEY timer 2 return, P, A

VTIMR4 (02141 POKEY timer 4 return, P, A

VKEYBD [02081 # Keyboard data return, P, A

VPRSED (02021 Serial proceed return, P, A

VINTER {02041 Serial interrupt return, P, A

VBREAK [02061 BRK instruction return, P, A

Figure 6-4 Interrupt and Timer Vector RAM Stack Content Table

The 08 initializes these entries at power—up. Improperly
changing these vectors will alter system performance.

Miscellaneous Caonsiderations

The following paragraphs list a set of miscellaneous
considerations for the writer of an interrupt service routine.

Restrictions on Clearing of “I" Bit

Display list, immediate vertical-blank and System Timer #1
routines should not clear the 6502 I bit. If the NMI leading ¢o
one of these routines occurred while an IRG was being processed,
then clearing the I bit will cause the IRG to re-interrupt with
an unknown result.

The 08 VBLANK processor carefully checks this condition after the
stage 1 process and before the stage 2 process.

Interrupt Process Time Restrictions

You should not write an interrupt routine that exceeds 400 msec.
when added to the stage 1 VBLANK, if the serial I/D is being
used. The SID sets the CRITIC flag while serial bus I/0 is in
progress.

OPERATING SYSTEM C0O16555 —— Section &
112

Interrupt Delay Due to "WAIT FOR SYNC®

Whenever a key is read from the keyboard, the Keyboard Handler
sets WSYNC [D40A] repeatedly while generating the audible click
on the console speaker. A problem occurs when interrupts are
generated during the wait-for—-sync period;, the processing of such
interrupts will be delayed by one horizontal scan line. This
condition cannot be prevented. You can work around the condition
by examining the line count VCOUNT [{D40Bl and delaying interrupt
processing by one line when no WSYNC delay has occurred.

FLOWCHARTS

The following pages contain process flowcharts showing the main
events that occur in the NMI and IRQ interrupt processes.

IRQ INTERRUPT PROCESS
VIMIRQ

Y

PUSH REG A
TO STACK

SERIAL CLEAR
OUT RDY? STATUS > VSEROR

N

b

SERIAL Y CLEAR
IN RDY? sTatus [VSERN
N
SERIAL Y CLEAR
OUT COMPL? STATUS > SVEROC °
N
Y
POKEY CLEAR
TIMER 1? STATUS > VTIMRA

N

POKEY \ CLEAR
TIMER 27 STATUS VTIMR2 > »

N

POKEY Y CLEAR
TIMER 4? STATUS VTIMR4

N

®

Y CLEAR KBD
KET(BESi\RD STATUS VKEYBD HANDLER

N

OPERATING SYSTEM CO016555 -— Section &
113

CLEAR STATUS,
SETBREAKFLG |3 PULLA
CLEAR SIS

SERIAL
PROCEED?

CLEAR
STATUS - VPRCED

SERIAL CLEAR
INTERR.? STATUS ™1 VINTER
N
BRK
INSTRUCT? VBREAK
PULL REG A
FROM STACK

OPERATING SYSTEM C014555 —- Section &
114

NMI INTERRUPT PROCESS

DISPLAY
LIST?

PUSH REG A
TO STACK

VERTICAL
BLANK?

VDSLST

PUSH X & Y,

CLEAR STATUS VVBLKI
CRITICAL
SECTION?
STAGE 2 VVBLKD

XITVBL

RESTORE
REGISTERS

OPERATING SYSTEM C016555 -- Section 6

115

7 SYSTEM INITIALIZATION

Section 7 discusses the details of the power—up and
system reset¢ processes. The power—up process will be explained
first, and then the system reset process will be explained in
terms of its differences from the power-up process.

Both power—up (also called coldstart) and pressing [SYSTEM. RESET]
(warmstart! will cause system initialization: In addition, there
are vectors for these processes at E474 (system reset) and E477
(power—up) so that they can be user—initiated.

The power—uyp initialization process is a superset of the

system reset initialization process. Power—up initializes both
the 05 and user RAM regions, whereas system reset initializes
only the 0S5 RAM region. In both cases, the 08 calls the outer
level software initialization entry points allow the application
to initialize its own variables.

Pressing the [SYSTEM RESET] key produces an NMI interrupt. It
does not perform a &502 chip~reset. If the processor is locked

up: the L[SYSTEM. RESET] key cannot be sufficient to unlock it, and the
system must have power cycled to clear the problem.

POWER-UP INITIALIZATION (COLDSTART) PROCEDURE

The OS performs the following functions in the order shown, as
part of the power-up initialization process:

1. The following 6502 processor states are set:

o IRG interrupts are disabled using the SEI instruction.
) The decimal flag is cleared using the CLD instruction.
o The stack pointer is set to $FF.

2. The 0S sets the warmstart flag WARMST [00081 to O (false).

OPERATING SYSTEM CO014555 ~- Section 7
116

10.

11,

The 08 tests to see if a diagnostic cartridge is in the A slot:
Cartridge address BFFC = 007
The memory at BFFC is not RAM?

Bit 7 of the byte at BFFD = 1?

If all of the above tests are true, then control is passed to
the diagnostic cartridge via the vector at BFFE. No return is
expected.

The 0OS determines the lowest memory address containing
non—-RAM, by testing the first byte of every 4K "block" to see
it the content can be complemented. If it can be complemented,
then the original value is restored and testing continues. I#f
it can’t be complemented; then the content is assumed to be
the first non—RAM address in the system. The MSB of the
address is stored temporarily in TRAMSZ [000&1.

Zero is stored to all of the hardware register addresses shown
below (most of that aren‘t decoded by the hardware):

DOOC through DOFF
D200 through D2FF
D300 through DJIFF
D400 through D4FF

The 0S8 clears RAM from location 0008, to the address
determined in step 4, above.

The default value for the “noncartridge" control vecteor
DOSVEC [OO0OA] is set to point to the blackboard routine. At
the end of initialization, control is passed through this
vector if a cartridge does not take control.

The coldstart flag COLDST E02441 is set to -1 (local use).

The screen margins are set: left margin = 2, right margin =
3%, for a 3B character physical line. The maximum line size of
40 characters can be obtained by setting the margins to O and
39. The 08 insets the left margin because the two leftmost
columns of the video picture on many television sets are not
entirely visible on the screen.

The interrupt RAM vectors VDSLST [0200]1 through VVWBLKD [0224]
are initialized. See Section & for the initialization values.

Portions of the 0SS RAM are set to their required nonzero values

as shown below:

OPERATING SYSTEM C014555 —-- Section 7
117

o The EBREAK] key flag BRKKEY [0011] = -1 (false).

o The top of memory pointer MEMTOP [02ES] = the lowest
non—-RAM address (from step 4); MEMTOP will be altered
later when the Screen Editor is opened in step 15.

o The bottom of memory pointer MEMLO [O2E71 = 0700; MEMLO
can be changed later if there is either a diskette- or
cassette—~boot operation.

o The following resident routines are called for initialization:

Screen Editor

Display Handler

Keyboard Handler

Printer Handler

Cassette Handler

Central I/0 Monitor (CIOD)
Serial I/0 Monitor (SIO)
Interrupt processor

] The [START1 key is checked, and if pressed, the cassette-boot
request flag CKEY [Q04A]1 is set.

12. 6502 IRG interrupts are enabled using the CLI instruction.

13. The device table HATABS [031A] is initialized ¢to point to the
resident handlers. See Section 9 for information relating to
the Device Handler table.

14. The cartridge slot addresses for cartridges B and A are
examined to determine if cartridges are inserted, if RAM does
not extend into the cartridge address space.

If the content of location 9FFC is zero, then a JSR is
executed through the wvector at 9FFE, thus initializing
cartridge “B". The cartridge is expected to return.

If the content of location BFFC is zero, then a JSR is
executed through the vector at BFFE, thus initializing
cartridge "A". The cartridge is expected to return.

15. I0OCB #0 is set up for an OPEN of the Screen Editor (E) and
the OPEN is performed. The Screen Editor will use the highest
portion of RAM for the screen and will adjust MEMTOP
accordingly. If this operation should fail, the entire
initialization process is repeated.

16. A delay is effected to assure that a VBLANK interrupt has
occurred. This is done so that the screen will be established
before continuing.

17. If the cassette-boot request flag is set (see step 11 above),
then a cassette-boot operation is attempted. See Section 10

OPERATING SYSTEM CO146555 —~ Section 7
118

18.

19.

20.

for details of the cassette-boot opervation.

I+ any of the three condiftions stated below exists, an
attempt is made to boot from the disk.

There are no cartridges in the slots.
Cartridge B is inserted and bit O of 9PFFD is 1.
Cartridge A is inserted and bit O of BFFD is 1.

See Section 10 for details of the diskette-boot operation.

The coldstart flag COLDST is reset to indicate that the
toldstart process went to completion.

The initialization process is now complete, and the

controlling application is now determined via the remaining

steps.

If there is an A cartridge inserted and bit-2 of BFFD is 1,
then a JMP is executed through the vector at BFFA.

Or:, if there is a B cartridge inserted and bit-2 of 9FFD is

1, then a JMP is executed through the vector at PFFA.

Or: a jump is executed through the vector DOSVEC that can
point to the blackboard routine (default case), cassette
booted software or diskette booted software. DOSVEC can be
altered by the booted software as explained in Section 10,

SYSTEM RESET INITIALIZATION (WARMSTART) PROCEDURE

The functions listed below are performed, in the order shown, as

part of the system reset initialization process:

A.

mnmo o =

Same as power-up step 1.

The warmstart flag WARMST [00081 is set to -1 (true).

Same as power-up steps 3 through 5.

0S RAM is zeroed from locations 0200-03FF and 0010-007F.
Same as power—-up steps ? through 16.

If a cassette—boot was successfully completed during the
power—up initialization, then a JUSR is executed through the

vector CASINI [0002]. See Section 10 for details of the
cassette-boot process.

OPERATING SYSTEM C01655% —- Section 7

119

G. Same as power—up step 18, except instead of booting the
diskette software, a JSR is executed through the vector DOSINI
LOO0OC] if the diskette—-boot was successfully completed during the
Power-up initialization. See Section 10 for details of the
diskette—boot process.

H. Same as power—up steps 19 and 20.

Note that the initialization procedures and main entries for all
software entities are executed at every system reset as well as
at power up (see steps 14, 17, 18, 20, F and G}. If the
vser—supplied initialization/startup code must behave differently
in response to system reset than it does to power—~up., then the
warmstart flag WARMST [00081 should be interrogated; WARMST = O
means power-up entry, else system reset entry.

OPERATING SYSTEM C016555 —- Section 7
120

8 FLOATING POINT ARITHMETIC PACKAGE

This section describes the BCD floating point (FP) package that
is resident in the 0S ROM in both the models 400 and 800.

The floating point package maintains numbers internally as &—byte
quantities: a S5-byte (10 BCD digit) mantissa with a 1-byte
exponent. BCD internal representation was chosen so that decimal
division would not lead to the rounding errors typically found in
binary representation implementations.

The package provides the following operations:

ASCII to FP conversion.

FP to ASCII conversion.

Integer to FP conversion.

FP to integer conversion.

FP add, subtract, multiply,and divide.

FP logarithm, exponentiation, and polynomial evaluation.
FP zero:. load, store, and move.

A floating point operation is performed by calling one of the
provided routines (each at a fixed address in ROM) after having
set one or more floating point pseudo registers in RAM. The
resulé of the desired operation will also involve floating point
pseudo registers. The primary pseudo registers are described
below and their addresses given within the square brackets:

DPERATING SYSTEM C014555 —— Section 8

FRO £00D41 = 6-byte internal form of FP number.

FR1 [OOEQC]1 = 6~byte internal form of FP number.
FLPTR L{QOFCl = 2-byte pointer (lo.,hi}) to a FP.
number.
INBUFF [OOF31] = 2-byte pointer (lo.hi) to an ASCII text
buffer.
CIX £OOF21 = l-byte index, used as offset to buffer

pointed to by INBUFF.
LBUFF [£0S580) = result buffer for the FASC routine.

FUNCTIONS/CALL ING SEQUENCES
Descriptions of these floating point routines assume that
a pseudo register is not altered by a given routine. The

numbers in square brackets [xxxx] are the ROM addresses of the
routines.

ASCII to Floating Point Conversion (AFP)

Function: This routine takes an ASCII string as input and
produces a floating point number in internal form.

Calling sequence:
INBUFF = pointer to buffer containing the ASCII

representation of the number.
CIX = the buffer offset to the first byte of the ASCII

number.
JSR AFP [DBOO1
BCS first byte of ASCII number is invalid
FRO = floating point number.
CIX = the buffer offset to the first byte after the ASCII

number.

Algorithm: The routine takes bytes from the buffer until it
encounters a byte that cannot be part of the number. The bytes
scanned to that point are then converted to a floating point
number. If the first byte encountered is invalid, the carry bit
is set as a flag.

Floating Point to ASCII Conversion (FASC)

Function: This routine converts a floating point number from
internal form to its ASCII representation.

OPERATING SYSTEM C016555 —— Section 8
i22

Calling sequence:
FRO = floating point number.
JSR FASC [DBE6]
INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (sign bit) set; no EOL follows.
Algorithm: The routine converts the number from its internal
floating point representation to a printable form (ATASCII). The

pointer INBUFF will point to part of LBUFF, where the result is
stored.

Integer to Floating Point Conversion (IFP)

Function: This routine converts a 2-byte unsigned integer (0 to
65535} to floating point intermal representation.

Calling sequence:
FRC = integer (FRO+0 = LSB, FRO+1 = MSB}.
JER IFP L[D9AA]

FRO

floating point representation of integer.

Floating Point to Integer Conversion (FPI}

Function: This routine converts a positive floating point number
from its internal representation to the nearest 2-byte integer.

Calling sequence:

FRO = floating point number.

JER FPI C[D9D2]

BCS FP number is negative or 2= 4£5535. 5
FRO = 2-byte integer (FRO+C = LSB, FRO+1 = MSB).

Algorithm: The routine performs true rounding, not truncation,
during the conversion process.

OPERATING SYSTEM C016555 ~~ Section 8
123

Floating Point Addition (FADD)

Function: This routine adds two floating point numbers and checks
the result for out-of-range.

Calling sequence:

FRO = floating point number.

FR1 = floating point number.

JSR FADD [DA&6]

BCS out—of-range result.

FRO = result of FRO + FRI1.
FR1 is altervred.
Floating Point Subtraction (FSUB)

Function: This routine subtracts two floating point numbers and
checks the result for out-—-of-range.

Calling sequence:

FRO = floating point minuend.
FR1 = floating point subtrahend.
JSR FSUB [DALO]

BCS gut—of-range result.
FRO result of FRO — FR1.

FR1 is altered.

Floating Point Multiplication (FMUL)

Function: This routine multiplies two floating point numbers and
checks the resulft for out—of-range.

Calling sequence:

FRO = floating point multiplier.
FR1 = floating point multiplicand,
JER FMUL [DADBI

BCS aout—of-range result.

FRO = result of FRO # FR1.

FR1 is altered.

OPERATING SYSTEM C0146555 —— Section 8
124

Floating Point Division (FDIV)

Function: This routine divides two floating point numbers and
checks for division by zero and for result out-of-range.

Calling sequence:

FRO = floating point dividend.

FR1 = floating point divisor.

JSR FDIV {DB281

BCS out-of-range result or divisor is zero.

FRO = result of FRO / FR1.
FR1 is altered.

Floating Point Logarithms (LOG and LOGiO)

Function: These routines take the natural or base 10 logarithms
of @ floating point number.

Calling sequence:

FRO = floating point number.

JSR £06 £DECD] for natural logarithm
or

JER LOGIO CDED1] for base 10 logarithm

BCS negative number or overflow.

FRO = floating point logarithm,
FR1 is altered.

Algorithm: Both logarithms are first computed as base 10

logarithms using a 10 term polynomial approximationi the natural

logarithm is computed by dividing the base 10 result by the
constant LOG10(e).

The logarithm of a number Z is computed as follows:
F # (10 #% Y} = 7 where 1 <= F < 10 (normalization).
L = LOGIO(F} by 10 term polynomial approximation,
LOGI0(Z)Y = Y + L. LOG(Z) = LOGIO(Z) /7 LOGIO(e}.
NOTE: This routine does not return an error if the number input

is zero; the LOGIC result in this case is approximately -12% 5,
which is not useful.

OPERATING SYSTEM C016555 —— Section 8

125

Floating Point Exponentiation (EXP and EXP10)
Function: This routine exponentiates.
Calling sequence:

FRO = floating point exponent (Z).

JER EXP [DDCO]1 for e #% Z

or
JBR EXP10 CDDCC] for 10 ##% Z
BCS overflow.

FRO = floating point result.
FR1 is altered.

Algorithm: Both exponentials are computed internally as base 10,
with the base e exponential using the identity:
e ## X = 10Q ## (X # LOGIO(e)).

The base 10 exponential is evaluated in two parts using the identity:

10 ##% X = 10 ## (I + F) = (10 #% I} # (10 %% F} —— where I is the
integer portion of X and F is the fraction.

The term 10 ## F is evalvated using a polynomial approximation,
and 10 ## I is a straightforward modification to the floating
point exponent.

Floating Point Polynomial Evaluation (PLYEVL)

Function: This routine performs an n degree polynomial
evaluation.

Calling sequence:

X, ¥ = pointer (X = LSB) to list of FP coefficients (A(i)}
ordered from high order to low order (six bytes per
coefficient).

A = number of coefficients in list.

FRO = floating point independent variable (Z}.

JER PLYEVL [DD40]

BCS overflow or other error.

FRO = result of A(n)sZ##n + A(n—-i)#Za#n-1 ... + A(1)#Z +
ACD).

FR1 is altered.

Algorithm: The polynomial P(Z) = SUM(i=0 to n) (A(i)#Z##i) is
computed using the standard method shown below:

P(Z) = (... (A(n)*Z + A(n-1))%#Z + ... + A(1))#Z + A(O)

OPERATING SYSTEM CO14555 ——- Section 8
126

Clear FRO (ZFRO)

Function: This routine sets the contents of pseudo register FRO
to all zeros.

Calling sequence:
JSR ZFRO [DA441]

FRO = zero.

Clear Page Zero Floating Point Number (ZF1)

Function: This routine sets the contents of a zero—page floating
point number to all :zeroes.

Calling sequence:

X = Zero-page address of FP number to clear.
JER ZF1 [DA461
Zero-page FP number (X} = zero.

Load Floating Point Number to FRO (FLDOR and FLDOP)

Function: These routines load pseudo register FRO with the
floating point number specified by the calling sequence.

Calling sequences:
X:. ¥ = pointer (X = LLSB) to FP number.
JSR FLDOR {DD8%91]
or
FLPTR = pointer to FP number.
JSR FLDOP EDDS8DI1

FRO = floating point number (in either casel.
FLPTR = pointer to FP number (in either case).

OPERATING SYSTEM C016555 —— Section 8

127

Load Floating Point Number to FR1 (FLD1IR and FLDIP}

Function: These routines load pseudo register FRI with the
floating point number specified by the calling sequence.

Calling sequences:

As in prior description, except the result goes to FRI
instead of FRO. FLDIR {DD981 and FLDBIP [DD?C1J.

Store Floating Point Numbey From FRO (FSTOR and FSTCP)

Function: These routines store the contents of pseudo register
FRO to the address specified by the calling sequence:

Calling segquence:
As in prior descriptions, except the floating point number

is stored from FRO rather than loaded to FRO. FSTOR ([DDA71
and FSTOP (DDAB1.

Move Floating Point Number From FRO to FR1 (FMOVE)

Function: This routine moves the floating point number in FRO to
pseudo register FRI1.

Calling segquence:
JSR FMOVE [DDBé&]

FR1 = FRO (FRO remains unchanged).

RESOURCE UTILIZATION

The floating point package uses the following RAM locations in
the course of performing the functions described in this section:

00D4 through OOCGFF
O57E through OSFF

All of these locations are available for program coding
if your program does not call the floating point package.

OPERATING SYSTEM C016555 —— Section 8
128

IMPLEMENTATION DETAILS

Floating point numbers are maintained internally as é—-byte
quantities, with 5 bytes (10 BCD digits}) of mantissa and 1 byte
of exponent. The mantissa is always normalized such that the
most significant byte is nonzero (note “byte” and not "BCD
digit").

The most significant bit of the exponent byte provides the sign
for the mantissai O for positive and 1 for negative. The
remaining 7 bits of the exponent byte provide the exponent in
excess &4 notation. The resulting number represents powers of 100
decimal (not powers of 10). This storage format allows the
mantissa to hold 10 BCD digits when the value of the exponent is
an even power of 10, and @ BCD digits when the value of the
exponent is an odd power of 10.

The implied decimal point is always to the immediate right of the
first byte. An exponent less than 64 indicates a number less than
1. An exponent equal to or greater than &4 represents a number
equal to or greater than 1.

Zero is represented by a zero mantissa and a zero exponent. To
test for a result from any of the standard routines; test either
the exponent or the first mantissa byte for zerao.

The absolute value of f£loating point numbers must be greater than
10#%-28, and less than 10##+98: or be equal to zero. There is
perfect symmetry between positive and negative numbers with the
exception that negative zero is never generated.

The precision of all computations is maintained at 9 or 10
decimal digits, but accuracy is somewhat less for those functions
involving polynomial approximations (logarithm and
exponentiation). Also, the problems inherent in all floating
point systems are present here; for example: subtracting two very
nearly equal numbers, adding numbers of disparate magnitude, or
successions of any operation, will all result in a loss of
significant digits. An analysis of the data range and the order
of evaluation of expressions may be required for some types of
applications,

The examples below compare floating point numbers with their
internal representations, as an aid to understanding storage
format. All numbers prior to this point have been expressed in
decimal notation, but these examples will use hexadecimal
notatian. Note that &4 decimal (the excess number of the
exponent}) is 40 when expressed in hexadecimal:

Number: +0.02 = 2 % 10#%-2 = 2 % 100#%%-1
Stored: 3F 02 00 00 00 00 (FP exponent = 40 - 1}

Numbeyr: ~0.02 = -2 % 10##~-2 = -2 # 100##—1
Stored: BF 02 00 00 00 00 (FP exponent = 80 + 40 - 1)

OPERATING SYSTEM C016535 —— Section 8
129

Number: +37.0 = 3.7 % 10x#%#1 = 37 # 100%##0
Stored: 40 37 00 Q00 00 00 (FP exponent = 40 + 0O}

NMumber: —~4 40312486 # 10##1l = —-446.03. .. % 100#x5
Stored: CS 44 03 Ol 24 86 (FP exponent = 80 + 40 + 5)

Number: 0.0
Stored: 00 QO OO0 00 00 00 (special case)

OPERATING SYSTEM C016555 ~— Section 8
130

7 ADDING NEW DEVICE HANDLERS/PERIPHERALS

This secftion describes the interface requirements for a
nonresident Device Handler that is to be accessed via the Central
170 utility (CIO). The Serial bus I/0 utility (SI0) interface is
defined for those handlers that utilize the Serial I/0 bus.

The I/0 subsystem is organized with three levels of software
between you and your hardware: The CIO, the individual device
handlers: and the SIO.

The CID performs the following functions:

Logical device name to Device Handler mapping (on OPEN).
I1/0 Control Block (IOCB) maintenance.

Logical record handling.

User buffer handling.

The device handlers are below CIO. They perform the
following functions:

Device initialization on power—-up and system reset.
Device—-dependent support of OPEN and CLOSE commands.
Byte—at—a—-time data input and output.
Device-dependent special operations.
Devicte-dependent command support.

Device data buffer management.

The SI0 is at the bottom level (for Serial I/0 bus peripheral
handlers}). It performs the following functions:

Control of all Serial bus I/0, conforming to the bus
protocol.

Bus operation retries on errors.
Return of unified error statuses on error conditions.

OPERATING SYSTEM C0O16555 —— Section 9

131

A separate control structure is used for communication at each
interface, as follows:

User/CI0 I1/0 Control Block (IOCH)
CI0/Handler Zero—-page IOCB (ZIOCB?
Handler/SIO Device Coantrol Block (DCB)

OPERATING SYSTEM CO14555 ——- Section 2
132

o e e +
{ wuser H
{ program | —-—— +
Fmm e ——— + H
m——————— + H i
! JOCB ‘s {stsrstststirseitss) :
o e e e + H i
o e e e + H
H CIO H F e e + H
t 3 13
f utility | H DCp § 3 |
o o e e e + e e e e e e + % H
H #* i
¢ 3#* H
e e e e o e + e o e 2 e o e e + o e e o 4+ # H
i ZIOCB i Device | iDisk Filel # H
o ———— + i Table | +--=--{ Manager (————-— + i
3* e o s sy + H o e o o e e e e + HE
3# { : HE
e e e e o o e e o e e b e el o HE
[] t]] 1 []
t L t i [} 13
e e e e e e e + - + o o e e + pmm—————— + emm—————— +
{ Printer | i Cassette! HEER { | Keyboardi { Disk H
{ Handler | ! Handler | { Handler | { Handler | { Handler |
o e e e o o e e + e ————— + o e e o e e F b ———— I e +
] [}] [l
1 s 1 1]
e e e e o e e —— +
H
Fo e + H
H DCB §3RIEIEMHHHH |
e o s e e e + §
o e e o e e +
H SI0 i
f Utility |
e +

Where: ———- shows a control path.
shows the data structure required for a path.

Note the following:
1. The Keyboard/Display/Screen Editor handlers don’t use
2. iég,Diskette Handler cannot be called directly from CIO.
3. The DCB is shown twice in the diagram.

Figure 9-1 1/0 Subsystem Flow Diagram

OPERATING SYSTEM C016555 ~— Section @
133

DEVICE TABLE

The device table is a RAM-resident table that contains the
single~character device name (e.g. K, D, C, etc). and the

handler address for each of the handlers known to CIO. The

table is initialized to contain entries for the following

resident handlers: HKeyboard (K), Display (8}, Screen Editor

(E}, Cassette (C), and Printer (P) at power—up and system reset. Ta
install a8 new handler, some procedure must insert a device table entry
aftter the table is initialized.

The table format is shown below:

+ o - =+
HATABS [031Al | device name H H

o e e e e e + :

{ handler vector | +- one entry

+ + :

{ table address H H

e pa——— + -+

H more H

{ entries H

e o e e et e e e e +

H zero fill to |

{ end of table |

+ -

Figure 9-2 Device Table Format

This 38-byte table will hold a maximum of 12 entries, with the
last 2 bytes being zero. CIO scans the table from the end to
the beginning (high to low address})i; so the enftry nearest the
end of the table will take precedence in case of multiple
occurrences of a device name. .

The device name for each entry is a single ATASCII character, and
the handler address points to the handler‘s vector table, that
will be described in the following section.

CIO/HANDLER INTERFACE

This section describes the interface between the Central I1/0
utility and the individual device handlers thaft are represented
in the Device Table (as described in the preceding section).

OPERATING SYSTEM C016555 —— Section 9
134

Calling Mechanism

Each handler has a vector table as shown below:

———————————————— +

OPEN vector + (low address)
-+

CLOSE wvector +
-

GETBYTE wvector +

R E E E EEE R

+

PUTBYTE vector +

-+

GETSTAT vector +

£

SPECIAL vector 4+

- - +

+ JMP init code +
+ + (high address)

R +

Figure 9-3 Handler Vector Table

The device table entry for the handler points to the first
byte of the vector table.

The first six entries in the table are vectors (lo.hi) that
contain the address - 1 of the handler routine that handles
the indicated function. The seventh entry is a 6502 JMP
instruction to the handler initialization routine. CID uses
only the addresses contained in this table for handler entry.
Each user/CI0 command translates to one or more calls to one
of the handler entries defined in the vector table.

The vector table provides the handler addresses for certain
tfixed functions to be performed to CIO. In addition., operation
parameters also must be passed for most functions. Parameter
passing is accomplished using the 6502 A, X, and Y registers
and an IOCB in page C named ZIOCB [0020]. In general, register
A is uysed to pass data, register X contains the index to the
originating IOCB, and register Y is used to pass status
information to CIOD. The zevro-page IOCB, is a copy of the
originating IOCB; but in the course of processing some
commands, CIO can alter the buffer address and buffer length
parameters in ZIOCB, but not in the originating IOCB (see
Section 5 for information relating to the originating IOCB).

See Appendix B for the standard status byte values to be
returned to CIO in register VY.

OPERATING SYSTEM C014555 -~ Section 9

135

The following sections describe the CIO/handler interface for
each of the wvectors in the handler vector table.

Handler Initialization

NOTE: This entry doesn’t appear to have any function for
nonresident handlers due to a bug in the current 0S8 -- the
device table is cleared in response to system reset as
well as power—-up. This prevents this entry point from ever
being called. The rest of this section discusses the
intended use of this entry point. Conformation would be in
order to allow compatibility with possible corrected
versions of the 05 in the future.

The entry was to have been called on all occurrences of
power—-up and system reset; the handler is to perform
initialization of its hardware and RAM data vusing a routine
that assures proper processing of all CIO commands that follow.

Functions Supported

This section describes the functions associated with the first
six vectors from the handler vector table. This section also
presents a brief, device—independent description of the
CIO/handler interface and recommended actions for each function
vector.

OPEN

This entry is called in response to an OPEN command to CIO. The
handler is expected to validate the OPEN parameters and perform
any required device initialization associated with a device OPEN.

At handler entry, the following parameters can be of interest:

X
Y

index to originating IOCB.
$92 (status = function not implemented by handler).

iu

ICDNOZ £00211 = device number (1-4, for multiple device
handlers).
ICBALZ/ICBAMHZ [0024/00251

address of device/filename
» specification.
ICAX1Z/ICAX2Z [O02A/002B]1 = device—specific information.

The handler attempts to perform the indicated OPEN and
indicates the status of the operation by the value of the Y
register. The responsibility for checking for multiple OPENs to

OPERATING SYSTEM C016555 —- Section 9
136

the same device or file, where it is illegal: lies with the
handler.

CLOSE

This vector table entry is called in response to a CLOSE command
to CIO. The handler is expected to release any held resources
that relate specifically to that device/filename, and for output
files to:

1} send any data remaining in handler buffers to the device,
2 mark the end of file

3) update any associated directories, allocation maps. etc.

At handler entry, the following parameters can be of interest:

X = index to originating IDCB.
Y = #4922 (status = function not implemented by handler).

ICDNOZ £0021]1 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [OQ02A/002B] = device—-specific information.

The handler attempts to perform the indicated CLOSE and
indicates the status of the operation by the value of the Y
regisfer.

CIO releases the associated IOCB after the handler returns,
regardless of the operation status valve

GETBYTE

This vector table entry is called in response to a GET
CHARACTERS or GET RECORD command to CIO. The handler is

expected to return a single byte in the A register, or return an
error status in the Y register.

At handler entry, the following parameters can be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).

ICDNDZ [0021] = device number (1-4, for multiple device handlers).
ICAX1Z/ICAX2Z [Q02A/002B]1 = device—specific information.

The handler will obtain a data byte directly from the device or from a
handlar-maintained buffer and return to CID with the byte in the
A register and the operation status in the Y register.

OPERATING SYSTEM C016555 —— Section 9
137

Handlers that do not have short timeouts associated with the
reading of data (such as the Keyboard and Cassette Handlers),
must monitor the [BREAK] key flag BRKKEY [0011] and return with a
status of $80 when a [BREAK] condition occurs. See Appendix L.

ES; and Section 12 for a discussion of [BREAK] key monitoring.

CI0 checks for reads from device/files that have not been opened
or have been opened for output only; the handler will not be called in
those cases.

PUTBYTE

This entry is called in response to a PUT CHARACTERS or PUT
RECORD command to CID. The handler is expected to accept a single
byte in the A register or return an error status in the Y
rTegister.

At handler entry:, the following parameters can be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).
A = data byte.

ICDNOZ [0021]1 = device number (1-4, for multiple device
' handlers).
ICAX1Z/ICAX2Z [O02A/002B1 = device-specific information.

The handler sends the data byte directly to the device, or to a
handler—maintained buffer, and returns to CIO with the operation
status in the Y register. If a handler-maintained buffer fills,
the handler will send the buffered data to the device before
returning to CIO.

CIO checks for WRITEs to device/files that have not been opened,
or have been opened for input only. The handler will not be called in
those cases.

Now that the normal operation of PUTBYTE has been defined, a
special case must be added. Any handler that will operate within
the environment of the ATARI BK BASIC language interpreter has a
different set of rules. Because BASIC can call the handler
PUTBYTE entry directly. without going through CID, the zero—page
IOCB (ZIOCB) can or may not have a relation to the PUTBYTE call.
Therefore, the handler must use the outer level IOCB to obtain
any information that would normally be obtained from ZIOCB. Note
also that the OPEN protection normally provided by CIO is
bypassed (i.e. PUTBYTE to a non-OPEN device/file and PUTBYTE to a
read-only OPEN).

OPERATING SYSTEM C016555 —— Section 9
138

GETSTAT
This entry is called in response to a GET STATUS command to CIO.
The handler is expected to return four bytes of status to memory
or return an error status in the Y register.

At handler entry. the following parameters can be of interest:

X = index to originating IOCB. Y = $92 (status = function not

implemented by handler).

ICDNOZ E0O0211 = device number (1-4, for multiple device handlers).

ICBALZ/ICBAHZ [0024/0025]1 = address of
device/filename specification.

ICAX1Z/1CAX2Z

£002A/002B] = device-specific information.

The handler gets device status information from the device
controller and puts the status bytes in DVSTAT [O2EA] through
DVSTAT+3, and finally returns to CIO with the operation status
in register Y.

The IOCB need not be opened nor closed in order for you

to request CIO to perform a GET STATUS operation: the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a GET STATUS
operation using both open and closed IOCB‘s, and note the impact
of this operation on the use of the buffer address parameter.

SPECIAL

This handler entry is used to support all functions not handled
by the other entry points, such as diskette file RENAME, display
DRAW, etc. Specifically, if the IOCB command byte value is
greater than $0D, then CIO will use the SPECIAL entry point. The
handler must interrogate the command byte to determine if the
requested operation is supported.

At handler entry., the following parameters can be of interest:

X
Y

index to originating IOCB.
$922 (sfatus = function not implemented by handler).

ICDNDZ £00211 = device number (1-4, for multiple device
handlers).

ICCOMZ [00C221 = command byte.

ICBALZ/ICBALH [0024/00251 buffer address.

ICBLLZ/ICBLHZ [£0028/00291 buffer length.

ICAX1Z/ICAX2Z [QO2A/002B1 device—specific information.

OPERATING SYSTEM C016555 ~- Section 9

139

The handler will perform the indicated operation, if possible,
and return to CIO with the operation status in register Y.

The I0OCB need not be opened nor closed in order for you

to request CIO to perform a SPECIAL operation; the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a SPECIAL
operation using both open and closed IOCB’‘’s: and note the
impact of this on the use of the buffer address parameter.

Error Handling

Error handling has been simplified somewhat by having CID handle
outer level errors and having SI0 handle Serial bus errors,

leaving the handler to process the remaining errors. These
errors include:

out—-of-range parameters.
LBREAK]1 key abort.
Invalid command.

Read after end of file.

The current handlers respond to errors using the following
guidelines:

They keep the recovery simple (and therefore predictable and
repeatable).

They Do not interact directly with you for recovery
instructions.

They lose as little data as possible.

They make all attempts to maintain the integrity of file

oriented device storage —— this involves the initial design
of the structural elements as well as error racovery
techniques.

Resource Allocation

Nonresident handlers needing code and/or data space in RAM should
use the techniques listed below, to assure nonconflict with other
parts of the 08, including other nonresident handlers.

OPERATING SYSTEM C016555 —- Section 9
140

Zero—~-Page RAM

Zero-page RAM has no spare bytes, and even if there were, there
is no allocation scheme to support multiple program assignment of
the spares. Therefore, the nonresident handler must save and
restore the bytes of zero-page RAM it is going to use. The bytes
to use must be chosen carefully, according to the following
criteria:

The bytes cannot be accessed by an interrupt routine.
The bytes cannot be accessed by any noninterrupt code
between the time the handler modifies the bytes and then

restores the original values.

A simple save/restore technique would utilize the stack in a
manner similar to that shown below:

LDA COLCRS i (for example)

PHA i SAVE ON STACK.

LDA COLCRS+1

PHA

LDA HPOINT i HANDLER ‘S POINTER.

STA COLCRS
LDA HPOINT+1
STA COLCRS+1

XXX (COLCRS), Y i DD YOUR POINTER THING.
PLA i RESTORE OLD DATA.

STA COLCRS+1

PLA

STA COLCRS

Note that the Display Handler or Screen Editor should not be
called before restoring the original value of COLCRS, because
COLCRS is a variable used by those routines.

Nonzero—-Page RAM
There is no allocation scheme to support the assignment of
fixed regions of nonzero-page RAM to any specific process: so the

handler has three choices:

1. Make a dynamic allocation at initialization time by
altering MEMLO [OQO2E71.

r

Include the variables with the handler for RAM-resident
handlevrs. This still involves altering MEMLO at the time
the handler is booted.

3. I+ the handler replaces one of the resident handlers (by
removing the resident handler’s entry in the device
table}, then the new handler can use any RAM that the

OPERATING SYSTEM C016558 —— Section 9
141

formerly resident handler would have used.
Stack Space

In most cases:, there are no restrictions on the use of the stack
by a handler. However, if the handler plans to push more than a
couple dozen bytes to the stacki then it should do a stack
overflow test, and always leave stack space for intervupt
processing.

HANDLER/SIO INTERFACE

This section describes the interface between serial bus device
handlers and the serial bus I/0 utility (SI0). SIO completely
handles all bus transactions following the device-—independent bus
protocol. SI0 is responsible for the following functions:

Bus data format and timing from computer end.
Error detection, retries and statuses.

Bus timeout.

Transfer of data between the bus and the caller‘s buffer.

Calling Mechanism

SI0 has a single entry point SIOV [E459] for all operations. The
device control block (DCB} [O300) contains all parameters passed
to SI0. The DCB contains the following bytes:

DEVICE BUS ID -- DDEVIC {03001

The bus ID of the device is set by the handler prior to calling
SI0 (see Appendix I}.

DEVICE UNIT # —— DUNIT [0O3011

This byte indicates that of n units of a given device type to
access, and is set by the handler prior to calling SI0O This
value vusvally comes from ICDNOZ. SI0 accesses the bus device
whose address is equal to the value of DDEVIC plus DUNIT minus 1
(the lowest unit number is normally equal to 1},

DEVICE COMMAND —-— DCOMND L[03021]

The handler sets this byte prior to calling SIO. It will be sent
to the bus device as part of the command frame. See Appendix I
for device command byte values.

OPERATING SYSTEM C0O146555 —— Section 9
142

DEVICE STATUS -- DSTATS (03031

This byte is bidirectional. The handler will use DSTATS to
indicate to SI0 what to do after the command frame is sent and
acknowledged. SIO will use it to indicate €o the handler the
status of the requested operation.

Prior ¢o an SIO call:

7 0
e o e o o e e e o e e
fWIR! vnused H
B e e e e

10 indicates no data ¢transfer is associated with the
operation.

Where: W.,R =
is invalid.

After an SI0 call:

7 0
ek ks et Tt T R
H status code H
B L s st st (L Lo

See Appendix C for the possible SI0 operation status codes.
HANDLER BUFFER ADDRESS -— DBUFLO/DBUFHI [0304/03051]

The handler sets this 2-byte pointer. It indicates the source
or destination buffer for device data or status information.

DEVICE TIMEOUT -- DTIMLO [03061

The handler sets this byte. It specifies the device timeout time
in units of &4/60 of a second. For example, a count of &
specifies a timeout of 4.4 seconds.

BUFFER LENGTH/BYTE COUNT -- DBYTLO/DBYTHI C[0308/03091

The handler sets this 2-byte count for the current

operation, and indicates the number of data bytes to be
transferred into or out of the buffer. This parameter is not
required if the STATUS byte W and R bits are both zero. These
values indicate that no data transfer is to take place.

WARNING: There is a bug in SI0O that causes incorrect

actions when the last byte of a buffer is in a memory
address ending in $FF, such as 13FF, 42FF, etc.

OPERATING SYSTEM C016555 -- Section @

1 indicates a data frame is expected from the device.
O indicates a data frame is ¢to be sent to the device.
v 1

143

AUXILIARY INFORMATION -- DAUX1/DAUX2 [O30A/030B1

The handler sets these 2-bytes. The SI0 includes them in the bus
command frame; they have device-specific meanings.

Functions Supported

SI0 does not examine the COMMAND byte it sends to the device,
because all bus transactions are expected to conform to a
universal protocol. The protocol includes three forms, stated
below (as seen from the computer):

Send command frame.
Send command frame and send data frame.
Send command frame and receive data frame.

The values of the W and R bits in the status byte select the
command form.

Errvor Handling

610 handles most of the serial bus errors for the handler,
as indicated below:

Bus timeout —— SI0 provides a uniform command frame and data
frame ACK byte timeout of 1/60 of a second - O / + 1/60.

The handler specifies the maximum COMPLETE byte timeout
value in DTIMLO.

Bus errors ——- SID detects and reports UART overrun and
framing errors. The sensing of these errors in any received

byte will cause the entire associated frame to be considered
bad.

Data frame checksum error ——- SI0O validates the checksum on
all received data frames and generates a checksum for all
transmitted frames.

Invalid response from device —— In addition to the error
conditions stated above, SIO checks that the ACK and
COMPLETE responses are proper (ACK = $41 and COMPLETE =
$43). ACK stands for acknowledge.

Bus operation retries —— SI0 will attempt one complete command
retry if the first attempt is not error free, where a complete
command try consists of up to 14 attempts to send (and

acknowledge) a command frame, followed by a single attempt to

OPERATING SYSTEM CO16555 —— Section 9
144

receive the COMPLETE code and possibly a data frame.
NOTE: There is a bug in the retry logic for data writes,
such that if the command frame is acknowledged by the
controller, but the data frame is not acknowledged, then
will retry indefinitely.

Unified error status codes —— SI0O provides device-independent
codes (see Appendix C).

SERIAL I/0 BUS CHARACTERISTICS AND PROTOCOL

This section describes:

o The electrical characteristics of the ATARI 400
and ATARI 800 Home Computers serial bus
o The use of the bus to send bytes of data,
a) The organization of the bytes as “frames" (records),
1) The overall command sequences that utilize frames

and response bytes to provide computer/peripheral communi

Hardware/Electrical Characteristics

The ATARI 400 and the ATARI 800 Home Computers

communicate with peripheral devices over a 19,200 baud
asynchronous serial port. The serial port consists of a serial
DATA OUT (transmission) line, a serial DATA IN (receiver} line
and other miscellaneous control lines.

Data is transmitted and received as B bits of serial data (LSB
sent first) preceded by a logic zero start bit and succeeded
by a logic one stop bit. The serial DATA OUT is transmitted as
positive logic (+4v = one/true/high, Ov = zevo/false/low). The
serial DATA DUT line always assumes its new state when the
serial CLOCK OUT line goes highi; CLOCK OUT then goes low in
the center of the DATA OUT bit time.

An end view of the Serial bus connector at the computer or
peripheral is shown below (the cable connectfors would of
course be a mirror image):

OPERATING SYSTEM C016535 —— Section 9

SIO

error

cation.

145

] o o o o
o o 0 0 o o o
1 3 S 7 g 11 13
where: 1 = computer CLOCK IN.
2 = computer CLOCK OUT.
3 = computer DATA IN.
4 = GND.
S = computer DATA OQUT.
& = GND.
7 = COMMAND-.
8 = MOTOR CONTROL.
? = PROCEED-.
10 = +5v/READY.
11 = computer AUDIO IN.
12 = +1i2v.
13 = INTERRUPT-.

Figure 9-4 Serial Bus Connector Pin Descriptions

CLOCK IN is not used by the present 05 and peripherals. This
line can be used in future synchronous communications schemes.
CLOCK OUT is the serial bus clock. CLOCK QOUT goes high at the
start of each DATA OUT bit and returns to low in the middle of
each bit.

DATA IN is the serial bus data line to the computer.

Pin 4 GND is the signal/shield ground line.

DATA OUT is the serial bus data line from the computer.

Pin 6 GND is the signal/shield ground line.

COMMAND—- is normally high and goes low when a command frame is
being sent from the computer.

MOTOR CONTROL is the cassette motor control line (high=on,
low= oféf).

PROCEED—- is not used by the present 0S8 and peripherals; this line
is pulled high.

+5v/READY indicates that the computer is turned on and ready. This
line can also be used as a +5 volt supply of S0ma current rating
for ATARI peripherals only.

AUDIO IN accepts an audio signal from the cassette.

OPERATING SYSTEM CO16555 —— Section @
144

+12V is a +12 volt supply of unknown current rating for ATARI
peripherals only.

INTERRUPT- is not used by the present 0S5 and peripherals; this
line is pulled high.

There are no pin reassignments made in the Serial bus cable,

s0 pin 3, the computer’s DATA IN line, is the peripheral’s
data output linei and similarly for pin 5.

Serial Port Electrical Specifications

Peripheral input:

ViH = 2. 0v min.

Vil = 0. 4v max.

Ii1H = 20ua. max. @ VIH = 2. 0v
Il = Sua. max. € ViL = . 4v

Peripheral output (open collector bipolari:

VOL = 0. 4v max. € 1.6 ma.
VOH = 4. 5v min. with external 100Kohm pull-up.

Vec/READY input:
2.0v min. @ IiH = 1ma. max.

Vit = 0. 4v max.
Input goes to logic zero when open.

Bus Commands
The bus protocol specifies that all commands must originate from the
computer, and that peripherals will present data on the bus only when
commanded to. Every bus operation will go to completion befare
another bus operation is initiated (no overlap). An error detected at
any point in the command sequence will abort the entire sequence.
A bus operation consists of the following elements:

Command frame from the computer.

Acknowledgement (ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.

OPERATING SYSTEM C0O16555 ~— Section 2
147

Command Frame

The serial bus protocol provides for three types of commands: 1) data
send, 2) data receive and 3) immediate (no data —-- command only).

There is a common element in all three types: a command frame
consisting of five bytes of information sent from the computer

while the COMMAND- line is held low. The format of the command
frame is

shown below:

e e e e e e s s s o +
{ device ID H
o o e e s i e s s e +
H command !
+ - —
{ auxiliary #1 H
e e e e +
{ auxiliary #2 H
+ -—
H checksum H
o s e e e e e e +

Figure 9-5 Serial Bus Command Frame Format

The device ID specifies that of the serial bus devices is being
addressed (see Appendix I for a list of device IDs}.

The command byte contains a device-dependent command (see
Appendix I for a list of device commands).

The auxiliary bytes contain more device—-dependent information.
The checksum byte contains the arithmetic sum of the first four
bytes (with the carry added back after every addition).

Command Frame Acknowledge
The peripheral being addressed would normally respond to a
command frame by sending an ACK byte ($41) to the computer; i#f

there is a problem with the command frame: the peripheral should
not respond.

Data Frame

OPERATING SYSTEM C016555 —— Section @
148

Following the command frame (and ACK) can be an optional data
frame that is formatted as shoun below:

o o e s i i e o e +
[4 1
[4
[4 4
1 t
H data H
= -
H bytes H
[] [4
1 t
- — +
H checksum H
+ +

This data frame can originate at the computer or at the device
controller, depending upon the command. Current device
controllers expect fixed-length data frames as does the computer,
where the data frame length is a fixed function of the device
type and command.

The checksum value in the data frame is the arithmetic sum of all
of the frame data preceding the checksum with the carry from
each addition being added back (the same as for the command
frame}.

In the case of the computer sending a data frame to a peripheral,
the peripheral is expected to send an ACK if the data frame is
acceptable, and send a NAK ($4E), or do nothing if the data frame
is unacceptable. See the first flowchart in Section 9.

Opevration Complete

A peripheral is also expected to send an operation-COMPLETE byte
($43) at the time the commanded operation is complete. The
location of this byte in the command sequence for each command
type is shown in the timing diagrams in Section 9. If the
operation cannot go to normal, error—free completion, the
peripheral should respond with an ERROR byte (%$45) instead of
COMPLETE.

OPERATING SYSTEM CO16555 -— Section 9
149

Bus Timing

This section provides timing diagrams for the three types of

command sequences: data send,

DATA SEND sequence:

data receive,

and immediate.

e s e o b o o orms s e s e S e o (R
COMMAND-~- i H
e +
P + Fomnn f [e e
DATA OUT { cmnd | i data |
———=+frame +-———-- //——+ frame H-————————————e———
+—4 +—+ +—+
DATA IN LI I L
- + -t Fmmf [t
ACK ACK CMPL
H HE S i L !
to ti t2 t3 t4 t5
DATA RECEIVE sequence:
e o et e o o e s e s o et St e S S it B e S e S S S S e s St G S e S et S S
COMMAND~- H H
o e e e +
o e e e +
DATA OUT { cand |
e PP AME e e e e e
= Pt b f [}
DATA IN HE L data !
——————————————— + F==//f==3+ +—-+ frame e o e e
ACK CMPL
$ 1 t s]]]
to t1 €2 t5

OPERATING SYSTEM CO14555 ——- Section 2

150

IMMEDIATE sequence:

—— + ————
¢
'

COMMAND~— H
o e o e e e +
B - +
DATA OUT { cand !
————tframe +—- e e e e o e e e
i e R—
DATA IN HE HE
B T — P e I T ——
ACK CMPL
[3] Pt : : :
t0 t1 €2 tS

Figure 9-6 Serial Bus Timing Diagram
The computer generates a delay (t0) between the lowering of COMMAND-
and the transmission of the first byte of the command frame.

750 microsec.
1600 micrasec.

computer t0 (min}
computer t0O (max)

peripheral t0 (min)

?7?
peripheral t0 (max) ?

= 7

The computer generates a delay (t1) between the transmission of
the last bit of the command frame and the raising of the COMMAND-
line.

650 microsec.
950 microsec.

computer t1 (min)
computer ti (max)

peripheral t1 (min) = 2?7
peripheral t1 (max) = 2?7

The peripheral generates a delay (t2) between the raising of
COMMAND— and the transmission of the ACK byte by the peripheral.

computer €2 (min) = O microsec.
computer t2 (max) = 16 msec.

peripheral t2 (min) = ??
peripheral t2 (max) = 2?7

OPERATING SYSTEM C0146555 -— Section 9
151

The computer generates a delay (t3) between the receipt of the
last bit of the ACK byte and the transmission of the first bit of
the data frame by the computer.

1000 microsec.
1800 microsec.

computer t3 (min)}
computer £3 (max)

nu

are

T

peripheral £3 (min}
peripheral t3 (max)

The peripheral generates a delay (£4) between the transmission of
the last bit of the data frame and the receipt of the first bit
of the ACK byte by the computer.

850 microsec.
16 msec.

computer €4 (min)
computer €4 (max)

peripheral t4 (min) =
peripheral t4 (max) = 7?7

The Peripheral generates a delay (t5) between the the receipt of
the last bit of the ACK byte and the first bit of the COMPLETE
byte by the computer. '

computer €9 (min) = 250 microsec.
computer ¢5 (max} = 255 sec. (handler~dependent}

afs
N/7&

peripheral ¢S5 (min)
peripheral t5 (max)

nu

HANDLER ENVIRONMENT

Nonresident handlers can be installed in at least three different
manners:

1. As booted software from diskette or cassette.

2. Resident in a cartridge (A or B).

3. Downloaded from a serial bus device.
This section will discuss the basic mechanisms for handler
installation for these environments. In order to fully uvtilize the

information in this section, you must have read and understood the
following sections:

Program environments Section 3
RAM region Section 4
Memory dynamics. . . .« -+« Section 4
System 1n1t1a111at1on .. . Section 7
Adding new device handlers/perxpherals . Section 9
Program environment and initialization . Section 10

OPERATING SYSTEM CO146555 -—- Section 9
152

Bootable Handler

The diskette~ or cassette-booted software will insert the
handler ‘s vector table pointer and name to the device table
whenever the booted software’s initialization entry point is
entered (on power-up and system reset). Remember that both
power—up and system reset clear the device table of all but the
resident handler entries.

Cartridge Resident Handler

The cartridge software will insert the handler ‘s vector table
pointer and name to the device table whenever the cartridge’s
initialization entry point is entered (on power-up and

system reset). Remember that both power—up and system reset
clear the device table of all but the resident handler entries;
therefore the device table must be reestablished by the
handler-initialization procedure upon every entry.

FLOWCHARTS

The following pages contain process flowcharts showing the SIO
and peripheral actions for the Serial bus command forms.

OPERATING SYSTEM CD16555 ~—- Section 9

153

154

PERIPHERAL’S COMMAND FRAME PROCESSING

IDLE

Y
WAIT FOR
HIGH TO LOW

TRANSITION
ON COMMAND-

Y

GET NEXT 5 TIMEOUT
BYTES ON >
THE BUS

Y

WAIT FOR
COMMAND-
TO GO HIGH

53
CHECKSUM
OK?

NO

Y

THIS
DEVICE?

Y

VALID
COMMAND?

SEND NAK —

VALID
AUX DATA

SEND ACK

OPERATING SYSTEM C014555 ~~ Section @

DATA FRAME TO PERIPHERAL

0

SETUP TO
READ DATA
FRAME

y

GET N BYTES
FROM BUS

NO
| SEND ACK o
YES

SEND NAK

Y

ATTEMPT TO
PERFORM
INDICATED
OPERATION

OPERATION
0OK?
YES

SEND
COMPLETE

" -

TIMEOUT

Y

SEND ERR

OPERATING SYSTEM C016555 -- Section 9
155

DATA FRAME TO COMPUTER

ATTEMPT TO
PERFORM
INDICATED
OPERATION

OPERATION
OK?

SEND ERR

SEND
COMPLETE

Y

SEND DATA
FRAME

Y

A
IDLE

ATTEMPT TO
PERFORM
INDICATED
OPERATION

OPERATION
0K?
YES

SEND
COMPLETE

Yy
@

OPERATING SYSTEM CO16555 —— Section 9

IMMEDIATE

SEND ERR

156

10 PROGRAM ENVIRONMENT AND INITIALIZATION

This section discusses possible alternative software environments
using 0S5 Configurations. Environments other than those discussed
here are also possible. A thorough understanding of the power—up
and system reset processes (see Section 7} will be necessary to
evaluate all alternative environments.

CARTRIDGE

Most games (and some language processors) are supported via the
cartridge environment. The cartridge resident software is in
control of the system: sometimes vusing the 0S5 and sometimes not.
A cartridge can specify whether the diskette is to be booted at
power-up time, whether the cartridge is to provide the
controlling software, or whether the cartridge is a special
diagnostic cartridge. These options are specified by bits in the
cartridge header, as shown below:

F e e e e +
H cartridge H BFFA (9FFA for cartridge B)
- -
{ start address |
o —— -+
H 00 H
o ———
{ option byte !

K G ——

¢
+
! cartridge H
+= -+
: H
+

{ init address BFFF (9FFF for cartridge B)

Figure 10-1 Cartridge Header Format

The byte of "0O0" is used to allow the 0S5 to determine when a
cartridge is inserted; locations BFFC and 9FFC will not read zero
when there is neither RAM at those locations nor a cartridge
inserted. RAM is differentiated from a cartridge by its ability
to be altered.

OPERATING SYSTEM CD16535 —— Section 10
157

The option byte has the following option bits:

bit O 0, then do not boot the diskette.

1, then boot the diskette.

Bit 2 = @, then init but do not start the cartridge.
1, then init and start the cartridge.

bit 7 = O, then cartridge is not a diagnostic cartridge.
1, then cartridge is a diagnostic cartridge and control
will be given to the cartridge before any of the 0S
is initialized (JMP (BFFE}).

The cartridge init address specifies the location to which the 08 will
JSR during all power-up and system reset operations. As a minimum,
this vector should point to an RTS instruction.

The cartridge start address specifies the location to which the 08
will JMP during all power—up and system reset operations, if

bit 1 of the option byte is = 1. The application should examine
the variable WARMST [0008] it system reset action is to be
different than power—up (WARMST will be zero on power—up and
nonzero thereafter).

Cartridge Without Booted Support Package

A cartridge that does not specify the diskette-boot option and does
not support the cassette-boot possibility can use lower memory
(from 0480 to the address in MEMTOP [O2ES]) in any way it sees

fit.

Cartridge With Booted Support Package

A cartridge that does specify the diskette—boot option or does
support the cassette-boot possibility must use some care in its
use of lower memory. The following regions are defined:

0480-04FF is always available to the cartridge.
MEMLO/MEMTOP region is always available to the cartridge.

DISKETTE-BOOTED SOFTWARE

Software can be boofted from the disk drive at power-up time in
response to one of the following conditions:

OPERATING SYSTEM C016555 —— Section 10
158

Neither Cartridge A nor B is inserted.

Cartridge A is inserted and has bit O of its option byte
LBFFD]1 = 1.

Cartridge B is inserted and has bit O of its option byte
L9FFD] = 1.

If any of these conditions are met, the 0S5 will attempt to read

the boot record from sector #1 of disk drive 1 and then transfer
control to the software that was read in. The exact sequence of

operations will be explained later in this section.

Diskette—-Boot File Format

The key region of a diskette—-boot file is the first six bytes, which
are formatted as shown below:

flags { #first byte
3

init

address sixth byte

1

H
+.—.
:
+

H boot

H continuation
H code

Figure 10-2 Diskette—-Boot File Format

The first byte is stored in DFLAGS [0240], but is otherwise
unused. It should equal zero.

The second byte contains the number of 128-byte diskette sectors
to be read as part of the boot process (including the record
containing this information). This number can range from 1 to
255, with C meaning 256.

OPERATING SYSTEM C0O16555 —- Section 10

159

The third and fourth bytes contain the address (lo.hi) at which to
start loading the first byte of the file,

The fifth and sixth bytes contain the address (lo,hi}) to which the
booter will transfer control after the boot process is complete
and whenever the [SYSTEM. RESET] key is pressed.

The Diskette File Management System (FMS) has extra bytes assigned to
its boot record, but this is a special case of the generalized
diskette-boot and is discussed in Section 5.

Diskette-Boot Process

I# no cartridge is installed, then the diskette will follow these
steps to boot up:

1. Read the first diskette record to the cassette buffer [0400].
2. Extract information from the first six bytes:

Save the flags byte to DFLAGS [0240,1]1. Save the # of sectors
to boot to DBSECT [0241,1]. Save the load address to BOOTAD
£0242,21. Save the initialization address in DOSINI C[O00C, 21.

3. Move the record just read to the load address specified.
4. Read the remaining records directly to the load area.

5. JSR to the load address+é where a multistage boot process can
continue., The carry bit indicates the success of this
operation (carry set = error, carry reset = success).

NOTE: During step 5, after the initial boot process is
complete, the booter will transfer control to the seventh byte
of the first record. The software should continue the boot
process at this point, if it is a multistage boot. The value
of MEMLO CLO2E7]1 should point to the first free RAM location
beyond the software just booted. It should be established by
the booted software as shown below:

LDA #END+1 i SET UP LSB.
STA MEMLO

STA APPMHI

LDA #END+1/256 i SET UP MSB.
STA MEMLO+1

STA APPMHI+1

If the booted software is to take control of the
system at the end of the boot operation, the
vector DOSVEC [O00A] must be set up by the
application at this time; DOSVEC points to the

OPERATING SYSTEM C016555 -- Section 10
160

restart entry for the booted application. If the
booted software is not to take control, then
DOSVEC should remain unchanged.

LDA #RESTRT i RESTART LSB.
STA DOSVEC

LDA #RESTRT/256

STA DOSVEC+1

&. JSR indirectly through DOSINI for initialization of the
application; the application will initialize and return.

NOTE: The 0S enters the initialization point on every
system reset and power—-up. Internal initialization can take
place during system reset and power-up as well. Initialization

can also be deferred until Step 7 for controlling
applications.

7. JMP indirectly through DOSVEC to transfer control to the
application.

NOTE: Pressing the [SYSTEM. RESET] key after the application
is fully booted will cause steps & and 7 to be repeated.

Sample Diskette—Bootable Program Listing

This skeletal program can be booted from the diskette. It retains
control when it is entered.

i THIS IS THE START OF THE PROGRAM FILE.

PST= 0700 i (OR SOME OTHER LOCATION).
= PST i (.0ORG).

i THIS IS THE diskette—-boot CONTROL INFORMATION.

.BYTE © ;
.BYTE PND-PST+127/128 ; NUMBER OF RECORDS.
.WORD PST i MEMORY ADDRESS TO START LOAD.

.WORD PINIT PROGRAM INIT.

OPERATING SYSTEM C0146555 ~- Section 10
161

i THIS IS THE START OF THE BOOT CONTINUATION.

LDA #PND i ESTABLISH LOW MEMORY LIMITS.
STA MEMLO

STA APPMHI

LDA #PND/256

STA MEMLO+1

sSTA APPMHI+1

L.DA #RESTRT i ESTABLISH RESTART VECTOR.
STA DOSVEC
LDA #RESTRT/254&
STA DOSVEC+1
CLC i SET FLAG FOR SUCCESSFUL BOOT.
RTS

i APPLICATION INMITIALIZATION ENTRY POINT.

PINIT RTS i NOTHING TO DO HERE FOR ...
i ... CONTROLLING APPLICATION.

i THE MAIN BODY OF THE PROGRAM FOLLOWS.
RESTRT=#
i THE MAIN BODY OF THE PROGRAM ENDS HERE.

PND= * i ‘PND’ = NEXT FREE LOCATION.
. END

Figure 10-3 Diskette—Bootable Program Listing Example

Program to Create Diskette-Boot Files

This section provides a program that can be used to make bootable
files on diskettes. The program given is not the only one possible,
and no claims are made as to its elegance.

OPERATING SYSTEM C016535 -- Section 10
162

Shown below is a listing of the program to create diskette-boot files.

THIS PROGRAM WRITES A SINGLE

"FILE" TO THE DISKETTE AND IS

USED IN CONJUNCTION WITH A PROCEDURE TO MAKE DISKETTE-
BOOTABLE FILES. THE FOLLOWING TWO SYMBOLS MUST BE EQUATED
MEMORY LIMITS OF THE PROGRAM TO BE COPIED:

*PST

i USING THE
; ‘PND ¢

SECSIZ=128

PET=
PND=
FLEN=

=

BOOTB

i SET

$0700

$1324

PND-PST+SECSIZ-1/SECSIZ

$B00O

BRK

PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
PROGRAM END ADDRESS (SEE SAMPLE PROGRAM).

DISKETTE SECTOR SIZE.

OF SECTORS IN FILE.

THIS PROGRAM'S ORIGIN.

#3#3t LOAD APPLICATION 333

UP DEVICE CONTROL BLOCK FOR DISKETTE HANDLER CALL

LbDaA
STA

LbDa
STA

LDA
Sta

LbDa
STA
LDaA
STA

LDA
STA
LDA
STA

#FLEN
COUNT

#1
DUNIT

#'W
DCOMND

#PST
DBUFLO
#PST/2586
DBUFHI

#01
DAUX1
#00
DAUX2

OF SECTORS TO WRITE.

DISK DRIVE #1.

SET UP FOR WRITE WITH CHECK.

POINT TO START OF APPLIC. PROG.

SET UP STARTING SECTOR # = 0001.

OPERATING SYSTEM CO14555 —- Section 10

163

i NOW WRITE THE FILE ONE SECTOR AT A TIME.

BOTO10 JSR DSKINV i WRITE ONE SECTOR.
BMI DERR i ERROR.
LDA DBUFLO i INCREMENT MEMORY ADDRESS.
cLC

ADC #SECSIZ
STA DBUFLO

LDA DBUFHI

ADC #0

STA DBUFHI

INC DAUX1 i INCREMENT SECTOR #.
BNE BOTO20
INC DAUX2

BOTO20 DEC COUNT i MORE SECTORS TO WRITE?
BNE BOTO10 i YES.
BRK i STOP WHEN DONE.

DERR BRK i STOP ON ERROR.

COUNT s#=#+1 i SECTOR COUNT.

i THIS IS THE CARTRIDGE HEADER

= $BFF9 i “"A" CARTRIDGE.
INIT RTS

. WORD BOOTB

.BYTE ©. 4

.WORD INIT

. END

CASSETTE-BOOTED SOFTWARE

You can boot software from the cassette as well as from the
diskette, at power—up. The following requirements must be met in order
to boot from the cassette:

o You must be pressing the [START] key as power is
applied to the system.

0 A cassette tape with a proper boot format file must be
installed in the cassette drive, and the PLAY button must be
pressed.

OPERATING SYSTEM CO16555 —-— Section 10
164

s] When you are given the audio prompt by the cassette
handler you must press the [RETURNI key.

I+ all of these conditions are met, the 0S5 will read the boot file
from the cassette and then transfer control to the software that
was read in. The exact sequence of operations will be explained
later in this section.

Cassette~Boot File Format

The key region of a cassette-boot file is the first six bytes, that
are formatted as shown below:

of Records

— - v —
-

-
]

13

H

.

{ Memory Address
e o o -
H

t

t
o
!

[.

To Start Load

Init

i
IR TR TR ST S S

address

The first byte is not used by the cassette-boot process.

The second byte contains the number of 128-byte cassette recards to
be read as part of the boot process (including the record
containing this information). This number can range from 1 to 255,

with O meaning 256.

The third and fourth bytes contain the address (lo,hi) to which the
booter will transfer control after the boot process is complete and
whenever the [SYSTEM RESET] key is pressed.

Cassette—~Boot Process

The cassette—bhoot process is described step-by-step for a
configuration in that no cartridge is installed and no diskettes are
attached. For the general case see Section 7.

1. Read the first cassette record to the cassette buffer.

2. Extract information from the first six bytes:

OPERATING SYSTEM C016555 ——- Section 10
165

Save the # of records to boot. Save the load address. Save
the initialization address in CASINI {00021

3. Move the record just read to the load address specified.
4. Read the remaining records directly to the load area.

5. JSR to the load address+6 where a multistage boot process
can continue; the carry bit will indicate the success of
this operation (carry set=error, carry reset=success).

&. JSR indirectly through CASINI for initialization of the
application; the application will initialize and return.

7. JMP indirectly through DOSVEC to transfer control to the
application.

Pressing the [SYSTEM. RESET] key after the application is fully booted
will cause steps 6 and 7 to be repeated.

NOTE: After the initial boot process is complete, the booter will
transfer control to the seventh byte of the first record: at this
point the software should continue the boot process (if it is a
multistage boot) and then stop the cassette drive. which due to a
system bug will still be running, using the following instruction
sequence:

LDA #$3C

STA PACTL [D3021
The application should then set a value in MEMLD [02371 that
points to the first free RAM location beyond the software just
booted, as shown below:

LDA #END+1

STaA MEML.O

STA APPMHI

LDaA #END+1 /256
STA MEMLO+1
STA APPMHI+1

If the booted software is to take confrol of the system at the end
of the boot operation: the vector DOSVEC [000A] must be set up by
the application at this time;, DOSVEC points to the restart entry
for the booted application. If the booted software is not to take
control, then DOSVEC should remain unchanged.

LDA #RESTRT i RESTART LSB
STA DOSVEC

LDaA #RESTRT /256

STA DOSVEC+1

NOTE: The initialization point is entered on every system reset
and power—up; internal initialization can take place here.

OPERATING SYSTEM C0O16555 —- Section 10
166

For controlling applications initialization can also be deferred
until step 7.

Sample Cassette-Bootable Program Listing

Shown below is a skeletal program that can be booted from the
cassette and that retains control when it is entered.

i THIS IS THE START OF THE PROGRAM FILE.
PET= 0700 i (OR SOME OTHER LOCATION).
= PST i (. ORG).

i THIS IS THE cassette—-boot CONTROL INFORMATION.

.BYTE O i (DOESN‘T MATTER).

.BYTE PND-PST+127/128 ; NUMBER OF RECORDS.

. WORD PST i MEMORY ADDRESS TO START LOAD.
. WORD PINIT i PROGRAM INIT.

i THIS IS THE START OF THE BOOT CONTINUATION.

LDaA #$3C i STOP THE CASSETTE.
STA PACTL

Lba #PND i ESTABLISH LOW MEMORY LIMITS.
STA MEMLO

STA APPMHI

LDa #PND/256

STA MEMLO+1

STA APPMHI+1

LDA #RESTRT i ESTABLISH RESTART VECTOR.
STA DOSVEC

LDA #RESTRT/256

STA DOSVEC+1

CLC i SET FLAG FOR SUCCESSFUL BOOT.
RTS

i APPLICATION INITIALIZATION ENTRY POINT.

PINIT RTS i NOTHING TO DO HERE FOR ...
i ... CONTROLLING APPLICATION.

i THE MAIN BODY OF THE PROGRAM FOLLOWS.
RESTRT=#

i THE MAIN BODY OF THE PROGRAM ENDS HERE.

OPERATING SYSTEM C0146555 —— Section 10

167

PND= 3* i ‘PND‘ = NEXT FREE LOCATION.
. END

Figure 10-4 Sample Cassette—Bootable Program

Program to Create Cassette~Boot Files

This section provides a program listing that can be used to make
bootable files on cassette tapes. The program given is not the only
one possible, and no claims are made as to its elegance.

Shown below is a listing of the program to create a cassette-boot
file:

i THIS PROGRAM WRITES A SINGLE FILE TO THE CASSETTE AND IS
i USED IN CONJUNCTION WITH A PROCEDURE TO MAKE CASSETTE-~

i BOOTABLE FILES. THE FOLLOWING TWO SYMBOLS MUST BE EGUATED
i USING THE MEMORY LIMITS OF THE PROGRAM TO BE COPIED:

i ‘PST’ = PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
i ‘PND‘ = PROGRAM END ADDRESS (SEE SAMPLE PROGRAM).

PST= $0700
PND= $1324

FLEN= PND-PST+127/128%128 i ROUND UP TO MULTIPLE OF 128.
#= $BOOO i THIS PROGRAM'S ORIGIN.
BOOTB LDX #$10 i USE IOCB #1.

i FIRST OPEN THE CASSETTE FILE FOR WRITING.

L.DA #0OPEN i SET UP FOR DEVICE “OPEN. "
STA ICCOM. X

L.DA #OPNOT i DIRECTION IS "“QUTPUT. "
STA ICAX1, X

LDA #$80 i SELECT SHORT IRG.

STA ICAX2: X

LDA #CFILE i SET UP POINTER TO DEVICE NAME.
sSTA ICBAL., X
L.DA #CFILE/256

STA ICBAH, X
JER cIov i ATTEMPT TO OPEN FILE.
BMI CERR i ERROR.

i NOW WRITE THE ENTIRE FILE AS ONE OPERATION.

OPERATING SYSTEM C016555 —— Section 10
168

LDA
sSTa

LDaA
STA
LDaA
STA

LDA
STA
LDA
STa

JER
BMI

#PUTCHR
ICCOM, X

#PST
ICBAL, X
#PST/2586
ICBAH, X

#FLEN
ICBLL, X
#FLEN/256
ICBLH, X

Ciov
CERR

i

SET UP FOR "PUT CHARACTERS. “

POINT TO START OF APPLIC. PROG.

SET UP # OF BYTES TO WRITE.

WRITE ENTIRE FILE.
ERROR.

i NOW CLOSE THE FILE AFTER SUCCESSFUL WRITE.

CERR
CFILE

i THIS

INIT

Lba
8TA

JSR
BMI

BRK
BRK
. BYTE
IS THE
$BFF9
RTS
. WORD
. BYTE

. WORD
. END

#CLOSE
ICCOM, X

CIov
CERR

“C: ", CR

CARTRIDGE HEADER

BOOTB
G 4

INIT

i

SET UP FOR “CLOSE. “
CLOSE THE FILE.
ERROR.

STOP WHEN DONE.
STOP ON ERROR.

FILE NAME.

"A" CARTRIDGE.

OPERATING SYSTEM C016555 —- SBection 10

169

11 ADVANCED TECHNIGUES AND APPLICATION NOTES

This section presents information to use the capabilities of the 0S

and some of the hardware capabilites that aren’t directly available

through the 08 ,and in fact, can be in direct conflict with parts of
the 08.

SOUND GENERATION

The 0S8 uses the POKEY sound generation capabilities only in the I/0
subsystem, for cassette FSK tone generation, and for the "noisy
bus" option in SIO.

Capabilities

The hardware provides four independently programmable audio
channels that are mixed and sent to the television set as part of
the composite video signal. The POKEY registers shown below are all
concerned with sound control (as described in the ATARI Home
Computer Hardware Manual).

AUDCTL (D2081 Audio control.

AUDC1 ([D2011 and AUDF1 [D2001 Channel 1 control.
AUDC2 ([D2031 and AUDF2 [D2021 Channel 2 control.
AUDC3 [D205]1 and AUDF3 [D204] Channel 3 control.
AUDC4 (D207 and AUDF4 L[D2061 Channel 4 control.

Conflicts With 0S8

There are two potential conflicts with the OS5 inveolving sound
generation:

0 The 0S can generate its own sounds and then turn off all sounds
as part of I/0 operations to the cassette and the serial bus
peripherals.

o The 0S5 does not turn off sounds when you press [SYSTEM. RESET] or
{BREAK]. If the sounds are to be turned off under those
conditions, the controlling program must provide that capability.

OPERATING SYSTEM CO16555 -- Section 11
170

SCREEN GRAPHICS

Hardware Capabilities

The hardware capabilities for screen presentations are quite
versatile; the 08 uses a very small amount of the capability
provided. The means of extension, however, are non-—trivial; and
making changes to a screen format while still utilizing the
resident Display Handler will be difficult. See the ATARI Home
Computer Hardware Manual for information regarding screen
presentations.

0S Capabilities

The resident Display Handler arbitrarily supports B8 of the 11
possible full screen maodes (11 of 14 modes if¥ the GTIA chip is used
in place of the CTIA). The resident Display Handler allows for an
optional “split—-screen" text window of fixed size. The hardware
allows for many more options than the Display Handler supports, as
will be seen by reading the ATARI Home Computer Hardware

Manual.

Cursor Control

You can control the Display Handler text and graphics cursors
directly (see Section S and Appendix L, Bi-4).

Color Control

You can alter the color register assignments that the Display
Handler makes upon all OPEN commands (see Appendix L B7-8 and
elsewhere). Note that every system reset or Display Handler OPEN
will reset the values back to the system default.

OPERATING SYSTEM C016555 —-- Section 11
171

Alternate Character Sets

Two character sets are available in screen text modes 1 and 2. The
value stored in the data base variable CHBAS [02F4] selects the
character set of interest to you. The default value of %EQ
provides capital (uppercase) letters, numbers and the punctuation
characters corresponding to display codes $20 through #5F in
Appendix E}. The alternate value of $E2 provides lowercase letters
and the special character graphics set (corresponding to display
codes $60 through $7F and $00 through $1F in Appendix E).

Ugser—defined character sets can also be obtained for text modes O,
1, and 2 by providing the character matrix definitions in RAM and
setting CHBAS to point to those definitions. CHBAS always contains
the most significant bits of the memory address of the start of the
character definitions, as shown below:

CHBAS H MSB tx xti Text mode O

+—+
H MSB txi Text modes 1 and 2
+—+
Figure 11-1 User—Defined Character Set Bit Memory Addresses

(X indicates an ignored address bit
assumed to be 0.}

OPERATING SYSTEM CO16555 —— Section 11
172

character

Iel

7 o

Byte +-+—+—t—d—t—t—t-+

101010101010i010!
s ks s T TR S RS
1010111118111 010¢
R et S e
1011111011111 0101
e S S e
0i111i0111110101!
s s ST TS R S GRS
1011111011 1110101
e s ST S SR S R
10i1111010i0i0101
s o T SRS SO Y
0101111181104 01
e e o e e e e e e e
i0iI0I0I0I0I0IOI0!
B e T

Figure 11-2

The storage for the character set involves eight
bytes for each character with characters ordered
their internal code value (see the discussion in

N o0 A R

Each character is defined by an 8 x 8 bit matrix;
is defined as shown below:

the

User Defined 8 x 8 Character Matrix Bit Table

relating to BSS).

o

Character base |

Figure 11-3

4
.

t

t

[

'
o

[

t

1

s
e

i

'

i
o

|

'

|

:
r

Characte

PLAYER/MISSILE GRAPHICS

The 0S5 makes no use of the
of the hardware.

conflict.

I€ can b

Character
code %0

for

——— v e ——

Character
code %01

for

-

Character
code $7E

for

Character

code $7F

for

i AT A e A . <

r Base Diagram

consecutive
consecutively hy
Appendix L

B bytes

increasing addresses

player/missile generation capability

e used independently of the 05 with no

OPERATING SYSTEM C016555 —-—- Section 11

173

Hardware Capabilities

The hardware allows a number of independently moveable screen
objects of limited width to be positioned and moved about the
screen without affecting the “playfield" (bit-mapped graphics or
character) data. Priority control allows the various objects to
have a display precedence in case of conflict (overlap).

Conflicts With 0OS

You must assure that the player/missile data is

address—-aligned as required by PMBASE [D407]. You also must

find a suitable free area that the 0S guarantees to be free under
all environments.

READING GAME CONTROLLERS

The O0S reads the game controllers (shown below) as part of the
stage 2 VBLANK process (see Appendix L Ji-9):

Joysticks/triggers 1-4.

Paddle controllers/triggers 1-8B.
Driving controllers/triggers 1-4.
Light pen/trigger

In addition to these controllers, other information can be sensed
or sent using the PIA chip to that the console connectors are
interfaced.

Keyboard Controller Sensing

Data can be read from an ATARI keyboard controller connected to the
first port. This program alters registers on a chip called a PIA.

To set these back to the default values to do further I/0, hit
[SYSTEM. RESET] or POKE PACTL.60. I+ this program is to be loaded from
diskette, use LOAD, not RUN and wait for the busy light on the disk
drive to go out. Do not execute the program before this light goes
out, otherwise the diskette continues to spin.

1 GRAPHICS ©

S PRINT :PRINT *“ KEYBOARD CONTROLLER DEMO"

10 DIM ROW(3), I$(13), BUTTONS (1)

30 GOSUB 6000

40 FOR CNT=1 TO 4

60 POSITION 2, CNT#2+5: PRINT "CONTROLLER # “iCNT; “:";

OPERATING SYSTEM CO16555 —— Section 11
174

70 NEXT CNT
80 FOR CNT=1 TO 4:GOSUB 7000: POSITION 19, CNT+CNT+5: PRINT BUTTONS;

:NEXT CNT

120 GOTO B8O

6000 REM ## SET UP FOR CONTROLLERS ##

6010 PORTA=54016: PORTB=54017: PACTL=54018: PBCTL=54019

6020 POKE PACTL, 48: POKE PORTA, 255: POKE PACTL, 52: POKE PORTA, 221

6025 POKE PBCTL, 48: POKEPORTB, 255: POKE PBCTL, 52: POKE PORTB, 221

6030 ROW(0)=238: ROW(1)=221: ROW(2)=187: ROW(3)=119

6040 I%=" 12345678F#0#"

6050 RETURN

7000 REM ## RETURN BUTTON$ WITH CHARACTER FOR BUTTON WHICH HAS
BEEN PRESSED ON CONTROLLER CNT (1-4). #

7001 REM ## NOTE: A 1 WILL BE RETURNED IF NO CONTROLLER IS
CONNECTED. %

7002 REM ## A SPACE WILL BE RETURNED IF THE CONTROLLER IS
CONNECTED BUT NO KEY HAS BEEN PRESSED. 33t

7003 PORT=PORTA: IF CNT>2 THEN PORT=PORTB

7003 P=1

7008 PAO=CNT+CNT-2

7010 FOR J=0 TO 3

7020 POKE PORT, ROW(J)

7030 FOR I=1 TO 10:NEXT I

7050 IF PADDLE(PAO+1)210 THEN P=J+J+J+2: GOTO 70%0

7060 IF PADDLE(PAD)>10 THEN P=J+J+J+3:60OTO 7090

7070 IF STRIG(CNT-1)=0 THEN P=J+J+J+4:GOTOD 7090

7080 NEXT J

7090 BUTTONS=I$(P,P)

7095 RETURN

Figure 11-4 Reading Data From an ATARI Keyboard Controller

OPERATING SYSTEM C016555 -- Section 11

175

The table below shows the variable/register values used for reading a
keyboard controller from each of the four controller ports.

Port 1 Port 2 Port 3 Port 4
B e I s s A arts S e e e e e e st S L 3
! PORT A& H H ! H
fdirection! OF { FO H - ! - {
tbits H H { ! H
B Al S B e S R
t PORT B | H { H H
idirection! - i - i OF i FO H
thits H H H H H
s s S e e S B e T e S R e s o
i Port A | FE.FD, ! EF,DF | ! {
{ row sel | FB,F7 | BF.7F § -~ P - H
i ect H H H H {
s s T S T S L T s B e e S e st &
{ Pore B | H { FE.FD,{ EF.DF. |
{ row se~ | - ! - { FB,F7 | BF,7F |
i lect H H H H H
e et 2 e e R o ot T Ll SR A S T
i Column 1{PADDL1 {PADDL3 !PADDLS {PADDL7 !
{ Sense H H H H H
s e ks St ot o S P e S e S s e T
{ Column 2!{PADDLO (PADDL2 {(PADDL4 {PADDLS& i
{ Sense H H H H H
D s 2 S e e s T e T e e e S sk &
{ Column 3ISTRIGO ISTRIGL (STRIG2 (STRIG3 |
! Sense H H H H H
s st S e e e s St s ot NEE S S e s e e et TF S

Figure 11-5 ATARI Keyboard Controller Variable/Register Value
Table

Front Panel Connectors as I/0 Ports

The three pages that follow show how some of the pins in the front
panel (game controller) connectors can be used as general I/0 pins.

Hardware Information

PIA (6520 7/ 6820}
Dut: TTL levels, 1 load
In : TTL. levels, 1 load For more information refer
to 6520 chip manval.

P Y

OPERATING SYSTEM CO16555 ~- Section 11

Port A Circuit (typical):

1 S
A 250 | e & O e o
&520 ’M’_L |IJack e & o o
port ;gOOI & e
Male connector, FRONT view
_________ Pin 8 = Ground
Pin 7 = Vcc B8+5v #*)
Port B Circuit (:gpxcal): Note: SOmA maximum
total external drain
(B} 4. 7K n power supply all d
6520 4A42_ {lsack on pow PRy owe
Port 220 q;OOl
"Trigger" Port Circuit (typical):
220
CTIA Trig WA || vack

$001

s e oo cartn sas oo o e ate S v

Software Information

6520 PIA:

Port A control (address D302)

7 & 5 4 3 2 1 0

(This also pertains to all of the following:

3)

c|of1}jt]j1]X]|]0]|0

Write this into this register

t————-Port A DatasData direction addres
ing control
O = Data Direction is at D300
i = data is at D300

o S o ——— oo Samos 20000 20000 sases e Sam

Port A data divrection (address D300)

7 & 5 4 3 2 1 O

X XXX X]|X|[X|X

A T A T f A A

Data direction control

for Port A
1 = QOut
0 = In

OPERATING SYSTEM CD14555 —— Section 11

Write this into this register.

177

Port A data (address D300}
7 & 5 4 3 2 1 0

r I l ‘ L I l I J Read or Write this register

4 3 2 1 4 3 2 1
;_\/_'—/ R
Jack 2 Jack 1
Pin Numbers

Port B Control {(address D303)

cjojt |11]|X|0O]|O

&520 PIA:
Port B Control (address D303}
7 & 5 4 3 2 1 0O

o|jCc|1|1]1] X} O]O write this into this register

1L—————Port B Data/Data direction
addressing control

¢ = D301 contains data
direction
i = $D301 contains
Port B data direction (address D301}
7 & 5 4 3 2 1
X IX| XXX X| X write this into this register
* f * * f * * data direction control for Port B
1 = Dut
0 = In

mene totes e o 2% e ot S

Port B data (address D301)

7 6 5 4 3 2 1 0
I N N O O

4 3 2 1+ 4 3 2 1
/L _/

~r"

Jack 4 J ack 3
Pin Numbers

aane dostn oot eains asats sopee couim seims menn

Four “Trigger" ports: D010, DOi1, DO12, DOI3

7 6 5 4 3 2 1 0

olojololo|o|o| x| Read this port

t——Trigger Value
D010 = Port 1 Pin &
D013 = Port 4 pin &

178 OPERATING SYSTEM C016555 —— Section 11

Other Mi
11},

23.

Data Base

STICKO

STICK1
STICKZ2
STICK3

STRIGO

STRIGH
STRIG2
STRIGS3

PADDL1

PADDL3
PADDLS
PADDL7
PADDLO
PADDL2
PADDL 4

PADDL 6

Figure

Pins O a
a nomina
and a no

scellaneous Software Information

The OS5 sets up all PIA ports as inputs during
initialization.

The 0S vusually reads the above once per television frame
(during

vertical-blank) into RAM as follows:

Name Address Data Pins S

0278 7 & 5 4 3 2 1 0 Jack 1, pins 4,3,2,

i 10053, 7
ojofojo|X| X| X| X
0729 Jack 2. Pins 4,3,2,1
0274 Jack 3, Pins 4,3, 2,1
0278 Jack 4, Pins 4,3, 2.1
0oz284 Jack 1, Pin &
7 6 5 4 3 2 1 _©
0285 I;QJ Ol O| 0| OI OI Olgg]dack 2, Pin &
0286 Jack 3, Pin &
0287 Jack 4, Pin 6

0270 7 &6 5 4 3 2 1 ©

X X| X[X| X] X| X[X Jack 1, Pin 5
0272 Jack 2, Pin 5
0274 Jack 3, Pin 5
0274 Jack 4, Pin S
0271 Jack 1, Pin @
0273 Jack 2, Pin 9
0275 Jack 3, Pin 9
0277 Jack 4, Pin 9

1i-6 Using Front Panel Connectors As I/0 Ports: Pin
Function Tables

nd ? are read through the paddle controller circuitry
1 value of 7 indicates that the pin is high (or floating!}
minal value of 228 indicates that the pin is pulled low.

OPERATING SYSTEM C016535 —-- Section i1
179

Appendix A —- CIO COMMAND BYTE VALUES

The following hex values are knoun to be legitimate CID commands.
Most handlers:

03 -- OPEN

05 —— GET RECORD

07 —- GET CHARACTERS
09 -— PUT RECORD

OB -- PUT CHARACTERS
0C -- CLOSE

oD —-- GET STATUS

Display Handler only:

i1 -- FILL
12 -— DRAW

Diskette File Manager only:

20 —— RENAME
21 —- DELETE
22 —- FORMAT
23 —— LOCK

24 —— UNLOCK
25 —- POINT
26 —— NOTE

OPERATING SYSTEM CO16555 —— Appendix A
180

Appendix B —-- CIO STATUS BYTE VALUES

Shown below are the known CIO STATUS BYTE values.
01 (001) —~- OPERATION COMPLETE (NO ERRORS)

80 (128) -- [BREAK] KEY ABORT

81 (129) -- IOCB ALREADY IN USE (OPEN)
82 (130} —— NON-EXISTENT DEVICE

83 (131) ~- OPENED FOR WRITE ONLY

84 (132) -— INVALID COMMAND

85 (133) -- DEVICE OR FILE NOT OPEN

86 (134) —— INVALID IOCB NUMBER (Y reg only)

87 (135) ~- OPENED FOR READ ONLY

88 (136) ——- END OF FILE

89 (137) —- TRUNCATED RECORD

BA (138) -- DEVICE TIMEOUT (DOESN’T RESPOND)

8B (139) -- DEVICE NAK

8C (140) -- SERIAL BUS INPUT FRAMING ERROR

8D (141) -- CURSOR out-of-range

8E (142) -- SERIAL BUS DATA FRAME OVERRUN ERROR
8F (143) -- SERIAL BUS DATA FRAME CHECKSUM ERROR
?0 (144) —— DEVICE DONE ERROR

?1 (145) —-- BAD SCREEN MODE

?2 (1446) —- FUNCTION NOT SUPPORTED BY HANDLER
93 (147) —— INSUFFICIENT MEMORY FOR SCREEN MODE
AO (140) —-- DISK DRIVE # ERROR

Al (1461) —— TOO MANY OPEN DISK FILES

A2 (162) -- DISK FULL

A3 (1463) —— FATAL DISK I/0 ERROR

A4 (164) —- INTERNAL FILE # MISMATCH

AS (1465) —-- FILE NAME ERROR

Ab (16463 —— POINT DATA LENGTH ERROR
A7 (167) —-- FILE LOCKED

AB (1468) —— COMMAND INVALID FOR DISK
A% (149 ——~ DIRECTORY FULL (44 FILES)
AA (170) —- FILE NOT FOUND

AB (171} —— POINT INVALID

OPERATING SYSTEM CO16555 —-- Appendix B

181

Appendix C —-- SIO STATUS BYTE VALUES

Shown below
01 (001) ——

8A (138) --
8B (13%9) --
8C (140) --
8 (142) ~-
8F (143) --
?0 (144) --

182

are the known SID STATUS BYTE hexadecimal values.
DPERATION COMPLETE (ND ERRORS?

DEVICE TIMEOUT (DOESN'T RESPOND}
DEVICE NaK

SERIAL BUS INPUT FRAMING ERROR
SERIAL BUS DATA FRAME OVERRUN ERROR
SERIAL BUS DATA FRAME CHECKSUM ERROR
DEVICE DONE ERROR

OPERATING SYSTEM C0146555 -- Appendix C

Appendix D —- ATASCII CODES

@x

Backsp | TEB

N\

¢ N | A N M 9 10D W S~ 00 O

CesdStNGLEIARON |D0000NER050 0000

29
g1
g2
23
g4
g5
g6
g7
g8
99
ga
gB
gc
gD
gE
gF
19
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

183

OPERATING SYSTEM C0O16555 —— Appendix D

Appendix E —- DISPLAY CODES (ATASCII)

EX

CX

4X 6X 8X AX

2X

179

0!
ISH

= 8
O N
oo
SVJ
[EIRNE Y
ST OIS
(A
(S8 92}
S
A
nHO
i) @]
S
O&=O

Docoaovosow odAns- 88O PQrstuvwaznlmﬂﬂ

€ MO A M B OEHbMAS Z0 e omanen>zxs gy,

L I S T TR T T B V- T o< B~ T 7<=>?

OSsOSNGLEYIBRI N |OL0C00an®amG00

19
11
18
19
1A
1B
1C
1D
1E
1F

99
g1
g2
23
g4
25
g6
a7
28
29
2A
gB
ac
@D
@JE
gF
12
13
14
15
16
17

OPERATING SYSTEM CO14555 ~— Appendix E

184

Appendix F —— KEYBOARD CODES (ATASCII)

CTRL SHIFT &% SHIFT L
LOWER

00 ' 20 20 <spacel> 21 40 @ 395 &0 ~
01 A 3F 21 ¢ iF 41 A J3F 61
02 B i5 22 v iE 42 B 195 62
03 C i2 23 # iA 43 ¢ 12 63
04 D 3A 24 4 i8 44 D 3A 64
05 £ 2A 25 % ib 45 E 2A &5
(873 F a8 26 % iB 46 F 38 Y-
07 G 3D 27 ! 33 47 G 3D &7
08 H 39 28 (30 48 H 39 68
09 I oD 29) 32 49 I OD 69
OA J 01 2A # 07 4A J O1 6A
OB K 05 2B + (o7 4B K 05 6B
ocC L 00 2C 20 4C L 00 6C
oD M 29 2D - OE 4D M 25 é&D
0OE N 23 2E . 22 4E N 23 6E
OF 0 08 2F 7/ 26 4+ 0O 08 &F
10 P QA 30 o 32 SO P 0OA 70
i1 Q 2F 31 1 iF 51 @ 2F 71
i2 R 28 32 2 iE 52 R 28 72
i3 S 3E 33 3 iA 53 8 JE 73
14 T 2D 34 4 i8 54 T 2D 74
i5 U OB 35 5 ib 85 U OB 79
ié6 v 10 36 6 iB 56 Vv 10 76
17 W 2E 37 7 33 S7 W 2E 77
i8 X 16 38 8 35 98 X 16 78
19 Y 2B 32 < 30 52 Y 2B 79
1A Z i7 3a o2 S5a 7 17 74
1B <escl iC 38 oD SB [20 7B
iC ~Lup> OE 3 < 36 S5C N\ 06 7C
iD “~<{downl OF 3D = OF S 1 22 7D
1E ~{left> 06 3 > 37 SE ~ 07 7E
iF ~<right>07 3F 2 26 SF _ OE 7F
80-9A /1IN 00—1A 9F s<tab 2C
2B <Lreturn> and 3 0OC, 1A AO-FC /1IN 20-7C
PC s<dell 34 FD =2 iE
2D s<dinsert>37 FE ~Cdel> 34
QE ~Ltabl 2C FF ~Cinsert>»37
<clear> ::= s< or ™
<returnl ::= Lreturnl or sdreturn> or “{returnd>
Lesc> = {escl> or sfescd> or “TLescr
{space> = <space’ or sispace’> or “space>

Where: s as a prefix indicates L[SHIFTI.
~ as a prefix indicates [CTRLI.

OWER

NE X ECCctN 10T 0O0 T X TG Hpanop

H
{clear>
<hack>

<tab>

/i\ as a prefix indicates ATARI key inverse active.

OPERATING SYSTEM C016555 —— Appendix F

22
3F
15
12
3A
2A
a8
3D
39
oD
01
05
00
25
23
o8
0A
2F
28
3E
2D
OB
10
2E
16
2B
17
o2
OF
36
34
2C

185

Appendix G —— PRINTER CODES (ATASCII)

Character set for "normal® mode printing:

20 <space> 40 @ &0 ¢
21 ! 41 A &1 a
22 " 42 B 62 b
23 # 43 C 63 ¢
24 % 44 D 64 d
25 %4 45 E 63 e
26 % 46 F &6 £
27 47 @ 67 g
28 (48 H 68 h
29) 49 I 69 i
24 # 44 J &A
2B + 4B K 6B &k
2C 4C L 6C 1
2D - 4D M &D m
2E . 4E N 6E n
2F / 4F O &F o
30 o© 50 P 70 p
31 1 51 @ 71 q
32 2 52 R 72 T
3 3 53 § 73 s
34 4 54 T 74 ¢
35 S 85 U 75 u
36 & S6 V 76 v
37 7 57 W 77 w
38 8 58 X 78 «x
32 9 59 Y 7?9 y
3A 5A Z 74 2
3B i 98 7B £
3C < S5C A\ 7C i
3D = SD 1 7D}
3E > SE -~ 7~
3F 2 SF _ 7F <spacel

Mote: The following codes print differently than defined by
the ATASCII definition.

00 through 1iF print blank.

&0 prints ' instead of “"diamond".
7B prints { instead of "spade®.

7D prints } instead of “clear'. .
7E prints ~ instead of “"backspace®.
7F prints blank instead of “tab".

OPERATING SYSTEM CO16555 ~- Appendix G
186

Character set for “sideways" mode printing:

30
31
32
33
34
a5
3&
37
a8
39
3A
3B
3c
3D
3E
3F

NONOCUWPWBN~-O

NV A

Note:

40
41
42
43
44
45
46
47
48
49
aA
4B
ac
4D
4E
aF
50
51
52
53
54
55
S6
57
58
59
SA
SB
5C
SD

60
&1
&2
&3
64
&5
&6
&7
&8
&9
&A
&B
&C
&b
&E
&F
70
71
72
73
74
75
76
77
78
79
74
7B
7C
7D

HAARNSXECCHNAIRIVIOZINRXOC-IOTIMOOTD>R
AN XECCAHNAIRVOZINrRC-TOTNMMNDOED D

SE <up> 7E <up>
SF {lett> 7F Jleft>

the following codes print differently than defined by

the ATASCII definition.

00 through 2F print blank.
SE prints "up arrow" instead of
SF prints "“left arrow" instead of _

60 through 7F repeats 40 through SF instead of praper set.

OPERATING SYSTEM CO16555 —— Appendix G

187

Appendix H —— SCREEN MODE CHARACTERISTICS

Mode

i0

188

Horiz.
Posit.

40

20

40

80

80

160

160

320

80

80

Vert.
W70 Sp

24

24

i2

24

48

48

2?6

6

192

192

192

Vert.

W Sp

20

10

20

40

40

80

80

1460

Colors Data
Value
2 backgd.
00—~-FF
S backgd.
00-3F
40~-7F
80~-BF
CO-FF
S backgd.
00-3F
40~-7F
80-~-BF
CO~FF
4 0
i
-2
3
2 0
i
4 0
i
2
3
2 (o}
i
4 (o]
1
2
3
2 o)
i
i Note 2
Q@ (o]
1
2
3
4

Color
Reg.

BAK
PF 2
PF i

BAK
PF O
PF 1
PF 2
PF 3

BAK
PF 0O
PF 1
PF 2
PF 3

BAK
PF O
PF 1
PF 2

BAK
PF 0O

BAK
PF O
PF 1
PF 2

BAK
PF O

BAK
PF
PF
PF

PF
PF

=~ RN=O

PM
PM
PM
PM
PF

SO

Memory

Reqd.

(split) (full)

992

&74

424

434

694

1174

2174

4190

8112

OPERATING SYSTEM C016555 —- Appendix H

92

672

420

432

696

1176

2184

4200

8138

8138

8138

PF 1
PF 2
PF 3
BAK
BAK
BAK
BAK
PF O
PF 1
PF 2
PF 3

TMoODOE>POVONCOW

11 80 192 - 16 Note 3 8138

Notes:

* Uses color of PF 2, lum of PF 1.
2 Uses color of BAK, lum of data value ($0-F).
3 Uses color of data value ($0-F), lum of BAK.

PF x = Playfield color register x.
PM x = Player/Missile Graphics color register «x.
BAK ::= Background color register (also known as PF 4).

The default values for the color registers are shown below:

BAK = $00
PFO = $28
PF1 = $CA
PF2 = %94
PF3 = %46

OPERATING SYSTEM CO146555 —- Appendix H
189

The form of a color register byte is shown below:

76543210

e o e e e oo e as ovvsn o e e oo e o

P L Il Ll Tt "L SR Sy

Where: color (hex values) lu

3

minimum luminance

[}
4

(increasing

luminance:?

[]
L4

maximum luminance

gray

light orange
orange

red orange
pink

purple
purple—blue
blue

blue

light blue
turquoise
green-blue
green
yellow—green
orange—green
light orange

NOCUARWN~O
wwunnunn

Houwow oW non R

MMOUOEP>PLDBNCPRNLUON=O

OPERATING SYSTEM CD146555 ~—- Appendix H
190

Appendix I —-- SERIAL BUS ID AND COMMAND SUMMARY

Serial bus device IDs

Floppy diskettes D1-D4 $31-34

Printer
Rg-232-C

Pi $40
Ri-R4 $50-53

Serial bus control codes

ACK
Nak
COMPLETE
ERR

%41 (’A%)
$4E ('N")
$43 (‘C*)
45 ('E")

Serial bus command codes

READ - %52 (‘R Disk

WRITE - 857 (‘'W") Printer/Disk
STATUS - %53 (’S7") Printer/Disk
PUT(no check) - 450 ('P’) Disk

FORMAT - $21 (1) Disk

READ ADDRESS - 454 (‘'T")

READ SPIN - $51 ('Q’) Disk

MOTOR ON - %55 (‘U") Disk

VERIFY SECTOR - 56 (V') Disk

OPERATING SYSTEM CD16555 —- Appendix I

191

Appendix J —— ROM VECTORS

The fixed address 05 ROM UMP vectors are shown below; at each
address is a JMP instruction to the indicated routine.

Diskette Handler initialization
Diskette Handler entry.

CIO utility entry.

SIO utility entry.

Set System Timers routine.

Stage 1 VBLANK entry.

Exit VBLANK entry.

S8I0 vutility initialization.

Send enable routine.

Interrupt Handler initialization.
CIO utility initialization.
Blackboard mode entry.

Warmstart (LSYSTEM. RESET]I) entry.
Coldstart (power-up) entry.
Cassette-read block entry.

Name Addr Reference Function
DISKIV E450 *
DSKINV E453 5.4.2
cIiov E456 5.2
SIOV E459 ?.3
SETVBYV E45C 6£.7.2
SYSVBV E4SF &3
XITVBV E462 6.3
SIOINV E465 #
SENDEV E468 *
INTINV E44B *
CIOINV E46E #*
BLKBDV E471 3.1.1
WARMSY E474 7.
coLDpsv E477 7.
RBLORKV E474A *
CSOPIV E47D *

These vectors are for 0S8

The fixed address Floating
addresses are shown below;
corresponding rouvtines are

Cassette—0OPEN input entry.
internal use only.
Point Package ROM routine entry point

complete descriptions of the
provided in Section 8.

AFP jeizlele) ASCII to FP convert.

FASC DBES FP to ASCII convert.

IFP D?AA Integer to FP convert.
FPI D?D2 FP to integer convert.
FADD DA&A FP add.

FSUB DA&O FP subtract.

FMUL DADB FP multiply

FDIV DB28 FP divide.

LOG DECD FP base e logarithm.
LOG10O DED1 FP base 10 logarithm.

EXP DDCO FP base e exponentiation.
EXP10 DDCC FP base 10 exponentiation.
PLYEVL DDAO FP polynomial evaluation.
ZFRO DA44 Clear FRO.

ZF1 DA4s6 Clear FP number.

FLDOR DDBe Load FP number.

FLDOP pp8h Load FP number.

FLDIR pbog Load FP number.

FLDiP pbeC t.oad FP number.

FSTOR DDA7 Store FP number.

FSTOP DDAB Store FP number.

FMOVE DDBé& Move FP number.

192

OPERATING SYSTEM CO16555 —— Appendix J

The base addresses of the Handler vectors for the resident
handlers are shown below:

Screen Editor (E) E400
Display Handler (S) E410
Keyboard Handler (K) E420
Printer Handler (P) E430
Cassette Handler (C) E440

See Section 5 for the format of the entry for each Handler.

The 6502 Computer interrupt vector values are shown below:

Function Address Value

NMI FFFA E7B4
RESET FFAC E477
IRG FFFE E&FE

OPERATING SYSTEM C016555 —— Appendix J

193

Appendix K — DEVICE CHARACTERISTICS

This appendix describes the physical characteristics of the
devices that interface to the ATARI 400 and ATARI 800 Home
Computers. Where applicable, data capacity, data transfer
rate, storage format, SIO interface, and cabling will be
detailed.

KEYBOARD

The keyboard input rate is limited by the 0OS keyboard reading
procedure to be 60 characters per second. The code for each key

is shown in Table 5-4. The keyboard hardware has no buffering and is
rate~limited by the debounce algorithm used.

DISPLAY

The television screen display generator has many capabilities
that are not used by the Display Handler (as described in Section
5 and shown in Appendix H). There are additional display modes.
ob ject generators, hardware display scrolling, and many other
features that are described in the ATARI Home Computer

Hardware Manuval.

Since all display data is stored in RAM, the display data update
rate is limited primarily by the software routines that generate
and format the data and access the RAM. The generation of the
display from the RAM is accomplished by the ANTIC and CTIA or GTIA
chips using Direct Memory Access (DMA) to access the RAM data.

The internal storage formats for display data for the various

modes are detailed in the ATARI Home Computer Hardware
Manual.

ATARI 410 PROGRAM RECORDER
The ATARI 410 Program Recorder has the following characteristics:
DATA CAPACITY:
100 characters per C-460 tape (unformatted).
DATA TRANSFER RATES:
600 Baud (60 characters per second)
#Note: The 0S5 has the ability to adjust to different tape speeds
(447 - 895 Baud).

OPERATING SYSTEM C016555 —— Appendix K
194

STORAGE FORMAT:

Tapes are recorded in 1/4 track stereo format at 1 7/8 inches per
second. The tape can be recorded in both directions, where tracks
1 and 2 are side A left and right; and tracks 3 and 4 are side B
right and left (industry standard). On each side, the left
channel (1 or 4) is used for audio and the right channel (2 and
3) is used for digital information.

The audio channel is recorded the normal way. The digital channel
is recorded using the POKEY two-tone mode producing FSK data at
up to 600 baud. The MARK frequency is 5327 Hz and the SPACE
frequency is 3995 Hz. The transmission of data is asynchronous
byte serial as seen from the computer; POKEY reads or writes a
bit serial FSK sequence for each byte, in the following order:

1 start bit (SPACE)

data bit O -+

data bit 1 H

. +- 0 = SPACE, 1 = MARK.
data bit &6 |
data bit 7 -+

1 stop bit (MARK)

The only control the computer has over tape motion is motor
start/stop; and this only if the PLAY button is pressed by the

yser. In order for recording to take place, the user must press

both the REC and PLAY buttons on the cassette. The computer has

no way to sense the position of these buttons, nor even if an

ATARI 410 Program Recorder is cabled to the computer, so the user must
be careful when using this device.

SI0 INTERFACE

The cassette device utilizes portions of the serial bus hardware,
but does not follow any of the protocol as defined in Section 9.

ATARI 820LTM] 40-COLUMN IMPACT PRINTER

The ATARI 820 Printer has the following characteristics:

DATA CAPACITY:

40 characters per line (normal printing}
2% characters per line (sideways printing)

DATA TRANSFER RATES:

OPERATING SYSTEM C016555 —— Appendix K
195

Bus rate: xx characters per second.
Print time (burst): xx characters per second.
Print time (average): xx characters per second.

STORAGE FORMAT:

3 7/8 inch wide paper.
5X7 dot matrix, impact printing.

Normal format —-
40 characters per line.
6 lines per inch (vertical).
12 characters per inch (horizontal).

Sideways format ——
29 characters per line.
& lines per inch (vertical).
? characters per inch (horizontal).

SI0 INTERFACE
The controller serial bus ID is %$40.

The controller supports the following SI0 commands (see Section 5
for more information regarding the Handler and Section ? for a
general discussion of bus commands):

GET STATUS
The computer sends a command frame of the format shown below:

Device ID = $40,

Command byte = %53.

auvxiliary 1 doesn’t matter.

auvxiliary 2 doesn’t matter.

Checksum = checksum of bytes above.

The printer controller responds with a data frame of the format
shown earlier in this appendix as part of the GET STATUS
discussion.

PRINT LINE

The computer sends a command frame of the format shown below:

Device ID = $40,
Command byte = %$57.

OPERATING SYSTEM C0O16555 -- Appendix K
196

auvxiliary 1 = doesn’t matter.
avxiliary 2 = $4E for normal print or $53 for sideways.
Checksum = cthecksum of bytes above.

The computer sends a data frame of the format shown below:

Leftmost character of line (column 1).
Next character of line (column 2).

Rightmost character of line (column 40 or 29).
Checksum byte.

NMote that the data frame size is variable, either 41 or 30 bytes
in length, depending upon the print mode specified in the command
frame.

ATARI 810 DISK DRIVE

The ATARI 810LTM] Disk Drive has the following characteristics:

DATA CAPACITY:

720 sectors of 128 bytes each (Disk Handler format).
709 sectors of 125 data bytes each (Disk File Manager format).

DATA TRANSFER RATES:

Bus rate: 1920 characters per second.
Seek time: 5.25 msec. per track + 10 to 210 msec.
Rotational latency: 104 msec maximum (288 rpm).

STORAGE FORMAT:

5 1/4 inch diskette, soft sectored by the controller.

40 tracks per diskette.

18 sectors per track.

128 bytes per sector.

Controlled by National INS1771i-1 formatter/controller chip.

Sector sequence per track is: 18, &, 3 5 7. 9 11, 13, 15,
: 17, 2. 4, & 8, 10, 12, 14, 16

SI0 INTERFACE
The controller serial bus IDs range from %31 (for ‘D1‘) to %34
(for ‘D4’). ‘

OPERATING SYSTEM C0O16555 —— Appendix K
197

The controller supports the following SI0 commands (see earlier
in this Appendix for information about the Diskette Handler and
Section ? for a general discussion of bus commands):

GET STATUS

>

The computer sends a command frame of the format shown below:

Device ID = $31-34.

Command byte = $353.

auxiliary 1 = doesn’t matter.

avxiliary 2 = doesn’t matter.

Checksum = checksum of bytes above.

The diskette controller responds with a data frame of the format
shown earlier in this Appendix as part of the STATUS REGQUEST
discussion,

PUT SECTOR (WITH VERIFY)
The computer sends a command frame of the format shown below:

Device ID = $31-34

Command byte = #$57.

auxiliary 1 = low byte of sector number.
auxiliary 2 = high byte of sector number (1-720}.
Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The diskette controller writes the frame data to the specified
sector, then reads the sector and compares the content with the
frame data. The COMPLETE byte value indicates the status of the
operation. .

PUT SECTOR (NO VERIFY)
The computer sends a command frame of the format shown below:

Device ID = $31-34

Command byte = $50.

auvxiliary 1 = low byte of sector number.
auxiliary 2 = high byte of sector number (1-720}.
Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

OPERATING SYSTEM C016555 —— Appendix K
198

128 data bytes.
Checksum byte.

The diskette controller writes the frame data to the specified
sector, then sends a COMPLETE byte value that indicates the
status of the operation.

GET SECTOR

The computer sends a command frame of the format shown below:

Device ID = $31-34

Command byte = $52.

auvxiliary 1 = low byte of sector number.
auxiliary 2 = high byte of sector number (1~720).
Checksum = checksum of bytes above.

The diskette controller sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

FORMAT DISKETTE

The computer sends a command frame of the format shown below:

Device ID = $31-34

Command byte = $21.

auxiliary 1 = doesn’t matter.

auvxiliary 2 = doesn’t matter.

Checksum = checksum of bytes above.

The diskette controller completely formats the diskette (generates 40
tracks of 18 soft sectors per track with the data portion of each
sector equal to all zeros) and then reads each sector to verify

its integrity. A data frame of 128 bytes plus checksum is

returned in that the sector numbers of all bad sectors (up to a
maximum of 63 sectors) are contained, followed by two consecutive
bytes of $FF. If there are no bad sectors on the diskette the first

2 bytes of the data

OPERATING SYSTEM C016555 —- Appendix K
199

Appendix L -—- 0S5 DATA BASE VARIABLE FUNCTIONAL DESCRIPTIONS

CENTRAL DATA BASE DESCRIPTION

This appendix provides detailed information for those variables
in the 0S5 data base that can be altered by the user. Remaining
variables are provided narrative descriptions. Information on the
variables is presented in a multiple access scheme: Lookup
tables are referenced to a common set of narratives, that is
itself ordered by function.

Variable descriptions are referenced by a label called a variable
identifier (VID) number. The label comprises a single letter
followed by a number. A different letter is assigned for each
major functional area being described, and the numbers are
assigned sequentially within each functional area. Those

variables that are not considered to be of interest to any user
are flagged with an asterisk (%) after their names. The data base
lookup tables provided are:

1. Functional grouping —— index to the function narrative and
descriptions of variables, giving VID and variable name.

2. Alphabetic list of names —- giving VID of description.
3. Address ordered list —— giving VID of description.

Item 1, the functional grouping index, starts on the next page;
the other two lookup tables are at the end of Appendix L.

OPERATING SYSTEM CO16555 -— Appendix K
200

FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS

A. Memory configuration
At MEMLO
A2 MEMTOP
A3 APPMHI
A4 RAMTOP
AS RAMSIZ

B. Text/graphics screen

Cursor control
Bl CRSINH
B2 ROWCRS, COLCRS
B3 OLDROW, OLDCOL
B4 TXTROW, TXTCOL

Screen margins
BS LMARGN
Bé& RMARGN

Color control
B7 PCOLRO - PCOLR3
B8 COLORO - COLORS4

Text scrolling
B? SCRFLGH#

Attract mode
Bi0O ATRACT
Bil COLRSHx*
B12 DRKMSK#

Tabbing
B1i3 TABMAP

Logical text lines
Bi4 LOGMAP#
BiS LOGCOL

Split screen

OPERATING SYSTEM CO016555 —— Appendix L

Bl16 BOTSCR#

FILL/DRAW function
B17 FILDAT
Bi8 FILFLG*
B19 NEW SROW#, NEWCOL #
B20 HOLD4%

B21 ROWINC#, COLINCst
B22 DELTARs#, DELTAC*
B23 COUNTR#

B24 ROWACH*, COLACH
B25 ENDPT#*

Displaying control characters

Escape (display following control char)
B2&6 ESCFLG*

Display control characters mode
B27 DSPFLG

Bit mapped graphics
B28 DMASK%
B29 SHFAMT#*

OPERATING SYSTEM CD16555 -— Appendix L
202

Internal working variables

B30
B31
B32
B33
B34
B35
B36
B37
B38
B3?
B40O
B41
B42
B43
B44
B4S
B4é&
B47
B48
B49
BSO
BS1
BS2
B53

HOLD1%#
HOL D23
HOLD3#
TMPCHR#
DSTAT
DINDEX
SAVMSC
OLDCHR#
OLDADR#
ADRESSH

MLTTMP /OPNTMP / TOADR#
SAVADR /FRMADR#

BUFCNT
BUFSTR#*
SWPFL.G*
INSDAT

TMPROW:*, TMPCOL. #

TMPLBT*
SUBTMP#
TINDEX3#
BITMSK
LINBUF#
TXTMSC

TXTOLD*

OPERATING SYSTEM C0O146555 —— Appendix L

203

Internal character code conversion
B54 ATACHR
BSS CHAR#*

C. Disk Handler
Ci BUFADR#*
C2 DSKTIM#

D. Cassette (part in SIO part in Handler)

Baud rate determination
D1 CBAUDL %, CBAUDH#*
D2 TIMFLG#*

D3 TIMER1*, TIMERZ2*
D4 ADDCORs#
DS TEMPi#
D& TEMP3#
D7 SAVIO#

Cassette mode
D8 CASFLG#

Cassette buffer
D9 CASBUF 3
D10 BLIM*

Di1 BPTR=%

Internal working variables
D12 FEOF#
D13 FTYPE#
D14 WMODE#
D15 FREQ#

E. Keyboard

Key reading and debouncing
E1 CHi#*
E2 KEYDEL#*
E3 CH

OPERATING SYSTEM CO16555 —— Appendix L
204

Special functions

Start/stop
E4 SSFLAG

{BREAK]
ES BRKKEY

ESHIFTI/LCONTROL] lock
E6 SHFLOK
E7 HOLDCHs

Autorepeat
EB SRTIMR#

Inverse video
E? INVFLG

Console switches (LSELECTI, [STARTI.and L[OPTIONI)}

Printer
printer-buffer

F1 PRNBUF3*
F2 PBUFSZ
F3 PBPNT*

Internal working variables
F4 PTEMP#*
FS PTIMOT*

Central 1/0 routine (CIDO)
User call parameters

G1 IOCB
G2 ICHID
G3 ICDNO
G4 ICCOM
G5 ICSTA
G4 ICBAL., ICBAH
67 ICPTL, ICPTH
G8 ICBLL, ICBLH
6% ICAX1. ICAX2
G610 ICSPR

Device status
G11 DVSTAT

device table
Gi2 HATABS

OPERATING SYSTEM C016555 —— Appendix L
205

CI0/Handler interface Parameters

613 ZIOCB (IOCBAS)

G14 ICHIDZ

€15 ICDNOZ

Gl16 ICCOMZ

G17 ICSTAZ

618 ICBALZ, ICBALH

619 ICPTLZ, ICPTHZ

620 ICBLLZ, ICBLHZ

G21 ICAX1Z, ICAX2Z

622 ICSPRZ (ICIDNO, CIOCHR)

Internal working variables
G23 ICCOMT#*
G24 ICIDNO#
G25 CIOCHR#*

H. Serial I/0 routine (SIO)

User call parameters

H1 DCB control block

H2 DDEVIC

H3 DUNIT

+H4 DCOMND

HS DSTATS

Hé6 DBUFLO, DBUFHI
H7 DTIMLO

HB8 DBYTLO, DBYTHI
H? DAUX1, DAUX2

Bus sound control
H10 SOUNDR

Serial bus control

Retry logic
Hil CRETRY#*
H12 DRETRY#

Checksum
H13 CHKSUM#*
H14 CHKSNT*
H1S NOCKSM*

OPERATING SYSTEM C016555 —— Appendix L
206

Data buffering
General buffer control

H16 BUFRLO#*, BUFRHI#*
H17 BFENLOs, BFENHI*

Command frame output buffer
H18 CDEVICH
H19 CCOMND#
H20 CAUX1#, CAUX2:

Receive/transmit data buffering
H21 BUFRFL#
H22 RECVDNs%
H23 TEMPs#
H24 XMTDON=*

SI0 timeout
H2S TIMFLG#
H26 CDTMVL®
H27 CDTMA1#*

Internal working variables
H28 STACKP#
H29 TSTAT#
H30 ERRFLG*
H31 STATUSH
H32 SSKCTL

ATARI controllers

Joysticks
J1 STICKO - STICK3
J2 STRIGO - STRIG3
Paddles

J3 PADDLO - PADDL7
J4 PTRIGO - PTRIG7

Paddle controllers
JB STICKO — STICK3
J? STRIGO - STRIGS

K. Disk file manager
K1 FMSZPG#*
K2 ZBUFP#
K3 ZDRVA#*
K4 ZSBaAx
KS ERRNO#

OPERATING SYSTEM C0O16555 —— Appendix L
207

L. Disk utilities (DOS)
L1 DSKUTL=#*

M. Floating point package
M1 FRO
M2 FRE#
M3 FR1
M4 FR2x
M5 FRX#
M& EEXPi#
M7 NSIGNs+
M8 ESIGN:
M? FCHRFLG#*
M1O DIGRT#*
Mil CIX
M1i2 INBUFF
Mi3 ZTEMP1#
Mi4 ZTEMP4#
MIS ZTEMP3#*
Mi&é FLPTR
M17 FPTR2#%
M18 LBPRi
Mi? LBPR2%
M20 LBUFF
M21 PLYARG#*
M22 FPSCR/FSCRs#
M23 FPSCR1/FSCR1#
M24 DEGFLG/RADFLG#

N. Power-Up and System Reset
RAM sizing
N1 RAMLO#*, TRAMSZ*
N2 TSTDAT#

Diskette/cassette-boot

N3 DOSINI

N4 CKEY=#

NS CASSBT#

Né CASINI

N7 BOOT?#

N8 DFLAGS*

N? DBSECT#

N10 BOOTAD=#

Environmental control
Nil COLDST
N12 DOSVEC

OPERATING SYSTEM CO16555 —- Appendix L
208

[S RESET1
Ni3 WARMST

Interrupts
Pi CRITIC
P2 POKMSK

System Timers

Real-time clock
P3 RTCLOK

System Timer 1
P4 CDTMV1
PS CDTMAL

System Timer 2
P& CDTMV2
P7 CDTMA2

System Timers 3-S5
P8 CDTMV3, CDTMV4, CDTMVS
P? CDTMF3, CDTMF4, CDTMFS

RAM—interrupt vectors

NMI—-interrupt vectors
P10 VDSLST
P11 VVBLKI
P12 VVBLKD

IR@-interrupt vectors
P13 VIMIRG
P14 VPRCED
P19 VINTER
P1é& VBREAK
P17 VKEYBD
P18 VSERIN
P19 VSEROR
P20 VSEROC
P21 VTIMRL, VTIMR2, VTIMRA

Hardware register updates
P22 SDMCTL
P23 SDLSTL, SDLSTH
P24 GPRIOR
P25 CHACT
P2& CHBAS
P27 PCOLRx, COLORx

OPERATING SYSTEM CO16555 —— Appendix L
209

Internal working variable
P28 INTEMP*

R. User areas
R1 (unlabeled)
R2 USAREA

This appendix contains descriptions of many of the data base
variables; descriptions are included for all of the user-—
accessible variables and for some of the "internal" variables as
well. Those variables that are not considered to be normally of
interest to any user are flagged with an asterisk (#}) after their
names; the other variables can be of interest to one or more of
the following classes of users:

End user.

Game developer.

Applications programmer.
System vtility writer.
l.anguage processor developer.
Device Handler Writer.

00000

Each variable is specified by its system equate file name
followed by its address (in hex} and the number of bytes reserved
in the data base (in decimal), in the following form:

<name> [<address>, Csizel>]
For example:

MEMLO £0O2E7, 21

Note that most word (2 byte) variables are ordered with the least
significant byte at the lower address.

OPERATING SYSTEM CO16555 —— Appendix L
210

A. MEMORY CONFIGURATION

See Section 4 for a general discussion of memory dynamics and
section 7 for details of system initialization.

Al MEMLO [O2E7,2) —- User—free memory low address

MEMLO contains the address of the first location in the free
memory region. The value is established by the 0S5 during power—up
and system reset initialization and is never altered by the 0S
thereafter.

A2 MEMTOP CO2ES, 21 —— User—free memory high address

MEMTOP contains the address of the first non-useable memory
location above the free memory Tegion. The value is established
by the 0S during power-up and system reset initialization:; and
then is re—-established whenever the display is opened, based upon
the requirements of the selected graphics mode.

A3 APPMHI [OQOOCE, 21 —— User—free memory screen lower limit

APPMHI is a user—-controlled variable that contains the address
within the free memory region below which the Display Handler cannot
go in setting up a display screen. This variable is

initialized to zero by the 0S5 at power-up.

A4 RAMTOP* [00&A, 11 —— Display Handler top of RAM address (MSB)
RAMTOP permanently retains the RAM top address that was contained

in TRAMSZ (as described in Ni) for the Display Handler’s use. The
value is set up as part of Handler initialization.

AS RAMSIZ [02E4,1]1 —-- Top of RAM address (MSB only)

RAMSIZ permanently retains the RAM top address that was contained
in TRAMSZ (as described in N1).

OPERATING SYSTEM C014555 —— Appendix L
211

B. TEXT/GRAPHICS SCREEN

See Section § for a discussion of the text and graphics screens
and their Handlers.

Cursor Control

For the text screen and split—screen text window there is a
visible cursor on the screen which shows the position of the next
input or output operation. The cursor is represented by inversing
the video of. the character upon which it resides; but the cursor
can be made invisible, at the user’s option. The graphics screen
always has an invisible cursor.

The cursor position is sensed by examining data base variables
and can be moved by altering those same variables; in addition,
when using the Screen Editor, there are cursor movement control
codes that can be sent as data (as explained in Section 35).

Bi CRSINH [02FC, 1] —— Cursor display inhibit flag

When CRSINH is zero, all outputs to the text screen will be
followed by a visible cursor (inversed character); and when
CRSINH is nonzero, no visible cursor will be generated.

CRSINH is set to zero by power—up, the [SYSTEM. RESET] or [BREAK] keys
or an OPEN command to the Display Handler or Screen Editor.

Note that altering CRSINH does not cause the visible cursor to
change states until the next output to the screen; if an
immediate change to the cursor state is desired, without altering
the screen data, follow the CRSINH change with the output of
CURSOR UP, CURSOR DOWN, or some other innocuous sequence.

B2 ROWCRS [0054,11 and COLCRS [0055, 21 -- Current cursor
position

ROWCRE and COLCRS define the cursor location (row and column,
respectively} for the next data element to be read from or
written to the main screen segment. When in split-screen mode,
the variables TXTROW and TXTCOL define the cursor for the text
window at the bottom of the screen as explained in B4 below.

The row and column numbering start with the value zero, and
increase in increments of one to the number of rows or columns minus
1; with the upper left corner of the screen being the ovigin (0O, 0).

ROWCRS is a single-byte variable with a maximum allowable value
of 191 (screen modes 8-11); COLCRS is a 2-byte variable with a
maximum allowable value of 319 (screen‘mode 8).

OPERATING SYSTEM C016555 —- Appendix L
212

B3 OLDROW [O0SA, 11 and OLDCOL [QOSB, 2] ~- Prior cursor pasition

OLDROW and OLDCOL are updated from ROWCRS and COLCRS before every
operation. The variables are used only for the DRAW and FILL
operations.

B4 TXTROW L0290, 1] and TXTCOL [0291,2]1 -- Split-screen text cursor
position

TXTROW and TXTCOL define the cursor location (row and column,
respectively) for the next data element to be read from or
written to the split—-screen text window.

The row and column numbering start with the value zero, and
increase in increments of one to 3 and 3%, respectively; with the
upper left corner of the split—-screen text window being the origin
(0, 0). '

Screen Margins

The text screen and split—-screen text window have user—alterable
left and right margins that define the normal domain of the text
cuUrsor.

BS LMARGN [0052,1] —-- Text column left margin

LMARGN contains the column number (0-39) of the text screen left
margin; the text cursor will remain on aor to the right of the
left margin as a result of all operations, unless the cursor
column variable is directly updated by the user (see B2 and B4
above}. The default value for LMARGN is 2 and is established upon
power—~up or system reset.

B&6 RMARGN [0053,11 —— Text column right margin

RMARGN contains the column number (0-39) of the text screen right
margin; the text cursor will remain on or to the left of the
right margin as a result of all operations, unless the cursor
column variable is directly updated by the user (see B2 and B4
above}. The default value for RMARGN is 39 and is established
upon power—up or system reset.

OPERATING SYSTEM CO16555 —-— Appendix L

213

Color Control

As part of the stage 2 VBLANK process (see Section &), the values of
nine data base variables are stored in corresponding hardware

color control registers. The color registers are divided into two
groups: the player/missile colors and the playfield colors. The
playfield color registers are utilized by the different screen modes
as shown in Appendix H. The player/missile color registers are not
used by the standard 0S.

B7 PCOLRO - PCOLR3 [02C0,4] -- Player/missile graphics colors

Each color variable is stored in the corresponding hardware
register as shown below:

PCOLRO £02C01 COLPMO [DO121
PCOLR1 f02C11] cCoOLPMi [DO131
PCOLR2 [02C21] coLPM2 [DO141]
PCOLR3 {02C31 COLPM3 [DO151

Each color variable has the format shown below:

76543210

DL T S TP S T ST ST

D s sl sl e s sl sl

See Appendix H for information regarding the color and luminance
field values.

B8 COLORO - COLOR4 £02CS, 51 -- Playfield colors

Each color variable is stored in the corresponding hardware
register as shown below:

COLORO t£0O2C41 COLPFO [DO161]
COLOR1 T02C51 COLPF1 [DO171
COLOR2 [02C61] COLPF2 [DO181]
COLOR3 £02C71 COLPF3 C[DO191]

COLOR4 £02C81] COLBK [DO1A1
Each color variable has the format shown below:

76343210

See Appendix H for information regarding the color and luminance
field values.

OPERATING SYSTEM CO146555 —- Appendix L
214

Text Scrolling

The text screen or split-screen text window "scrolls" upward
whenever one of the two conditions shown below occurs:

o A text line at the bottom row of the screen extends past the
right margin.

o A text line at the bottom row of the screen is terminated by
an EOL.

Scrolling has the effect of removing the entire logical line that
starts at the top of the screen and then moving all subsequent
lines upward to fill in the void. The cursor will also move
vpward if the logical line deleted exceeds one physical line.

B? GSCRFLG* [0O2BB,1] -- Scroll flag

SCRFLG is a working variable that counts the number of physical
lines minus 1 that were deleted from the top of the screen;

since a logical line ranges in size from 1 to 3, SCRFLG ranges
from G to 2.

Attract Mode

Attract mode is a mechanism that protects the television screen
from having patterns "burned into" the phosphors due to a fixed
display being left on the screen for extended periods of time.
When the computer is left unattended for more than ? minutes, the
color intensities are limited to 50 percent of maximum and the
hues are continually varied every 8.3 seconds. Pressing any

keyboard data key will be sufficient to remove the attract mode
for ? more minutes. |

As part of the stage 2 VBLANK process, the color registers from
the data base are sent to the corresponding hardware color
registers; before they are sent, they undergo the following
transformation:

hardware register = database variable XOR COLRSH AND DRKMSK

Normally COLRSH = %00 and DRKMSK = 4$FE. thus making the above
calculation a null operation; however, once attract mode becomes
active, COLRSH = the content of RTCLOK+1 and DRKMSK = $F&., that
has the effect of modifying all of the colors and keeping their
luminance always below the 50 percent level.

Since RTCLOK+1 is incremented every 254/60 of a second and
since the least significant bit of COLRSH is of no consequence, a

OPERATING SYSTEM C0O16555 ~— Appendix L

2195

color/lum change will be effected every 8.3 seconds (512/60).

B10 ATRACT [004D,1]1 ~- Attract mode timer and flag

ATRACT is the timer (and flag) that controls the initiation and
termination of attract mode. Whenever a keyboard key is pressed,
the keyboard IRQ service routine sets ATRACT to zero, thus
terminating attract mode; the [BREAK] key logic behaves
accordingly. As part of the stage 1 VBLANK process, ATRACT is
incremented every 4 seconds; if the value exceeds 127 (after 9
minutes without keyboard activity), the value of ATRACT will

be set to $FE and will retain that value until attract mode is
terminated.

Since the attract mode is prevented and terminated by the 0OS
based only upon keyboard activity, some users can want to reset
ATRACT based upon Atari-controller event detection,
user—controlled Serial I/0 bus activity or any other signs of
life.

Bil COLRSH#* LO04F, 1] —— Color shift mask

COLRSH has the value %00 when attract mode is inactive, thus
effecting no change to the screen colors; when attract mode is
active, COLRSH contains the current value of the timer variable
middle digit (RTCLOK+1).

B12 DRKMSKs* [0O04E, 1] —-- Dark (luminance} mask

DRKMSK has the value $FE when attract mode is inactive, which does not
alter the luminance; and has the value %F&6 when attract mode

is active, which forces the most significant bit of the luminance
field to zero, ¢thus guaranteeing that the luminance will never

exceed 50 percent.

Tabbing

See Section S for a discussion of the use of tabs in conjunction
with the Screen Editor.

Bi3 TABMAP [02A3, 151 -- Tab stop setting map

The tab settings are retained in a 15-byte (120 bit) map. where a
bit value of 1 indicates a tab setting; the diagram below shows
the mapping of the individual bits to tab positions.

OPERATING SYSTEM CO016555 —— Appendix L
216

7 é S 4 3 2 1

0
s ettt TP + + + + +
t 7

t o011 213141951 61

TABMAP+0

8 9 1 100 11¢ 127 131 141 15! +1
s e T e s
{

:

: f
e e L i
{112111311141115111611171118{119! +14
+ + + + e Sttt TR S

Whenever the Display Handler or Screen Editor is opened, this map
is initialized to contain the value of %01 in every byte:, thus
providing the default tab stops at 7, 15, 23, etc.

lLogical Text Lines

The text screen is invisibly divided into logical lines of text,
each comprising from one to three physical lines of text. The
screen is initialized to 24 logical lines of one physical line
each; but data entry and/or data insertion can increase the size
of a logical line to two or three physical lines.

Bi4 LOGMAP* [O2B2,41 -- Logical line starting row map

The beginning physical line number for each logical line on the
screen is retained in a four byte (32 bit} map, where a bit value
of one indicates the start of a logical line; the diagram below
shows the mapping of the individual bits to physical line (row}

numbers.

7 & 53 4 3 2 1 0

B s e S s

{00 18 21 31 41 81 61 71 LOGMAP+0O
s S S e O s st =
i Bl 2i10111112113114115! +1
e e e e e e e e e e o e e o o e
1161171181192120121122123! +2

B S S e s
[4 4 t 1 1 L] 1 % 1 +3

¢ % L} t 1] 13 t 1] s

e e e s At St 3

The map bits are all set to 1 whenever the text screen is

opened or cleared. From that point, the map is updated as
logical lines are entered, edited and deleted from the screen.

OPERATING SYSTEM CD16555 —~— Appendix L
217

B1% LOGCOLs# [00A3,11 —— Cursor/logical line column number

LOGCOL contains the logical-line column number for the current
cursor position; note that a logical line can comprise up to
three physical lines. This variable is for the internal use of
the Display Handler.

Split Screen

The Display Handler and Screen Editor together support the

operation of a split—-screen mode (see Section S5) in which the main
portion of the screen is in one of the graphics modes and is
controlled by the Display Handler, and there are 4 physical lines in
the text window at the bottom of the screen which is controlled by the
Screen Editor.

B1é6 BOTSCR#* [O2BF, 1] — Text screen lines count

BOTSCR contains the number of lines of text for the current
screen: 24 for mode O or 4 for a split—-screen mode. The Handler
also uses this variable as an indication of the split-screen
status; tests are made for the specific values 4 and 24.

DRAW/FILL Function

The DRAW function line drawing algorithm is shown below
translated to the PASCAL language from assembly languvage.

NEWROW : = ROWCRS: NEWCOL := COLCRS;

DELTAR := ABS (NEWROW-OLDROW);

ROWINC := SIGN (NEWROW-OLDROW): € +1 or -1)}
DELTAC := ABS (NEWCOL-OLDCOL);:

COLINC := SIGN (NEWCOL-OLDCOL); { +1 or -1)

ROWAC := 0; COLAC := 0O
ROWCRS := OLDROW:; COLCRS := OLDCOL;

COUNTR := MAX (DELTAC, DELTAR);
ENDPT := COUNTR;
IF COUNTR = DELTAC
THEN ROWAC := ENDPT DIV 2
ELSE COLAC := ENDPT DIV 2;

WHILE COUNTR > O DO
BEGIN

OPERATING SYSTEM CO16555 —- Appendix L
218 :

ROWAC := ROWAC + DELTAR;
IF ROWAC >= ENDPT

THEN
BEGIN
ROWAC := ROWAC - ENDPT;
ROWCRS := ROWCRS + ROWINC
END;

COLAC := COLAC + DELTAC;
IF COLAC >= ENDPT

THEN
BEGIN
COLAC := COLAC - ENDPT:
COLCRS := COLCRS + COLINC
END:;

PLOT_POINT; { point defined by ROWCRS and COLCRS)}
IF FILFLG <> O THEN FILL_LINE;
COUNTR := COUNTR - 1

END;

The FILL function algorithm (FILL_LINE above) is described briefly in
Section §.

B17 FILDAT [O2FD, 1] -- Fill data

FILLDAT contains the fill region data value as part of the calling
sequence for a FILL command as described in Section 5.

B18 FILFLG* [O2B7,11 -- Fill flag

FILFLG indicates to the shared code within the Display Handler
whether the current operation is FILL (FILFLG <> O) or DRAW
(FILFLG = 0).

B19 NEWROWs [00&0, 1] and NEWCOL:* [0061,2]1 —— Destination point
NEWROW and NEWCOL are initialized to the values in ROWCRS and
COLCRS, which represent the destination endpoint of the DRAW/FILL

command. This is done so that RDWCRS and COLCRS can be altered
during the performance of the command.

B20 HOLD4#* [02BC, 1] —— Temporary storage

OPERATING SYSTEM C016555 -- Appendix L
219

HOLD4 is used to save and restore the value in ATACHR during the
FILL process; ATACHR is temporarily set to the value in FILDAT to
accomplish the filling portion of the command.

B21 ROWINC:* [0079, 1] and COLINC# [007A,1]1 —— Row/column
increment/decrement

ROWINC and COLINC are the row and column increment values; they
are each set to +1 or -1 to control the basic direction of line
drawing. ROWINC and COLINC represent the signs of NEWROW -
ROWCRS and NEWCOL - COLCRS, respectively.

B22 DELTAR#® [007&,11 and DELTAC# [0Q077,21 —- Delta row and delta
column

DELTAR and DELTAC contain the absolute values of NEWROW — ROWCRS
and NEWCOL - COLCRS, respectively; together with ROWINC and
COLINC, they define the slope of the line to be drawn.

B23 COUNTR# {0O07E, 2] -- Draw iteration count

COUNTR initially contains the larger of DELTAR and DELTAC, that
is the number of iterations required to generate the desired
line. COUNTR is then decremented after every point on the line is
plotted, until it reaches a value of zero.

B24 ROWAC# [0070.21 and COLACH* [0072:2]1 -~ Accumulators

ROWAC and COLAC are working accumulators that control the row-and
column—-point plotting and increment (or decrement} function.

B25 ENDPT#* [0074,21 -~ Line length

ENDPT contains the larger of DELTAR and DELTAC, and is used in
conjunction with ROWAC/COLAC and DELTAR/DELTAC f£o control the
plotting of line points.

Displaying Control Characters

Often it is useful to have ATASCII control codes (such as CLEAR,
CURSOR UP, etc). displayed in their graphic forms instead of
having them perform their control function. This display
capability is provided in two forms when outputting to the Screen
Editor: 1) a data content form in which a special character (ESC)
precedes each control character to be displayed and 2) a mode
control form.

OPERATING SYSTEM CD16555 —- Appendix L
220

Escape (Display Following Control Character)

Whenever an ESC character is detected by the Screen Editor, the
next character following this code is displayed as data, even if
it would normally be treated as a control code; the EOL code is
the sole exception. It is always treated as a control code. The
sequence ESC ESC will cause the second ESC character to be
displayed.

B26 ESCFLG# [02A2,1] -- Escape flag

ESCFLG is used by the Screen Editor to control the escape
sequence function; the flag is set (to $80) by the detection of
an ESC character ($1B) in the data stream and is reset (to O)
following the output of the next character,

Display Control Characters Mode

When it is desired to display ATASCII control codes other than
EOL in their graphics form:. but not have an ESC character
associated with each control code, a display mode can be
established by setting a flag in the data base. This capability
is used by language processors when displaying high~level
language statements, that can contain control codes as data
elements.

B27 DSPFLG [O2FE, 1] —-— Display control characters flag

When DSPFLEG is nonzero, ATASCII control codes other than EOL are
treated as data and displayed on the screen when output to the
Screen Editor. When DSPFLG is zero, ATASCII control codes are
processed normally.

DSPFLG is set to zero by Power—up and {SYSTEM. RESET].

Bit—-Mapped Graphics

A number of temporary variables are used by the Display Handler
when handling data elements (pixels) going to or from the screen;
of interest here are those variabhles that are used to control the
packing and unpacking of graphics data, where a memory byte
typically contains more than one data element (for example,
screen mode 8 contains B pixels per memory byte).

B28 DMASK# [O02A0,1]1 -- Pixel location mask

OPERATING SYSTEM C016555 —- Appendix L
221

DMASK is a mask that contains zeros for all bits that do not
correspond to the specific pixel to be operated upon, and
1’s for all bits that do correspond. DMASK can contain
the values shown below in binary notation:

11111111 -- screen modes 1 and 2; one pixel per byte.

11110000 -- screen modes 9-11; two pixels per byte.
00001111

11000000 =-- screen modes 3, 5 and 7; four pixels per byte.
00110000
00001100
0000001 1

10000000 -- screen modes 4, & and 8; eight pixels per byte.
01000000

00000010

00000001
B29 SHFAMT# [00&F, 11 -— Pixel justification
SHFAMT indicates the ambunt to shift the right—justified pixel
data on output, or the amount to shift the input data to right

Justify it on input. The value is always the same as for DMASK
prior to the justification process.

Internal Working Variables

B30 HOLD1* {0051,13 —— Temporary storage

B31 HOLD2# E029F, 11 —— Temporary storage

B32 HOLD3% £029D, 131 -~ Temporary storage

B33 TMPCHR# [00S50,11 -— Temporary storage

B34 DSTAT* £004C,1]1 —- Display status

B35 DINDEX [0057,11 -- Display mode

DINDEX contains the current screen mode obtained from theylow
order four bits of the most recent OPEN AUX1 byte.

B36 SAVMSC [0058,2]1 -- Screen Memory Address

SAVMSC contains the lowest address of the screen data regioni the
data at that address is displayed at the upper left corner of the

screen.

OPERATING SYSTEM CO16555 —- Appendix L
222

B37 OLDCHR#* [00SD, 11 -- Cursor character save/restore

OLDCHR retains the value of the character under the visible text

cursor; this variable is used to restore the original character
value when the cursor is moved.

B38 OLDADR#* [OOSE, 2] ~- Cursor memory address

OLDADR retains the memory address of the current visible text
cursor location; this variable is used in conjunction with OLDCHR

(B37) to restore the original character value when the cursor is
moved.

B39 ADRESS* [0064,2]1 -- Temporary storage

B40 MLTTMP/OPNTMP/TOADR#* [00&66,2) —— Temporary storage

B41 SAVADR/FRMADR# [0068.2] —-- Temporary storage

B42 BUFCNT3# [00&6B, 11 —— Screen Editor current logical line size
B43 BUFSTR3# [00&C, 2] -—- Temporary storage

B44 SWPFLG* [007B, 1) —— Split-screen cursor control

In split—-screen mode, the graphics cursor data and the text
window cursor data are frequently swapped as shown below in order

to get the variables associated with the region being accessed
into the ROWCRS-OLDADR variables.

ROWCRS B2 -=————- TXTROW B4
COLCRS B2 ——————- TXTCOL B4
DINDEX B35 -———-- TINDEX B4%9
SAVMSC B34 —-——m—-- TXTMSC BS2
OLDROW B3 —=—==——- TXTOLD BS
oLpcol B3 ——-=———- " "
OLDCHR B37 ——==—=- " "
OLDADR B38 ———==- " "

SWPFLG is used to keep track of what data set is currently in the
ROWCRS-OLDADR region; SWPFLG is equal to $FF when split—-screen
text window cursor data is in the main region, otherwise SWPFLG
is equal to O.

B4S5 INSDAT# [007D, 1] -— Temporary storage

OPERATING SYSTEM C016555 -- Appendix L
223

B46 TMPROW: [0O2B8, 1] and TMPCOL#* [02B9,2] -- Temporary storage
B47 TMPLBT# £02A1,1] -- Temporary storage
B48 SUBTMP#* [029E, 1] -- Temporary storage

B49 TINDEX* [0293,1] -- Split screen text window screen mode

TINDEX is the split-screen text window equivalent of DINDEX and is
always equal to zero when SWPFLG is equal to zero (see B44).

BS5O BITMSK* [Q0&E, 11 -— Temporary storage

B51 LINBUF* [0247,401 -~ Physical line buffer

LINBUF is used to temporarily buffer one physical line of text
when the Screen Editor is moving screen data.

BS2 TXTMSC [0294,2]1 -- Split screen memory address

TXTMSC is the split-screen text window version of SAVMSC (B3é6}.

See B44 for more information.

BS3 TXTOLD#* {0296:6]1 -- Split screen cursor data

See B44 for more information.

Internal Character Code Conversion

Two variables are used to retain the current character being
processed (for both reading and writing); ATACHR contains the
value passed to or from CIO, and CHAR contains the internal code
corresponding to the value in ATACHR. Because the hardware does
not interpret ATASCII characters directly, the transformations
shown below are applied to all text data read and written:

ATASCII INTERNAL
CODE CODE
00-1F 40-5F
20~3F 00-1F
40-5F 20-3F
&0-7F &0-7F
80-9F CO-DF

OPERATING SYSTEM CO14555 -- Appendix L
224

AO-BF 80-9F
CO-DF AO-BF
EO-FF EO-FF

See P26 for more information.

B54 ATACHR [O2FB. 1] -- Last ATASCII character or plot point

ATACHR contains the ATASCII value for the most recent character
read or written, or the value of the graphics point. This
variable can also be considered to be a parameter of the
FILL/DRAW commands, as the value in ATACHR will determine the
line color when a DRAW or FILL is performed.

BSS CHAR# [02FA, 1] - Internal character code

CHAR contains the internal code value for the most recent
character vread or written.

C. DISKETTE HANDLER

See Section 5 for a discussion of the resident Diskette Handler.

Ci1 BUFADR# [0015,21 ~- Data buffer pointer

BUFADR acts as temporary page zero pointer to the current
diskette buffer.

C2 DSKTIM* [024646,1]1 — Disk format operation timeout time

DSKTIM contains the ¢imeout value for SI0 calling sequence

variable DTIMLO (see Section 9). DSKTIM is set to 160 (which
represents a 171-second timeout) at initialization time, and is
updated after each diskette status request opervation. It contains the
value returned in the third byte of the status frame (see Section

5). Note that all diskette operations other than format have a

fixed (7) second timeout, established by the Diskette Handler.

D. CASSETTE

See Section 5 for a general description of the Cassette Handler. The
cassette uses the Serial I/0 bus hardware, but does not conform with
the Serial I/0 bus protocol as defined in Section 9. Hence, the Serial

OPERATING SYSTEM CO0146555 -~ Appendix L
225

I/0 utility (SIO) has cassette specific code within it. Some variables
in this subsection are utilized by SIO and some by the Cassette
Handler.

Baud Rate Determination

The input baud rate is assumed to be a nominal &00 baud, but will
be adjusted, if necessary, by the SIO routine to account for
drive~motor variations, stretched tape, etc. The beginning of
every cassette record contains a pattern of alternating 1/s and
zeros that is used solely for speed correction; by measuring the
time to read a fixed number of bits, the true—-receive baud rate
is determined and the hardware adjusted accordingly. Input baud
rates ranging from 318 to 1407 baud can theoretically be handled
using this technique.

The input baud rate is adjusted by setting the POKEY counter that
controls the bit sampling period.

D1 CBAUDL%* [O2EE, 1] and CBAUDH# [O2EF, 1] ~— Cassette baud rate

Initialized to O5CC hex, which represents a nominal 400 baud.
After baud rate calculation, these variables will contain POKEY
counter values for the corrected baud rate.

D2 TIMFLG# {0317,11 -— Baud rate determination timeout flag

TIMFLG is used by SIO to timeout an unsuccessful baud rate ,
determination. The flag is initially set to 1, and if it attains a
value of zero (after 2 seconds) before the first byte of the cassette
record has been read:, the operation will be aborted. See also H24.

D3 TIMER1# [030C. 2] and TIMER2# [0310,2] —— Baud rate timers

These timers contain reference times for the beginning and end of
the fixed bit pattern receive period. The first byte of each
timer contains the then current vertical line counter value read
from ANTIC, and the second byte of each timer contains the then
current value of the least significant byte of the 0S5 real time
clock (RTCLOK+2).

The difference between the timers is converted to raster pair

counts and is then used to perform a table lookup with
interpolation to determine the new values for CBAUDL and CBAUDH.

D4 ADDCOR#* [O30E,1]1 —- Interpolation adjustment variable

OPERATING SYSTEM C016555 —— Appendix L
226

ADDCOR is a temporary variable used for the interpolation
calculation of the above computation.

DS TEMPi* [0312,2] -- Temporary storage
D& TEMP3# [0315,11 -~ Temporary storage

D7 SAVIO#* [0316,1]1 —- Serial in data detect
SAVIO is used to retain the state of SKSTAT LD20F1 bit 4 (serial

data in); it is used to detect (and is updated after) every bit
arrival. :

Cassette Mode

D8 CASFLG* [O30F. 11 —— Cassette I1/0 flag

CASFLG is used internally by SIO to control the program flow
through shared code. A value of zero indicates that the current
operation is a standard Serial I/0 bus operation, and a nonzero
value indicates a cassette aperation.

Cassette Buffer

D? CASBUF# [O3FD, 1311 -~ Cassette record buffer

CASBUF is the buffer used by the Cassette Handler for the packing
and unpacking of cassette-record data, and by the initialization
cassette—boot logic. The format for the standard cassette record
in the buffer is shown below:

76543210

e s s S P e
iI01 010101} CASBUF+0
L s s o e e e

i0101010 14 +1

B e L e A R et &

{ control byte | +2
s s ot TS T

H 128 H +3

= data =

| bytes { +130
L o S S s s 2

See Section 5 for an explanation of the standard cassette-record
format.

OPERATING SYSTEM C016555 —- Appendix L

227

D10 BLIM*¥ [028A.1]1 -~ Cassette record data size

BLIM contains the count of the number of data bytes in the
current cassette record being read. BLIM will have a value
ranging from i1 to 128, depending upon the record control byte as
explained in Section 5.

Di1 BPTR# [003D, 1] —-- Cassette-record data index

BPTR contains an index into the data portion of the cassette
record being read or written. The value will range from O to the
then current value of BLIM. When BPTR equals BLIM then the buffer
(CASBUF) is full if writing or empty if reading.

Internal Working Variables

Di2 FEOF#* [CQ3F,1]1 —- Cassette end-of-file flag

FEOF is used by the Cassette Handler to flag the detection of an
end of file condition (control byte = $FE). FEOF equal to zero
indicates that an EOF has not yet been detected, and a nonzero

value indicates that an EOF has been detected. The flag is reset
at every OPEN.

Di3 FTYPE# [O03E, 11 -- Interrecord gap type

FTYPE is a copy of ICAX2Z #from the OPEN command and indicates the
type of interrecord gap selected; a positive value indicates
normal record gaps:, and a negative value indicates continuous
mode gaps.

Di4 WMODE* [0O289,11 —— Cassette read/write mode flag
WMODE is used by the Cassette Handler to indicate whether the

current operation is a read or write operation; a value of zero
indicates read, and a value of %80 indicates write.

D15 FREQG#* [0040,1]1 —— Beep count

FREQ is used to retain and count the number of beeps requested of
the BEEP routine by the Cassette Handler during the OPEN command
process.

OPERATING SYSTEM CO16555 -- Appendix L
228

E. KEYBOARD

See Section 5 for a general description of the Keyboard Handler.

Key Reading and Debouncing

The console key code register is read in response to an IRG
interrupt that is generated whenever a key stroke is detected by
the hardware. The key code is compared with the prior key code
accepted (CH1): if the codes are not identical, then the new code
is accepted and stored in the key code FIFD (CH) and in the prior
key code variable (CH1). If the codes are identical, then the new
code is accepted only if a suitable key debounce delay has
transpired since the prior value was accepted.

If the key code read and accepted is the code for [CTRL] i, then
the display start/stop flag (SSFLAG) is complemented and the
value is not stored in the key code FIFD (CH).

In addition to the reading of the key data, SRTIMR is set to $30
for all interrupts received (see EB), and ATRACT is set to O
whenever a new code is accepted (see Bi0O).

The Keyboard Handler obtains all key data from CH;, whenever a
code is extracted from that i1-byte FIFD, the Handler stores a
value of $FF to the FIFDO to indicate that the code has been read.
See Section 5 for further discussion of the Keyboard Handler'’s
processing of the key codes.

E1 CHix [02F2,11 -~ Prior keyboard character code.

CH1 contains the key code value of the key most recently read and
accepted.

E2 HKEYDEL#* [02F1,1] —- Debounce delay timer,

KEYDEL is set to a value of 3 whenever a key code is accepted,
and is decremented every &0th of a second by the stage 2 VBLANK
process (until it reaches zero).

E3 CH [O02FC,11 -- Keyboard character code FIFO.

CH is a 1-byte FIFD that contains either the value of the most
recently read and accepted key code or the value $FF (which
indicates that the FIFD is empty). The FIFO is normally read by
the Keyboard Handler, but can be read by a user program.

Key data can also be stored into CH by the Autorepeat logic as

explained in the discussion relating to EB.

OPERATING SYSTEM C016555 —— Appendix L
229

Special Functions

Start/Stop

Display Handler and Screen Editor output to the text or graphics
mode screen can be stopped and started (without losing any of the
output data}) through the use of the [CTRL] I key combination.
Each key depression toggles a flag that is monitored by the abeove
mentioned Handlers. When the flag is nonzero, the handlers wait
for it to go to zero before continuing any output.

E4 SSFLAG [02FF,1]1 —— Start/stop flag

The flag is normally zero, indicating that screen output is not
to be stopped. The flag is complemented by every occurrence of
the LCTRL] 1 key combination by the keyboard IRQ service routine.

The #lag is set to zero upon power—up, [SYSTEM. RESET] or [BREAK]
key processing.

[BREAK] Key

ES BRKKEY [0011,1] ~-- [BREAK] key flag

BRKKEY is used to indicate that the [BREAK] key has been pressed.
The value is normally nonzero and is set to zero whenever the
[BREAK] key is pressed. The code that detects and processes the
[BREAK] condition (flag = O) should set the flag nonzero again.

BRKKEY is monitored by the following O0S routines: Keyboard
Handler, Display Handler, Screen Editor, Cassette Handler, xx7?
The detection of a LBREAK] condition during an I/0 operation
will cause the operation to be aborted and a status of $80 to be
returned to the user.

The flag is set to nonzero upon Power-up, [SYSTEM. RESET] or upon
aborting a pending I/0 operation.

CSHIFTI/CCONTROL] Lock

The keyboard control has three different modes for code
generation that apply to the alphabetic keys A through Z:
1) normal, 2) caps lock, and 3) control lock.

OPERATING SYSTEM CO16555 —— Appendix L
230

In normal mode, all unmodified alphabetic character keys generate
the lowercase letter ATASCII code ($61-7A).

In caps lock mode, all unmodified alphabetic character keys
generate the uppercase letter ATASCII code ($41-5A).

In control lock mode, all unmodified alphabetic character keys
generate the control letter ATASCII code ($0C1i-1A).

In all three modes, any alphabetic character key that is modified
(by being pressed in conjunction with the LSHIFT] or L[CTRL] key)
will generate the desired modified code.

E6 GOHFLOK [O2BE, 1] ~- Shift/control lock control flag
SHFLOK normally has one of three values:

$00 = normal mode (no locks in effect).
$40 = caps lock.
$80 = control lock.

SHFLOK is set to $40 upon Power—up and [SYSTEM. RESET] and is
modified thereafter by the 0S only when the [CAPS. LOWER] key is
pressed (either by itself or in conjunction with the [SHIFT] or
ECTRL] key).

E7 HOLDCH# [007C,11 —— Character holding variable

HOLDCH is used to retain the current character value prior to the
[SHIFT1/LCONTROLY logic process.

Autorepeat

The Autorepeat feature responds to the continuous depression of a
keyboard key by replicating the key code 10 times per second,
after an initial 1/2 second delay. The timer variable SRTIMR is
used to control both the initial delay and the repeat rate.

Whenever SRTIMR is equal to zero and a key is being held down,
the value of the key code is stored in the key code FIFO (CH).
This logic is part of the stage 2 VBLANK process.

E8 SRTIMR# [022B,1]1 —— Autorepeat timer

SRTIMR is controlled by two independent processes: 1) the
keyboard IRQ service routine, which establishes the initial delay
value and 2) the stage 2 VBLANK routine that establishes the
repeat rate, decrements the timer and implements the auto repeat
logic,

OPERATING SYSTEM CO016555 —— Appendix L
231

Inverse Video Control

The Keyboard Handler allows the direct generation of more than
halt of the 256 ATASCII codes: but codes $80-PA and codes $A0- FC
can be generated only with the “"inverse video mode" active. The
ATARI key acts as an on/off toggle for this mode, and all
characters (except for screen editing control characters) will be
subject to inversion when the mode is active.

E? INVFLG [02B&4,1]1 -- Inverse video flag

INVFLG is normally zero, indicating that normal video ATASCII

codes (bit 7 = 0} are to be generated from keystrokes; whenever INVFLG
is nonzero, inverse video ATASCII codes (bit 7 = 1) will be generated.
The special control codes are exempt from this bit manipulation.
INVFLG is set to zero by power—up and system reset.

The Keyboard Handler inverts bit 7 of INVFLG whenever the ATARI key

is pressed; the lower order bits are not altered and are assumed to be
zero.

The Keyboard Handler’'s "exclusive or’s" (XOR’s) the ATASCII key data

with the value in INVFLG at all times; the normal values of $00 and
$80 thus lead to control of the inverse video bit (bit 7).

Console Keys: [SELECT1,[START1, and [OPTIONI]
The console keys are sensed directly from the hardware

register CONSOL [DO1IF1l; see the ATARI Home Computer
Hardware Manual for details.

F. PRINTER

See Section 5 for a general description of the Printer Handler.

Printer—~Buffer
Fi PRNBUF# £03C0, 401 -- Printer—-record buffer

PRNBUF is the buffer used by the Printer Handler for packing printer
data to be sent to the device controller. The buffer is 40 bytes long

OPERATING SYSTEM CO16555 —— Appendix L
232

and contains nothing but printer data.

F2 PBUFSZ# [0O0lE, 11 -- Printer—record size

PBUFSZ contains the size of the Printer-record for the current mode

selected; the modes and respective sizes (in decimal bytes) are shouwn
below:

Normal 40
Double width 20 (not currently supported by the device)
Sideways 29

Status request 4

F3 PBPNT#* [001D, 1] -- Printer—buffer index

PBPNT contains the current index to the Printer—buffer. PBPNT ranges
in value from zero to the value of PBUFSLZ.

Internal Working Variables

F4 PTEMP# [O01F, 11 ~- Printer Handler temporary data save

PTEMP is used by the Printer Handler to temporarily save the value of
a chavacter to be output to the printer.

FS PTIMOT# [001C.,1] —-- Printer timeout value

PTIMOT contains the timeout value for SI0 calling sequence variable
DTIMLDO (see Section ?); PTIMOT is set to 30 (which represents a 32
second timeout) at intialization time, and is updated after each
printer status request operation to contain the value returned in the
third byte of the status frame (see Section 5.

G. CENTRAL I/0 ROUTINE (CID)
See Section 5 for a description of the Central I/0 Utility.

User Call Parameters

OPERATING SYSTEM CO16555 —— Appendix L
233

CIO call parameters are passed primarily through an I/0 Control
Block (IOCB); although additional device status information can be
returned in DVSTAT, and Handler information is obtained from the
device table (HATABS).

I/0 Control Block

IOCB is the name applied collectively to the 146 bytes associated
with each of the 8 provided control structures; see Section 5.

61 I0OCB [O340, 161 —— 1/0 Control Block

The label IOCB is the location of the first byte of the first IOCB in
the data base. For VIDs G2 through G10, the addresses given are for
I0OCB #0 only, the addresses for all of the IOCB‘s are shown below:

0340-034F I0CB #0
0350~035F I0CB #1
0360-036F IOCB #2
0370-037F IOCB #3
0380-038F IOCE #4
0390-039F IOCE #5
03A0-03AF IOCB #&
03B0O-03BF I0CB #7

62 ICHID f{0340,1) - Handler ID

See Section 5. Initialized to $FF at power-up and system reset.

G3 ICDND £034t,11 —— Device number

See Section 5.

G4 ICCOM £0342,11 —— Command byte

See Section 5.

G5 ICSTA [0343,11 -- Status

See Section 5.

G4 ICBAL, ICBAH ([0344,2]1 —-- Buffer address

See Section 5.

OPERATING SYSTEM CO16555 -— Appendix L
234

G7 ICPTL, ICPTH [0344,21 —- PUT BYTE vector

See Section 5. Initialized to point to CID’s “IOCB not OPEN" routine

at power-up and system reset.

68 ICBLL, ICBLH [0348,2]1 -— Buffer length / byte count

See Section S.

6? ICAX1, ICAX2 L[034A,2]1 -- Auxiliary information

See Section 5.
G10 ICSPR [034C, 4] ~-- Spare bytes for Handler use

There is no fixed assignment of these four bytes; the Handler
associated with an IOCB can or may not use these bytes.

Device Status

i1 DVSTAT [O2EA, 41 -- Device status

See Section 5 for a discussion of the GET STATUS command.

Device Table

G12 HATABS [031A, 381 —- Device table

Gee Section ? for a description of the device table.

CI0/Handler Interface Parameters

Communication between CID and a Handler is accomplished using the
6502 machine registers, and a data structure called the Zero-page
IOCB (ZIOCB). The ZIOCB is essentially a copy of the particular
IOCB being used for the current operation.

OPERATING SYSTEM C0146555 —-- aAppendix L

235

Zero—-Page IOCB

613 ZIOCB (IOCBAS) [0020, 161 -- Zero-page IOCB

The Zero—-page IOCB is an exact copy (except as noted in the
discussions that follow) of the IOCB specified by the 6502 X
register upon entry to CIO; CIO copies the outer level IOCB to
the Zero-page IOCB, performs the indicated function, moves the
(possibly altered} Zero—page IOCB back to the outer level IOCB,
and then returns to the caller.

Although both the outer level IOCB and the Zero—-page IOCB are
defined to be 146 bytes in size, only the first 12 bytes are moved
by CIO.

Gi4 ICHIDZ [0020,11 —— Handler index number

See Section 5. Set to $FF on CLOSE.

G155 ICDNOZ [£0021,11 —- Device drive number

See Section 5.

G146 ICCOMZ [0022,11 —- Command byte

See Section 5.

G17 ICSTAZ [0023,11 —— Status byte

See Section S.

¢18 ICBALZ, ICBALH [0024,2] —— Buffer address

See Section S. This pointer variable is modified by CIO in the
course of processing some commands; however, the original value
is restored before returning to the caller.

¢1? ICPTLZ, ICPTHZ

See Section 5. Set to point ¢to CIN’'s “IOCEB not OPEN" routine on
CLOSE.

620 ICBLLZ, ICBLHZ {0028,21 —-— Buffer length / byte count

See Section 5. This double-byte variable, which starts out
representing the buffer length, is modified by CID in the course

OPERATING SYSTEM CO16555 —— Appendix L
236

of processing some commands; then, before returning to the
caller, the transaction byte count is stored therein.
621 ICAX1Z, ICAX2Z [002A, 21 —— Auxiliary information

See Section 5.

G22 ICSPRZ (ICIDNO, CIOCHR) C[002C, 41 -— CIO working variables

ICSPRZ and ICSPRZ+1 are used by CIO in obtaining the appropriate
Handler entry point from the handler’‘s vector table (see Section 9).

ICSPRZ+2 is also labeled ICIDNO and retains the value of the 6502 X

register from CIO entry. The X register is loaded from ICIDNO as CIO
returns to the caller.

ICSPRZ+3 is also labeled CIOCHR and retains the value of the 4502 A
register from CIO entry, except for data reading type commands, in

which case the most recent data byte read is stored in CIOCHR. The
63502 A register is loaded from CIOCHR as CIO returns to the caller.

Internal Working Variables

G623 ICCOMT* [0017,11 -— Command table index

ICCOMT is used as an index to CID‘s internal command table, which maps
command byte values to Handler entry offsets (see Section 9 for more

information). ICCOMT contains the value from ICCOMZ except when ICCOMZ
is greater than $0E, in which ctase ICCOMT is set to $OE.

G24 ICIDNO# [O0O2E.1]1 —— CIO call X register save/restore

See (G22.

625 CIOCHR%* [002F, 1] —— CI0 call A register save/restore

See (G22.

H. SERIAL I/0 ROUTINE (SI0)

See Section 9 for discussions relating te SID.

OPERATING SYSTEM CO016555 ~— Appendix L
237

User Call Parameters

SI0 call parameters are passed primarily through a Device Control
Blocki although an additional “noisy bus" option exists that is
selectable through a separate variable.

Device Control Block

H1 DCB [O300. 121 -~ Device Control Block

DCB is the name applied collectively to the 12 bytes at locations
0300-030B. These bytes provide the parameter passing mechanism for SIO
and are described individually below.

H2 DDEVIC £0300.11 -- Device bus ID

See Section 9.

H3 DUNIT £0301, 1] —~- Device unit number

See Section 9.

H4 DCOMND [0302,1]1 -~ Device command

See Section 9.

HS DSTATS £0303,1]1 —-— Device status

See Section 9.

H& DBUFLO, DBUFHI [0304,2]1 —-- Handler buffer address

See Section <.

H7 DTIMLO [£0306,11 —— Device timeout

See Section 9.
H8 DBYTLO,DBYTHI [0308,2] —— Buffer length / byte count

See Section 9.

OPERATING SYSTEM CO16555 —- Appendix L
238

H? DAUX1,DAUX2 [{030A, 21 -- Auxiliary information

See Section 9.

Bus Sound Control

H10 GSOUNDR [0041,1]1 -- Quiet/noisy I/0 flag

SOUNDR is a flag used to indicate to SID whether noise is to be
generated on the television audio circuit when Serial I/0 bus
activity is in progress. SOUNDR equal to zero indicates that
sound is to be inhibited, and nonzero indicates that sound is to
be enabled. SIO sets SOUNDR to 3 at power—up and system reset.

Serial Bus Control
Retry Logic

SI0 will attempt one complete command retry if the first attempt
is not error free, where a complete command try consists of up to
14 attempts to send (and acknowledge) a command frame, followed

by a single attempt to receive COMPLETE and possibly a data
frame.

Hi11 CRETRY# [0036,1] -— Command frame retry counter

CRETRY controls the inner loop of the retry logic, that associated
with sending and receiving an acknowledgement of the command frame.
CRETRY is set to 13 by SI0 at the beginning of every command
initiation, thus allowing for an initial attempt and up to 13
additional retries.

H12 DRETRY# [0037,1] -— Device retry counter

DRETRY controls the outer loop of the retry logic, that
associated with initiating a command retry after a failure
subsequent to the command frame acknowledgement. DRETRY is set to
1 by SIO at entry, thus allowing for an initial attempt and

1 additional retry.

OPERATING SYSTEM C016555 —— Appendix L
239

Checksum

The Serial I/0 bus protocol specifies that all command and data
frames must contain a checksum validation byte; this byte is the

arithmetic sum (with end-around carry) of all of the other bytes
in the frame.

H13 CHKSUM* [0031,11 -~ Checksum value

CHKSUM contains the frame checksum as computed by SID for all frame
transfers.

H14 CHKSNT#* [003B, 11 -- Checksum sent flag

CHKSNT indicates to the serial bus transmit interrupt service
routine whether the frame checksum byte has been sent yet. CHKSNT
equal to zero indicates that the checksum byte has not yet been
sent; after the checksum is sent, CHKSNT is then set nonzero.

H15 NOCKSM#* [003C, 11 -~ No checksum follows data flag

NOCKSM is a flag used to communicate between the SIO top level

code and the Serial bus receive interrupt service routine that

the next input will not be followed by a checksum byte. A value

of 2zero specifies that a checksum byte will follow, nonzero specifies
that a checksum byte will not follow.

Data Buffering
General Buffer Control

Hi6 BUFRLO# [0032,1] and BUFRHI%* [0033,1]1 —— Next byte address

BUFRLO and BUFRHI comprise a pointer to the next buffer location
to be read from or written to. For a data frame ¢transfer, the
pointer is initially set to the value contained in the SI0 call
parameters DBUFLO and DBUFHI, and is then incremented by the
interrupt service routines as a part of normal bus data transfer.
For a command frame transfer, the pointer is set to point to the
SI0-maintained command frame output buffer.

H17 BFENLO#* £0034,11 and BFENHI®* £0035,1]1 —— Buffer end address

BFENLO/BFENHI form a pointer to the byte following the last frame
data byte (not including the checksum) to be sent or received.

OPERATING SYSTEM CO16555 —~- Appendix L
240

BFENLO/BFENHI is the arithmetic sum of BUFRLO/BUFRHI plus the
frame size plus -1.

Command Frame Output Buffer

See Section ? for the command frame format and description.

H18 CDEVIC# [023A, 1] -- Command frame device ID

CDEVIC is set to the value obtained by adding SIO call parameter
DDEVIC ¢o DUNIT and subtracting 1.

H1%? CCOMND#* [023B, 1] -- Command frame command.

CCOMND is set to the value obtained from SIO call parameter
DCOMND,

H20 CAUX1i®* [023C. 11 and CAUX2# [023D,11 -~ Auxiliary information

CAUX1 and CAUX2 are set to the values obtained from SIO call
paramefters DAUX1 and DAUX2, respectively.

Receive/Transmit Data Buffering

H21 BUFRFL# [0038,1]1 —- Buffer #full flag

BUFRFL is a flag used by the serial bus receive interrupt service
routine to indicate when the main portion of a bus frame has been
received —— all but the checksum byte. BUFRFL equal to zero
indicates that the main portion has not been completely received,
a nonzero value indicates that the main portion has been
received.

H22 RECVDN#* [0039,1] -- Receive frame done flag

RECVDN is a flag used by SIO to communicate between the Serial
bus receive interrupt service routine and the main SI0 code. The
flag is initially set to zero by SIO, and later set nonzero by
the interrupt service routine after the last byte of a bus frame
has been received.

H23 TEMP* [023E,11 -- SIO 1-byte I/0 data

OPERATING SYSTEM C0O16555 —— Appendix L
241

TEMP is used to receive l-byte responses from serial bus
controllers, such as ACK, NAK, COMPLETE or ERROR.

H24 XMTDON#* [O03A, 1] —— Transmit frame done flag

XMTDON is a flag used by SID to communicate between the Serial
bus transmit interrupt service routine and the main SI0O code. The
flag is initially set to zero by SIO, and later set nonzero by
the interrupt service routine after the last byte of a bus frame
has been transmitted.

SI0 Timeout

SI0 uses System Timer 1 to provide the timeout capability for
various operations initiated internally. See Section & for a
discussion of the capabilities of the System Timers. TIMFLG is
the flag used to communicate between SIO and the timer initiated
code pointed to by CDTMAL.

H25 TIMFLG* [0317.,11 —— SIO0O operation timeout flag

TIMFLG is used to indicate a timeout situation for a bus
operation . The flag is initially set to 1, and if it attains a
value of zero (after the timeout period) before the current
operation is complete, the operation will be aborted. See also
D2.

H26 CDTMVi* [0218,2]1 -- System Timer 1 value

This 2-byte count takes on various values depending upon the
operation being timed. See also P4.

H27 CDTMA1l# [0224,2] —— System Timer 1 address

This vector always points to the JTIMER routine, whose only
function is to set TIMFLG to zero. This vector is initialized by
SI0 before every use, so that System Timer 1 can be used by any
process that does not use SIO within a timing function. See also
P5.

OPERATING SYSTEM CO16555 —— Appendix L
242

Internal Working Variables

H28 STACKP# [0318,1]1 -- Stack pointer save/restore

STACKP contains the value of the 6502 SP register at entry to
SI0; ¢this is retained to facilitate a direct error exit from an
810 subroutine.

H29 TSTAT# [0319,1] -—- Temporary status

TSTAT is used to return the operation status from the WAIT
routine and will contain one of the SI0 status byte values as
shown in Appendix B.

H30 ERRFLG* [023F, 11 —— I1/0 error flag

ERRFLG is used for communication between the WAIT routine and the
outer level SIO code. ERRFLG is normally zero, but is set to $FF
when a device responds with an invalid response byte.

H31 STATUS# [0030,11 -— SIO operation status
STATUS is a zero—page variable that is used within SIO to contain

the operation status that will be stored to the calling sequence
parameter variable DSTATS when SIO returns to the caller.

H32 SSKCTLs# [O0232:11 —— SKCTL copy

SSKCTL is utilized by SIO to keep track of the content of the
SKCTL [(D20F] register, which is a write-only register.

J. ATARI CONTROLLERS

The ATARI controllers are read as part of the Stage 2 VBLANK
process. The encoded data is partially decoded and processed as
shown in the subsections that follow.

Joysticks

Up to four joystick controllers can be attached to the computer
console, each with a 9-position joystick plus a trigger button.

OPERATING SYSTEM C016555 —— Appendix L

243

J1 STICKO - STICK3 [0278,4]1 —— Joystick position sense

The 4 joystick position sense variables contain a bit-encoded
position sense as shown below:

76543210

et T i st 2t
{0 0 O OIRILIDIUY
s e A s s

where: R = 0 indicates joystick RIGHT sensor true.
L = 0 indicates joystick LEFT sensor true.
D = 0 indicates joystick DOWN sensor true.
U= 0 indicates joystick UP sensor true.

Nine unique combinations are possible, indicating the possible
Joystick positions shown below:

CENTER $OF
up $0E
UP/RIGHT $06
RIGHT $07
DOWN/RIGHT $05
DOWN $0D
DOWN/LEFT 409
LEFT $0B

UP/LEFT $0A

J2 STRIGO - STRIG3 [0284,4] -- Joystick trigger sense

The four joystick trigger sense variables each contain a single bit
indicating the position of the joystick trigger as shown below:

76543210
e s e TR
{0 00000 OITH
e B S R S

where: T = 0 indicates trigger pressed.

Paddles

Up to eight paddle controllers can be connected to the computer,
each with a potentiometer and a trigger sense.

J3 PADDLO - PADDL7 [0270,8]1 —— Paddle position sense

There is a single—byte variable associated with each paddle
position sense; the values range from 228 for full

OPERATING SYSTEM CO16555 —- Appendix L
244

counterclockwise rotation to 1 for full clockwise rotation.

The paddle values are often converted by the user, as shown
below, to give a result of O for full counterclockwise rotation
and 227 for full clockwise rotation:

VALUE := 228 - PADDLX;
J4 PTRIGO - PTRIGY [0270.83 -— Paddle trigger sense

The B-paddle trigger sense variables each contain a single bit
indicating the position of the paddle trigger as shown below:

76 5 43210
e et S e s
i0C0OO0CO0O0OITH
s s St T Y

where: T = 0 indicates trigger pressed.

Light Pen

The 0S reads the position of a single light pen and stores ¢the
horizontal and vertical position codes in two variables; these codes
are not the same as the actual screen coordinates. The pen position
codes for different portions of the screen are shown below:

Lett edge —— &7.
Codes increase in increments of one to a value of 227, then go to O
and continue to increase monotonically (ane count per color clock).
Right edge —— 7.

Upper edge —- 16.
Codes increase in increments of one (one count per two raster
lines}). Lower edge -— 111,

The light pen hardware will read and latch the pen position 60 times
per second, independent of the pen button position, which is
separately sensed.

In order for the light pen to operate it must be positioned over a
portion of the screen which has sufficient luminance to activate the
photosensor in the pen; a blank (dark) screen will generally not
provide enough luminance to utilize the light pen.

JS5 LPENH [0234.11 ~- Light pen horizontal position code
LPENH contains the horizontal position code for the light pen; the
algorithm below (written in Pascal) shows the conversion from position

code to screen coordinate {(screen mode 7):

IF LPENH < 33 { check for vrollover goint)
THEN { adjust values to right of rollover 1}

OPERATING SYSTEM CO16555 —— Appendix L
245

XPOS := LPENH + 227
ELSE { no adjustment to left of rollover point %
XPOS := LPENH; ,
XPOS := XPOS - 67; { adjust for left edge offset)}
IF XPOS < O THEN XPOS := 0O;
IF XPOS > 159 THEN XPOS := 159;

Jé& LPENV {0235, 1] -- Light pen vertical position code

LPENV contains the vertical position code for the light pen; ¢the
algorithm below (written in Pascal}) shows the conversion from position
code to screen coordinate (screen mode 7):

YPOS := LPENV - 16; { adjust for upper edge offset)
IF YPOS < O THEN YPOS := 0;
IF YPOS > 95 THEN YPOS .= 95;

J7 STICKO - STICK3 [0278, 4] —— Light pen button sense

The light pen button sense is encoded in one of STICKO - STICK3
(depending upon the actual controller port used) as shown
below:

where: T = 0 indicates the light pen button is pressed.

Driving Controllers

The driving controller has no position stops and thus allows unlimited
rotation in either direction; the output of the controller is a 2-bit
Gray code which can be used to determine the direction of rotation.
The controller is sensed using the same internal hardware as the
Joystick, thus the same data base variables are used for both.

OPERATING SYSTEM CO16555 —-- Appendix L
246

J8 STICKO -~ STICK3 [0278,41 -- Driving controller sense

The 4 driving controller sense variables contain an encoded
rotation (position) sense value, as shown below:

765 43210
B L e ah o ey
{0 00C0C1 1ivall
T R U ST QT S ST S S

where a clockwise rotation of the controller produces the following
continuous sequence of four values (shown in hexadecimal):

OF, 0D, OC.OE,OF, 0D,

and a counterclockwise rotation of the controller produces the
following continuous sequence of four values:

OF. OE, 0C,OD,OF, 0E,.

J? STRIGO - STRIG3 [0284,41 —— Driving trigger sense

The four driving trigger sense variables each contain a single bit
indicating the position of the driving trigger as shown below:

76543210
s Sy S P
i00000O0O0ITI
e Dt St R S S —

where: T = 0 indicates trigger pressed.

K. DISK FILE MANAGER

See Section 5 for information relating to the Disk File Manager.

K1 FMSZPG¥ [0043,71 —— FMS reserved space
FMSZPG is the reserved space in the database for the variables shouwn

below; the names associated with K2 through K5 are not in the system
equate file. '

K2 ZBUFP# [0043,2]1 —— Buffer pointer
K3 ZDRVA# [0045:,2]1 —-- Drive pointer
K4 ZSBA* [0047.2]1 —-- Sector buffer pointer

OPERATING SYSTEM C016555 -- Appendix L
247

KS ERRNO* {004%9,1] -- Error number

L. DISK UTILITY POINTER

L1 DSKUTL* [001A, 2] -- Page-zero pointer variable

M. FLOATING POINT PACKAGE

See Section B for a description of the Floating Point Package.
M1 FRO L[OOD4, &1 —— FP register O

M2 FRE#* [OODA, 61 —- FP register (internal)

M3 FR1 [OOEQ. 6] ~— FP register 1

M4 FR2% L[OOE&, 61 —— FP register 2 (internal)

M5 FRX# [OOEC,1]1 —— Spare (unused)

Mé6 EEXP# [OOED, 1] —— Exponent value (internal)

M7 NSIGN* [OOEE, 1] -- Sign of mantissa (internal)}

M8 ESIGN* [OOEF,1] -~— Sign of exponent (internal)}

M? FCHRFLG# COOFO:ij -— First character flag (internai)
M10 DIGRT# [QOF1,11 —- Digits to right of decimal point
Mii CIX [OOF2,11 -~ Character index

M12 INBUFF [QOF3,21 -- Input text buffer poinfer

OPERATING SYSTEM C016555 —— Appendix L
248

M13 ZTEMPi* [OOFS5,2]1 -- Temporary storage

Mi4 ZTEMP4# [OOF7.21 —-- Temporary storage

M15 ZTEMP3#* [QOF9, 2] -- Temporary storage

Mié6 FLPTR LOOFC,2] -~ Pointer to FP number

M17 FPTR2# [OOFE, 21

FP package use

Mig8 LBPR1i# [OS57E,1] —- LBUFF preamble
M19 LBPR2% [0S7F,1]1 —— LBUFF preamble

M20 LBUFF (0580, 961

Text buffer

M21 PLYARG#* [OSEO: 61 —— FP register (internal)}

M22 FPSCR/FSCR#* [OSESL, 61 —— FP register (internal)
M23 FPSCR1i/SCR1* [OSEC, 61 -~ FP register (internal)
M24 DEGFLG/RADFLG [OOFB, 1] -— Degrees/radians flag

DEGFLG = O indicates radians, & indicates degrees.

N. Power-Up and SYSTEM RESET

See Section 7 for details of the power-up and system reset
operations.

RAM Sizing

During power-up and system reset the first non-RAM address above 1000
hex is located and its address retained using a nondestructive

test. The first byte of every 4K memory "block" is tested to see if
it is alterable; if so, the original value is restored and the next
block is tested, and if not, that address is considered to be the

end of RAM.

OPERATING SYSTEM C01465355 ~—- Appendix L
’ 249

N1 RAMLO#/TRAMSZ# [0004,3]1 -- RAM data/test pointer (temporary)

RAMLO+1 contains the LSB of the address to be tested (always = 0)
and TRAMSZ (same as RAMLO+2) contains the MSB of the address to be
tested. RAMLO+0O contains the complemented value of the data
originally contained in the memory location being tested.

Later in the initialization process these variables are used for
totally unrelated functions; but first the value in TRAMSZ is moved
to the variables RAMSIZ and MEMTOP+1.

N2 TSTDAT* [0007,1]1 -— Test data byte save

TSTDAT contains the original value of the memory location being
tested. '

Diskette/Cassette-Boot

As a part of the Power—up sequence, software can be booted from an
attached disk drive or cassette player as explained in Section 10.

N3 DOSINI [000C,2]1 —~- Diskette-boot initialization vector.

DOSIMNI contains the disk booted software initialization address
from the beginning of the boot file (see Section 10} whenever a
diskette-boot is successfully completed.

N4 CKEY# [004A,1]1 —— Cassette—boot request flag

CKEY is an internal flag used to indicate that the console [START]
key was pressed during Power—up, thus indicating that a
cassette—~boot is desired. CKEY equals zevo when no cassette-boot is
requested, and is nonzero when a cassette—-boot is requested. The
flag is cleared to zero after a cassette-boot.

NS CASSBT* [004B, 1] —-- Cassette—booting flag

CASSBT is used during the cassette—boot process to indicate to

shared code that the cassette is being booted and not the diskette.
CASSBT equal to zero indicates a diskette—boot, and nonzero indicates
a cassette-boot.

Né CASINI [0002,2]1 ~- Cassette—boot initialization vector

CASINI contains the cassette—-booted software initialization address
from the beginning of the boot file (see Section 10) whenever a

OPERATING SYSTEM CO16555 ~- Appendix L
250

cassette-boot is successfully completed.

N7 BOOT?#* [0009,1] —— Successful diskette/cassette—-boot flag.

BOOT? indicates to the initialization processor which, if any, of
the boot operations went to successful completion. The flag values
are set by the 0SS and the format for the variable is shown below:

764543210
s s Sl T S S
H {CiD!
e s s St T T S

where: C = 1 indicates that the cassette-boot was completed.
D=1 indicates that the diskette-boot was completed.
N8 DFLAGS# [0240.1] —— Diskette flags
DFLAGS contains the value of the first byte of the boot file, after a
diskette—boot. See Section 10.
N9 DBSECT#* [0241,1] —— Diskette—hoot sector count
DBSECT is initially set to the value of the second byte of the boot
file, during a diskette—boot, and is then used to control the number
of additional diskette sectors read, if any.
N1O BOOTAD* [0242,2]1 —— Diskette—~boot memory address
BOOTAD is initially set to the value of the third and fourth

bytes of the boot file, during a diskette-boot, and is not
modified thereafter.

Environment Contrel

If, at the end of a power—up or system resef, control is not

given to one of the cartridges (as explained in Sections 7 and 10),
then program control passes to the address contained in the data
base variable DOSVEC.

N1i1 COLDST# [0244,1] —— Coldstart complete flag
COLDST is used by the initialization routine to detect the case of
a system reset occurring before the completion of the power-—up

process. COLDST is set to $FF at the beginning of the power-up

OPERATING SYSTEM C016555 -— Appendix L
a251

sequence and is set to O at the completion; if a system reset
occurs while the value is nonzero, the power-up sequence will be
reinitiated (rather than initiating a system reset sequence).

Ni2 DOSVEC [00OOA, 23 -— Noncartridge control vector

At the beginning of power-up the 0S sets DOSVEC to point to the
"blackboard” routine; DOSVEC can then be altered as a consequence
of a diskette—boot or cassette—boot (as explained in Section 10) to
establish a new control program. Control will be passed through
DOSVEC on all power—-up and system reset conditions in which a
cartridge does not take control first.

System Reset

N13 WARMST [0008:11 —— Warmstart flag

WARMST equals #%FF during a system reset (warmstar¢)
initialization and equals O during a power—up initialization
(coldstart).

P. INTERRUPTS

See Section &6 for a discussion of interrupt processing.

P1 CRITIC £0042,11 ——- Critical code section flag

CRITIC is used to signal $o the VBLANK interrupt processor that a
critical code section is executing without IRG interrupts being
inhibitedi the VBLANK interrupt processor will stop interrupt
processing after stage 1 and before stage 2, Jjust as if the 6502
processor I bit were set, when CRITIC is set.

CRITIC equal to zero indicates that the currently executing code
section is noncritical, while any nonzero value indicates that the
currently executing code section is critical.

EQ POKMSK £0010,1]1 -— POKEY interrupt mask

POKMSK is a software maintained interrupt mask that is used in
conjunction with the enabling and disabling of the various POKEY
intervrupts. This mask is required because the POKEY interrupt
enable register IRGEN [D20E] is a write—only register, and at any
point in time the system can have several users independently
enabling and disabling POKEY interrupts. POKMSK is updated by the

OPERATING SYSTEM CO16555 -- Appendix L
252

users to always contain the current content of IRGEN.

System Timers

The System Timers are discussed in detail in Section 6.

Realtime Clock

The realtime clock (or frame counter, as it is sometimes called)
is incremented as part of the stage 1 VBLANK process as explained
in Section 4.

P3 RTCLOK £0012,31 -- Realtime frame counter

RTCLOK+0 is the most significant byte, RTCLOK+1 the next most

significant byte, and RTCLOK+2 the least significant byte. See the
discussions at D3 and preceding Bi10 for 0S use of RTCLOK.

System Timer 1

System Timer 1 is maintained as part of the stage 1 VBLAMNMK process,
and thus has the highest priority of any of the user timers.

P4 CDTMV1 [0218,21 -~ System Timer 1 value

CDTMV1 contains zero when the timer is inactive, otherwise it

contains the number of VBLANKs remaining until timeout. Also see
H26. '

PS5 CDTMAL £0226,2]1 ~—~ System Timer 1 jump address

CDTMAL contains the address to which to JSR should the timer
timeout. See also H27 and Section 6. :

OPERATING SYSTEM C016555 -- Appendix L
253

System Timer 2

System Timer 2 is maintained as part of the stage 2 VBLANK process,
and has the second highest priority of the user timers. The 0S does
not have any direct use for System Timer 2.

P6 CDTMV2 [021A,2]1 —- System Timer 2 value

CDTMV2 contains zero when the timer is inactive, otherwise it
contains the number of VBLANKs remaining until timeout.

P7 CDTMA2 [0228,2] —- System Timer 2 jump address

CDTMA2 contains the address to which to JSR should the timer
timeout. See Section 6.

System Timers 3, 4 and 5

System Timers 3; 4 and 5 are maintained as part of the stage 2
VBLANK process, and have the lowest priority of the user timers.
The 0S5 does not have any direct use for these timers.

P8 CDTMV3 [021C.21, CDTMV4 [O21E,2]1 and CDTMVS [0220,21]

These variables contain zero when the corresponding timers are
inactive, otherwise they contain the number of VBLANKs remaining
until timeout.

P? CDTMF3 [022A.11, CDTMF4 [022C,1]1 and CDTMFS ([022E, 21

Each of these 1-byte variables will be set to zero should its
corresponding timer timeout. The 0S never modifies these bytes
except to set them to zero upon timeout (and initialization).

RAM Interrupt Vectors

There are RAM vectors for many of the interrupt conditions within

the system. See Section & for a discussion of the placing of values
to these vectors. :

OPERATING SYSTEM CO16553 —- Appendix L
254

NMI Interrupt Vectors

P10 VDSLST [0200.2] -- Display—-list interrupt vector

This vector is not used by the 0S. See Section 6.

P11 VVBLKI [0222,2] -- Immediate VBLANK vector

This vector is initialized to point to the DS stage 1 VBLANK

P12 WVVBLKD [0224,2] —- Deferred VBLANK vector

This vector is initialized to point to the 0S5 VBLANK exit routine.
See Section 4.

IRG Interrupt Vectors

P13 VIMIRG [02146,2] -~ General IRG vector

This vector is initialized to point to the 08 IRG interrupt
processor. See Section 6.

P14 VPRCED [0202,2]1 -- Serial I1/0 bus proceed signal

The serial bus line that produces this interrupt is not used in the
current system. See Section &. '

P15 VINTER [0204,2] —- Serial I/0 bus interrupt signal

The serial bus line that produces this interrupt is not used in the
current system. See Section 6.

P16 VIBREAK] £0206,21 —— BRK instruction vector

This vector is initialized to point to a PLA, RTI sequence as the
0S5 proper does not utilize the BRK instruction. See Section 6.

P17 VKEYBD [0208,2] —- Keyboard interrupt vector

This vector is initialized to point to the Keyboard Handler'’s
interrupt service routine. See Section & and the discussion
preceding E1.

OPERATING SYSTEM C016555 ~- Appendix L

259

P18 VSERIN [020A, 21 -- Serial I/0 bus receive data ready

This vector is initialized to point to the SIO utility’s interrupt
service routine. See Section 6.

P19 VSEROR {020C,21 ~-— Serial I/0 bus transmit ready

This vector is initialized to point to the SID utility’s interrupt
service routine. See Section 6.

P20 VSEROC [020E,21 -- Servrial I/0 bus transmit complete

This vector is initialized to point to the SI0 utility’s interrupt

service routine. See Section 6.

P21 VTIMRI {0210,21, VTIMR2 [0212.2] and VTIMR4 [0214,2]1 —- POKEY
timer vectors

The POKEY timer interrupts are not used by the 0S See Section 4.

Hardware Register Updates

As part of the stage 2 VBLANK process, certain hardware registers
are updated from 0S5 data base variables as explained in Section 6.

P22 SDMCTL:* {022F, 1] -~ DMA control

SDMCTL is set to a value of $02 at the beginning of a Display
Handler OPEN command. and then later set to a value of $22. The

value of SDMCTL is stored to DMACTL [D400] as part of the stage 2
VBLANK process.

P23 SDLSTL* [0230,1] and SDLSTH#* [0231,1] —- Display list address

The Display Handler formats a new display list with every OPEN
command and puts the display list address in SDLSTL and SDLSTH. The
value of these bytes are stored to DLISTL [D402] and DLISTH [D4031]
as part of the stage 2 VBLANK process.

0360-036F I0CB #=2
0370-037F I0CB #3
0380-038F IOCB #4
0390-03%F IOCB #5
03A0-03AF IOCB #&
03B0O~03BF IOCB #7

OPERATING SYSTEM CO146555 —- Appendix L
256

NOTE: There is a potential timing problem associated with the
updating of the hardware registers from the data base variables.
Since the stage 2 VBLANK process is performed with interrupts
enabled, it is possible for an IRQ interrupt to occur before the
updating of DLISTH and DLISTL. If the processing of that
interrupt (plus other nested interrupts) exceeds the
vertical-blank delay (1 msec), then the display list pointer
register will not have been updated when display list processing
commences for the new frame, and a screen glitch will result.

P24 GPRIOR#* [026F, 11 -— Priority control

The Display Handler alters bits & and 7 of GPRIOR as part of
establishing the GTIA mode. The value of GPRIOR is stored to
PRIOR CDO1iBl as part of the stage 2 VBLANK process.

P25 CHACT# [02F3,1] —- Character control

The Display Handler sets CHACT to $02 on every OPEN command. The
value of CHACT is stored to CHACTL {D401] as part of the stage 2
VBLANK process.

P26 CHBAS [02F4,11 -- Character address base

The Display Handler sets CHBAS to $EO on every OPEN command. The
value of CHBAS is stored to CHBASE [D409] as part of the stage 2
VBLANK process. This variable controls the character subset for
screen modes 1 and 2, a value of $EO provides the capital letters
and number set whereas a value of $E2 provides the lowercase
letters and special graphics set. See B5S for more information.

P27 PCOLRx [02C0, 4] and COLORx {02C4,5] —- Color registers

See B7 and BS.

Internal Working Variables

P28 INTEMP#* [022D,1]1 -- Temporary storage

INTEMP is used by the SETVBL (SETVBV) routine.

OPERATING SYSTEM C0146555 ~- Appendix L
257

R. USER AREAS
The areas shown below are available to the user in a non—-nested
environment. See Section 4 for further information.

R1 [0080, 1281

R2 [0480, 6401

OPERATING SYSTEM CO16555 —- Appendix L
258

ALPHABETICAL LIST OF DATA BASE VARIABLES

NAME VID ADDRESS SIZE
ADDCOR D4 O30E., 1
ADRESS B39 0064, 2
APPMHI A3 OO0O0E, 2
ATACHR BS54 O2FB, 1
ATRACT B1O 004D, 1
BFENHI H17 0035, 1
BFENLO H17 0034, 1
BITMSK BSO O06E, 1
BLIM D10 o28aA, 1
BOOT? N7 0009, 1
BOOTAD N1O 0242, 2
BOTSCR B1é O2BF. 1
BPTR Dit 003D. 1
BRKKEY ES 0011.1
BUFADR Ci 0015, 2
BUFCNT B42 006&B., 1
BUFRFL H21 0038, 1
BUFRHI H16 0033, 1
BUFRL.O H1i& 0032, 1
BUFSTR B43 00&C. 2
CASBUF D9 O3FD, 131
CASFLG D8 O30F. 1
CASINI N& 0002, 2
CASSBTY NS 0048, 1
CAUX1 H20 023C. 1
CAUX2 H20 023D, 1
CBAUDH D1 O2tF. 1
CBAUDL D1 O2EE. 1
CCOMND Hi9 023B. 1
CDEVIC Hig 023A, 1
CDTMA1L PS5, H27 o226, 2
CDTMA2 P7 0228, 2
CDTMF3 PQ? 022A, 1
CDTMF4 P9 o22C, 1
CDTMFS Pe 022E., 1
CDTMVL P4, H26 0226, 2
CDTMV2 o] 021A, 2
CDTMV3 P8 o21C, 2

OPERATING SYSTEM C016555 —— Appendix L
259

ChTMV4 P8 O21E, 2

CDTMVS P8 0220, 2
CH E3 02FC, 1
CHKSNT H14 0038, 1
CH1 E1l 02F2, 1
CHACT P25 02F3, 1
CHAR BSS O2FA, 1
CHBAS P26 02F4, 1
CHKSNT H14 0038, 1
CHKSUM H13 0031, 1
CIOCHR G25 002F, 1
CIX Mii OOF2, 1
CKEY N4 004A, 1
COLAC B24 0072, 2
COLCRS B2 0055, 2
coLDsST N1l 0244, 1
COLINC B21 007A, 1
COLORO B8, P27 o2C4, 1
COLOR1 B8, P27 02CS5, 1
COLOR2 B8, P27 02Cé, 1
COLOR3 B8, P27 02C7, 1
COLOR4 B8, P27 02C8, 1
COLRSH Biil QO04F, 1
COUNTR B23 0O07E, 2
CRETRY Hi1 0036, 1
CRITIC P1 0042, 1
CRSINH B1 02F0, 1
CSTAT g2 oze8, 1
DAUX1 H? 030A: 1
DAUX2 . H? 030B. 2
DBSECT Ne 0241, 1
DBUFHI Hé6 0304, 1
DBUFLO Hé 0305. 1
DBYTHI H8 0308, 1
DBYTLO HB 0309, 1
DCB H1 0300, 12
DCOMND H4 0302, 1
DDEVIC H2 0300, 1
DEGFLG M24 OOFB., 1
DELTAC B22 0077. 2
DELTAR B22 0076, 1
DFLAGS NB 0240, 1
DIGRT M10 OOF1.,1
DINDEX B35S 0057, 1
DMASK B28 0240, 1
DOSINI N3 000C, 2
DOSVEC N12 000A, 2
DRETRY Hi2 0037. 1
DRKMSK B12 004E. 1
DSKTIM c2 0246, 1
DSKUTL L1 001A, 2
DSPFLG B27 O2FE, 1
DSTAT B34 004C, 1

OPERATING SYSTEM CO16555 ~—- Appendix L
260

DSTATS HS 0303, 1

DTIMLO H7 0306, 1
DUNIT H3 0301, 1
DUNUSE S3 0307, 1
DVSTAT G11 O2EA, 4
EEXP M& OOED., 1
ENDPT B25 0074, 2
ERRFLG H30 023F., 1
(ERRNO K3) 0049, 1
ESCFLG B26 02a2, 1
ESIGN M8 QOEF, 1
FCHRFL M? OOFO0. 1
FEOF Diz2 OO03F., 1
FILDAT B17 O2FD. 1
FILFLG Bi8 02B7. 1
FLPTR Mié OOFC. 2
FMSZPG Ki 0043, 7
FPSCR Ma22 O5E&, &
FPSCR1 M23 OSEC, &
FPTR2 M17 OOFE, 2
FRO M1 ooD4. &6
FR1 M3 O0EO.: &
FR2 M4 O0Eé&: 6
FRE M2 O0DA, 6
FREQ D15 0040, 1
FRMADR B41 0068, 2
FRX M3 O0EC, 1
FSCR M22 OSE&L. &6
FSCR1 M23 0SEC, &
FTYPE D13 O03E. 1
GPRIOR P24 O26F. 1
HATABS G12 031A, 38
HOLD1 B30 0051, 1
HOLD2 B31 029F., 1
HOLD3 B32 029D, 1
HOLD4 B20 02BC. 1
HOLDCH E7 007C. 1
ICAX1 G? 034A, 1
ICAX1Z G21 0024a, 1
ICAX2 G? 034B. 1
ICAX2Z G21 002B., 1
ICBAH Gé 0345, 1
ICBAHZ Gi8 0025, 1
ICBAL G6 0344, 1
ICBALZ Gi8 0024, 1
ICBLH G8 0349, 1
ICBLHZ G20 0029, 1
ICBLL GB 0348, 1
ICBLLZ G20 0oz28, 1

OPERATING SYSTEM CO16555 —— Appendix L
261

ICCOM G4 0342, 1

ICCOMT 623 0017, 1
ICCOmMZ Glé 0022, 1
ICDNO G3 0341. 1
ICDNOZ 615 ooz1.1
ICHID G2 0340, 1
ICHIDZ c14 0020, 1
ICIDNO 624, G2 2002E, 1
ICPTH G7 0347, 1
ICPTHZ 619 0027, 1
ICPTL G7 0346. 1
ICPTLZ 619 0026, 1
ICSPR ¢10 034C, 4
ICSPRZ c22 002C, 4
ICSTA 65 0343, 1
ICSTAZ 617 0023, 1
INBUFF Mi2 OOF3, 2
INSDAT B45 007D, 1
INTEMP P28 022D, 1
INVFLG E? 02B6, 1
I0CB Gi 0340, 16
I0OCBAS G13 0020, 14
KEYDEL E2 02F1,1
LBFEND M20 0580, ?6
LBPR1 M18 0S7E., 1
LBPR2 Mi9 057F, 1
LBUFF M20 0580, 96
LINBUF BS1 0247, 40
LMARGN BS 0052, 1
LOGCOL. B15S 0063, 1
LOGMAP Bi4 0282, 4
MEMLO Al 02E7. 2
MEMTOP A2 02ES, 2
MLTTMP B40 0064, 2
NEWCOL B19 0061, 2
NEWROW B19 0060, 1
NOCKSEM H1S 003C, 1
NSIGN M7 OOEE., 1
OLDADR B38 00SE, 2
OLDCHR B37 005D, 1
oLDCOL B3 00358, 2
OLDROW B3 005A, 1
OPNTMP B40O 0064, 2
PADDLO J3 0270, 1
PADDL 1 J3 0271, 1
PADDL2 J3 0272 1
PADDL.3 J3 0273, 1
PADDL 4 J3 0274. 1

OPERATING SYSTEM CD16555 —~- Appendix L
262

PADDLS J3 0275, 1

PADDL& J3 0276, 1
PADDL7 J3 0277, 1
PBPNT F3 001D, 1
PBUFSZ F2 001E, 1
PCOLRO B7. P27 02co. 1
PCOLR1 B7. P27 02Ct, 1
PCOLR2 B7.P27 02c2, 1
PCOLR3 B7. P27 02¢3, 1
PLYARG M21 05EO. 6
POKMSK P2 0010, 1
PRNBUF F1 030, 40
PTEMP F4 001F, 1
PTIMOT F5 001C, 1
PTRIGO Ja 027¢. 1
PTRIC J4 027D, 1
PTRIC2 Ja 027€, 1
PTRIC3 J4 027F. 1
PTRIG4 Ja 0280, 1
PTRIGS J4 0281, 1
PTRICS J4 0282, 1
PTRIC? Ja 0283, 1
RADFLG M24 OOFB. 1
RAMLO N1 0004, 3
RAMSIZ AS 02E4, 1
RAMTOP A4 006A, 1
RECVDN Ha2 0039, 1
RMARGN B& 0053, 1
ROWAC B24 0070, 2
ROWCRS B2 0054, 1
ROWINC B21 0079, 1
RTCLOK P3 0012, 3
SAVADR B41 0068, 2
SAVIO D7 0316, 1
SAVMSC B36 0058, 2
SCRFLG B9 02BB, 1
SDLSTH P23 0231, 1
SDLSTL P23 0230, 1
SDMCTL p22 022F, 1
SHFAMT B29 00&F, 1
SHFLOK E6 02BE, 1
SOUNDR H10 0041, 1
SRTIMR ES 022B, 1
SSFLAG E4 02FF, 1
SSKCTL H32 0232, 1
STACKP Ha8 0318, 1
STATUS H31 0030, 1
STICKO J1, 7, uB 0278, 1
STICK1 J1,J7, JB 0279, 1
STICK2 J1, J7, JB 0274, 1
STICK3 J1, J7, JB 0278, 1
STRIGO J2, J7, J9 0284, 1

OPERATING SYSTEM C016555 —- Appendix L a
26

STRIG1 J2, J7, J9 02835, 1

STRIGZ2 o2, J7, J9 0286, 1
STRIG3 J2, J7, U9 0284. 4
SUBTMP B4g 029E. 1
SWPFLG B44 007B. 1
TABMAP Bi3 02A3, 15
TEMP H23 023E., 1
TEMP1 D3 0312, 2
TEMP3 D& 0315, 1
TIMER1 D3 030C, 2
TIMER2 D3 0310, 2
TIMFLG D2, H25 0317, 1
TINDEX B49 0293, 1
TMPCHR B33 0050, 1
TMPCOL B4é 02B9, 2
TMPLBT B47 02A1.1
TMPROW B4é 0288, 1
TOADR B40 0066, 2
TRAMSZ N1 0004, 3
TSTAT H29 0319, 1
TSTDAT N2 0007. 1
TXTCOL B4 0291.2
TXTMSC BS2 0294, 2
TXTOLD BS3 0296, &
TXTROW B4 0290, 1
USAREA R1 0080, 128
VBREAK P1é& 0206, 2
VDSLST P10 0200, 2
VIMIRG P13 0216, 2
VINTER P15 0204, 2
VKEYBD P17 o208, 2
VPRCED P14 0202, 2
VSERIN P1 020A. 2
VSERQOC P20 020E. 2
VSEROR P19 020C. 2
VTIMR1 P21 0210, 2
VTIMR2 P21 0212, 2
VTIMR4 P21 0214, 2
VVBLKD P12 o224, 2
VVBLKI P11 0222, 2
WARMST N13 0008, 1
WMODE Di4 0289, 1
XMTDON H24 0034, 1
(ZBUFF K2) 0043, 2
(ZDRVA K3) 00435, 2
ZI0CB ¢i3 0020, 14
(ZSBA K4) 0047, 2
ZTEMP1 Mi3 00F3. 2

OPERATING SYSTEM C016555 -- Appendix L
264

ZTEMP3 M15 00F9, 2
ITEMP4 Mi4 OOF7, 2

OPERATING SYSTEM CD16555 —— Appendix L
265

MEMORY ADDRESS ORDERED LIST OF DATABASE VARIABLES

ADDRESS VID NAME
0000~0001 g7 LNZBS
0002-0003 Né CASINI
0004-0006 N1 RAMLO, TRAMSZ
0007 N2 TSTDAT

0008 Ni3 WARMST

0009 N7 BOOT?
000A-~-000B N12 DOSVEC
000C-000D N3 DOSINI
COOE-OOOF A3 APPMHI

0010 P2 POKMSK

0011 ES BRKKEY
0012-0014 P3 RTCLOK
0015-0016 Ci BUFADR

0017 623 ICCOMT
001A-001B L1 DSKUTL

00i1C FS PTIMOT

001D F3 PBPNT

OO1E Fa2 PBUFSZ

O01F F4 PTEMP

0020 613,614 ICHIDZ

0021 G15 ICDNOZ

o022 Gl1é Iccomz

0023 617 ICOBAS
0024-0025 cig ICBALZ, ICBAHZ
0026-0027 G19 ICPTLZ, ICPTHZ
0028-0029 c20 ICBLLZ, ICBLHZ
002A-002B 621 ICAX1Z, ICAX2Z
002C~-002F 622, G24, 625 ICSPRZ

0030 H31 STATUS

0031 Hi3 CHKSUM
0032-0033 Hié BUFRLO, BUFFRHI
0034-0035 Hi7 BFENLO, BFENHI
0036 Hitl CRETRY

0037 Hi2 DRETRY

0038 H21 BUFRFL

0039 H22 RECVDN

003A H24 XMTDON

003B Hi4 CHKSNT

003C H1S NOCKSEM

003D Diti BPTR

0O03E D13 FTYPE

OO3F D12 FEOF

0040 D15 FREQ

0041 H10 SOUNDR

0042 P1 CRITIC
0043-0049 K1, K2, K3, K4, KS ZBUFF, ZBUFP, ZDRVA, Z1SBaA
004A N4 CKEY

0048 NS CASSBT

004C B34 DSTAT

OPERATING SYSTEM CO146555 —— Appendix L
266

004D
004E
004F
0050
0051
0052
0053
0054-0056
0057
0058-0059
005A-005C
005D
Q0SE~-QCSF
0060-0062
0063
0064-0065
00&66-0067
0068-00&69
00s6A
006B
00&6C—-00&D
00&E
OO6&F
0070-0073
0074-0075
0076-0078
0079-007A
0078
007C
007D
O07E-QO7F

0080-00FF
0100-01FF

0200-0201
0202-0203
0204-0205
0206-0207
0208-0209
020A-0208
020C-020D
020E-020F
0210-0215
0216-0217
0218-0219
021A-021B
021C-0221
0222-0223
0224-0225
0226-0227
02280229
o224

B10O
B12
Bi1l
B33
B30
BS

Bé

B2

B35
B3é6
B3

B37
B38
B19
B1S
B39
B40
B41
A4

B42
B43
BS50O
B29
B24
B25
B22
B21
B44
E7

B45
B23

SEE FLOATING

6502 STACK

P10
P14
P15
P16
P17
P18
P19
P20
P21
P13
P4, H26
P&
P8
P11
P12
PS5, H27
P7
P9

ATRACT

DRKMSK
COLRSH

TMPCHR
HOLD1
LMARGN
RMARGN
ROWCRS, COLCRS
DINDEX
SAVMSC
OLDROW, OLDCOL
OLDCHR
OLDADR
NEWROW, NEWCOL.
LOeCOoL

ADRESS
MLTTMP, OPNTMP, TOADR
SAVADR/FRMADR
RAMTOP

BUFCNT

BUFSTR
BITMSK
SHFAMT
ROWAC, COLAC
ENDPT
DELTAR.: DELTAC
ROWINC, COLINC
SWPFLG
HOLDCH

INSDAT
COUNTR

POINT VARIABLE LIST AT END.

VDSLST
VPRCED
VINTER
VBREAK
VKEYBD
VSERIN
VSEROR
VSERQC
VITMR1, VITMR2, VITMRS
VIMIRQG
ChTMV1
cDTMVZ
CDTMV3, CDTMV4, CDTMVS
VVBLKI
VVBLKD
CDTMAL
CDTMAZ2
CDTMF3

OPERATING SYSTEM C016555 ~—- Appendix L

267

0228 ES SRTIMR

o22C Pe CDTMF4

022D P28 INTEMP

022 Pe CDTMFS

022F P22 SDMCTL

0230-0231 P23 SDLSTL, SDLSTH
0232 H32 SSKCTL

023A HiB : CDEVIC

023B Hi® CCOMND
023C~-023D H20 CAUX1, CAUX2

023E H23 - TEMP

023F H30 ERRFLG

0240 N8 DFLAGS

0241 N% DBSECT

02420243 N1O BOOTAD

0244 N11i COLDST

0246 c2 : DSKTIM
0247-026E BS1 : LINBUF

024&F P24 GPRIOR

0270-0277 J3 PADDLO -- PADDL7Y
02780278 Ji,J7., 48 STICKO —-— STICK3
027C-0283 Ja PTRIGO -- PTRIG?
02840287 J2, Jd7, J% STRIGO -- STRIG3
0289 D14 WMODE

028A D10 BLIM

028B-028F . 810 unused

02900292 B4 TXTROW, TXTCOL
0293 B49? TINDEX

02940295 BS2 TXTMSC

02960298 B53 TXTOLD

029D B32 HOL.D3

029E B4g SUBTMP

029F B31 HOLD2

02A0 B2g8 DMASK

02A1 B47 TMPLBT

o24a2 B26 ESCFLG

02A3-02B1 Bi3 TABMAP

02B2-02BS Bi4 LOGMAP

02Bé E? INVFLG

02B7 B18 FILFLG

02B8-02BA B4s TMPROW, TMPCOL
02BB B% SCRFLG

02BC B20 HOLD4

02BE Eé6 SHFLOK

02BF B1é . BOTSCR

02C0-02C3 B7. P27 PCOLRO -- PCOLR3
0204-02C8 B8, P27 PCOLRO -- PCOLR4
o2E4 AS RAMSIZ

02E5-02E6 A2 MEMTOP

02E7-02E8 Al MEMLO

02EA-O2ED G111 DVSTAT
O2EE-O2EF D1 ' CHBAUDL , CHBAUDH
02F0 - B1 CRSINH

02F1 E2 KEYDEL

OPERATING SYSTEM C0O16555 —— Appendix L
268

02F2
02F3
02F4
O2FA
O2FB
02FC
O2FD
02FE
O2FF

0300
0301
0302
0303
0304-0305
0306
0308-0309
030A-0308B
030C~-030D
030E
O30F
0310-0311
0312-0313
0315
0316
0317
0318
0319
031A-033F
0340
0341
0342
0343
0344-0345

0346~0347
0348-0349
034A-034B
034C—-034F
0350-035F
03&60-03&F
0370-037F
0380-038F
0320-03%9F
03A0-03AF
03B0O~-03BF
03C0-03E7

O3FD-047F

0480-06FF

El
P25
P26
BS5S
B54
E3
B17
B27
E4

Hi, H2
H3

H4

HS

Hé

H7

H8

H?

D3

b4
D8

D3

D5

D&

D7
D2, H23
H28
H29
G12
61, G2
G3

G4

G5

Gé&

67

G8

c?

G10
G2-G10
G2-G10
62-610
62-610
G2-G10
G2-G10
c2-G10
F1

De
R2

OPERATING SYSTEM CO016555 -— Appendix L

CH1
CHACT
CHBAS
CHAR
ATACHR
CH
FILDAT
DSPFLG
SSFLAG

DCB/DDEVIC
DUNIT
DCOMND
DSTATS
DBUFLO. DBUFHI
DTIMLD
DBYTLO, DBYTHI
DAUX1, DAUX2
TIMER1
ADDCOR
CASFLG
TIMERZ
TEMP1

TEMP3

SAVIO
TIMFLG
STACKP
TSTAT
HATABS
I0CB, ICHID
ICDNOD

ICCOM

ICSTA
ICBAL, ICBAH

ICPTL., ICPTH
ICBLL, ICBLH
ICAaX1, ICAX2
ICSPR
(I0CB #1}
(I10CB #2)
(IOCB #3)
(IOCB #4)
(1I0CB #5)
(I0CB #6)
(I0CE #7)
PRNBUF

CASBUF

User Area

269

FLOATING POINT PACKAGE VARIABLES

00D4-00D? M1 FRO
OODA-OODF M2 FRE
OOEO-0OO0OES M3 FR1
OOE&-00EB M4 FR2

00EC M3 FRX

OOED Mé EEXP

OOEE M7 NSIGN

OO0EF M8 ESIGN

OOFO M? FCHRFLG
OOF1 Mi0 DIGRT

00F2 Mi1 ’ CIX
OOF3-00F4 Mi2 INBUFF
OOFS5-00F 6 Mi3 ZTEMP1
O0OF7-00F8 Mi4 ZTEMP4
O0OF?-00FA M15 ZTEMP3
OOFB M24 RADFLG/DEGFLG
QOFC~O00FD Mié FLPTR
OOFE-OOFF M17 FPTR2

057E Mig LBPR1

OS7F M1 LBPR2
0580-05FF M20 LBFEND, LBUFF
0OSEO-OSES M21 PLYARG
OSE6-OSEB M22 FPSCR/FSCR
O5EC-0O5F1 M23 FPSCR1/SCR1

OPERATING SYSTEM C016555 —— Appendix L
270

INDEX

The subject index contains three forms of references:

Section number,

Appendix, such as ‘App B’

Variable ID from Appendix L.

ATARI standards
ATASCII
attract moade

bit mapped graphics
blackboard mode
BNF

boot

BREAK

cartridge

cassette baud rate determine
cassette-~boot

cassette device

Cassette Handler (C)

CID (Central I/0 Utility)
CI0/user interface
CI0O/Handler interface
CLOSE I/0 command
coldstart (see ‘Power—up’)
color control

control characters
ctritical section

cursor

database

DCB (Device Control Block)
DELETE 1/0 command
development system

device/filename specification

Device Handler

device table

disk—boot

disk device

Disk File Manager (D}
Disk Handler (resident)
display device (screen)
Display Handler (85)
display list

DOS (Disk Utilities)
DRAW I/0 command
driving controller

such as ‘3.

¢

such as ‘B7’.

12
854""550 5:
B10-12, &,

App D-G

B28-B29, 5, App H

3, Ni2, 7, 12

i

3: 4: NS-IOI 50 7: 10
ES, &, 12

3, 4, 7, 10
D1-D7

3, N3-10, 7. 10
D1-D15, 3, S

5

¢1-25, 5, 9
61-11, 5., App A
612-22, 9

5, 9

App B

B7-8, 5, 6
B26-27, S
P1, &
Bi-4, S

App D

4

Hi-%9, 5, @

S

13

S

S5, 9

2, ¢12, 5 7, 9

3, N3-10, 5, 7, 10
5

Ki-5, 5
Ci"'gl 5
354“‘55: S,
B1-55, 5
4, P10
Li, 12
B17-25, 5
JB-9

App E, App H

Educational System Format Cassettes 5

error handling

95: H5. H11—12: 91

OPERATING SYSTEM C014555 —- INDEX

App B-C

EOF (end-of-file) o

File Managemant System S

FILL I/0 command B17-25%, 5

floating point package 2/, 4, M1-24, 8, App J
FORMAT I/0 command S

free memory 4, A1-3, Ri1-2, 4., 7
game controllers 3, Ji-9, &6, 11

GET CHARACTER 1I/0 command S 9

GET RECORD I/0 command S5 9

GET STATUS 1/0 command G¢ii, 5 ©

Handler (see ‘device handler’ and individual device handlers)

initialization, cartridge 7
initialization, Handler 7, 9
initialization: interrupt &
initialization, system 4, 7. 10
internal display code 5, BS54
interrupts 2, P1-28, 4
interrupt mask P2, 6
inverse video (display) E?: S

1/0 2, 4, 5, 9
IOCB (I/0 Control Block) ¢1-10, 5, 9
I/0 retry logic Hi1~12
Joystick Ji-2
keyboard Autorepeat EB8

keyboard device S

Keyhoard Handler (K} Ei-?. 3, App F
keyboard key debouncing E1-3

light pen 11, App J
LNBUG 13

LOCK 1/0 command 5

logical text lines (screen) B14-15, 9

memory (see ‘RAM’, ‘ROM’ and ‘free memory’)

memory dynamics Ai-S, Ni-2, 4, 5, 7
memory map ‘ 4

NOTE 1/0 command)

OPEN I/0 command S, 9

paddle J3-4

page 0O 4, Mi-17, RL, 9
page 1 4, 9

peripheral devices 3

POINT I/0 command 5 ,
Power-up 2, N1-13, 4, 7, 12
printer device 85, App €

OPERATING SYSTEM C016555 —-— INDEX
272

Printer Handler (P)
program development

PUT CHARACTER 1/0 command
PUT RECORD I/0 command

RAM

record (I/0)

RENAME I/0 command
RESET

ROM (0S)

RE-232~-C Handler (R)

Screen Editor (E)
screen margins

screen modes

scrolling (text)
serial I/0 bus
CSHIFT1/CONTROL lock
SI0 (Serial bus I/0 Utility)
sound control (SIO)
SPECIAL I/0 commands
split screen

stack

start/stop (display)
stage 1 VBLANK process
stage 2 VBLANK process

tabs (Screen Editor)
timeout (device)
timers (system)

UNLOCK I/0 command
user workspace

vectors, RAM
vectors, ROM
vertical blank interrupt

warmstart (see ‘RESET’)
wild~card (disk filename)

ZIOCB (Zero-page IOCB)

2: N1—13, bl 71 12
1, 4
5 9

B1-55, 5
BS"EN 5: 7
4, 5, App H
B?, 5

3 5 9
E6-7, S
H1-32,
H10, 11
S 9
B14, S
4

E4, 5, 12
P3-5, &

P&~-9, P22-27. 6

App I

P13-21, S, 9. App Cc

Bi3, S
H25-27, %
PS"“?; 6

S
4, M18-23, R2

P5, P7, P10-21, &4, 9
5 9 App J

P11-12, &

5

¢13-22, 9, 0020, 16

OPERATING SYSTEM CO0146555 -- INDEX

273

ATARFA00/800"

ATARI HOME COMPUTER SYSTEM

OPERATING SYSTEM
SOURCE LISTING

AN

®
ATARI A Warner Communications Company @

COPYRIGHT 1982, ATARI, INC.
ALL RIGHTS RESERVED

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

Every effort has been made to ensure that this manual accurately
documents this product of the ATARI Home Computer Division.
However, due to the ongoing improvement and update of the computer
software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and disclaims
liability for changes, errors, or omissions.

ERR LINE

BSONCAHWUN -

ADDR Bl B2 B3 B4

L

s e e e e me

6500 ASSEMBLER VER 1. OMR PAGE

IST X

THIS IS THE MODIFIED SEPTEMBER ATARI 400/800 COMPUTER OPERATING
SYSTEM LISTING, MODRIFIED TO ASSEMBLE ON THE MICROTEC CROSS
ASSEMBLER.

THIS VERSION IS THE ONE WHICH WAS BURNED INTO ROM.

THERE IS A& RESIDUAL PIECE OF CODE WHICH IS FOR LNBUG. THIS

IS AT LOCATION $9000 WHICH IS NOT IN ROM.

THIS IS THE REVISION B EPROM VERSION

1

ERR LINE

ADDR

0000

£E000
E400
E480
E4Ab6
E&DS
E?44
EDEA
EE78
EF41
FOE3
F3E4

E400
E410
E420
E430
E440

Bi B2 B3 B4

b + JRTNE I S

ALFLG

e

1

CHRORG
VECTBL
VCTAaBL
CIDORG
INTORG
SI1I00RG
DSKORG
PRNORG
CASORG
MONORG
KBDORG

!

i HANDL
TABLE

i
i
i
i
i

EXAMP

m

i
i

1
!
1

EDITRV
SCRENV
KEYBDV
PRINTV
CASETV

i
i
i

i THE F

6500 ASSEMBLER VER 1. OMR PAGE

. PAGE

COLLEEN OPERATING SYSTEM EQUATE FILE"
NTSC/PAL ASSEMBLY FLAG
= 0 i0 = NTSC 1 = PAL

MODULE ORIGIN TABLE

= $E00CO i CHARACTER SET

= $E400 i VECTOR TABLE

= $E480 i RAM VECTOR INITIAL VALUE TABLE
= $E4AL i CENTRAL. I/0 HANDLER

= $ELDS i INTERRUPT HANDLER

= $E?44 i SERIAL I/0 DRIVER

= $EDEA i DISK HANDLER

= SEE78 i PRINTER HANDLER

= SEF41 i CASSETTE HANDLER

= $FOE3 i MONITOR/POWER UP MODULE
= $F3E4 i KEYBOARD/DISPLAY HANDLER

VECTOR TABLE

ER ENTRY POINTS ARE CALLED OUT IN THE FOLLOWING VECTOR

. THESE ARE THE ADDRESSES MINUS ONE.
LE FOR EDITOR
400 OPEN
2 CLOSE
4 GET
) PUT
8 STATUS
A SPECIAL
c JUMP TO POWER ON INITIALIZATION ROUTINE
. F NOT USED
= $E400 i EDITOR
= $E410 i TELEVISION SCREEN
= $E£420 i KEYBOARD
= $E430 i PRINTER
= $E440 i CASSETTE

JUMP VECTOR TABLE

OLLOWING IS A TABLE OF JUMP INSTRUCTIONS

ERR LINE

ADDR

E430
E453
E456
E459
E45C
E45F
E4&2
E4&5
E448
E44B
E446E
E471
E474
E477
E47A
E47D

0003
0005
0007
0009
000B
000C
0oo0oD
0O00E

0011
0012
0020
0021
0022
0023
0024
0025
Q024
OOFF

0001
0002
0004
0008
000C
o010
0020

Bi B2 B3 B4

i TO VARIQUS ENTRY POINTS IN

’
DISKIV
DSKINV
cIov
SI0V
SETVBV
SYSVBV
XITVBY
SIODINV
SENDEV
INTINV
CIDINV
BLKBDV
WARMSY
coLbpsv
RBLOKV
CSOPIV
i VCTABL

1

-~

{70 T OO N 1}

4500 ASSEMBLER VER 1. OMR

$E480

PAGE 3

THE OPERATING SYSTEM.

$E430 i DISK INITIALIZATION

$E453 i DISK INTERFACE

$E45346 i CENTRAL INPUT OUTPUT ROUTINE

$EAS? i SERIAL INPUT OUTPUT ROUTINE

$E45C i SET SYSTEM TIMERS ROUTINE

SE4SF i SYSTEM VERTICAL BLANK CALCULATIONS
$E462 i EXIT VERTICAL BLANK CALCULATIONS
$E44L5 i SERIAL INPUT OUTPUT INITIALIZATION
$E468 i SEND ENABLE ROUTINE

$E4LB i INTERRUPT HANDLER INITIALIZATION
$E44LE i CENTRAL INPUT OQUTPUT INITIALIZATION
$E471 i BLACKBOARD MODE

$E474 i WARM START ENTRY POINT

SE477 i COLD START ENTRY POINT

$E47A i CASSETTE READ BLOCK ENTRY POINT VECTOR
$E47D

OPERATING SYSTEM EQUATES

i COMMAND CODES FOR IOCB

OPEN
GETREC
GETCHR
PUTREC
PUTCHR
CLOSE
STATIS
SPECIL

B

[

LI O T

i SPECIAL

DRAWLN
FILLIN
RENAME
DELETE
FORMAT
LOCKFL
UNLOCK
POINT
NOTE
I0CFRE

i

WRH o RR BN

ENTRY

i AUX1 EQUATES
i () INDICATES WHICH DEVICES USE BIT

APPEND
DIRECT
OPNIN

OPNOT

OPNINOD
MXDMOD
INSCLR

L

i CASSETTE OPEN FOR INPUT VECTOR

3 i OPEN FOR INPUT/OUTPUT

5 i GET RECORD (TEXT)

7 i GET CHARACTER(S)

? i PUT RECORD (TEXT)

B i PUT CHARACTER(S)

$C i CLOSE DEVICE

%D i STATUS REQUEST

$E i BEGINNING OF SPECIAL ENTRY COMMANDS
COMMANDS

$11 i DRAW LINE

$12 i DRAW LINE WITH RIGHT FILL
$20 i RENAME DISK FILE

$21 i DELETE DISK FILE

$22 i FORMAT

$23 i LOCK FILE TO READ ONLY
$24 i UNLOCK LOCKED FILE

$25 i POINT SECTOR

%26 i NOTE SECTOR

$FF i IOCB “FREE"

$10
$20

i OPEN FOR WRITE APPEND (D),

OR SCREEN READ (

i OPEN FOR DIRECTORY ACCESS (D)

i OPEN FOR INPUT (ALL DEVICES)

i OPEN FOR QUTPUT (ALL DEVICES)
OPNIN+OPNOT ; OPEN FOR INPUT AND OUTPUT (ALL DEVICES)

i OPEN FOR MIXED MODE (E, S}

i OPEN WITHOUT CLEARING SCREEN (E,S)

ERR LINE ADDR Bi B2 B3 B4 4500 ASSEMBLER VER 1. OMR PAGE 4

118 i

119 ;i DEVICE NAMES

120 0045 SCREDT = E i SCREEN EDITOR (R/W}

121 004B KBD = ‘K i KEYBOARD (R ONLY)

122 0053 DISPLY = ‘g i SCREEN DISPLAY (R/W)

123 0050 PRINTR = p i PRINTER (W ONLY)

124 0043 CASSET = c i CASSETTE

125 004D MODEM = ‘M i MODEM

126 0044 DISK = ‘D iDISK (R/W)

127 i :

128 i SYSTEM EOL (CARRIAGE RETURN)

129 O0O0%B CR = $98B

130 H

131 i

132 i OPERATING SYSTEM STATUS CODES

133 i

134 0001 SUCCES = $01 i SUCCESSFUL OPERATION

135 i

136 0080 BRKABT = $80 i BREAK KEY ABORT

137 0081 PRVOPN = $81 i I0CB ALREADY OPEN

138 0082 NONDEV = $82 i MON-EXISTANT DEVICE

139 0083 WRONLY = $83 i IOCB OPENED FOR WRITE ONLY
140 00B4 NVALID = $84 i INVALID COMMAND

141 0085 NOTOPN = $85 i DEVICE OR FILE NOY OPEN

142 0086 BADIOC = $86 i INVALID IOCB NUMBER

143 0087 RDONLY = $87 i IOCB OPENED FOR READ ONLY
144 0088 EQOFERR = +88 i END OF FILE

145 0089 TRNRCD = %89 i TRUNCATED RECORD

146 OO0BA TIMOQUT = $8A i PERIPHERAL DEVICE TIME OUT
147 008B DNACK = $8B i DEVICE DOES NOT ACKNOWLEDGE COMMAND
148 008C FRMERR = $8C i SERIAL BUS FRAMING ERROR
149 008D CRSROR = $8D i CURSOR OVERRANGE

150 OOBE OVRRUN = $BE i SERIAL BUS DATA QOVERRUN

151 OO08F CHKERR = $BF i SERIAL BUS CHECKSUM ERROR
192 H

153 0090 DERROR = $90 i PERIPHERAL DEVICE ERROR (OPERATION NOT COMP
154 0091 BADMOD = $91 i BAD SCREEN MODE NUMBER

165 0092 FNCNOT = $92 i FUNCTION NOT IMPLEMENTED IN HANDLER
156 0093 SCRMEM = $93) i INSUFICIENT MEMORY FOR SCREEN MODE
157 i

158 i

159 i

160 i

161 i

162 i

163 i PAGE ZERO RAM ASSIGNMENTS

144 i

1465 #=%$0000

166 0000 L.INZBS: .RES 2 i LINBUG RAM (WILL BE REPLACED BY MONITOR RAM
147 i

1468 i THESE LOCATIONS ARE NOT CLEARED

169 0002 . CASINI: . RES 2 i CASSETTE INIT LOCATION

170 0004 RAMLO: . RES 2 i RAM POINTER FOR MEMORY TEST

171 0006 TRAMSZ: .RES 1 i TEMPORARY REGISTER FOR RAM SIZE

ERR LINE ADDR Bl B2 B3 B4 &500 ASSEMBLER VER 1. OMR PAGE 5

172 0007 TSTDAT: . RES 1 i RAM TEST DATA REGISTER

173 H

174 i CLEARED ON COLDSTART ONLY

175 0008 WARMST: . RES 1 i WARM START FLAG

176 0009 BOOT?: . RES 1 i SUCCESSFUL BOOT FLAG

177 000A DOSVEC: .RES 2 i DISK SOFTWARE START VECTOR

178 000C DOSINI: . RES 2 i DISK SOFTWARE INIT ADDRESS

179 OGOQE APPMHI: | RES 2 i APPLICATIONS MEMORY HI LIMIT

180 i

181 i CLEARED ON COLD DOR WARM START

182 0010 INTZBS =% i INTERRUPT HANDLER

183 0010 POKMSK: | RES b i BYSTEM MASK FOR POKEY IRG ENABLE
184 0011 BRKKEY: . RES i i BREAK KEY FLAG

185 0012 RTCLOK: | RES 3 i REAL. TIME CLOCK (IN 146 MSEC UNITS?
186 i

187 0015 BUFADR: . RES 2 i INDIRECT BUFFER ADDRESS REGISTER
188 H

189 0017 ICCOMT: | RES 1 i COMMAND FOR VECTOR

190 i

191 0018 DSKFMS: | RES 2 iDISK FILE MANAGER POINTER

192 001aA DEKUTL: . RES 2 iDISK UTILITIES POINTER

193 i

1?24 (Q0i1C PTIMOT: .RES i i PRINTER TIME OQUT REGISTER

195 001D PBPNT: | RES 1 i PRINT BUFFER POINTER

1946 OOI1E PBUFSZ. .RES 1 i PRINT BUFFER SIZE

197 OO01F PTEMP: | RES 1 i TEMPORARY REGISTER

198 i

199 0020 zioce =3% i ZERD PAGE I/0 CONTROL BLOCK

200 0010 I0CBSZ = 164 i NUMBER OF BYTES PER IOCB

201 0080 MAXIOC = 8#10CBSZ i LENGTH OF THE IOCB AREA

202 0020 INCBAS = .

203 0020 ICHIDZ: _RES 1 ; HANDLER INDEX NUMBER (FF = IOCB FREE)
204 0021 ICDNOZ: . RES 1 i DEVICE NUMBER (DRIVE NUMBER?!

205 0022 ICCOMZ: . RES 1 i COMMAND CODE

20&6 0023 ICSTAZ: . RES 1 i STATUS OF LAST IOCB ACTION

207 0024 ICBALZ: | RES 1 i BUFFER ADDRESS LOW BYTE

208 0025 ICBAHZ: . RES 1

209 0026 ICPTLZ: .RES 1 i PUT BYTE ROUTINE ADDRESS - 1

210 0027 ICPTHZ: . RES i

211 0028 ICBLLZ: .RES i i BUFFER LENGTH LOW BYTE

212 0029 ICBLHZ: | RES b

213 002A ICAX1Z: _RES 1 ;i AUXILIARY INFORMATION FIRST BYTE
214 002B ICAX2Z: .RES 1

215 002C ICSPRZ: ,RES 4 ; TWO SPARE BYTES (CIO LOCAL USE)
216 002E ICIDNO = ICSPRZI+2 i I0CB NUMBER X 16

217 002F : CIOCHR = ICSPRZ+3 i CHARACTER BYTE FOR CURRENT OPERATION
218 ;

219 0030 STATUS: | RES 1 ;i INTERNAL STATUS STORAGE

220 0031 CHKSUM: | RES 1 i CHECKSUM (SINGLE BYTE SUM WITH CARRY)
221 0032 BUFRLO: | RES 1 ;i POINTER TO DATA BUFFER (LO BYTE)
222 0033 BUFRHI: _RES 1 i POINTER TO DATA BUFFER (HI BYTE)
223 0034 BFENLO: .RES 1 i NEXT BYTE PAST END OF THE DATA BUFFER (LO B
224 0035 BFENHI: | RES 1 iNEXT BYTE PAST END OF THE DATA BUFFER (HI B
225 003a& CRETRY: .RES 1 i NUMBER OF COMMAND FRAME RETRIES

ERR LINE

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
as3
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

ADDR

0037
0038
0039
003A
003B
003C

003D
003E
003F
0040
0041
0042

0043

004A
004B
004C

004D
004E
O04F

o002
0027
0050
0051
0052
0053
0054
0055
0057
0058
0054
0058
005D
OOSE
0060
0061
0063
0064
0046
00&é&
0048
0o6A
006B
006C
004E
00&F
0070
0072

Bi B2 B3 B4

DRETRY:
BUFRFL.:
RECVDN:
XMTDON:

CHKSNT: ..

NOCKSM:

s

BPTR:
FTYPE:
FEOF:
FREQ:

SOUNDR:
CRITIC:

FMSZPG:

i

CKEY:

CASSBT:

DSTAT:

ATRACT:
DRKMSK:
COLRSH:

LEDGE
REDGE

TMPCHR:

HOLDL:

LMARGN:
RMARGN:
ROWCRS:
COLCRS:
DINDEX:
SAVMSC:
OLDROW:
oLDCOoL.:
OLDCHR:
OLDADR:
NEWROW:
NEWCOL :
LoGCoL:
ADRESS:
MLTTMP:

OPNTMP

SAVADR:
RAMTOP:
BUFCNT:
BUFSTR:
BITMSK:
SHFAMT:

ROWAC:
COLAC:

. RES
.RES
. RES
. RES
. RES
. RES

. RES

. RES
. RES
. RES

. RES
. RES
. RES

[]

. RES
.RES
. RES
. RES
.RES
. RES
. RES

. RES
. RES
. RES
. RES
.RES
. RES
. RES
. RES
. RES

. RES
. RES

. RES
. RES
. RES
. RES
. RES

6500 ASSEMBLER VER 1.OMR PAGE &

P e ek et b

b b b e et

~

. .

e

LTTMP

LV Il NRC LS e S VI VR LB S RER N I N Ll S B B AL

i NUMBER OF DEVICE RETRIES

i DATA BUFFER FULL FLAG

i RECEIVE DONE FLAG

i TRANSMISSION DONE FLAG

i CHECKSUM SENT FLAG

i NO CHECKSUM FOLLOWS DATA FLAG

iNOISY 1/0 FLAG. (ZERO IS QUIET)
i DEFINES CRITICAL SECTION (CRITICAL IF NON-Z

i DISK FILE MANAGER SYSTEM ZERO PAGE

i FLAG SET WHEN GAME START PRESSED

i CASSETTE BOOT FLAG

i DISPLAY STATUS

i ATRACT FLAG

i DARK ATRACT MASK

i ATRACT COLOR SHIFTER (EOR'ED WITH PLAYFIELD
i LMARGN ‘S VALUE AT COLD START

i RMARGN ‘'S VALUE AT COLD START

i LEFT MARGIN (SET TO 1 AT PODWER ON)
i RIGHT MARGIN (SET TO 38 AT POWER ON)
i CURSOR COUNTERS

i DATA UNDER CURSOR
i POINT DRAW GOES TO

;i POINTS AT COLUMN IN LOGICAL LINE

i FIRST BYTE IS USED IN OPEN AS TEMP

iRAM SIZE DEFINED BY POWER ON LOGIC
i BUFFER COUNT

i EDITOR GETCH POINTER

iBIT MASK

ERR LINE

280
281
282
283
284
285
286
287

288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

ADDR B1 B2 B3 B4

0074
0076
0077
0079
0074
007B
007C
007D
007E

0200
0200
0202
0204
0206
0208
0204A
020C
020E
o210
o212
o214
0216
o218
021A
oz21cC
021E
0220
o222
0224
0226
0228
o224
022B

ENDPT:

DELTAR:
DELTAC:
ROWING:
COLINC:
SWPFLG:
HOLDCH:
INSDAT:
COUNTR:

i

N

INTABS

VDSLET:
VPRCED:
VINTER:
VBREAK:
VKEYBD:
VSERIN:
VSEROR:
VSEROC:
VTIMRL:
VTIMR2:
VTIMRA:
VIMIRQ:
CDTMV1.
cpTMv2:
CDTMV3:
CDTMVA:
CDTMVS:
VVBLKI:
VVBLKD:
CDTMAL:
CDTMAZ:
CDTMF3:
SRTIMR:

6500 ASSEMBLER VER 1. OMR PAGE 7
.RES 2
. RES 1
. RES 2
. RES 1
. RES i
. RES 1 i NON=O IF TXT AND REGULAR RAM IS SWAPPED
. RES 1 iCH IS MOVED HERE IN KGETCH BEFORE CNTL & SH
. RES 1
. RES 2
80 - FF ARE RESERVED FOR USER APPLICATIONS

NOTE :

PAGE 1

SEE FLOATING POINT SUBROUTINE AREA FOR ZERO PAGE CELLS

STACK

PAGE TWD RAM ASSIGNMENTS

#=$0200
=4

. RES
. RES
. RES
.RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES

M ERNUUNNMNRNMNNNRNRONNDODRNNNNNNNR

i INTERRUPT RAM

i DISPLAY LIST NMI VECTOR

i PROCEED LINE IRQ VECTOR

i INTERRUPT LINE IRQ VECTOR

i SOFTWARE BREAK (00) INSTRUCTION IRG VECTOR
i POKEY KEYBOARD IRG VECTOR

i POKEY SERIAL INPUT READY IRG

i POKEY SERIAL OUTPUT READY IRG

i POKEY SERIAL OUTPUT COMPLETE IRQ

i POKEY TIMER 1 IRQG

i POKEY TIMER 2 IRG

i POKEY TIMER 4 IRG

i IMMEDIATE IRG VECTOR

i COUNT DOWN TIMER 1

i COUNT DOWN TIMERZ2

i COUNT DOWN TIMER 3

i COUNT DOWN TIMER 4

; COUNT DOWN TIMER 5

i IMMEDIATE VERTICAL BLANK NMI VECTOR
i DEFERRED VERTICAL BLANK NMI VECTOR
i COUNT DOWN TIMER 1 JSR ADDRESS

i COUNT DOWN TIMER 2 JSR ADDRESS

i COUNT DOWN TIMER 3 FLAG

i BOFTWARE REPEAT TIMER

ERR LINE

334
335
336
337
338
33e
340
341
342
243
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
3&6%
370
371
372
373
374
375
376
377

378

379
380
381
ag2
383
384
ass
386
387

ADDR Bt

oz22C
022D
022
022F
0230
0231
0232
0233

0234
0235
0236

0238

0234
023B
023C
023D

023E
O23F

0240
0241
0242
0244

0245
0246
0247
026F

0270
0271
0272
0273
0274
02795
0276
0277
0278
0279
0274
0278
027C
027D
027E
027F
0280

B2 B3 B4

CDTMF4:
INTEMP:
CDTMFS:
SDMCTL:
SDLETL.:
SDLETH:
SOKCTL.:

LPENH:
LPENV:
BRKKY:

i

CDEVIC:
CCOMND:
cAaUXt:
CAUX2:
i NOTE:
TEMP:
i NOTE:
ERRFLG:

DFLAGS:
DBSECT:
BOOTAD:
COLDST:

?

DEKTIM:
LINBUF:
GPRIOR:

PADDLO:
PADDL1:
PADDL2:
PADDL3:
PADDLA:
PADDLS:
PADDLS:
PADDL7:
STICKO:
STICKL:
STICK2:
STICK3:
PTRIGO:
PTRIG1:
PTRIG2:
PTRIG3:

6500 ASSEMBLER VER 1. OMR PAGE 8

. RES 1 i COUNT DOWN TIMER 4 FLAG
. RES 1 i IAN’S TEMP (RENAMED FROM T1 BY POPULAR DEMA
. RES 1 i COUNT DOWN TIMER FLAG 5
. RES 1 i SAVE DMACTL REGISTER
. RES 1 i SAVE DISPLAY LIST LOW BYTE
. RES 1 i SAVE DISPLAY LIST HI BYTE
. RES i i GUCTL REGISTER RAM
. RES 1 i
. RES 1 i LIGHT PEN HORIZONTAL VALUE
. RES 1 i LIGHT PEN VERTICAL VALUE
. RES 2 i BREAK KEY VECTOR
. RES 2 i SPARE
. RES 1 i COMMAND FRAME BUFFER — DEVICE
. RES i i COMMAND
.RES 1 i COMMAND AUX BYTE 1
.RES 1 i COMMAND AUX BYTE 2

MAY NOT BE THE LAST WORD ON A PAGE
. RES 1 i TEMPORARY RAM CELL

MAY NOT BE THE LAST WORD ON A PAGE
. RES i i ERROR FLAG - ANY DEVICE ERROR EXCEPT TIME O
. RES 1 i DISK FLAGS FROM SECTOR ONE
. RES 1 i NUMBER OF DISK BOOT SECTORS
. RES 2 i ADDRESS WHERE DISK BOOT LOADER WILL BE PUT
. RES 1 i COLDSTART FLAG (i=IN MIDDLE OF COLDSTART)
. RES 1 i SPARE
. RES i i DISK TIME OUT REGISTER
. RES 40 i CHAR LINE BUFFER
. RES 1 i GLOBAL PRIORITY CELL
. RES 1 i POTENTIOMETER O RAM CELL
.RES 1i
. RES 1
. RES 1
. RES 1
. RES i
. RES 1
.RES 1
. RES 1 i JOYSTICK O RAM CELL
. RES i
. RES 1
. RES 1
. RES i i PADDLE TRIGGER ©
. RES b
. RES b
. RES i
. RES 1

PTRIG4:

ERR LINE ADDR B1 B2 B3 B4 6500 ASSEMBLER VER 1. OMR PAGE ?

388 0281 PTRIGS: .RES 1
389 0282 PTRIG6: . RES i
320 0283 PTRIG?7: .RES 1
321 0284 STRIGO: . RES 1 i JOYSTICK TRIGGER Q
392 0285 STRIGLl: . RES 1
393 0286 STRIG2: .RES 1
3?4 0287 STRIG3: . RES 1
395 i
396 0288 CSTAT: .RES 1
397 0289 WMODE : . RES 1
398 028A BLIM: . RES i
399 028B IMASK: . RES i
400 028C JVECK: | RES 2
401 i
402 028E . RES 2 i SPARE
403 ;
404 i
405 i
406 i
407 0290 TXTROW: .RES i i TEXT ROWCRS
408 0291 TXTCOL: .RES 2 i TEXT COLCRS
409 0293 TINDEX: .RES 1 i TEXT INDEX
410 0294 TXTMSC: . RES 2 i FOOLS CONVRT INTO NEW MSC
411 0296 TXTOLD: . RES & i OLDROW % OLDCOL FOR TEXT (AND THEN SOME})
412 029C TMPX1: .RES 1
413 029D HOLD3: . RES i
414 029E SUBTMP: . RES 1
415 029F HOLD2: .RES b
416 0240 DMASK: . RES 1
417 02A1 TMPLBT: .RES i
418 0242 ESCFLG: .RES i i EGCAPE FLAG
419 02A3 TABMAP: | RES 15
420 02B2 LOGMAP: . RES 4 i LOGICAL LINE START BIT MAP
421 02B6 INVFLG: . RES 1 i INVERSE VIDEO FLAG (TOGGLED BY ATARI KEY)
422 02B7 FILFLG: .RES 1 i RIGHT FILL FLAG FOR DRAW
423 0O2B8 TMPROW: . RES 1
424 02B9 TMPCOL: .RES 2
425 O02BB SCRFLG: .RES i i SET IF SCROLL OCCURS
426 02BC HOLD4: | RES 1 i TEMP CELL USED IN DRAW ONLY
427 02BD HOLDS: . RES 1 i DITTO
428 O02BE SHFLOK: . RES 1
429 02BF BOTSCR: . RES b i BOTTOM OF SCREEN : 24 NORM 4 SPLIT
430 i
431 i
432 02C0 PCOLRO: . RES 1 i PO COLOR
433 0O2C1 PCOLR1: .RES 1 i P1 COLOR
434 02C2 PCOLR2: .RES 1 i P2 COLOR
435 02C¢3 PCOLR3: .RES 1 i P3 COLOR
436 02C4 COLORO: . RES 1 i COLOR O
437 02C5 COLOR1: _RES 1
438 02C6 COLOR2: . RES 1
439 02C¢7 COLOR3: . RES 1
1

440 o02C8 COLOR4: .RES
441 i

ERR LINE

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

462 .

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

ADDR

02C9

O2E0
02E0

O2E4
02ES
ORE7
ORE?
O2EA
02EE
O2EF

02F0
02F1
02F2

02F3
O2F4

O2F 5

Q=2FaA
O2FB
02FC
02FD
O2FE
O2FF

0300
0300
0301
0302
0303
0304
0303
0306
0307
0308
0309
030A
030B

Bi B2 B3 B4

GLBABS

i

RAMSIZ:
MEMTOP:

MEML.O:

DVSTAT:
CBAUDL:
CBAUDH:

CRSINH:
KEYDEL.:

CH1:

CHACT:
CHBAS:

i

CHAR:

ATACHR:

CH:

FILDAT:
DSPFLG:
SSFLAG:

i

N~ e m e w we w

DCB

DDEVIC:

DUNIT:

DCOMND:
DSTATS:
DBUFLD:
DBUFHI:
DTIMLO:
DUNUSE:
DBYTLO:
DBYTHI:

DAUX1:
DAUX2:

.RES

. RES

. RES
. RES
.RES
. RES
. RES
. RES
. RES

. RES
. RES
. RES

. RES
. RES

. RES

.RES
. RES
. RES
. RES
. RES
. RES

PAGE

=%

. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES
. RES

6500 ASSEMBLER VER 1. OMR PAGE

23

NN N N TS

-

N T SR

i SPARE

i GLOBAL VARIABLES
i SPARE

iRAM SIZE (HI BYTE ONLY)

i TOP OF AVAILABLE USER MEMORY

i BOTTOM OF AVAILABLE USER MEMORY
i SPARE

i BTATUS BUFFER '
i CASSETTE BAUD RATE LOW BYTE

i CURSOR INHIBIT (00 = CURSOR DN}
i KEY DELAY

i CHACTL REGISTER RAM
i CHBAS REGISTER RAM
i SPARE BYTES

i ATASCII CHARACTER

i GLOBAL VARIABLE FOR KEYBOARD
i RIGHT FILL DATA (DRAW}

10

i DISPLAY FLAG : DISPLAY CNTLS IF NON-ZERO

i START/STOP FLAG FOR PAGING (CNTL 1).

THREE RAM ASSIGNMENTS

L e R e e P R e

i DEVICE CONTROL BLOCK

i PERIPHERAL UNIT 1 BUS I.D. NUMBER
i UNIT NUMBER

; BUS COMMAND

i COMMAND TYPE/STATUS RETURN

i DATA BUFFER POINTER LOW BYTE

i DEVICE TIME OUT IN 1 SECOND UNITS
i UNUSED BYTE '

CLEARE

i NUMBER OF BYTES TO BE TRANSFERRED LOW BYTE

i COMMAND AUXILIARY BYTE 1

ERR LINE

426
427
498
499
S00
S01
S02
203
504
508
206
507
508
509
510
511
S5i2
513
514
515
516
517
518
519
520
921
522

523

s24
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
034A
0348
034C
0350

03co

O3E8

O3FD

0480

Bi B2 B3 B4

i
TIMERL:

6500 ASSEMBLER VER 1. OMR

PAGE 11

i INITIAL TIMER VALUE

iADDITION CORRECTION

i CASSETTE MODE WHEN SET

i FINAL TIMER VALUE. THESE TWO TIMER VALUES

i ARE USED TO COMPUTE INTERVAL FOR BAUD RATE

i TEMPORARY STORAGE REGISTER

i TEMPORARY STORAGE REGISTER

i TEMPORARY STORAGE REGISTER

i SAVE SERIAL IN DATA PORT

i TIME OUT FLAG FOR BAUD RATE CORRECTION
i SI0 STACK POINTER SAVE CELL

i TEMPORARY STATUS HOLDER

i HANDLER ADDRESS TABLE
i MAXIMUM HANDLER ADDRESS INDEX

THE ENTIRE IOCB DEFINITIONS HAVE BEEN MODIFIED

i I/0 CONTROL BLOCKS

i HANDLER INDEX NUMBER (FF = IOCB FREE}
i DEVICE NUMBER (DRIVE NUMBER})

i COMMAND CODE

i STATUS OF LAST IOCB ACTION

i BUFFER ADDRESS LOW BYTE

i PUT BYTE ROUTINE ADDRESS - 1

i BUFFER LENGTH LOW BYTE

i AUXILIARY INFORMATION FIRST BYTE

i FOUR SPARE BYTES

i PRINTER BUFFER

i BPARE BYTES

. RES 2
ADDCOR: . RES 1
CASFLG: .RES 1
TIMER2: .RES 2
TEMP1: |RES 2
TEMP2: .RES 1
TEMP3: .RES 1
SAVIO: . RES i
TIMFLG: .RES 1
STACKP: | RES 1
TSTAT: .RES 1
HATABS: .RES 38
MAXDEV = #-HATABS~5
i NOTE
i
I10CB: . ORG *
ICHID: _RES 1
ICDNO: | RES 1i
IGCOM: . RES i
ICSTA: . RES 1
ICBAL: .RES 1
ICBAH: . RES b
ICPTL: .RES 1
ICPTH: . RES 1
ICBLL: . RES i
ICBLH: . RES 1
ICAX1: . RES 1
ICAaX2: . RES 1
ICSPR: . RES 4

.RES MAXIOC—-IOCBSZ
PRNBUF: .RES 40

. RES 21
i
i
i PAGE FOUR RAM ASSIGNMENTS
CASBUF: | RES 131

-~

i CASSETTE BUFFER

i USER AREA STARTS HERE AND GOES TO END OF PAGE FIVE

USAREA:

i

.RES

128

i SPARE

ERR LINE

550
951
552
553
554
955
554
557
558
559
560
561
Sée2
563
564
565
566
567
568
569
570
571
572

573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
521
S92
593
994
595
596
597
598
599
600
601
602
603

ADDR B1 B2 B3 B4

0006
DBOO

DBE6
D?AA

D?D2
DA&O
DAbLSL
DADB
DB28
ppee
DDap
DDho8
DDecC
DDA7
DDaAB
DDB6
DD40

DDCO
DDCC
DECD
DED1

BD81
BD73
BE43
BEB1

6500 ASSEMBLER VER 1. OMR PAGE 12

PAGE FIVE RAM ASSIGNMENTS
PAGE FIVE IS RESERVED AS A USER WORK SPACE

NOTE: SEE FLOATING POINT SUBROUTINE AREA FOR PAGE FIVE CELLS

PAGE SIX RAM ASSIGNMENTS

PAGE SIX IS RESERVED AS A USER'S USER WORK SPACE

FLOATING POINT SUBROUTINES

L

FPREC = & i FLOATING PT PRECIEION (# OF BYTES)
i IF CARRY USED THEN CARRY CLEAR =2 NO ERROR, CARR

AFP = D800 i ASCII->FLOATING POINT (FP)

i INBUFF+CIX -2 FRO, CIX, CARRY

FABC = $DBEA iFP -2 ASCII FRO-> LBUFF (INBUFF)

IFP = $D7AA i INTEGER ~> FP

H O-#FFFF (L.SB,MSB) IN FRO, FRO+1~2>FRO

FPI = $D9D2 i FP =2 INTEGER FRO - FRO,FRO+1, CARRY

FSUB = $DALO i FRO <— FRO - FR1 , CARRY

FADD = sDaLE i FRO <- FRO + FR1 ,CARRY

FMUL = $DADB i FRO - FRO # FR1 , CARRY

FDIV = +DB28 i FRO <—- FRO / FR1 .CARRY

FLDOR = +DD8? i FLOATING L.OAD REGO FRO <~ (X, Y}

FLDOP = $DD8D i " " " FRO <- (FLPTR)

FLDIR = $DpD?8 i " " REG1 FR1 <- (X, Y}

FLD1P = $DDC i “ " " FR1 +«- (FLPTR)

FSTOR = $DDA7 i FLOATING STORE REGO (X, Y) <{- FRO

FSTOP = $DDAB i " " * (FLPTR) <- FRO

FMOVE = $DDB& i FR1 <— FRO

PLYEVL = $DD40 iFRO <= P(Z) = SUM(I=N TO 0> (A(I)#ZxxI) CAR
i INPUT: X, Y) = AN A(N-1). .. A(0) - PLYARG
i ACC = # OF COEFFICIENTS = DEGREE+1
i FRO = Z

EXP = $DDCO i FRO -~ E##FRO = EXP1O(FRO # LOG10(E)) CARRY
EXP10 = $DDCC i FRO <— 10##FRO CARRY

Lae = $DECD i FRO <— LN(FRO) = LOGIO(FRO)/LOG10(E) CARRY
Loe1o = $DED1 i FRO <~ LOG10 (FRO) CARRY

i THE FOLLOWING ARE IN BASIC CARTRIDGE:

SIN = $BD81 i FRO <—- SIN(FRO) DEGFLG=0 =2RADS, &=>DEG. CA
cos = $BD73 i FRO <- COS(FRO) CARRY

ATAN = $BEA4AS3 i FRO <~ ATAN(FRO) CARRY

SaR = $BEB1 i FRO <— SQUAREROOT(FRO) CARRY

ERR LINE ADDR B1 B2 B3 B4 4500 ASSEMBLER VER 1. OMR PAGE 13

604 ; FLOATING POINT ROUTINES ZERD PAGE (NEEDED ONLY IF F.P. ROUTINES ARE CA
605 #=$D4

&06 00D4 FRO: . RES FPREC i FP REGO

&07 OO0DA FRE: . RES FPREC

&08 OO0EO FR1: . RES FPREC i FP REG1

&09 OCE6 FR2: . RES FPREC

610 OCEC FRX: . RES 1 i FP SPARE

611 OOCED EEXP: . RES 1 i VALUE OF E

&12 OCEE NSIGN: . RES 1 i SIGN OF #

&13 OCEF ESIGN: .RES 1 i SIGN OF EXPONENT

414 OCFO FCHRFLG: . RES 1 i 19T CHAR FLAG

415 OOF1 DIGRT: . RES 1 i# OF DIGITS RIGHT OF DECIMAL

bls OOF2 CIX: . RES b i CURRENT INPUT INDEX

617 0OOF3 INBUFF: . RES 2 i POINTS TO USER’S LINE INPUT BUFFER

418 OOFS ITEMP1: .RES 2

&19 OO0F7 ITEMP4: | RES 2

620 OOF9 ZTEMP3: . RES 2

621 OOFB DEGFLG

622 OOFB RADFLG: . RES 1 i 0=RADIANS, &6=DEGREES

623 0000 RADON = (o] ; INDICATES RADIANS

&24 0006 DEGON = 1) i INDICATES DEGREES

&25 O0OFC FLPTR: . RES 2 i POINTS TO USER‘S FLOATING PT NUMBER

426 OOFE FPTR2: .RES 2

627 i FLOATING PT ROUTINES’ NON-ZERO PAGE RAM

628 i (NEEDED ONLY IF F.P. ROUTINES CALLED)

&29 #=$57E

&30 O057E LBPR1: . RES i i LBUFF PREFIX 1

&31 O57F LBPR2: .RES 1 i LBUFF PREFIX 2

&32 0580 LBUFF: . RES 128 i LINE BUFFER

&33 O0OS5EO PLYARG = LBUFF+8$60 i POLYNOMIAL ARGUMENTS

&34 OSEé FPSCR = PLYARG+FPREC

635 O5EC FPSCR1I = FPSCR+FPREC

&36 OS5SES FSCR = FPSCR

&37 OSEC FSCR1 = FPSCR1

638 OSFF LBFEND = #-1 i END OF LBUFF

639 i

&40 i

641 i

&42 i

643 i

&44 i

&45 i

&46 i

&4A7 i

648 i COLLEEN MNEMONICS

LH49 i

&50 D200 POKEY = $£D200 i VBLANK ACTION: DESCRIPTION:

&51 D200 POTO = POKEY+0 i POTO~->>PADDLO 0-227 IN RAM CELL
652 D201 POT1 = POKEY+1 i POT1-->PADDL1 0-227 IN RAM CELL
653 D202 POT2 = POKEY+2 i POT2-->PADDL2 0-227 IN RAM CELL
&54 D203 POT3 = POKEY+3 i POT3—-->PADDL3 0-227 IN RAM CELL
&55 D204 POT4 = POKEY+4 i POT4~-->PADDLA 0-227 IN RAM CELL
656 D205 POTS = POKEY+S i POTS-->PADDLS 0-227 IN RAM CELL
657 D206 POTA = POKEY+4 i POT&—-->PADDLA 0-227 IN RAM CELL

ERR LINE

658
659
660
&6l
&&62
&63
[-T-L
&&5
bbb
&&7
648
&&e?
&70
671
&72
673
&74
&75
&76
&77
678
679
&80
681
&82
&83
&84
&85
686
687
488
&89
620
691
692
693
&4
695
&6
&7
698
699
700
701
702
703
704
708
706
707
708
709
710
711

Bi B2 B3 B4

POT?7

ALLPOT
KBCODE
RANDOM
POTGO
SERIN
IRQST
SKETAT
AUDF1

AUDC1

AUDF2
AUDC2
AUDF3
AUDC3
AUDF 4
AUDC4
AUDCTL
STIMER
SKRES
SEROUT
IRQGEN
SKCTL

CTIA
HPOSPO
HPOSP1
HPOSP2
HPOSP3
HPOSMO
HPOSM1
HPOSM2
HPOSM3
SIZEPO
SIZEP1
SIZEP2
SIZEP3
SIZEM
GRAFPO
GRAFP1
GRAFP2
GRAFP3
GRAFM
COLPMO
COLPMI1
coLPM2
COLPM3
COLPFO
COLPF1
COLPF2
COLPF3
COLBK
PRIOR
VDELAY
GRACTL

| O T (T (N G [(T LA I I '}

[N T O DI | N (A S (NS A IO]

6500 ASSEMBLER VER 1. OMR

POKEY+7
POKEY+8
POKEY+9
POKEY+10
POKEY+11
POKEY+13
POKEY+14
POKEY+15
POKEY+0
POKEY+1
POKEY+2
POKEY+3
POKEY+4
POKEY+3
POKEY+é&
POKEY+7
POKEY+8
POKEY+%
POKEY+10
POKEY+13
POKEY+14
POKEY+15

$D000
CTIA+O
CTIlA+1
CTIA+2
CTIA+3
CTIA+4
CTIAa+S
CTIA+S
CTIA+7
CTIA+B
CTia+9
CTIA+10
CTIA+11
CTIA+12
CTIA+13
CTia+14
CTIA+1S
CTia+1b
CTIA+17
CTIA+18
CTIA+19
CTiIA+20
cCTia+21
CTIA+22
CTIA+23
CTIA+24
CTIA+25
CTIA+26
CTIA+27
CTIAa+28
CTIA+29

i POT7-->PADDL7
P ?7?

i STROBED

i NONE

i NONE
i NONE

PAGE 14

0-227 IN RaM CELL

SKRES<--[SI0]
SERQUT<~~-LSI01]

AUDCTLL~—-[SI0]

i POKMSK-->IRQEN (AFFECTED BY OPEN &: OR E:)

i BSKCTL~~28KCTL

i VBLANK ACTION:

i PCOLRO~->COLPMO

i PCOLR1~~2>COLPML

i PCOLR2--2COLPM2

i PCOLR3——2>COLPM3

i COLORO—-2>COLPFO

i COLOR1-->COLPF1

i COLOR2-->COLPF2

i COLOR3--2COLPF3

i COLOR4-~-2COLBK

i (ON OPEN S: OR E:)

SSKCTL<——-L[SI0]

DESCRIPTION:

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

ATTRACT
ATTRACT
ATTRACT
ATTRACT
ATTRACT
ATTRACT
ATTRACT
ATTRACT
ATTRACT

MODE
MODE
MODE
MODE
MODE
MODE
MODE
MODE
MODE

GPRIOR~~>PRIOR

ERR LINE

712
713
714

ADDR

DO1E
DOLF
DOOO
Doo1
Doo2
D003
D004
DOOS
DOO&
DOO7
Doos
DOO%?
DOOA
DOOB
DoocC
DOOD
DOCE
DOOF
Do10
DO11
DO12
D013

D400
D400
D401
D402
D403
D404
D405
D407
D409
D40A
D40OB
D40C
D40OD
D40OE
D40OF
D4OF
D300
D300
D301
D302
D303

Bl B2 B3 B4

HITCLR
CONSOL
MOPF
M1iPF
M2PF
M3PF
POPF
P1PF
P2PF
P3PF
MOPL
MiPL
M2PL
M3PL.
POPL

W nan RN

{1 T | D (T D O)

6500 ASSEMBLER VER 1. OMR

CTIA+30
CTIA+31
CTIAa+C
CTIA+1
CTIa+2
CTIA+3
CTIA+4
CTIA+S
CTIA+G
CTIA+7
CTIA+E
CTIA+?
CTIA+10
CTIA+11
CTIA+12
CTIA+13
CTIA+14
CTIA+15
CTIA+16
CTIA+17
CTia+18
CTIA+19

$D400
ANTIC+0O
ANTIC+1
ANTIC+2
ANTIC+3
ANTIC+4
ANTIC+S
ANTIC+7
ANTIC+9
ANTIC+10
ANTIC+11
ANTIC+12
ANTIC+13
ANTIC+14
ANTIC+15
ANTIC+15
$D30C0
PIA+O
Pla+i
PIA+2
PIA+3

.

i $08—-—>CONSOL

i TRIGO-~>STRIGO
i TRIG1--2>STRIG1
i TRIG2-->STRIG2
i TRIGI~~>8TRIG3

i VBLANK ACTION

i DMACTL<—-SDMCTL
i CHACTL<—~CHACT
i DLISTLC~~-SDLSTL
i DLISTH<—-SDLSTH

i CHBASE<--CHBAS

i NMIEN<-~40 POWER
i STROBED

i VBLANK ACTION

i PORTA--2STICKO, 1
i PORTB-—->STICK2, 3
i NONE

i NONE

PAGE 15

TURN OFF SPEAKER

DESCRIPTIO

ON
ON
ON
ON

ON:

ON

OPEN S: OR
OPEN S: OR
OPEN S: OR
OPEN S: OR

OPEN S: OR E:

AND [SETVBV]

DESCRIPTION

X—-Y CONTROLLERS
X~Y CONTROLLERS
PACTL<--3C [INIT]
PBCTLL--3C [INIT]

ERR LINE ADDR B1 B2 B3 B4 63500 ASSEMBLER VER 1. OMR PAGE 16

760 . PAGE

761 LIST g

762 .TITLE ‘CENTRAL INPUT/QUTPUT (CIO) 2-7-79°
763 i UPDATED BY AL MILLER 3-9-79

764 0030 ASCZER = ‘0 iASCII ZERO

765 003A COLON = +3A iASCIT COLON

766 0098 EOL = $9B i END OF RECORD

ERR LINE

767
768
769
770
771
772
773
774
775
776
777
778
77%
780
781
782
783
784
785
786
787
788
789
790
721
792
793
794
795
794
797
798
799
800
801
802
803
804
805
806

ADDR

Bl B2 B3 B4

E456 4C C4 E4

E46E 4C A6 E4

E4AL
E4A8
E4AA
E4AD
E4AF
E4B2
E4B4
E4B7
E4BB
E4B9
E4BB
E4BC
E4BE
E4CO

E4CO
00E4
00Co
E4C1
E4C3

AQ
60

85

N e m m e o w

CENTRAL INPUT/0UTPUT (CIO) 2-7-79 PAGE

. PAGE
CIO JUMP VECTOR FOR USERS
*#=CI0V
JMP cio iGO TO CIO
CIO INIT JUMP VECTOR FOR POWER UP
#=CI0DINV
JMP CIDINT i G0 TO INIT

ERROR ROUTINE ADDRESS EQUATE
ERRTNH =ERRTN/25& “MOVED TO LINE 788"
ERRTNL =-ERRTNH#2S5&+ERRTN “MOVED TO LINE 789"

#=C IO0ORG
i CIO INITIALIZATION (CALLED BY MONITOR AT POWER UP)
CIOINT: LDX #0
CIOI1: LDA #I0CFRE ;i SET ALL IOCB’S TO FREE
8TA ICHID, X i BY SETTING HANDLER ID'S=%$FF
L.DA HERRTNL
STA ICPTL, X i POINT PUT TO ERROR ROUTINE
LDA H#ERRTNH
STA ICPTH, X
TXA
CLC
ADC #I10CBSZ i BUMP INDEX BY SIZE
TAX
cMP #MAXIOC i DONE?
BCC CIOI1 i NO
RTS i YEG, RETURN

i
i

ERROR ROUTINE FOR ILLEGAL PUT

ERRTN =#—1
ERRTNH =ERRTN/25&
ERRTNL =(-ERRTNH}#256+ERRTN

LDY #NOTOPN i I0CB NOT OPEN
RTS

17

ERR LINE

807
ao0se
809
810
B8it
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

ADDR

002C

E4C4
E4CH

E4CB
E4C9
E4CB
E4CD
E4CF

E4D1
E4D3

E4Dé6
E4D8
E4DB
E4DE
E4DF
E4EQ

| E4E2

E4E4
E4ESL
E4ES
E4EA
E4EC

E4ED
E4EF
E4F1
E4F3
E4FS
E4F8
E4Fa
E4FC
E4FE
ESOO0
ES02
ES04
ES06

Bi

B2 B3 B4

iB Eé

40 03
20 00

Cé6 Eb

CENTRAL INPUT/OUTPUT (CIO) 2-7-79 PAGE

. PAGE
i
i CID LOCAL RAM (USES SPARE BYTES IN ZERO PAGE IOCB)
ENTVEC = ICESPRZ
i CIO MAIN ROUTINE

i CIO INTERFACES BETWEEN USER AND INPUT/QUTPUT DE

CIO: 8TA CIOCHR i SAVE POSSIBLE OUTPUT CHARACTER
STX ICIDNO i GAVE IOCB NUMBER #* N
i CHECK FOR LEGAL IOCB
- TXA
AND #3F i IS IOCB MULTIPLE OF 147
BNE CIERR1 i NO, ERROR
CPX #MAXIOC i IS INDEX TOO LARGE?
BCC I0Ct i NO
i INVALID IOCB NUMBER —— RETURN ERROR
CIERRL: LDY #BADIOC i ERROR CODE
JMP CIRTNI1 i RETURN
!
; MOVE USER I0CB TDO ZERO PAGE
I0Ct: LDy #0
I0C1A: LDA I10CB, X i USER I0CB
STA IDCBAS, Y i TO ZERO PAGE
INX
INY
CPY #12 i12 BYTES
BCC 10C1A
; COMPUTE CIO INTERNAL VECTOR FOR COMMAND
LDY #NVALID i ASSUME INVALID CODE
LDA ICCOMZ ; COMMAND CODE TO INDEX
cMP #OPEN i IS COMMAND LEGAL™
BCC CIERR4 i NOQ
TAY
i MOVE COMMAND TO ZERO BASE FOR INDEX
CPY #SPECIL i IS COMMAND SPECIAL?
BCC I0C2 i NO
LDy #SPECIL i YES, SET SPECIAL OFFSET INDEX
10Ca: STY ICCOMT i SAVE COMMAND FOR VECTOR
LDA COMTAB-3, Y GET VECTOR OFFSET FROM TABLE
BEG CIOPEN i GO IF OPEN COMMAND
cMP #2 i IS IT CLOSE?
BEG CICLOS i YES
cMP #8 i IS IT STATUS OR SPECIAL?
BCS CISTSP i YES
cMP #4 i I8 IT READ?
BEG CIREAD i YES
JMP CIWRIT i ELSE, MUST BE WRITE

i8

ERR LINE

859
860
861
862
863
8é64
B8&5
B&6
867
848
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
e887
886
889
890
891
892
893

ADDR

ES09
ESOB
ESOD

ESOF
ES11

ESi4
ES17

E£519
ESIC

ESiE

ES21
ES23
ES25
ES28
ES2A
ES2C
ES2E
ES30

Bi

AD

Fo

AC

20
BO

B2 B3 B4

20

0S5

81
iB

FE
13-]

E6

E&

Eé&6

Eé

E&

Eé

CENTRAL INPUT/OUTPUT (CID} 2-7-79 PAGE
. PAGE
OPEN COMMAND

FIND DEVICE HANDLER IN HANDLER ADDRESS TABLE

[I

IOPEN: LDA ICHIDZ i GET HANDLER ID

cMP #I0OCFRE i IS THIS I0OCB CLOSED?
BEG I0Ca i YES

i ERROR --— IOCB ALREADY OPEN

CIERR3: LDY #PRVOPN i ERROR CODE

CIERR4: JMP CIRTNL i RETURN

i GO FIND DEVICE

I0C6: JBR DEVSRC iCALL DEVICE SEARCH

BCS CIERR4 i G0 IF DEVICE NOT FOUND

DEVICE FOUND, INITIALIZE IOCB FOR OPEN

i COMPUTE HANDLER ENTRY POINT
10C7: JER COMENT
BCS CIERR4 i G0 IF ERROR IN COMPUTE

i GO TO HANDLER FOR INITIALIZATION

JSR GOHAND i USE INDIRECT JUMP

i STORE PUT BYTE ADDRESS-1 INTO IOCB
LDA #PUTCHR i SIMULATE PUT CHARACTER
STA ccomt
JSR COMENT i COMPUTE ENTRY POINT
LDA ICSPRZ i MOVE COMPUTED VALUE
STA ICPTLZ i TO PUT BYTE ADDRESS
LDA ICSPRZ+1
STA ICPTHZ
JMP CIRTN2 i RETURN TO USER

19

ERR LINE

894
895
896
897
898
899
900
901
902
903
904
905
906
907
508
909
910
311
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

ADDR

ES33
ES35
ES37
ES34
ES3C
ES3F
ED41
ES43
ES45
ES47
ES49
ES4B

ES4E
ESS0
ESS2

ESS54
ESS57

ES59
ESSC

ESSF
ESé1
ES&4
ES&é

Bi

asS

RG

20
BO

20
20

B2

20
05

2E
B8

3D
8%

B3 B4

E&

E&

E&

Eé&

Eé
E&

03

E&

CENTRAL INPUT/OUTPUT (CID}

. PAGE
i CLOSE COMMAND
CICLOS: LDY
8TY
JSR
BCS
JER
CICLO2: LDA
STA
LDA
STA
L.DA
STA
JMP

#SUCCES
ICSTAZ
COMENT
CICLO2
GOHAND
#IOCFRE
ICHIDZ
#ERRTNH
ICPTHZ
H#ERRTNL
ICPTLZ
CIRTN2

2-7-79 PAGE

i ASSUME GOOD CLOSE

i COMPUTE HANDLER ENTRY POINT

i 60 IF ERROR IN COMPUTE

i G0 TO HANDLER TO CLOSE DEVICE
i GET IOCB “FREE" VALUE

i SET HANDLER 1ID

i SET PUT BYTE TO POINT TO ERROR

i RETURN

STATUS AND SPECIAL REQUESTS
DO IMPLIED OPEN IF NECESSARY AND GO TO DEVICE

CISTSP: LDA

i IS THERE A HANDLER ID?

i YES

DO IMPLIED OPEN

i FIND DEVICE IN TABLE
i 60 IF ERROR IN COMPUTE

i COMPUTE AND GO TO ENTRY POINT IN HANDLER

ICHIDZ
(o 14 #IOCFRE
BNE CIST1
i IOCB IS FREE.
JSR DEVERC
BCS CIERR4
CISTL: JSR COMENT
JSR GOHAND
i RESTORE HANDLER INDEX (DO
LDX ICIDND
LDA ICHID: X
STA ICHIDZ
JMP CIRTN2

i COMPUTER HANDLER ENTRY VECTOR
i G0 TO HANDLER

IMPLIED CLOSE)

i IDCB INDEX

i GET ORIGINAL HANDLER ID
i RESTORE ZERO PAGE

i RETURN

20

ERR LINE

931
932
933
934
935
936
937
238
939
940
941
942
943
944
945
946
947
948
949
950
951
952
9523
954
955
956
987
958
959
960
?61
962
963
964
965
966
967
968
969
970
971
972
973
974

ADDR

ES&69?
ES&B
ES&D

ES&F
E571

ES74
ES77

ES79
ES7B
ES7D
ES7F
ES62
ESB84

ESB7
ESBA
ES8C
ESBE
ES90
ES92
ES9S
ES97
ES99

ES9B
E59D
ES9F
ESAl
ESa4

ESA7
ESAA

Bi

AS

DG

AC
4C

20

AS
0S5
DO
20
85
4C

20
85
3¢
AO
1
20
as
22
Do

AS
Do

20
4C

20
j2led

B2

22

05

83
iB

89
aF
as

24
70
22
o2
oC

2F
?B
(e7)
&3
c3

63
DB

B3

E&

Eé

Eé&

Eé&

E&

E&

E6
ES

E&

B4

CENTRAL INPUT/OUTPUT (CIO) 2-7-79 PAGE

. PAGE

i READ —- DO GET COMMANDS

CIREAD: LDA iccomz i GET COMMAND BYTE
AND Icaxiz i IS THIS READ LEGALT
BNE RCIlA i YES

; ILLEGAL READ —~- IOCB OPENED FOR WRITE ONLY
LDY HWRONLY i ERROR CODE

RCIIB: JMP CIRTNI1 i RETURN
i

i COMPUTE AND CHECK ENTRY POINT

RCIlA: JSR COMENT i COMPUTE ENTRY POINT
BCS RCILB i GO IF ERROR IN COMPUTE
!
i GET RECORD OR CHARACTERS
LDA ICBLLZ
ORaA ICBLLZ+1 i IS BUFFER LENGTH ZERO?
BNE RCI3 i NO
JEBR GOHAND
STA CIOCHR
JMP CIRTNZ

i LOOP TO FILL BUFFER OR END RECORD

RCI3: JSR GOHAND i G0 TO HANDLER TO GET BYTE
STA CIOCHR i SAVE BYTE
BMI RCI4 i END TRANSFER IF ERROR
LDY #0 '
STA (ICBALZ}), ¥ PUT BYTE IN USER BUFFER
WJSR INCBFP i INCREMENT BUFFER POINTER
L.DA 1ccomMz i GET COMMAND CODE
AND #2 i I8 IT GET RECORD?
BNE RCI1 i NO

i CHECK FOR EOL ON TEXT RECORDS
LDaA CIOCHR i GET BYTE
CMP #EOL i IS IT AN EOL?
BNE RCI1 i NO
JER DECBFL i YES, DECREMENT BUFFER LENGTH
JMP RCI4 i END TRANSFER

i CHECK BUFFER FULL
RCIL: JER DECBFL i DECREMENT BUFFER LENGTH
BNE RCI3 i CONTINUE IF NON ZERO

ERR LINE

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

ADDR

ESAC
ESAE
ESBO

ESB2
ESBS
ESB7

ESB?
ESBB
ESBD

ESBF
ESC1

ESC3
ESCée

Bi

AS
ce
Do

A%
85

20
4C

B2 B3 B4

89 E&

2F
9B
F3

8%
23

77 Eb6
iD E&

CENTRAL INPUT/OUTPUT (CIO) 2-7-79 _ PAGE

. PAGE
i
i BUFFER FULL, RECORD NOT ENDED
i DISCARD BYTES UNTIL END OF RECORD

RCI2: LDA ICCOMZ i GET COMMAND BYTE
AND #2 i IS IT GET CHARACTER?
BNE RCI4 i YES, END TRANSFER
i
. LOOP TO WAIT FOR EOL
RCI&: JSR GOHAND i GET BYTE FROM HANDLER
STA CIOCHR i SAVE CHARACTER
BMI RCI4 i G0 IF ERROR
i TEXT RECORD, WAIT FOR EOL
L.ba CIOCHR i GET GOT BYTE
CMP #EOL i IS IT EOL?
BNE RCI& i NO, CONTINUE
i END OF RECORD, BUFFER FULL -- SEND TRUNCATED RECORD MESSAGE
RCI1i: LDA #TRNRCD i ERROR CODE
STA ICSTAZ i STORE IN IOCB
i TRANSFER DONE
RCI4: JSR SUBBFL i BET FINAL BUFFER LENGTH
JMP CIRTNZ i RETURN

2

ERR LINE

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
io22
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

ADDR

ESC?
ESCB
ESCD

ESCF
ESD1

ESD4
ESD7

ESD?
ESDB
ESDD
ESDF
ESE1L
ESE3

ESES
ESE7
ESE?
ESEB
ESEE
ESFO

ESF3
ESFS
ESF7

ESF?
ESFB
ESFD
ESFF
E&02

E&0S
E608

Bi

AS

e

AQ
4C

20
BO

B2 B3 B4

22

0S

87
iB

3D
F8

(o]v}
24

89
70

E&

Eé

Eé&

E&

E&

E&

CENTRAL INPUT/OUTPUT (CID) 2-7-7%9 PAGE
. PAGE

i WRITE -- DO PUT COMMANDS

CIWRIT: LDA Iccomz i GET COMMAND BYTE
AND ICaxiz i IS THIS WRITE LEGAL?
BNE WCIlA i YES

i ILLEGAL WRITE -- DEVICE OPENED FOR READ OMNLY
LDY #RDONLY i ERROR CODE

WCILB: uJMP CIRTNL i RETURN
i

i COMPUTE AND CHECK ENTRY POINT

WCIlA: JSR COMENT i COMPUTE HANDLER ENTRY POINT
BCS WCILB i 60 IF ERROR IN COMPUTE
i PUT RECORD OR CHARACTERS
LDA ICBLLZ
ORA ICBLLZ+1 i IS BUFFER LENGTH ZERO?
BNE WCI3 i NO
LbaA CIOCHR i GET CHARACTER
INC ICBLLZ i SET BUFFER LENGTH=1
BNE WCI4 i THEN JUST TRANSFER ONE BYTE
i LOOP TO TRANSFER BYTES FROM BUFFER TO HANDLER
WCI3: LDY #0
DA (ICBALZ):Y iGET BYTE FROM BUFFER
STA CIOCHR i SAVE
WCI4: JER GOHAND i 60 PUT BYTE
BMI WCIS i END IF ERROR
JSR INCBFP i INCREMENT BUFFER POINTER

i CHECK FOR TEXT RECORD

LDA 1CComz i GET COMMAND BYTE
AND #2 i IS IT PUT RECORD?
BNE WCIt1 i NO

i TEXT RECORD -- CHECK FOR EOL TRANSFER

L.DA CIDCHR i GET LAST CHARACTER

CMP #EOL i I8 IT AN EOL?

BNE WCI1 i NO

JSR DECBFL i DECREMENT BUFFER LENGTH
JMP WCIS i END TRANSFER

i CHECK FOR BUFFER EMPTY
WCIL: JSR DECBFL i DECREMENT BUFFER LENGTH
BNE WCIG i CONTINUE IF NON ZERO

23

ERR LINE

1046
1047
1048
1049
1050
1051
1052
1033
1054
1055
1056
1057
1058
1059
1060

ADDR

E&OA
E&0C
E&OE

E&10
E612

E&615
E&18

B1

AS

DO

A%
20

20
4C

B2 B3 B4

az
0S

IB
8% E&6

77 Eb&
iD E&

CENTRAL INPUT/OUTPUT (CI0} 2-7-7%9 PAGE

i

i BUFFER EMPTY.,

WeIz:

i

i

. PAGE

RECORD NOT FILLED
i CHECK TYPE OF TRANSFER

i END PUT TRANSFER

WCIS:

Lba iccomz

AND #2

BNE WCIS

i PUT RECORD (TEXT), BUFFER

LDA #EOL

JER GOHAND

JBR SUBBFL

JMP CIRTN2

i GET COMMAND CODE

i I8 IT PUT CHARACTER?
i YES, END TRANSFER
EMPTY. SEND EOL

i G0 TO HANDLER

i SET ACTUAL PUT BUFFER LENGTH
; RETURN

24

ERR LINE

1061
1062
1043
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

ADDR

E&1B

B1

84

B2 B3 B4

23

oC
FS

2F
2E
23

03

03

03

CENTRAL INPUT/OUTPUT (CIO) 2-7-79 PAGE

. PAGE
i CIO0 RETURNS
i RETURNS WITH Y=STATUS
CIRTN1: STY ICsSTAZ i SAVE STATUS
i RETURNS WITH STATUS STORED IN ICSTAZ
i MOVE IOCB IN ZERO PAGE BACK TO USER AREA

CIRTNZ: LDY ICIDNO i GET IOCB INDEX
LDa ICBAL, Y -
STA ICBALZ i REGTORE USER BUFFER POINTER
LDA ICBAH. Y
STA ICBAHZ
LDX #0 i LOOP COUNT AND INDEX
CIRT3: LbDA IDCBAS, X i ZERO PAGE
STA INCB. Y i TO USER AREA
INX
INY
CPX #1i2 i12 BYTES
BCC CIRT3

i

LDA CIOCHR i GET LAST CHARACTER

LDX ICIDND i IOCB INDEX

LDY ICsSTAZ i GET STATUS AND SET FLAGS
RTS i RETURN TO USER

25

ERR LINE

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

ADDR

E&3D
E&3F
E&41

E&43
E&45

E&47
E&4A
E&64C
E&4F
E&51
E&S3
E&56
E&57
E&5%
E&SA
E&SB
E&SD
E&SF
E&61
E&&2

E&&L3
E&&S
E&L7
E&67
E&&B
E&LD
E&6F

E&70
E&72
E&74
E&76

E&77
E&79
E&7A

B1

B2 B3 B4

1B 03

i€ 03

Cé Eb6

24

29

2E

48 03

CENTRAL INPUT/OUTPUT (CIO)

. PAGE

CIO SUBROUTINES

[R

2-7-79 PAGE

COMENT —— CHECK AND COMPUTE HANDLER ENTRY POINT

OMENT: LDY ICHIDZ i GET HANDLER INDEX
cpyY #MAXDEV+1 i I8 IT A LEGAL INDEX?
BCC comi i YES
i ILLEGAL HANDLER INDEX MEANS DEVICE NOT OPEN FOR OPERATION
LDy #NOTOPN i ERROR CODE
BCS comz i RETURN
i USE HANDLER ADDRESS TABLE AND COMMAND TABLE TO GET VECTOR
COMi: LDA HATABS+1,Y GET LOW BYTE OF ADDRESS
STA ICSPRZ i AND SAVE IN POINTER
L.DA HATABS+2,Y iGET HI BYTE OF ADDRESS
STA ICSPRZ+1
LDY ICCOmMT i GET COMMAND CODE
LDA COMTAB-3, Y i GET COMMAND OFFSET
TAY
L.DA (ICSPRZ}, Y iGET LOW BYTE OF VECTOR FROM
TAX i HANDLER ITSELF AND SAVE
INY
LDA (ICSPRZ), Y iGET HI BYTE OF VECTOR
STA ICSPRZ+1
8TX ICSPRZ i SET LD BYTE
cLC i SHOW NO ERROR
comz2: RTS
i DECBFL -- DECREMENT BUFFER LENGTH DOUBLE BYTE

i L FLAG = 0 ON RETURN IF LENGTH = O AFTER DECREMENT

DECBFL: DEC ICBLLZ i DECREMENT LOW BYTE
t.DA ICBLLZ i CHECK IT
CMP #4FF i DID IT GO BELOW?
BNE DECBF1 i NO
DEC ICBLLZ+1 i DECREMENT HI BYTE
DECBF1: ORA ICBLLZ+1 i 8ET Z IF BOTH ARE ZERO
RTS ’
i
i INCBFP —— INCREMENT WORKING BUFFER POINTER
INCBFP: INC ICBALZ i BUMP LOW BYTE
BNE INCBF1 i G0 IF NOT ZERO
INC ICBALZ+1 i ELSE, BUMP HI BYTE

INCBF1: RTS

i

i BUBBFL —- SET BUFFER LENGTH = BUFFER LENGTH — WORKING BYTE COUNT

SUBBFL: LDX ICIDNOD
SEC
L.DA ICBLL., X

i GET I0OCB INDEX

i GET LOW BYTE OF INITIAL LENGTH

26

ERR LINE

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
11582
1183
1154
1155
1156
1157
1158
1159
1160
1161
1162
11463
1164
1165

ADDR

E&7D
E&7F
E&B1
E&B4
E&B6
E&B8

E&B?
E&BB
E&BE
E&F0
E&T2

E&?3
E&24
E&%6
E&97
E&99
E&?A
E&49B
E&9D

B2 B3 B4

2D

2C

2E

03

Eé

CENTRAL INPUT/OUTPUT (CIO}

i
i
i
i

GOHAND:

i

i INDIRECT JumMP

CIJUMP:

SBC
STA
LDA
SBC
STA
RTS

GOHAND --—
Y= STATUS

LDy
JBR
STY
CPY
RTS

TAX
L.DaA
PHA
LDaA
PHA
TXA
LDX
RTS

ICBLLZ
ICBLLZ
ICBLH, X
ICBLLZ+1
ICBLHZ

2-7-7% PAGE 27

i SUBTRACT FINAL LOW BYTE
i AND SAVE BACK
i GET HI BYTE

GO INDIRECT TO A DEVICE HANDLER
ON RETURN: N FLAG=1 IF ERROR ON RETURN

#FNCNOT
CIJump
ICSTAZ
#0

ICSPRZ+1

ICSPRZ

ICIDND

i PREPARE NO FUNCTION STATUS FOR HANDLER RTS
i USE THE INDIRECT JUMP

i SBAVE STATUS

i AND SET N FLAG

TO HANDLER BY PAUL 'S METHOD

i GAVE A

i GET JUMP ADDRESS HI BYTE
i PUT ON STACK

i GET JUMP ADDRESS LO BYTE
i PUT ON STACK

i RESTORE A

i GET I10CB INDEX

i 60 TO HANDLER INDIRECTLY

ERR LINE

11466
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1123
1194
1195
1196
1197
1198
1199
1200
1201

ADDR

E&9E
E&6AQ
E&A2
E&A4
Eb&AL
E&LAR
E&AB
E&AC
E&AD
E&AE

E&BO
E&6B2
E&B3

E&6BS
E&B6
E4BSB
E&4B?
E4BB
E&6BD
E&BF
E&CH
E&C3
E&CS
E&C7

E&6CB

Bi

B2 B3 B4

CENTRAL INPUT/OQUTPUT (CID} 2-7-79 PAGE

. PAGE

DEVSRC: LDY
L.DA
BEG
LDy
DEVS1: CMP
BEG
DEY
DEY
DEY
BPL

i

CIERRZ2: LDY
SEC

DEVSRC -- DEVICE SEARCH, FIND DEVICE IN HANDLER ADDRESS TABLE

LOOP TO FIND DEVICE

#0
(ICBALZ), Y GET DEVICE NAME FROM USER
CIERR2

#MAXDEYV i INITIAL COMPARE INDEX
HATABS, ¥ i IS THIS THE DEVICE®?

DEVS2 i YES

i ELSE, POINT TO NEXT DEVICE NAME

DEVS1 i CONTINUE FOR ALL DEVICES
i NO DEVICE FOUND, DECLARE NON-EXISTENT DEVICE ERROR
#NONDEV i ERROR CODE
i SHOW ERROR
DEVE4 i AND RETURN

BCS

i FOUND DEVICE,
DEVS2: TYA
STA
SEC
LDY
LDA
SBC
cMP
BCC
LbA
DEVE3: §8TA
cLe
i RETURN
DEVE4: RTS

SET ICHID, ICDNO, AND INIT DEVICE

ICHIDZ i SAVE HANDLER INDEX

#1

(ICBALZ}), Y i GET DEVICE NUMBER (DRIVE NUMBER)
#ASCZER i SUBTRACT ASCII ZERO

#%4 i IS NUMBER IN RANGE?

DEVS3 i YEB

#1 i NO, DEFAULT TO ONE

ICDNOZ i SAVE DEVICE NUMBER

i BHOW NO ERROR

28

ERR LINE

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

ADDR

E&C?
E&CD
E&D1
022F
E&DS

0014

Bi B2 B3 B4

0G 04 04 04
04 06 06 06
0& 02 08 0A

GO

CENTRAL INPUT/OUTPUT (CIO} 2-7-79 PAGE

. PAGE

CIO ROM TABLES

COMMAND TABLE
MAPS EACH COMMAND TO OFFSET FOR APPROPRIATE VECTOR IN HANDLER
OMTAB: . BYTE 0.4, 4,4,4,6,6,6,6,2,8,10

O~ = o~ o~

LENGTH =#-CIOINT
CRNTP1 =%
- #=%14
CIOSPR: .BYTE INTORG-CRNTP1 ; ~GCIOL IS TOO LONG

2

9

ERR LINE ADDR B1i B2 B3 B4 CENTRAL INPUT/OUTPUT (CI0) 2-7-79 PAGE 30

1216

1217 .TITLE ‘INTERRUPT HANDLER'
1218 i LIVES ON DK1: INTHV. SRC

1219 0006 SRTIM2 = & i SECOND REPEAT INTERVAL
1220 i

1221 i THIS IS TO MAKE DOS 2 WORK WHICH USED AN ABSOLUTE ADDRESS
1222 H

1223 #=$EP12

1224 E912 4C ED EB JMP SETVBL

1229 #=SETVBV

1226 E45C 4C ED EB JMP SETVBL

1227 EA4SF 4C AE E7 JMP SYSVBL

1228 E462 4C 05 E9 JMP XITVBL

1229 #=INTINV

1230 E446B 4C DS Eé JMP IHINIT

1231 i

1232 #=VCTABL+INTABS-VDSLST

1233 i

1234 E480 <90 E7 . WORD SYRTI i VDSLST
1235 E482 8F E7 . WORD SYIRQE i VPRCED
1236 E484 ©F E7 . WORD SYIRGE i VINTER
1237 E484 BF E7 . WORD SYIRGB i VBREAK
1238 H

1239 €488 . RES 8

1240 E490 ©F E7 . WORD SYIRGB i VTIMR1
1241 E492 BF E7 . WORD SYIRGB i VTIMR2
1242 E494 BF E7 . WORD SYIRGB i VTIMREG
1243 E496 0& E7 . WORD SYIRG i VIMIRQ
1244 E498 00 00 00 0O . WORD 0:0.0:.0,0 i CDTMV1-4

1245 E49C 0C 00 00 0O
1246 E4A0 00 0O

1247 E4A2 AE E7 . WORD SYSVBL i VWBLKI
1248 E4A4 05 E9 . WORD XITVBL i VWBLKD
1249 ;

1250 #=4$900C

1251 i

1252 900C A9 Eé& L.DA #PIRQGH i SET UP RAM VECTORS FOR LINBUG VERSION
1253 900E 8D F? FF STA $FFFQ

1254 <9011 A9 F3 L.DA #PIRGL

1255 <9013 8D F8 FF 8TA $FFFB

1256 9016 A% E7 L.DA #PNMIH

1257 9018 8D FB FF 8TA $FFFB

1258 901B A% <1 £ DA #PNMIL

1259 901D 8D FA FF STA SFFFA
1260 9020 &0 RTS

ERR LINE

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
i278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

ADDR Bl B2 B3 B4

E&DS
E&D7
E&DA
E&DC
E&DF
EGE2
E&4E4
E&E7
E&EA
EGEC
E&EF
E&F2
E6F3
E&F&
E&F7
E&F8
E&FS
E&FA
E4FB
E&FC
E&FD
E&4FE

E&FE
E&FF
E700
E701
E702
E703
E704
E705
E706
E70&
E707
E704A
E70C
E70E
E710
E713
E715
E718
E71B
E71C
E71D
E71F
E722

D4

D3
D3

D3
D3
D3

o2

E&

INTERRUPT HANDLER

.~ e we e w we

IHINIT:

PIRG:
CMPTAB:

. PAGE

IRG HANDLER

#=INTORG

L.DA
STA
LDA
8TA
STA
LDA
S8TA
STA
LDaA
5TA
STA
RTS
JMP
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE

#$40
NMIEN
#4438
PACTL
PBCTL
#0
PORTA
PORTB
#33C
PACTL
PBCTL

(VIMIRG)
$80
$40
$04
02
$01
$08
$10
20

PAGE

JUMP THRU IMMEDIATE IRG VECTOR, WHICH ORDINARILY POINTS TO

SYSTEM IRQ: DETERMINE % CLEAR CAUSE, JUMP THRU SOFTWARE VECTOR.

i VBL ON BUF DLIST OFF###FOR NOW3t#*
i ENABLE DISPLAY LIST, VERTICAL BLANK
i LOOK AT DATA DIRECTION REGISTERS IN PIA

i MAKE ALL INPUTS

i BACK TO PORTS ,

i BREAK KEY

i KEY STROKE

i TIMER 4

i TIMER 2

i TIMER 1

i BERIAL QUT COMPLETE
i SERIAL QUT READY

i SERIAL IN READY

i THIS IS A TABLE OF OFFSETS INTO PAGE 2. THEY POINT TO

ADRTAB:

SYIRG:

SYIRG2:

LooPM:

. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE

PHA
L.DA
AND
BNE
LDa
STA
L.DA
STA
JMP
TXA
PHA
LDX
L.DA
CPX

BRKUY-INTABS

VKEYBD-INTABS
VTIMR4-INTABS
VTIMR2-INTABS
VTIMR1I-INTABS
VSEROC-INTABS
VSEROR-INTABS
VSERIN-INTABS

IRGST
#420
SYIRGZ2
#$DF
IRGEN
POKMSK
IRGEN
(VSERIN)

#56
CMPTAB. X
#3

i SAVE ACCUMULATOR
i CHECK FOR SERIAL IN

i MASK ALL OTHERS

i PUT X INTO ACC

i SBAVE X ONTO STACK

i START WITH SIX OFFSET
i LOAD MASK

i CHECK TO SEE IF COMPLETE IS SET

31

ERR LINE

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

1329

1330
1331
1332
1333
1234
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

ADDR

E724
E726
E728
E72A
E72D
E72F
E730
E732
E735
E737
E73A
E73C
E73F
E742
E743
E746
E74%
E74C
E74F
E750
E751
E754
E756
E758
E75B

E75E

E7&40
E761
E7462
E763
E764
E767
E7469
E76C
E7&F
E772
E774
E777
E774A
E77B
E77E
E77F
E780
E782
E784
E787
E788
E78B
E78E
E78F
E790

10

8c

06
ac

B3 B4 -

D2

E7

b2
Eé6

02
02

oz
o2

02

o2
o2

D3
D3
D3

D3
o2

o2

o2

o2
o2

INTERRUPT HANDLER

LOoOPM2:

LL:

JMPR

BRKKYZ2:

SYIRQ@B:

SYIRQ?:

SYIRGA:

SYRTIZ:

SYIRQ@B:
SYRTI:

BNE
AND
BEQ
BIT
BEG
DEX
BPL
JMP
EOR
STA
LDA
8TA
L.DA
TAX
L.DA
8TA
LDA
STA
PLA
TAX
JMP
LDA
STA
STA
8TA
STA
PLA
RTI
PLA
TAX
BIT
BPL
L.DA
JMP
BIT
BPL
LDA
JMP
PLA
STA
PLA
PHA
AND
BEQ
LDA
PHA
JMP
L.DA
PHA
PLA
RTI

LOOPM2
POKMSHK
Lt
IRGST
JMPP

LOooPM
SYIRQGE
#3FF
IRGEN
POKMSK
IRGEN
ADRTAB, X

INTABS, X
JVECK
INTABS+1, X
JVECK+1

(JVECK?}
#0
BRUKEY
ESFLAG
CRSINH
ATRACT

PACTL
SYIRG?
PORTA
(VPRCED)
PBCTL
SYIRQA
PORTB
(VINTER)}

JVECK
#$10
SYRTIZ2
JVECK

(VBREAK)
JVECK

PAGE

i 18 THIS INTERUPT ENABLED?
i IS IT THE INTERUPT?

i NO DEC X AND TRY NEXT MASK
i IF NOT NEG GOTO LOOPM

i DONE BUT NO INTERUPT

: COMPLEMENT MASK

i ENABLE ALL OTHERS

i GET POKE MASK

i ENABLE THOSE IN POKE MASK

GET ADDRESS LOW PART

PUT IN VECTOR

GET ADDRESS HIGH PART

PUT IN VECTOR HIGH PART
PULL X REGISTER FROM STACK
PUT IT INTO X

JUMP TO THE PROPER ROUTINE
BREAK KEY ROUTINE

SET BREAK KEY FLAG
START/STOP FLAG

CURSOR INHIBIT

TURN OFF ATRACT MODE

L S

i EXIT FROM INT

i PROCEED ###] GUESSH###
CLEAR INT STATUS BIT
i INTERRUPT ###] GUESSH#¥*

i CLEAR INT STATUS

iB BIT OF P REGISTER

i UNIDENTIFIED INTERRUPT, JUST RETURN.

32

ERR LINE

1366
1367
1368
1369
137G
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

ADDR

E791
E794
E796
E799
E79A
E79D
E79F
E7A1
E7A4
E7AS
E7A6
E747
E7A8
E7AB

B1

B2

OF
22

B3 B4

pa
o2

D4

E4

D4
o=

INTERRUPT HANDLER

NMI HANDLER

. PAGE

PAGE

DETERMINE CAUSE AND JUMP THRU VECTOR

i
!
i
PNMI:

PNMI1:

BIT
BPL
JMP
PHA
LDaA
AND
BEQ
JMp
TXA
PHA
TYA
PHA
STA
JMP

NMIST
PNMI1
(VDSLET?

NMIST
#3520
#+5
WARMSY

NMIRES
(VWBLKI)

i BEE IF DISPLAY LIST

i SEE IF RESET

i GO THRU WARM START JUMP
i BAVE REGISTERS

i RESET INTERRUPT STATUS
i JUMP THRU VECTOR

33

ERR LINE

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1403
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

ADDR

E7FD
ES00

EB09
ESOB
EBOE
EBOF
EGL2
EB14
EB1&6
ER1?
EB1A

Bi

B2 B3 B4

E8

ES

INTERRUPT HANDLER

e N m we

SYSVBL.:

SYSVB1:

VBATRA:

SYSVB2:

XXIT:
SYSVB3:

SCOLLP:

. PAGE

SET DLISTL,

INC
BNE
INC
INC
BNE
INC
LbA
LDX
LDY
BPL
STA
LDX
LDA
STA
8TX
LBX
JER
BNE
JER
L.DA
BNE
T8X
LDaA
AND
BEQ
JMP
L.DA
STA
LDaA
STA
L.DA
8STA
LDA
STA
LDA
STA
LDA
STA
L.DX
sTX
CLI
L.DA
EOR
AND
STA
DEX
BPL

SYSTEM VBLANK ROUTINE

PAGE 34

INC FRAME COUNTER. PROCESS COUNTDOWN TIMERS. EXIT IF I WAS SET. CLEAR

DLISTH, DMACTL FROM RAM CELLS. DO SOFTWARE REPEAT.

RTCLOK+2
SYSVB1
ATRACT
RTCLOK+1
SYSVB1
RTCLOK
#$FE

#0
ATRACT
VBATRA
ATRACT
RTCLOK+1
#3F6
DRKMSK
COLRSH
#0
DCTIMR
SYSVB2
JTIMRL
CRITIC
XXIT

%104, X
#304

SYSVB3
XITVBL
PENV

LPENV
PENH

LPENH
SDLETH
DLISTH
SDLSTL
DLISTL
SDMCTL
DMACTL
GPRIOR
PRIOR

#2308

CONSOL

PCOLRO, X
COLRSH
DRIKMSK
COLPMO, X

SCOLLP

i INC FRAME COUNTER

i INCREMENT ATRACT (CAUSES ATRACT WHEN MINUS)

i {ATRACT] SET DARK MASK TO NORMAL

i SET COLRSH TO NORMAL

i TEST ATRACT FOR NEGATIVE

i WHILE POSITIVE, DONT GO INTO ATRACT
i IN ATRACT, S0 STAY BY STA $FE

; COLOR SHIFT FOLLOWS RTCLOK+1

i SET DARK MASK TO DARK

; POINT TO TIMERI1

i 60 DECREMENT TIMERI

i BRANCH IF STILL COUNTING
i 60 JUMP TO ROUTINE

i 60 IF CRITICAL SET
i BEE IF I WAS SET

i GET STACKED P

iI BIT

i BRANCH IF 0K

i1 WAS SET, EXIT

i GLOBAL PRIOR
i TURN OFF KEYBOARD SPEAKER

i DISABLE INTERUPTS

i LOAD COLOR REGISTERS FROM RAM
i DO COLOR SHIFT

i AND DARK ATRACT

ERR LINE

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

ADDR

EB1C
ES1F
Egaz
EB25
EB28
EB2A
EB2D
EB2F
EB32
E834
EB356
EB36
EB39
EB3C
EB3E
EB41
EB844
EB46

EB48
EB4B
E84D

EB4F
EBS52
EBS54

EBS7
EB5A
EBSC
EBSF
EBé&1
EB&L3
EB&SL

EB6B
EB&LA
ES6D
EB70

EB73
EB75
E®77
EB7A
EB7B
EB7C
ES7D
EB7E
E881
EB882
E885
EB87
EBB8A
E88B

78

00

78

o2
o2

E8
o2

D2

02
o2
o2

D2

o2

02

D3

o2
D3

o2

INTERRUPT HANDLER

T AwE

i POINT TO TIMER 2

i IF DIDNT 60 ZERO
i GO JUMP TO TIMER2 ROUTINE
i RESTORE X

i DECREMENT AND SET FLAG IF NONZERO

i SEE IF DONE ALL 3
i LOOP

i KEY DOWN BIT
i IF KEY DOWN

i KEY DELAY COUNTER
i IF COUNTED DOWN ALREADY
i COUNT IT

i DOESN ‘T COUNT

i CHECK KEY DOWN BIT

i BRANCH IF NO LONGER DOWN
i COUNT FRAME OF KEY DOWN
i BRANCH IF NOT RUN OQUT
SIMULATE KEYBOARD IRQ

i TIMER VALUE

i SET TIMER

i GET THE KEY

i PUT INTO CH

i STORE JOYSTICK

i STORE JOYSTICK

LDA CHBAS
STA CHBASE
LDA CHACT
STA CHACTL
LDX #2
JBR DCTIMR
BNE SYSVB4
JSR JTIMR2
SYSVB4: LDX #2
SYSVBB: INX
INX
LDaA CDTMVL, X
ORA CDTMViI+1, X
BEG SYSVBA
JER DCTIMR
STA CDTMF3-4, X
SYSVBA: CPX #8
BNE SYSVBR
i CHECK DEBOUNCE COUNTER
LDa SKSTAT
AND #%04
BEQ SYVB&A
i KEY UP S0 COUNT IT
LDA KEYDEL
BEG SYVBLA
DEC KEYDEL
i CHECK SOFTWARE REPEAT TIMER
SYVB&A: LDA SRTIMR
BEG SYSVB7
LDA SKSTAT
AND #%04
BNE SYSVBS
DEC SRTIMR
BNE SYSVB7
i TIMER RAN OUT - RESET AND
LDA #ORTIMZ2
8TA SRTIMR
LDA KBCODE
8TA CH
i READ GAME CONTROLLERS
SYSVB7: LDY #1
LDX #3
STLOOP: LDA PORTA, Y
LER A
LER A
LSR A
L8R A
STA STICKO, X
DEX
t.DA PORTA: Y
AND #5F
STA STICKG, X
DEX

DEY

It

ERR LINE

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

ADDR
£88C

EBBE
ES?0
EB?3
EB9&
E899
E89C
EBPF
EBA2
EBA3
EBAS

ESAB
EQAA
EBAC
ESAF
ESBO
ESB1
egp2
EBBS
EBB7
EBBS
ESQBB
ESBC
EBBD
EBBE

EBCO
OOES8
0073
EBC3
EBCS
ESCS8
E8CA
ESCD

ESDO
EBD3
EBDS
EBDSB
E8DA
ESDD
EBEOQ
EBE2
EBED
ESE7
EBE?
ESEA
EBEC

7D
GO

7C

B3 B4

Do
02
D2

p2

o2

p2

o2

o2

02

o2

02

o2

o2

o2
o2

o2

o2

o2

INTERRUPT HANDLER PAGE
BPL STLOOP
LDX #3
STRL: LDA TRIGO, X i MOVE JOYSTICK TRIGGERS
STA STRIGO. X
L.DA POTO, X i MOVE POT VALUES
STA PADDLO. X
LDA POT4, X
STA PADDLA4, X
DEX
BPL STRL
STA POTGOD i 8START POTS FOR NEXT TIME
LDX #&
LDY #3
PTRLP: LDa& STICKO, Y i TRANGFER BITS FROM JOYSTICKS
LSR A i TO PADDLE TRIGGERS
L8R)
LSR A
8TA PTRIGL, X
LDA #0
ROL A
STA PTRIGO, X
DEX
DEX
DEY
BPL PTRLP
JMP (VVBLKD) i G0 TO DEFERRED VBLANK ROUTINE
SV7H = SYSVB7/256
SV7L = (~256) #SV7H+BYSVE7
SYSVB&: LDA #0
STA SRTIMR i ZERO TIMER
BEQ SYSVB7 i UNCOND
JTIMR1I® JMP (CDTMAL)
(CDTMAZ}

JTIMR2: JMP

SUBROUTINE TO DECREMENT A COUNTDOWN TIMER
ENTRY X=0FFSET FROM TIMER 1
EXIT A, P=ZERO IF WENT ZERO, FF OTHERWISE

3

!

i

DCTIMR: LDY
BNE
LDy
BEG
DEC

DCTIML: DEC
BNE
LDy
BNE
LDA
RTS

DCTXF: LDA
RTS

CDTMVL, X i .0 BYTE

DCTIML i NONZERO, 60 DEC IT
cDTMVi+1, X i BEE IF BOTH ZERO
DCTXF i YES, EXIT NONZERO
CDbTMVi+1, X iDEC HI BYTE
CDTMVL, X i DEC LO BYTE

DCTXF

CDTMVLI+1, X

DCTXF

#0 i WENT ZERO, RETURN ZERO
#EFF i RETURN NONZERO

36

ERR LINE

1548
1549
1350
1551
1552
1553
1554
1535
1556
1557
1558
1599
1560
1561
1962
1563
1564
15465
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

ADDR B1 B2 B3 B4

EBED
ESEE
EBF1
EgrF2
E8F4
EBF7
EBFB
EBFaA
EBFD
ET00
E?01
E?04

ER0S
E?06
E907
E?08
E?0%9
E20A
OOE&
OOF3
OCE7
0091

E?0B

0014

39

2D

05
oA

FD
2D
17

o2

D4

02
oz

02

INTERRUPT HANDLER PAGE
. PAGE

SUBROUTINE TO SET VERTICAL BLANK VECTORS AND TIMERS
ENTRY X=HI, Y=LO BYTE TO SET
A= 1-5 TIMERS 1i~5
& IMM VBLANK
7 DEF VBLANK

)~ o~ m m mw

ETVBL: ASL A i MUL. BY 2
STA INTEMP
TXA
LDX #5
8TA WSYNC i WASTE 20 CPU CYCLES
SETLOP: DEX i TO ALOWD VBLANK TO HAPPEN
BNE SETLOP i IF THIS IS LINE "7C"
LDX INTEMP
STA ChTMVI-1, X
TYA
STA CDTMV1I-2, X
RTS

i

i EXIT FROM VERTICAL BLANK

XITVBL: PLA i UNSTACK Y

TAY
PLA i UNSTACK X
TAX
PLA i UNSTACK A
RTI i AND GO BACK FROM WHENCE.
PIRGH = PIRGQ/256
PIRGL = (-256) #PIRQH+PIRG
PNMIH = PNMI /2546
PNMIL = (-2546) #PNMIH+PNMI
i SPARE BYTE OR MODULE TOO LONG FLAG
CRNTP2 =#

#=%14
INTSPR: .BYTE SIOORG-CRNTP2 i ~GINTHV IS TOOD LONG

37

ERR LINE ADDR Bl B2 B3 B4 INTERRUPT HANDLER : PAGE 38

1585

1586 .TITLE 810 (SERIAL BUS INPUT/QUTPUT CONTROLLER)
1587 i COLLEEN OPERATING SYSTEM

1588 i

1589 i SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER)

1590 i WITH SOFTWARE BAUD RATE CORRECTION ON CASSETTE

1591 i

1592 i

1593 i AL MILLER 3-APR-79

1594 i

1595 H

1596 i THIS MODULE HAS ONE ENTRY POINT. IT 1S CALLED BY THE DEVICE
1597 i HANDLERS. IT INTERPRETS A PREVIOQUSLY ESTABLISHED DEVICE CONTROL
1598 i BLOCK (STORED IN GLOBAL RAM) TO ISSUE COMMANDS

1599 ; TO THE SERIAL BUS TO CONTROL TRANSMITTING AND RECEIVING DATA.
1600 i

1601 i

1602 i

1603

ERR LINE

1604
1605
1606
1607
1608
1609
1610
1611
1412
1613
1614
1615
1616
1617

ADDR

0030

0060

0052
0057

0053
004E
0044
0050

0041
004E
0043
0045

oozs
0000
00CC
0003
0005
0007

GOB4
0078
OOOF
000A

Bi1 B2 B3 B4

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE 32
. PAGE

i EQUATES

;i DCD DEVICE BUS ID NUMBERS

FLOPPY = $30

iPRINTR = $40

i CASSET = 60 IR 222

CASET = $60 RREREEE 1 2 21

i BUS COMMANDS

READ = ‘R

WRITE = ‘W

i STATIS = ‘S

i FORMAT = !

; COMMAND AUX BYTES

SIDWAY = ‘S iPRINT 16 CHARACTERS SIDEWAYS

NORMAL = N i PRINT 40 CHARACTERS NORMALLY

DOUBLE = ‘D i PRINT 20 CHARACTERS DOUBLE WIDE

PLOT = P i PLOT MODE

i BUS RESPONSES

ACK
NACK
COMPLT
ERROR

i

i MISCELLANEOUS

B192L0
B192HI
B&6OOLO
BAOOHI
HITONE
LOTONE

WIRGLO
RIRGLO
WSIRG
REIRG

WIRGLD
RIRGLO
WSIRG
RSIRG

nnowoRonu

. IF

. ENDIF
. IF

wuonn

‘A
‘N
‘C
‘E

EGQUATES

$28
$00
$CC
$05
$05
$07

PALFLG
150
100
i3
8

PALFLG~1
180

120

15

10

i DEVICE ACKNOWLEDGES INFORMATION

i DEVICE DID NOT UNDERSTAND

i DEVICE SUCCESSFULLY COMPLETED OPERATION

i DEVICE INCURRED AN ERROR IN AN ATTEMPTED OP

i 19200 BAUD RATE POKEY COUNTER VALUES (LD BY
i (HI BYTE)

i 600 BAUD (LO BYTE)

i (HI BYTE)

i FSK HI FREGQ POKEY COUNTE VALUE (5326 HZ}

i FSK LO FREQ POKEY COUNTER VALUE (3995 HZ)

iWRITE INTER RECORD GAP (IN 1/60 SEC)
i READ INTER RECORD GAP (IN 1/60 SEC)
i SHORT WRITE INTER RECORD GAP
i SHORT READ INTER RECORD GAP

iWRITE INTER RECORD GAP (IN 1/40 SEC)
i READ INTER RECORD GAP (IN 1/60 SEC)
i SHORT WRITE INTER RECORD GAP
i SBHORT READ INTER RECORD GAP

ERR LINE

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680

ADDR

0000
0000

0034
003C
0034
003C

0002
003E
0002
003A

000D
0001
0002
0000

Bl B2 B3 B4

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) - PAGE
. ENDIF
WIRGHI = o
RIRGHI = o
NCOMLO = $£34 iPIA COMMAND TO LOWER NOT COMMAND LINE
NCOMHI = $3C iPIA COMMAND TO RAISE NOT COMMAND LINE
MOTRGDO = *34 iPIA COMMAND TO TURN ON CASSETTE MOTOR
MOTRST = $3C iPIA COMMAND TO TURN OFF MOTOR
TEMPHI = TEMP /256 i ADDRESS OF TEMP CELL (HI BYTE)
TEMPLO = (25464 TEMPHI+TEMP ; (LO BYTE)
CBUFHI = CDEVIC/256 i ADDRESS OF COMMAND BUFFER (HI BYTE)
CBUFLO = (-256) #CBUFHI+CDEVIC ; (LO BYTE)
CRETRI = 13 i NUMBER OF COMMAND FRAME RETRIES
DRETRI = 1 i NUMBER OF DEVICE RETRIES
CTIMLO = 2 i COMMAND FRAME ACK TIME OUT (LO BYTE)
CTIMHI = (o] i COMMAND FRAME ACK TIME QUT (HI BYTE)
i JTADRH = JTIMER/256 i HI BYTE OF JUMP TIMER ROUTINE ADDR
= (-256) #JTADRH+JTIMER i "MOVED TO LINE 1428"

i JTADRL

i

40

IIN

ERR LINE

1681
1682
14683
1684
1685
1686
1687
1488
1689
1690
1621
1692
1693
1694
14695
14696
14697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734

ADDR

E459

E445

E468

E4B8A
E48C
E4BE

£944
E946

E?49
E?4B

EQ4E
E?50
E?53
E?55

E®58

E?59
E?5A
E?SD
EQSF

E?61
E?64
E?&6
E?68

Bi

4C

4C

ac

OF

CF

A%
8D

A%
8D

B2

39

44

Fa

EB

EA

3¢
02

3C
03

B3 B4

E?

E?

EB

D3

]

o2

D2

03

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE

i

. PAGE
SI10

#=5I0V
JMP SI0 i §I0 ENTRY POINT
#*=GI0INV
JMP SIOINT i8I0 INITIALIZATION ENTRY POINT
#=GENDEV
JHMP SENDEN i SEND ENABLE ENTRY POINT

#=VCTABL~-INTABS+VSERIN

. WORD ISRSIR i VSERIN
. WORD ISRODN i VBEROR
. WORD ISRTD i VSEROC
#=GI00RG

i SI0 INITIALIZATION SUBROUTINE

SIOINT:

e me e e

S10:

LDA #MOTRET

STA PACTL i TURN OFF MOTOR

Lba #NCOMHI

STA PBCTL i RAISE NOT COMMAND LINE

LbA #3

8TA SSKCTL i GET POKEY OUT OF INITIALIZE MODE
8TA SOUNDR i INIT POKE ADDRESS FOR QUIET I/0

STA SKCTL

RTS i RETURN

T8X

STX STACKP i BAVE STACK POINTER

LbaA #1

STA CRITIC

DA DDEVIC

cmP #CASET

BNE NOTCST i BRANCH IF NOT CASSETTE

JMpP CASENT i OTHERWISE JUMP TO CASSETTE ENTER

41

ERR LINE

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

ADDR

E?&B
E?&D

E®70
EQ?72
E?74
E?76

E978
ER7A
E?7D
EF7F

g982
E783
E986
E989
E98B

E78E
E?91

E?94
ER97
EF94
EF9D

E9AO
E?A1
E?A3
EPAS
E?A7
E?AT
EQAB
E9AD

EQAF
E?B1

E?B4

E®B7
E?BA

E?BC
E?BD

E9BF

Bt

20

aD
Bo

4=

Cé&

B2

28
04
oo
0&

BA
3F
03

o7

36

B3 B4

03

D2
D2
03
03

o2

D3
EC

02

SIO (SERIAL BUS INPUT/DUTPUT CONTROLLER) PAGE 42

i

i ALL DEVICES EXCEPT CASSETTE ARE INTELLIGENT

i
NOTCST: LDaA
g74A

LDA
8TA
COMMND: LDA
8STA

i

#0
CASFLG

#DRETRI
DRETRY
#CRETRI
CRETRY

i SEND A COMMAND FRAME

COMFRM: LDA
STA
LDA
STA

cLe
LDA
ADC
ADC
8TA

LDaA
STA

LDA
STA
LDA
STA

CLC
LDA
STA
ADC
STA
L.DA
STA
8TA

L.DA
STA

JER

L.DA
BNE

TYA
BNE

i

BADCOM: DEC

#B192L0
AUDF3
#B192HI
AUDF 4

DDEVIC
DUNIT
#eFF
CDEVIC

DCOMND
CCOMND

DauX1
CAUX1
DAUX2
cAauxz2

#CBUFLO
BUFRLO
#4
BFENLO
#CBUFHI
BUFRHI
BFENHI

#NCOMLO
PBCTL

SENDIN
ERRFLG

BADCOM

ACKREC

CRETRY

i INIT CASSETTE FLAG TO NO CASSETTE
i SET NUMBER OF DEVICE RETRIES

i SET NUMBER OF COMMAND FRAME RETRIES

i SET BAUD RATE TO 19200

i SET UP COMMAND BUFFER

i SUBTRACT 1
i SET BUS ID NUMBER

i BET BUS COMMAND

i STORE COMMAND FRAME AUX BYTES 1 AND 2

i DONE SETTING UP COMMAND BUFFER
i SET BUFFER POINTER TO COMMAND FRAME BUFFER

i AND BUFFER END ADDRESS

i DONE SETTING UP BUFFER POINTER

i LOWER NOT COMMAND LINE

i SEND THE COMMAND FRAME TO A SMART DEVICE
i BRANCH IF AN ERROR RECEIVED

i BRANCH 'IF ACK RECEIVED

iA NACK OR TIME OUT OCCURED

ERR LINE

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
igi2
1813
1814
18195
1816
i817
1818
1819
1820
1821
igaz
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

ADDR

E?C1

E?C3

E?CH
E?C?

E9CB
ECD

ERCF
E?D2

E?DS

E?D7

E?DA
E?DC

E?DF
ERE2

E?E4
ERE7

EFEQ

EPEC
EREE

EFFO
E?F3

E9F6

Bt
10

4C

AD

a?
85

20
20

Fo

20

a9
8D

20
FO

2C
70

AD

Fo

20
20

AD

B2 B3 B4

BS

(¢

03

oD
3é&

6A
8A

EB

75

00
3F

B
12

6A
EC

3F

EA

03

EB

EC

EC

o2

EC

03

oz

EB
EA

02

e e me e

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE 43
BPL COMFRM i 80 BRANCH IF ANY RETRIES LEFT
i
JMP DERR1 i OTHERWISE, JUMP TO RETURN SECTION
ACKREC: LDaA DETATS i ACK WAS RECEIVED
BPL WATCOM i BRANCH TO WAIT FOR COMPLETE .,

- e e me e we

LDA
8TA

JER
JSR

BEG

- e e

WATCOM: JSR
i

~

LDA
STA

JSR
BEG

- e m e

BIT
BVS

LDA

BNE
BEQ

RECEIVE A

-

ODATA: JSR

i

JSR

DERR: L.DA

IF THERE IS NO DATA TO BE SENT

SEND A DATA FRAME TO PERIPHERAL

#CRETRI i SET NUMBER OF RETRIES

 CRETRY

LDPNTR i LDOAD BUFFER POINTER WITH DCB INFORMATION
SENDIN i G0 SEND THE DATA FRAME TO A SMART DEVICE
BADCOM i BRANCH IF BAD

WAIT FOR COMPLETE SIGNAL FROM PERIPHERAL

STTMOT i SET DDEVICE TIME OUT VALUES IN Y, X
#$00

ERRFLG i CLEAR ERROR FLAG

WAITER i BET UP TIMER AND WAIT

DERR i BRANCH IF TIME QUT

DEVICE DID NOT TIME OUT

DSTATS

MODATA i BRANCH IF MORE DATA FOLLOWS
ERRFLG

DERR1 i BRANCH IF AN ERROR OCCURRED
RETURN i OTHERWISE RETURN

DATA FRAME FROM PERIPHERAL

LDPNTR i LOAD BUFFER POINTER WITH DCB INFORMATION
RECEIV i G0 RECEIVE A DATA FRAME
ERRFLG

ERR LINE

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
18465
1866
1867
1868
1849
1870
1871
1872
1873
i874
1875
1876
1877
1878
1879
1880
1881
igg2
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896

ADDR
E9F9

E9FB
E9FE

EAQO
EAO2
EAQ4

EAQS
EAOB

EADA

EAQCD
EALO
EAl2
EAL4
EALS
EAL?

EAlA
EALC

EALF
EAR20
EAZ2
EA24
EA24
EA28
EA2A
EA2C

EAZE
EA3O

EA32

EA3S
EA37
EA3?
EA3B

B1
FO
AD
85
AS
FO

Cé
30

4C

B2 B3 B4

05
i9
30

30
01
o7

37
03

74

03

E?

02

EA

SI0 (SERIAL BUS INPUT/0OUTPUT CONTROLLER PAGE

i

NOTERR:

DERR1:

b ¢ IR

ALT:

ETURN:

BEG

LDA
8TA

LDA
cMP
BEG

DEC
BMI

JMp

JER
L.DA
STA
LDY

RTS

LDA
STA

cLC
L.DA
8TA
ADC
STA
Lpa
8TA
STA

LDA

8TA

JSR

LDy
LDA
cMp
BNE

NOTERR i BRANCH IF NO ERROR PRECEEDED DATA
T8STAT i GET TEMP STATUS

STATUS i STORE IN REAL STATUS

STATUS

#SUCCES

RETURN i BRANCH IF COMPLETELY SUCCESSFUL
DRETRY

RETURN i BRANCH IF QUT. OF DEVICE RETRIES
COMMND i OTHERWISE, ONE MORE TIME

SENDDS i DISABLE POKEY INTERRUPTS

#0

CRITIC

STATUS i RETURN STATUS IN Y

DSTATS i AND THE DCB STATUS WORD

RETURN

WAIT SUBROUTINE

WAITS FOR COMPLETE OR ACK
RETURNS Y=$FF IF SUCCESSFUL., Y=%00 IF NOT

#3$00
ERRFLG i CLEAR ERROR FLAG
i LOAD BUFFER POINTER WITH ADDRESS
#TEMPLO i OF TEMPORARY RAM CELL
BUFRLOD
#1
BFENLO i ALSO SET BUFFER END +1 ADDRESS
#TEMPHI
BUFRHI
BFENHI i DONE LOADING POINTER
#SFF
NOCKSM i SET NO CHECKSUM FOLLOWS DATA FLAG
RECEIV i 60 RECEIVE A BYTE
#SFF i ASSUME SUCCESS
STATUS
#SUCCES

NWOK i BRANCH IF IT DID NOT WORK OK

44

ERR LINE ADDR Bl B2 B3 B4 SID (SERIAL BUS INPUT/0UTPUT CONTROLLER) PAGE 43

1827 i

1898 H

1899 i

1200 i

1901 EA3D AD 3E 02 WOK: LDA TEMP i MAKE SURE THE BYTE SUCCESSFULLY RECEIVED
1902 EA40 C9 41 cMP #ACK i WAS ACTUALLY AN ACK OR COMPLETE
1903 EA42 FO 21 BEG GO0OD

1904 EA44 C9 43 CMP #COMPLT

1905 EA4é6 FO 1D BEQ GO0n

19206 i

1907 EA48 C9 495 CHMP #ERROR

19208 EA4A DO 0& BNE NOTDER i BRANCH IF DEVICE DID NOT SEND BACK
1909 i A DEVICE ERROR CODE

1910 EA4C A% 90 LDA #DERROR

1911 EA4E 85 30 STA STATUS i SET DEVICE ERROR STATUS
1212 EAS0 DO 04 BNE NWOK

1?13 i

1914 EA5S2 A9 BB NOTDER: LDA #DNACK i OTHERWISE SET MACK STATUS
1915 EAS4 85 30 STA STATUS

1916 i

1917 EAS& AS 30 NWOK: LDA STATUS

1918 EAS8 C9 BA CMP #TIMOUT

1919 EASBA FO 07 BEQ BAD i BRANCH IF TIME OUT

19220 i

1921 EASC A% FF L.DA #$FF

1922 EABSE 8D 3F 02 STA ERRFLG ;i SET SOME ERROR FLAG
1923 EAéL DG 02 BNE GDaD iRETURN WITH QUT SETTING Y = O
1924 i

1925 EA&L3 A0 00 BAD: L.DY #0

1926 H

1927 EA65 A5 30 GDOD: LDA STATUS

1928 EA&47 BD 19 03 STA TSTAT

1929 EABLA 4C RTS i RETURN

1930 ;

1931 i

1932 i

1933 i

1934 i

1935 i SEND SUBROUTINE

1936 i

1937 i SENDS A BUFFER OF BYTES OUT OVER THE SERIAL BUS
1938 i

1939 i

1940 EA4B A% 01 SEND: LDA #SUCCES i ASSUME SUCCESS

1941 EA6D 85 30 S5TA STATUS

1242 i

1943 EA6F 20 F2 EB JSR SENDEN i ENABLE SENDING

1944 i

19245 EA72 A4C 00 LDY #0

1946 EA74 84 31 STY CHKSUM i CLEAR CHECK SUM

1947 EA76 84 3B 8TY CHKSNT i CHECKSUM SENT FLAG

1948 EA78 84 3A STY XMTDON i TRANSMISSION DONE FLAG
1249 i

1950 i

ERR LINE

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

2001

2002
2003
2004

ADDR

EA7A
EA7C

EA7F

EABL
EAB3
EABS

EABS
EABA

EABC

EABF

EAQ0
EA?1

EA92
EA?4
EARS

EA98
EA9A
EAQC
EAQE
EAAO

EaA2
EAA4

EAAL
EAAB
EAAB
EAAD
EAAF

EAB1
EAB3
EABS
EAB7

EABA
EABB
EABC

B1

B1

8D

es

AS

4c

AS
FO

20

&0

B2 B3 B4
32

0D D2

31

i1

AQ ED

34
FS

SF EC

oD D2

SIO (SERIAL BUS INPUT/DUTPUT CONTROLLER) PAGE

i

i

NOTDON:

NTBRKO:

ISRODN:

e e o we m we e

NOWRPO:

RELONE:

CHKDON:

LDA
STA

STA

LDaA
BNE
JMP

L.DA
BEG

JSR

RTS

TYA
PHA

INC
BNE
INC

L.DA
cMpP
LbaA
SBC
BCC

LDaA
BNE

l.DaA
STA
L.DA
STA
BNE

DA
ORA
8TA
STA

PLA
TAY
PLA

(BUFRLD), Y

SERQUT

CHKEUM

BRKKEY
NTBRKO
BROKE

XMTDON
NOTDON

SENDDS

BUFRLO
NOWRPO
BUFRHI

BUFRLO
BFENLO
BUFRHI
BFENHI
NOTEND

CHKSNT
RELONE

CHKSUM
SEROQUT
#EFF

CHKENT
CHKDON

POKMSK
#$08
PDUMSK
IRGEN

i PUT FIRST BYTE FROM BUFFER
; INTO THE SERIAL OUTPUT REGISTER

i PUT IT IN CHECKSUM

i JUMP IF BREAK KEY PRESSED

; LOOP UNTIL TRANSMISSION IS DONE

i DISABLE SENDING

i RETURN

QUTPUT DATA NEEDED INTERRUPT SERVICE ROUTINE

i SAVE Y REG ON STACK

i INCREMENT BUFFER POINTER

i CHECK IF PAST END OF BUFFER
iHIGH PART

i BRANCH IF NOT PAST END OF BUFFER
i BRANCH IF CHECKSUM ALREADY SENT

i SEND CHECK SUM

i SET CHECKSUM SENT FLAG

i ENABLE TRANSMIT DONE INTERRUPT

i REGTORE Y REG
i RETURN FROM INTERRUPT

44

ERR LINE

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
20146
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

ADDR
EABD

EABE
EACO
EAC2

EACS
EACS
EACB
EACA

EACC

EACF
EAD1

EAD3

EADS
EAD7
EAD9
EADB

EADE
EADF

EAEOQ

EAE2
EAES

EAE7
EAE?
EAEB

A%

AC
DO

85

85

B2 B3 B4

00

OF

31

i

p2

EA

D2

03

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE
RTI
i
NOTEND: LDY #0
DA (BUFRLO}, Y i PUT NEXT BYTE FROM BUFFER
STA SERQUT i INTO THE SERIAL OUTPUT REGISTER
CLC iADD IT TO CHECKSUM
ADC CHKSUM
ADC #0
8TA CHKEUM
JMP CHKDON i 60 RETURN

e e m w we e

TRANSMIT DONE

ISRTD: LDA
BEG

-

STA

LDA
AND
STA
STA

FODEY: PLA
RTI

e me m we e me s me

ECEIV: LDA

-~ g~

LDy
BNE

STA
NOCLR: §8TA
STA

INTERRUPT SERVICE ROUTINE

CHKSNT
FOOEY i BRANCH IF CHECKSUM NOT YET SENT

XMTDON i OTHERWISE SET TRANSMISSION DONE FLAG
POKMSK i DISABLE TRANSMIT DONE INTERRUPT

#$F7

POKMSK

IRGEN

i RETURN FROM INTERRUPT

RECEIVE SUBROUTINE

#0

CASFL.G

NOCLR i BRANCH IF CASSETTE
CHKSUM i CLEAR CHKSUM
BUFRFL i BUFFER FULL FLAG
RECVDN i RECEIVE DONE FLAG

47

ERR LINE

2059
2060
2061
2062
2063
2064
2065
2066
2047
2068

2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2089
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112

ADDR

EAED
EAEF
EAF1
EAF4
EAF&
EAF?
EAFB
EAFD

EBOO
EBO3
EBOS
EBO7
EBO%
EBOA
EBOC

EBOE

EBOF
EB10O

EB11
EB14
EB17

EB1®
EB1B

EB1D
EB1F

EB21
EB23

EB25
EB27

50

98
48

AD

30

AQ
B84

29
DO

AC
84

AS
FO

B2 B3 B4

iB EC

¢3 D3

AOC ED

17 03

OF D2
oA D2

04

SI0 «(

CHKTIM:
NTBRK1:

GOBACK:

TOUT:

1

i
i
i
i
i
i
i
i
i
i
i
i
i
i

RRETRN:

SRSIR:

SERIAL BUS INPUT/0OUTPUT CONTROLLER) PAGE
LDA #SUCCES

STA STATUS i SET GOOD STATUS FOR DEFAULT CASE.
JBR RECVEN i DO RECEIVE EMABLE

L.DA #NCOMHI i COMMAND FRAME HI COMMAND

STA PBCTL i STORE IN PIA

LDA BRKKEY "

BNE NTBRK1

JMP BROKE i JUMP IF BREAK KEY PRESSED

LDaA TIMFLG i NO,

BEG TOUT i IF TIMEDUT, GO SET ERROR STATUS
LDA RECVDN

BEQ CHKTIM i DONE 7

RTS

LbDaA #TIMOUT : YES,

8TA STATUS i SET TIMEOUT STATUS

RTS i RETURN

TYA
PHA

L.DaA
STA

P RN RN

NTFRAM:

NTOVRN:

BMI

LRY
sTY

AND
BNE

LDy
STY

LDA
BEG

SUSTAT
SKRES

SERIAL INPUT READY INTERRUPT SERVICE ROUTINE

i SAVE Y REG ON STACK

i RESET STATUS REGISTER

THIS MAY NOT BE THE PLACE TO PO IT 46333 333

NTFRAM

#FRMERR
STATUS

#%$20
NTOVRN

#OVRRUN
STATUS

BUFRFL
NOTYET

i BRANCH IF NO FRAMING ERROR

i SET FRAME ERRORR STATUS

i BRANCH IF NO OVERRUN ERROR

i SET OVERRUN ERROR STATUS

i BRANCH IF BUFFER WAS NOT YET FILLED

48

ERR

LINE

2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150

2151

2152
2193
2154
2153
2156
2157
2158
2159
2160
2161
2162
21463
2164

21465

2166

ADDR

EB29
EB2C
EB2E

EB30
EB32

EB34
EB36

EB38
EB39
EB3A
EB3B

EB3C
EB3F
EB41

EB43
EB44
EB46
EB48

EB4A
EB4C
EB4E

EBSO
EB32
EBS4
EBS6
EBS8

EBSA
EBSC

EBSE
EB&O

EB&2
EB&4
EB&é

EB68

B2 B3 B4

oD
31
04

BF
30

FF
3z

DO

FF
38

CE

D2

D2

810 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE 49

SRETRN:

suUsuUaL:

i

i

NOTYET:

NTWRP1:

.- o m e.

DA
cMP
BEQ

L.DY
STY

LDA
SThA

PLA
TAY
PLA
RTI

LDA
LDy
STA

CLC
ADC
ADC
STA

INC
BNE
INC

LDaA
cMpP
LDA
SBC
BCC

LDA
BEQ

LDaA
8TA

BEQ
LDA
STA

BNE

SERIN
CHKSUM
SRETRN

#CHKERR
STATUS

$$FF
RECVDN

SERIN
#0

CHKSUM
#0
CHKEUM

BUFRLD
NTWRP1
BUFRHI

BUFRLO
BFENLO

- BUFRHI

BFENHI
SUSUAL

NOCKSM
GOON

#0
NOCKSM

SRETRN

#3FF

BUFRFL

SUSUAL

i THIS INPUT BYTE IS THE CHECKSUM

i BRANCH IF CHECKEUMS MATCH

i BET CHECKSUM ERROR STATUS

i BET RECEIVE DONE FLAG

i RESTORE Y REG
i RETURN FROM INTERRUPT

(BUFRLO}. Y ~iSTDRE INPUT REGISTER INTO BUFFER

i ADD IT TO CHECKSUM

i INCREMENT BUFFER POINTER

i BRANCH IF NEW BUFFER ADDRESS IS IN BUFFER L

i BRANCH IF A CHECKSUM WILL FOLLOW DATA

i CLEAR NO CHECKSUM FLAG

i G0 RETURN AND SET RECEIVE DONE FLAG

i 8ET BUFFER FULL FLAG

i 60 RETURN

ERR LINE

2167
2168
2169
2170
2171
2172
2173
2174
2175
2174
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220

ADDR PB1 B2 B3 B4

EB&A
EB&B
EB&E
EB70
EB73

EB75
EB78
EB7A
EB7D

EB7F

EB80
EBB3

EB8S
EBB7
ERBBA
EB8C

EBBF
EB?2
EB?4
EB?7
EB99
EB?B
EB?D

EBAO
EBA2

EBAS

AD
10

AQ
A2
20

A

AD

03

03

03
03

03

D2
D2

EB

03

ED

D3

SI0 (SERIAL BUS INPUT/0OUTPUT CONTROLLER) PAGE

[I S

ASENT:

i WRITE

i

i

SRTIRO:

TIMIT:

LOAD BUFFER

cLC
LDa
STA
ADC
STA

LDA
STA
ADC
STA

RTS

POINTER SUBROUTINE

DBUFLO
BUFRLD
DBYTLO
BFENLO

DBUFHI
BUFRHI
DBYTHI
BFENHI

CASSETTE HANDLING CODE

LDA DSTATS
BPL CASRED
A RECORD

LDA #B6OOLO
STA AUDF3
LDA #B6OOHI
STA AUDF4
JSR SENDEN
LDY $WSIRG
LDA DAUX2
BMI SRTIRO
LDY #WIRGLO
LDX #WIRGHI
JSR SETVEX
LDA #MOTRGO
sTA PACTL
LDA TIMFLG

LOAD BUFFER POINTER WITH DCB BUFFER INFORMATION

i ALSO SET BUFFER END + 1 ADDRESS

i RETURN

i BRANCH IF INPUT FROM CASSETTE

i BET BAUD RATE TO 600

i TURN ON POKEY MARK TONE
i LOAD SHORT WRITE INTER RECORD GAP TIME
i BRANCH IF SHORT GAP IS DESIRED

i SET WRITE IRG TIME

i TURN ON MOTOR

i LOOP UNTIL DONE

50

ERR LINE

2221

2222
2223
2224
22295
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2246
2267
2268
2269
2270
2271
2272
2273
2274

ADDR
EBAB
EBAA
EBAD

EBBO

EBB3
EBBS

EBBB
EBBA
EBBD
EBBF
EBC1
EBC3

EBC6
EBCSB

EBCB
EBCE

EBDO

EBD3
EBDé&

EBD?
EBDC

EBDF
EBE2

EBE4
EBE&

EBE®?

EBEC
OOEB
OOEC
EBEE

B1
DO
20
20

ac

aD
DO

20

20
20

20
20

AD
30

A%
8D

4C

A%

8p

B2

FB

bA

&B

DF

17
FB

bA

75
B®

10

EO

oB
05

3¢
o2

oD

Q0

17

B3 B4

EB
EA

EB

03

03

ED

D3

03

EB

EC
ED

ED
EA

03

D3

EA

03

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE S51
BNE TIMIT
i
JER LDPNTR i LOAD BUFFER POINTER WITH DCB INFORMATION
i
JER SEND i SEND A BUFFER
i
JMP CRETRN i GO RETURN
i
i RECEIVE A RECORD
CASRED: LDA #EFF
8§7A CASFLG i BSET SET CASSETTE FLAG
LDY #RSIRG i LOAD SHORT READ INTER RECORD GAP TIME
L.DA DAaUX2
BMI SRTIR1 i BRANCH IF SHORT GAP IS DESIRED
LDy #RIRGL.O i 8ET TIME OUT FOR READ IRG
SRTIR1: LDX #RIRGHI
JSR SETVEX
LDA #MOTRGO
STA PACTL i TURN ON MOTOR
TIMITL: LDA TIMFLG i LOOP UNTIL DONE
BNE TIMIT1
JSR LDPNTR i LOAD BUFFER POINTER WITH DCB INFORMATION
JSR STTMOT i BET DEVICE TIME OUT IN Y. X
JBR SETVBX
JSR BEGIN i SET INITIAL BAUD RATE
JSR RECEIV i G0 RECEIVE A BLOCK
CRETRN: LDA DAUX2
BMI SRTIR2 i BRANCH IF DOING SHORT INTER RECORD GAPS
i DON'T TURN OFF CASSETTE MOTOR
L.DA #MOTRST
STA PACTL. i TURN OFF MOTOR
SRTIR2: JMP RETURN i G0 RETURN
JTIMER: LDA #300
JTADRH = JTIMER/256 iHI BYTE OF JUMP TIMER ROUTINE ADDR
JTADRL = (—-256) # JTADRH+JT IMER

STA

TIMFLG

i SET TIME OUT FLAG

ERR LINE ADDR Bi B2 B3 B4 SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE 52

2275 EBF1 &0 RTS

2276 H

2277 ;

2278 i

2279 H

2280 i

2281 i

2282 ; SEND ENABLE SUBROUTINE

2283 i

2284 EBF2 A% 07 SENDEN: LDA #$07 i MASK OFF PREVIOUS SERIAL BUS CONTROL BITS
2285 EBF4 2D 32 02 AND SSKCTL

2286 EBF7 09 20 ORA #$20 i SET TRANSMIT MODE

2287 i

2288 EBF9 AC 00 03 LDy DDEVIC

2289 EBFC CO &0 cPY #CASET

2290 EBFE DO OC BNE NOTCAS i BRANCH IF NOT CASSETTE

2291 i

2292 ECOO 09 08 ORA #$08 i BET THE FSK OQUTPUT BIT

2293 H

2294 EC02 AO 07 LDy #LOTONE i BET FSK TONE FREQUENCIES

2295 EC04 8C 02 D2 STY AUDF2

2296 EC0O7 A0 05 LDY H#HITONE

2297 EC09? 8C 00 D2 STY AUDF 1

2298 H

2299 ECOC 8D 32 o2 NOTCAS: STA SSKCTL i STORE NEW VALUE TO SYSTEM MASK

2300 ECOF 8D OF D2 STA SKCTL i STORE TO ACTUAL REGISTER

2301 i

2302 ECi2 a9 C7 L.DA #$C7 i MASK OFF PREVIOUS SERIAL BUS INTERRUPT BITS
2303 EC14 25 10 AND POKMSK .
2304 EC1é6 09 10 ORA #%10 i ENABLE OUTPUT DATA NEEDED INTERRUPT

23095 i

2306 i

2307 EC1B 4C 31 EC JMP CONTIN i GO CONTINUE IN RECEIVE ENABLE SUBROUTINE
2308 i

2309 i

2310 i

2311 i

2312 i

2313 i

2314 i

2315 i

2316 i

2317 i

2318 i RECEIVE ENABLE SUBROUTINE

2319 i

2320 ECIB A% 07 RECVEN: LDA #4507 i MASK OFF PREVIOUS SERIAL BUS CONTROL BITS
2321 ECID 2D 32 02 AND SSKCTL.

2322 EC20 092 10 ORA #$10 i SET RECEIVE MODE ASYNCH.

2323 EC22 8D 32 02 STA SSKCTL i STORE NEW VALUE TO SYSTEM MASK

2324 EC25 8D OF D2 STA SKCTL i STORE TO ACTUAL REGISTER

2325 i)

2326 EC28 8D OA D2 STA SKRES ;i RESET SERIAL PORT/KEYBOARD STATUS REGISTER
2327 i

2328 EC2B A% C7 LDA #$C7 i MASK OFF PREVIOUS SERIAL BUS INTERRUPT BITS

ERR LINE

2029
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
- 2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2344
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
23795
2376
2377
2378
2379
2380
2381
2382

ADDR

EC2D
EC2F
EC31
EC33

EC36
EC38

EC3B
EC3D
EC3F
EC41
EC43
EC45
EC48
EC49
EC4A

EC4C
EC4E
ECS1
ECS4
ECS6
ECS8
ECSB

ECSE

ECSF
EC&0
EC&2
EC64
EC66

EC&?
EC&B
EC&D
EC70
EC71
EC72

B3 B4

D2

D2

D2

D2
o3

D2
D2

D2

D2

SI0 (SERIAL BUS INPUT/DUTPUT CONTROLLER) PAGE
AND POKMSK
ORA #$20 i ENABLE RECEIVE INTERRUPT

CONTIN: STA POKMSK i STORE NEW VALUE TO SYSTEM MASK
STA IRGEN i STORE TO ACTUAL REGISTER
LDA #4228 i CLOCK CH. 3 WITH 1.7%9 MHZ
STA AUDCTL iCLOCK CH. 4 WITH CH. 3
LDX #6 i SET PURE TONES., NO VOLUME
LDA #4408
LDY SOUNDR i TEST QUIET 1/0 FLAG
BNE NOISE1L iNE IS NORMAL (NOISY)
L.DA #5840

NOISELl: STA AUDC1. X
DEX
DEX
BPL NOISE1L
LDaA #5A0
5TA AUDC3 i TURN OFF SOUND ON CHANNEL 3
LDY DDEVIC
CPY #CASET
BEQ CAS31 i BRANCH IF CASSETTE IS DESIRED
8TA AUDC1 i OTHERWISE TURN OFF CHANNELS 1 AND 2
8TA AUDC2

AS31: RTS i RETURN

i

i
i
i
1
i
i
1
i
i
i
:
i

1

SENDDS: NOP

RECVDS: LDaA
AND
STA
STA

LDX
LDA
ZERIT: STa
DEX
DEX
BPL

DISABLE SEND AND DISABLE RECEIVE SUBROUTINES

#$C7 i MASK OFF SERIAL BUS INTERRUPTS
POKMSK

POKMSK i STORE NEW VALUE TO SYSTEM MASK
IRGEN i STORE TO ACTUAL REGISTER

#4

#0

AUDC1. X

ZERIT i TURN OFF AUDIO VOLUME

53

ERR LINE

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436

ADDR Bt B2 B3 B4

EC74

EC75
EC78
EC79
EC7A
EC7B
EC7D

EC7E
EC7F
EC80
EC82

EC83

ECB4
ECB6
ECB8

OOEB
COOF
OOEA
0090
OOEA
00CF

ECBA

&0

AD 0& 03

29 3F

2% Co

OF EB
?C EA
CF EA

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER)

Pt S e b ae me ae w we

NTTBL.:

SIRHI
SIRLO
ODNHI
ODNL.O
TDHI
TDLO

!

RTS

LDA
ROR
ROR
TAY
AND
TAX

TYA
ROR
AND
TAY

RTS

. WORD
. WORD
. WORD

I O I

{

i RETURN

PAGE

DTIMLO i GET DEVICE TIME OUT IN 1 SECOND INCR
A i PUT & HI BITS IN X, LO 2 BITS IN Y
A
i TEMP SAVE
#E3F iMASK OFF 2 HI BITS
i THIS IS HI BYTE OF TIME OUT
i RESTORE
A
#$CO i MASK OFF ALL BUT 2 HI BITS
; THIS IS LO BYTE OF TIME OUT
ISRSIR i SERIAL INPUT READY
ISRODN i QUTPUT DATA NEEDED
ISRTD i TRANSMISSION DONE

ISREIR/256 i SERIAL INPUT READY
(-25463#SIRHI+ISREIR
ISRODN/256 i QUTPUT DATA NEEDED
(-256) *0DNHI+ISRODN

ISR ADDRESS

ISR ADDRESS

ISRTD/256 i TRANSMISSION DONE ISR ADDRESS

(-2846)#TDHI+ISRTD

i SEND A DATA FRAME TO AN INTELLIGENT PERIPHERAL SUBROUTINE

SENDIN:

LDX

#301

54

ERR LINE ADDR Bt B2 B3 B4 SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE

2437 ECBC A0 FF DELAYO: LDY #4FF

2438 ECBE 88 DELAY1: DEY

2439 ECBF DO FD BNE DELAY1

2440 EC91 CA DEX

2441 EC92 DO F8 BNE DELAYO

2442 i

2443 EC94 20 6B EA JBR SEND i GO0 SEND THE DATA FRAME

2444 i

2445 EC?7 AC 02 - LDY #CTIMLO i SET ACK TIME OQUT

2446 EC99 A2 00 DX #CTIMHI '

2447 EC9B 20 B? ED i WAITER: JSR SETVBX

2448 i

2449 ECQE 20 1A EA JSR WAIT i WAIT FOR ACK

2450 i

2451 ECAl1 98 TYA i IF ¥=0, A TIME OUT OR NACK OCCURED
2452 i

2453 ECA2 640 RTS i RETURN

2454
2455
2454
2457
2458
2459
24460
2461
24462
2443
2464

2465 COMPUTE VALUE FOR POKEY FREQ REGS FOR THE BAUD RATE AS

e R T T T P

24466 MEASURED BY AN INTERVAL OF THE ‘VCOUNT‘ TIMER.
2467

2468 ECA3 8D 10 03 OMPUT: STA TIMER2

2469 ECA6 BC 11 03 8TY TIMERZ+1 i BAVE FINAL TIMER VALUE
2470 ECA%? 20 04 ED JER ADJUST i ADJUST VCOUNT VALUE
2471 ECAC 8D 10 03 STA TIMER2 i SAVE ADJUSTED VALUE
2472 ECAF AD 0OC 03 L.DA TIMER1

2473 ECB2 20 04 ED JER ADJUST i ADJUST

2474 ECBS 8D 0C 03 STA TIMER1 i SAVE ADJUSTED TIMER1 VALUE
2475 ECBS8 AD 10 03 LDA TIMERZ2

2476 ECBB 38 SEC

2477 ECBC ED OC 03 SBC TIMERL

2478 ECBF 8D 12 03 STA TEMP1 i FIND VCOUNT DIFFERENCE
2479 ECC2 AD 11 03 L.DA TIMER2+1

2480 ECCS 38 SEC

2481 ECCS6 ED OD 03 SBC TIMER1I+1

2482 ECC? A8 TAY i FIND VBLANK COUNT DIFFERENCE
2483 . IF PALFLG

2484 LDA #-$9C

2485 HITIMR: CLC

2486 ADC #49C

2487 . ENDIF

2488 . IF PALFLG~1

2489 ECCA A9 7D Lba #-$83

2490 ECCC 18 HITIMR: CLC

ERR LINE

2491
2492

ADDR
ECCD

ECCF
ECDO
ECD2
ECD3
ECD6
ECD7
ECD8
ECD9
ECDA
ECDB
ECDC
ECDE
ECDF
ECEO
ECE2
ECE3
ECES
ECE6
ECES
ECE?

ECEB
ECED
ECFO
ECF1
ECF3
ECFS
ECF8
ECF?
ECFC
ECFD
EDOO

EDO3

EDO4
EDO6
EDO8
EDO?
EDOB
EROC

EDOD

EDOF

&%

&0

B2 B3 B4

83

FA

i2

16

07

F3

OB

FA

0o
OE

07

OE

DO

OE
D1

7¢C
04

7C

o7

03

03

03

ED

03
ED

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE Sé
ADC #483 i ACCUMULATE MULTIPLICATION
. ENDIF
DEY
BPL HITIMR i DONE?
cLeC
ADC TEMP1 i TOTAL VCOUNT DIFFERENCE
FINDX: TAY i SAVE ACCUM
LSR A
LSR A
LSR A
ASL A
SEC
SBC #22 i ADJUST TABLE INDEX
TAX i DIVIDE INTERVAL BY 4 TO GET TABLE INDEX
TYA i RESTORE ACCUM
AND #7
TAY iPULL OFF 3 LO BITS OF INTERVAL
LDaA #-11
DOINTP: CLC
ADC #1i1 i ACCUMULATE INTERPOLATION CONSTANT
DEY
BPL DOINTP i INTERPOLATION CONSTANT COMPUTATION DONE?
ENINTP: LDY #0
STY ADDCOR i CLEAR ADDITION CORRECTION FLAG
SEC
SBC #7 i ADJUST INTERPOLATION CONSTANT
BPL PLUS
DEC ADDCOR
PLUS: CcLC
ADC POKTAB, X i ADD CONSTANT TO LO BYTE TABLE VALUE
TAY iLO BYTE POKEY FREQ VALUE
L.DA ADDCOR
ADC POKTAB+1, X i ADD CARRY TO HI BYTE TABLE VALUE
i HI BYTE POKEY FREQ VALUE
RTS
i
i ROUTINE TQ ADJUST VCOUNT VALUE
1
ADJUST: CMP #$7C
BMI ADJ1 i LARGER THAN ‘7C‘ 72
SEC ’ i YES,
SBC #$7C
RTS
ADJIL: cLe
. IF PALFLG
ADC #3$20
. ENDIF
. IF PALFLG-1
ADC #s$7
. ENDIF
RTS

ERR LINE

2545
25446
2547
2548
2549
2550
2551
2552
2953
2554
2555
2556
2557
2558
2559
2540
2561
2562
2563
2564
2565
2566
2567
2568
25869
2570
2571
2572
2573
2574
2575
2976
2877
2578

ADDR B1 B2 B3 B4

ED1O
ED12
ED14

ED17

EDIB
ED1B
EDID

EDIF
ED22
ED24
ED26
ED2?
ED2C
ED2E
ED31

ED34
ED36
ED3?
ED3B
ED3D

ED3F
ED42
ED44
ED4S

ED4B
ED4B
ED4D
EDS0
EDS2
EDSS
EDS6

EDS8
ED5B
EDSD

ED

03

D2

03

03
03

03

03

EB
D2
03

03

03

D4

SI10 (SERTAL BUS INPUT/OUTPUT CONTROLLER) PAGE

INITIAL BAUD RATE MEASUREMENT -- USED TO SET THE
BAUD RATE AT THE START OF A RECORD.

IT IS ASSUMED THAT THE FIRST TWO BYTES OF EVERY
RECORD ARE ‘AA’ HEX.

i
i
i
i
i
i
i
i
i
i
i
i
i

EGIN: LDA BRKKEY
BNE NTBRK2
JMP BROKE i JUMP IF BREAK KEY PRESSED
NTBRK2: SEI
LDA TIMFLG
BNE OKTIM1 i BRANCH IF NOT TIMED OUT
BEG TOUT1 i BRANCH IF TIME OUT
OKTIML: LDA SKSTAT
AND #310 i READ SERIAL PORT
BNE BEGIN i START BIT?
STA SAVIO i SAVE SER. DATA IN
LDX VCOUNT i READ VERTICAL LINE COUNTER
LDY RTCLOK+2 iREAD LO BYTE OF VBLANK CLOCK
STX TIMER1
sTY TIMER1+1 i SAVE INITIAL TIMER VALUE
LDX #1 i SET MODE FLAG
STX TEMP3
LDY #10 iSET BIT COUNTER FOR 10 BITS
COUNT: LDA BRKKEY
BEG BROKE i BRANCH IF BREAK KEY PRESSED
LDA TIMFLG
BNE OKTIMR i BRANCH IF NOT TIMED OUT
TOUTL: CLI
JMP TOUT i BRANCH IF TIME QUT
!
OKTIMR: (DA SKSTAT
AND #$10 i READ SERIAL PORT
cMP SAVIO iDATA IN CHANGED YET?
'BEG COUNT
STA SAVIO i YES, SAVE SER. DATA IN
DEY i DECR. BIT COUNTER
BNE COUNT i DONE?
DEC TEMP3 i YES,
BMI GOREAD i DONE WITH BOTH MODES?
LDA VCOUNT

37

ERR LINE

2599
2600
2601
2602
2603
2604
2605
2606
2607
26408
2609
2610
2611
2612
2613
2614
2613
2616
2617
2618
2619
2620
2621
2622
2423
24624
2625
24626
2627
2628
2629
2430
2631
2632
2633
2634
24635
2636
2637
2638
2639
2440
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652

ADDR

ED&O
ED&2
ED6&S
ED&8
ED&B
ED&D

ED&F
ED72
ED75
ED78
ED7B
ED7D
EDBO
EDB3
EDB6
EDB8
EDBA
EDSB
EDBD
EDBF
ED?1
ED?2
ED?4
ED?&
ED98
ED?4
ED?C
EDYE
ED?F

EDAC
EDA3
EDAS
EDASB

EDAB
EDAD

EDAF
EDB2

EDBE3
EDBS

EDBé&

EDB?

AQ

S5F

(074
o2

80

30

18

11

oD

EC

B3 B4 SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) ' PAGE
LDY RTCLOK+2 ;READ TIMER LO % HI BYTES

EC JSR COMPUT iNO, COMPUTE BAUD RATE

02 STY CBAUDL

o2 STA CBAUDH i SET BAUD RATE INTO RAM CELLS
LDY #9 ;GET BIT COUNTER FOR 9 BITS
BNE COUNT

02 GOREAD: LDA CBAUDL

D2 STA AUDF3

02 LDA CBAUDH

D2 STA AUDF 4 ; SET POKEY FREQ REGS FOR BAUD RATE
LDA #0

D2 STA SKSTAT

02 LDA SSKCTL

D2 STA SKSTAT i INIT. POKEY SERIAL PORT

: LDA #%55

STA (BUFRLO},Y STORE ’$55‘ AS FIRST RCV. BUFFER
INY
STA (BUFRLO}, Y
LDA #3AA
STA CHKSUM ; STORE CHECKSUM FOR 2 BYTES OF ‘$AA‘
cLe
LDA BUFRLO
ADC #2
STA BUFRLO
LDA BUFRHI
ADC #0
STA BUFRHI ; INCR. BUFFER POINTER BY 1
cLI
RTS

EC BROKE: JSR SENDDS s BREAK KEY WAS PRESSED, SO PREPARE
LDA #MOTRST i TO RETURN

D3 STA PACTL ; TURN OFF MOTOR

D3 STA PBCTL iRAISE NOT COMMAND LINE
LDA #BRKABT
STA STATUS ; STORE BREAK ABORT STATUS CODE

03 LDX STACKP 4
TXS i RESTORE STACK POINTER
DEC BRKKEY i GET BREAK KEY FLAG TO NONZERO
cLI i ALLOW IRG’S

EA JMP RETURN : 60 RETURN

SETVEX: LDA #JTADRL i STORE TIME OUT ROUTINE ADDRESS

58

ERR LINE ADDR Bi B2 B3 B4 SI0 (SERIAL BUS INPUT/QUTPUT CONTROLLER) PAGE 59

2653 EDBB 8D 26 02 sTA CDTMAL

2654 EDBE A9 EB LDA #JTADRH

2655 EDCO 8D 27 02 STA CDTMAL1+1

2656 i

2657 EDC3 A9 01 L.DA #1 i BET FOR TIMER 1

2658 i

2659 EDCS 78 8E1 i THE SETVBL ROUTINE NEEDS THIS TO CUT SHORT
2660 EDCS6 20 SC E4 JSR SETVBY i ANY VBLANKS THAT OCCUR

2641 EDC? A% 01 LbaA #1 P BET FOR TIMER 1

2662 EDCB 8D 17 03 STA TIMFLG i SET FLAG TO NOT TIMED OUT

2643 EDCE 58 CLI

264644 EDCF 40 RTS

26465

26466

2647

26468

2669

2670

2671

2672 ‘VCOUNT - INTERVAL TIMER MEASUREMENT —-— TO —- POKEY FREG REG VALUE

!

!
2673 i CONVERSION TABLE
2674 i
2675 ;
2676 i THE VALUES STORED IN THE TABLE ARE ‘AUDF+7’
2677 H
2678 i THE FOLLOWING FORMULAS WERE USED TO DETERMINE THE TABLE VALUES:
2679 i
2680 H F QUT= F IN/(2#(AUDF+M}) , WHERE F IN=1.L 78979 MHZ. % M=7
2681 i
2682 i FROM THIS WAS DERIVED THE FORMULA USED TO COMPUTE THE
2683 i TABLE VALUES BASED ON A MEASUREMENT OF THE PERIOD BY
2684 i AN INTERVAL OF THE ‘VCOUNT’ TIMER.
2485 i
2686 H AUDF+7=(11. 365167)#T QUT, WHERE T OUT=# OF COUNTS
2687 i (127 USEC. RESOLUTION) OF ‘VCOUNT’ FOR 1
2688 i CHARACTER TIME (10 BIT TIMES).
2689 i
2690 i
2691 i
2692 i
2693 i AUDF+7 BAUD RATE VCOUNT INTERVAL
2694 2 i imaten :
2695 i . WORD $27C i 1407 56
2696 i . WORD *2D7 ;1231 L4
2697 i . WORD $332 i 1094 72
2698 H . WORD $38D i 985 80
2699 EDDO EE 03 POKTAB: . WORD $3E8 i 895 88
2700 EDD2 43 04 . WORD $443 i 820 6
2701 EDD4 ©9E 04 . WORD S49E i 757 104
2702 EDD& F? 04 . WORD $4FQ i 703 i 112
2703 EDDB8 54 05 . WORD $554 i 6Sh 120
2704 EDDA AF 05 . WORD $S5AF i 615 128
2705 EDDC OA Q& : . WORD $604 i 979 136

2706 EDDE &5 06 . WORD 5665 i 547 144

ERR LINE ADDR B1 B2 B3 B4 SI0 (SERIAL BUS INPUT/QUTPUT CONTROLLER) PAGE &0

2707 EDEO CO 0& . WORD $46C0O i518 152
2708 EDE2 1A 07 . WORD $714 i 492 160
2709 EDE4 7S5 07 . WORD $775 i 4469 148
2710 EDEé DO 07 . WORD $7D0 i 447 176
2711 H . WORD $82B i 428 ig4
2712 i . WORD 886 - i 410 192~
2713 i . WORD £8E1 i 394 200
2714 i . WORD $23C i 379 208
2715 i . WORD $997 i 365 216
2716 i . WORD $PF2 i 352 224
2717 i . WORD $A4D i 339) 232
2718 i . WORD SAAB i 328 240
2719 i . WORD $BO2 ;318 248
2720 i

2721 i

2722 i

2723 ' i

2724 PRI AR FH R E R R B R R AR R R X R A REFHEAEE SR ERA R HE R SRR R HH RS
2725 EDESB CRNTP3 =#

2726 #=%14

2727 0014 0O2 SIOSPR: . BYTE DSKDORG-CRNTP3 ; ~GSIOL IS TOO LONG

ERR LINE

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2733
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
27635
2766
2747
2768
276%
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781

ADDR Bl B2 B3 B4

0002
OCEA

0031
0050

0053
0021
0000
0040
0080

E450
E453

4C EA ED
4C FO ED

SI0 (SERIAL BUS INPUT/OUTPUT CONTROLLER) PAGE 61

CTITLE ‘DISK sexsdd DIGKP. SRC #tsss 3/9/79 ##x#x 4:00:00 P. M. 7
i

STATVH

= DVETAT/256
STATVL = (—256) #STATVH+DVETAT ; STATUS POINTER
i
i CONSTANT EQUATES
DISKID = %31 i GERIAL BUS DISK I.D
PUTBEC = $50 i DISK PUT SECTOR DCB COMMAND
i READ = 52 i DISK GET SECTOR DCB COMMAND
i WRITE = $57 i DISK PUT SECTOR WITH READ CHECK DCB COMMAND
STATC = $53 i DISK STATUS DCB COMMAND
FOMAT = 21 i DISK FORMAT DCB COMMAND !'!'!!! sasnx
NODAT = (o] i §I10 COMMAND FOR “NO DATA" OPERATION
GETDAT = $40 i SI0 COMMAND FOR "“DATA FROM DEVICEY
PUTDAT = $80 i 510 COMMAND FOR “DATA TO DEVICE"
i VECTORS
#=$E450
JMP DINIT i DISK INIT. VECTOR
JMpP DSKIF i DISK INTERFACE ENTRY POINT
i
i
i CONSTANTS
=DSKORG

- e e e me we e m w

5 3303030 36 30 36 3 38 3 34 3 34 3036 34 3635 36 36 36 3 36 3 36 30 36 3 36 30 36 30 30 36 3036 3 3 30 30 3 36 3 36 30 30 I 30 I3 36 I 3003030 03 W N

i DISK INTERFACE ROUTINE STARTS HERE
§ OSBRI S I B R I R 3 330 33 S S S B 330 B S I S0 3 33 I I B I R H

ERR LINE

2782
2783
2784
2785
2786
2787
2788
2789
2770
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835

ADDR

EDEA
EDEC
EDEF

EDFO
EDF2
EDFS
EDF8
EDFB
EDFD
EDFF
EEQ1L
EEO4
EEQ6
EEOB
EEOB
EEOD
EEOF
EE1l
EE1L3
EE15
EEL17
EELA
EEiC
EELF
EE21
EE24
EE27
EE29
EE2C
EE2F
EE31
EE32
EE35
EE37
EE3?
EE3C
EE3E
EEA40
EE43
EE46
EE4B
EE4A
EEAD

Bl

A?

&0

B2

AQ
46

B3 B4

03

03

03

03

03
03

03
03

03

03

EE

o2

EE

DISK

i
i
i
DINIT:

-~ e wme m

DSKIF:

PUTDTO:

CKSETC:

PUTCNT:

GOODST:

PUTBC:

FMTD:

##3#3t DISKP. GRC s#x## 3/9/79 ###u#x 4:00:00 PAGE 62

DISK INTERFACE INITIALIZATION ROUTINE

LDA #160
STA DSKTIM i SET INITIAL DISK TIMEOUT TO 160 SEC
RTS

DISK INTERFACE ENTRY POINT

LDA #DISKID

STA DDEVIC i BET SERIAL BUS I.D IN DCB

LDA DEKTIM

LDX DCOMND

CPX #FOMAT i I8 COMMAND A FORMAT COMMAND?

BEG PUTDTO

L.DA #7 i NQ, SET TIMEQUT TO 7 SECS.

STA DTIMLO i PUT DISK TIMEOUT IN DCB

LDX #GETDAT i 8ET "GET DATA" COMMAND FOR SIO

LDY #480 i GET BYTE COUNT TO i28

L.DA DCOMND i READ COMMAND IN DCB

cMP #WRITE i IS COMMAND A "PUT SECTOR" COMMAND?
BNE CKSTC

L.DX #PUTDAT i YEG, SET "PUT DATA" COMMAND FOR €10
cMP #8TATC i IS5 COMMAND A STATUS COMMAND?

BNE PUTCNT

L